JP4693509B2 - Composite structure and manufacturing method thereof - Google Patents

Composite structure and manufacturing method thereof Download PDF

Info

Publication number
JP4693509B2
JP4693509B2 JP2005165471A JP2005165471A JP4693509B2 JP 4693509 B2 JP4693509 B2 JP 4693509B2 JP 2005165471 A JP2005165471 A JP 2005165471A JP 2005165471 A JP2005165471 A JP 2005165471A JP 4693509 B2 JP4693509 B2 JP 4693509B2
Authority
JP
Japan
Prior art keywords
fiber
fiber structure
aromatic polyamide
ultrafine
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005165471A
Other languages
Japanese (ja)
Other versions
JP2006336173A (en
Inventor
安泰 岩重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Techno Products Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2005165471A priority Critical patent/JP4693509B2/en
Publication of JP2006336173A publication Critical patent/JP2006336173A/en
Application granted granted Critical
Publication of JP4693509B2 publication Critical patent/JP4693509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は芳香族ポリアミド極細繊維が繊維構造体に積層してなる複合繊維構造体およびその製造方法に関するものである。さらに詳細には、室内の空気や排水中に含まれる有害化学物質や粉塵を除去するフィルターやごみ焼却施設用耐熱バグフィルターなどに好適に使用することができる複合繊維構造体およびその製造方法に関するものである。   The present invention relates to a composite fiber structure in which aromatic polyamide ultrafine fibers are laminated on a fiber structure, and a method for producing the same. More specifically, the present invention relates to a composite fiber structure that can be suitably used for a filter that removes harmful chemical substances and dust contained in indoor air and wastewater, a heat-resistant bag filter for waste incineration facilities, and the like, and a method for producing the same. It is.

従来、ごみ焼却施設等で用いられるバグフィルターは、高温雰囲気下かつ焼却により生成される有害化学物質に接触するような雰囲気にて用いられるため、耐熱性、耐薬品性が必要とされる。この他に、焼却により生じるダストの高捕集性能及びダストの払い落とし性が重要とされ、このような性能を満たすフッ素繊維製フェルトを用いたバグフィルターが提案されている(例えば、特許文献1など)。   Conventionally, a bag filter used in a garbage incineration facility or the like is required to have heat resistance and chemical resistance because it is used in a high temperature atmosphere and in an atmosphere that comes into contact with harmful chemical substances generated by incineration. In addition to this, it is important to have a high dust collection performance and dust removal performance caused by incineration, and a bag filter using a fluorine fiber felt that satisfies such performance has been proposed (for example, Patent Document 1). Such).

しかしながら、これらのフェルト素材のみを用いたバグフィルターでは、捕集されたダストのうちフェルト内部に捕集されたダストは、払い落としを行ってもフェルト内部に残存し完全に除去できないため、フィルター寿命が短くなるという欠点がある。
特開平9−3756号公報
However, with bag filters that use only these felt materials, the dust collected inside the felt remains within the felt even if it is removed, and cannot be completely removed. Has the disadvantage of becoming shorter.
Japanese Patent Laid-Open No. 9-3756

本発明の目的は、上記背景技術の有する問題点を解決し、耐熱性、耐薬品性に加え、捕集したダストの払い落とし性に優れているため長時間使用可能であり、耐熱バグフィルターなどに好適に用いることができる複合繊維構造体を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the background art, and in addition to heat resistance and chemical resistance, it is excellent in the ability to wipe off the collected dust and can be used for a long time, such as a heat resistant bag filter. It is providing the composite fiber structure which can be used suitably for.

本発明者らは上記目的を達成するために鋭意検討した結果、芳香族ポリアミドの極細繊維の成形が可能となる方法や条件を見つけ、さらにこれを繊維構造体に積層しフィルターに用いたところ、長時間使用してもダストによる目詰まりが少なく、耐熱性、耐薬品性、長期耐久性の点で従来のフィルターよりも性能が優れていることがわかった。   As a result of intensive studies to achieve the above-mentioned object, the present inventors found a method and conditions that enable the formation of an aromatic polyamide ultrafine fiber, and further laminated it on a fiber structure and used it for a filter. It was found that there was little clogging with dust even after long-term use, and the performance was superior to conventional filters in terms of heat resistance, chemical resistance and long-term durability.

かくして本発明によれば、繊維構造体に極細繊維が積層してなる複合繊維構造体であって、該極細繊維が単繊維の直径が1〜3,000nmであるポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミド極細繊維であり、該繊維構造体が単繊維の直径が3〜100μmである繊維からなる繊維構造体であることを特徴とする複合繊維構造体が提供される。   Thus, according to the present invention, a composite fiber structure in which ultrafine fibers are laminated on a fiber structure, wherein the ultrafine fibers are mainly composed of polymetaphenylene isophthalamide having a single fiber diameter of 1 to 3,000 nm. There is provided a composite fiber structure characterized in that the fiber structure is a fiber structure composed of fibers having a single fiber diameter of 3 to 100 μm.

また、 ポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミドが極性溶媒に0.1〜20重量%の濃度で溶解しておりかつアルカリ金属塩を0.1〜1重量%含む溶液に、1〜50kVの電圧を印加して紡糸し芳香族ポリアミド極細繊維を成形し、これを繊維構造体上に積層することを特徴とする複合繊維構造体の製造方法が提供される。   In addition, an aromatic polyamide mainly composed of polymetaphenylene isophthalamide is dissolved in a polar solvent at a concentration of 0.1 to 20% by weight and contains 1 to 1% by weight of an alkali metal salt. A method for producing a composite fiber structure is provided, which comprises spinning by applying a voltage of ˜50 kV to form an aromatic polyamide ultrafine fiber and laminating the fiber on the fiber structure.

本発明の複合繊維構造体は、芳香族ポリアミド極細繊維で構成されているため耐熱性、耐薬品性が良好であり、しかも捕集したダストの払い落とし性にも優れ長期間の使用が可能である。ため、耐熱バグフィルターなどの用途に好適に使用することができる。また、本発明の製造方法によれば、芳香族ポリアミドの極細繊維を成形可能であり、また効率よく複合繊維構造体を成形することができる。   The composite fiber structure of the present invention is composed of aromatic polyamide ultrafine fibers, so it has excellent heat resistance and chemical resistance, and also has excellent dust removal properties and can be used for a long time. is there. Therefore, it can be suitably used for applications such as a heat-resistant bag filter. Further, according to the production method of the present invention, it is possible to mold an aromatic polyamide ultrafine fiber, and it is possible to efficiently mold a composite fiber structure.

本発明の複合繊維構造体は、繊維構造体に極細繊維が積層してなる複合繊維構造体である。本発明においては、上記の極細繊維が、単繊維の直径が1〜3,000nmであるポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミド極細繊維であることが肝要である。このように、上記芳香族ポリアミド極細繊維が繊維構造体の積層されていることによって、複合繊維構造体は耐薬品性や耐熱性を有する用途でも使用可能になり、特に高温や化学物質にさらされる側に芳香族ポリアミド極細繊維が積層された複合繊維構造体表面が向くようにすれば、より高い性能を発揮する。   The composite fiber structure of the present invention is a composite fiber structure formed by laminating ultrafine fibers on a fiber structure. In the present invention, it is important that the above-mentioned ultrafine fiber is an aromatic polyamide ultrafine fiber mainly composed of polymetaphenylene isophthalamide having a single fiber diameter of 1 to 3,000 nm. Thus, by laminating the above-mentioned aromatic polyamide ultrafine fibers in a fiber structure, the composite fiber structure can be used in applications having chemical resistance and heat resistance, and is particularly exposed to high temperatures and chemical substances. If the surface of the composite fiber structure in which the aromatic polyamide ultrafine fibers are laminated on the side faces, higher performance is exhibited.

また、本発明においては、芳香族ポリアミド極細繊維の単繊維の直径が1〜3000nm、好ましくは1〜2000nm、さらに好ましくは1〜1000nmである必要がある。上記の単繊維の直径が1nm未満の場合は、複合繊維構造体の強力が低下し、一方、単繊維の直径が3000nmを超える場合は、極細繊維の優位性が発現せずフィルター性能が低下する。また、同じ重量の一般的な芳香族ポリアミド繊維が繊維構造体の表面に積層されている場合と比較して、上記のような繊維の直径が極めて小さい芳香族ポリアミド極細繊維が繊維構造体表面を薄く均一に覆っている方が、複合繊維構造体の耐熱性や耐薬品性を向上させる上で望ましい。さらに本発明においては、極細繊維に消臭性、抗菌性、防汚性などを有する機能材を付与することも可能であるが、極細繊維では直径が大きい繊維と比較して表面積が大きいためかかる機能が充分に発揮される。   Moreover, in this invention, the diameter of the single fiber of an aromatic polyamide extra fine fiber needs to be 1-3000 nm, Preferably it is 1-2000 nm, More preferably, it is 1-1000 nm. When the diameter of the single fiber is less than 1 nm, the strength of the composite fiber structure is reduced. On the other hand, when the diameter of the single fiber exceeds 3000 nm, the superiority of the ultrafine fiber is not expressed and the filter performance is reduced. . In addition, compared to the case where general aromatic polyamide fibers having the same weight are laminated on the surface of the fiber structure, the aromatic polyamide ultrafine fiber having a very small fiber diameter as described above has a fiber structure surface. A thin and uniform covering is desirable for improving the heat resistance and chemical resistance of the composite fiber structure. Furthermore, in the present invention, it is possible to impart a functional material having deodorant property, antibacterial property, antifouling property, etc. to the ultrafine fiber, but the extrafine fiber has a large surface area compared to a fiber having a large diameter. Function is fully demonstrated.

次に、本発明において使用する繊維構造体とは、織編物、不織布、紙状物などをいう。また、上記繊維構造体を構成する繊維としては、木綿、麻などの天然繊維、ガラス繊維、カーボン繊維、金属繊維などの無機繊維、及び、ポリアミド繊維、ポリエステル繊維、芳香族ポリアミド繊維、アクリル繊維、ポリ塩化ビニル繊維、ポリオレフィン繊維、ポリアクリロニトリル繊維などの合成繊維を挙げることができ、複合繊維構造体により高い耐熱性、耐薬品性が必要とされる場合は無機繊維や、合成繊維では芳香族ポリアミド繊維がより好ましい。   Next, the fiber structure used in the present invention refers to a woven or knitted fabric, a nonwoven fabric, a paper-like material, or the like. Further, as the fibers constituting the fiber structure, natural fibers such as cotton and hemp, inorganic fibers such as glass fibers, carbon fibers and metal fibers, and polyamide fibers, polyester fibers, aromatic polyamide fibers, acrylic fibers, Synthetic fibers such as polyvinyl chloride fiber, polyolefin fiber, and polyacrylonitrile fiber can be mentioned. When high heat resistance and chemical resistance are required for the composite fiber structure, inorganic fiber or aromatic polyamide is used for synthetic fiber. Fiber is more preferred.

さらに、上記の繊維構造体を構成する繊維の単繊維の直径は、1〜100μm、好ましくは1〜50μmである。上記の単繊維の直径が1μm未満では、繊維構造体全体が、目が詰まった構造となりやすく十分な通気性が得られない。一方、100μmを超えると、繊維間空隙が大きくなり、捕集対象粒子の繊維への衝突機会の減少により、捕集効率が低下する。   Furthermore, the diameter of the single fiber of the fiber constituting the fiber structure is 1 to 100 μm, preferably 1 to 50 μm. When the diameter of the single fiber is less than 1 μm, the entire fiber structure tends to have a clogged structure, and sufficient air permeability cannot be obtained. On the other hand, when it exceeds 100 μm, the inter-fiber voids become large, and the collection efficiency decreases due to a decrease in the chance of collision of the particles to be collected with the fibers.

また、上記の繊維の形状としては、短繊維糸条、長繊維糸条、スプリットヤーン、テープヤーンなどのいずれの形状であってもよい。   The shape of the fiber may be any shape such as a short fiber yarn, a long fiber yarn, a split yarn, or a tape yarn.

以上に説明した複合繊維構造体を製造する方法としては、次の方法を採用することができる。すなわち、ポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミドが極性溶媒に0.1〜20重量%の濃度で溶解しておりかつアルカリ金属塩を0.1〜1重量%含む溶液に、1〜50kVの電圧を印加して紡糸し芳香族ポリアミド極細繊維を成形し、これを繊維構造体上に積層する方法である。   As a method for producing the composite fiber structure described above, the following method can be employed. That is, an aromatic polyamide mainly composed of polymetaphenylene isophthalamide is dissolved in a polar solvent at a concentration of 0.1 to 20% by weight and contains 1 to 1% by weight of an alkali metal salt. In this method, spinning is performed by applying a voltage of ˜50 kV to form an aromatic polyamide ultrafine fiber, and this is laminated on the fiber structure.

上記の芳香族ポリアミド極細繊維において、極細繊維の太さは、紡糸において印加する電圧(印加電圧)、溶液濃度や、溶液の吐出孔からこれを吹付ける繊維構造体までの距離に依存する。また、繊維構造体に連続的に極細繊維を成形することによって、立体的な網目を持つ三次元構造の薄膜が得られる。また、上記方法によれば膜を不織布などの布帛のように厚くすることが可能であり、サブミクロンの網目を持つ不織布を製造することができる。   In the above-mentioned aromatic polyamide ultrafine fiber, the thickness of the ultrafine fiber depends on the voltage applied in spinning (applied voltage), the solution concentration, and the distance from the solution discharge hole to the fiber structure that sprays the solution. Moreover, a thin film having a three-dimensional structure having a three-dimensional network can be obtained by continuously forming ultrafine fibers into the fiber structure. Further, according to the above method, the film can be made thick like a fabric such as a nonwoven fabric, and a nonwoven fabric having a submicron mesh can be produced.

さらに、均一な繊維径の極細繊維を安定して得るためには、最適な溶媒と最適な溶液濃度(粘度)を選択することが影響する。例えば、極性溶媒については、低沸点でポリメタフェニレンイソフタルアミドを溶解し易く、溶液の低粘度化が可能な極性の高い溶媒を選ぶことが望ましい。   Furthermore, in order to stably obtain ultrafine fibers having a uniform fiber diameter, selection of an optimal solvent and an optimal solution concentration (viscosity) has an effect. For example, as the polar solvent, it is desirable to select a highly polar solvent that can easily dissolve polymetaphenylene isophthalamide at a low boiling point and can reduce the viscosity of the solution.

溶液の濃度(粘度)については、粘度を下げるために低濃度にすると、帯電する芳香族ポリアミドポリマーの絶対量が減るため、該ポリマーの帯電量減少により、溶液の変形が起こりにくくなるため、極細繊維が形成されずにフィルム状になる。逆に高濃度にすると、ポリマー帯電量増加により、容易に極細繊維を形成可能だが、溶媒量が減り、蒸発速度が早まる為に固化が急速に進み、繊維径が大きくなる。よって、本発明の目的とする極細繊維の単繊維の直径とするには、溶液濃度を前述した0.1〜20重量%とすることが望ましい。   Regarding the concentration (viscosity) of the solution, if the concentration is lowered in order to reduce the viscosity, the absolute amount of the aromatic polyamide polymer to be charged decreases. The fiber is not formed and becomes a film. On the other hand, if the concentration is high, ultrafine fibers can be easily formed due to an increase in the charge amount of the polymer, but the amount of solvent decreases and the evaporation rate increases, so that solidification proceeds rapidly and the fiber diameter increases. Therefore, in order to obtain the diameter of the single filament of the ultrafine fiber that is the object of the present invention, the solution concentration is desirably 0.1 to 20% by weight as described above.

上記の芳香族ポリアミド繊維を溶解させる溶媒は、沸点が低く極性の高い極性溶媒が好適である。例えば、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラメチル尿素、N−メチルカプロラクタム、N−メチルビペリジンなどが例示され、特にN,N−ジメチルアセトアミド、N−メチル−2−ピロリドンが好ましい。   The solvent for dissolving the aromatic polyamide fiber is preferably a polar solvent having a low boiling point and a high polarity. For example, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetramethylurea, N-methylcaprolactam, N-methylbiperidine and the like are exemplified, and in particular, N, N-dimethylacetamide, N -Methyl-2-pyrrolidone is preferred.

また、アルカリ金属塩を溶液に添加することにより、帯電し易くなり、紡糸状態が非常に安定する。アルカリ金属塩は、塩化リチウム、塩化カルシウム、塩化ナトリウム、塩化カリウム、塩化マグネシウムなどが例示されるが、特に塩化リチウム、塩化カルシウムが好ましい。上記のアルカリ金属塩の添加量としては、溶媒の重量に対して0.1〜1.0重量%が好ましい。   Further, by adding an alkali metal salt to the solution, it becomes easy to be charged and the spinning state is very stable. Examples of the alkali metal salt include lithium chloride, calcium chloride, sodium chloride, potassium chloride, and magnesium chloride, with lithium chloride and calcium chloride being particularly preferable. As addition amount of said alkali metal salt, 0.1 to 1.0 weight% is preferable with respect to the weight of a solvent.

単繊維の直径が3〜100μmの繊維から構成される繊維構造体に積層する芳香族ポリアミド極細繊維の目付は、通常、0.001〜10g/m、好ましくは0.01〜3.0g/mである。上記目付けが0.01g/m未満では、繊維構造体表面に一様に極細繊維を被覆するのが難しくなる傾向にあり、一方、3.0g/mを超えると、通気性が低下する傾向にある。 The basis weight of the aromatic polyamide ultrafine fiber laminated on the fiber structure composed of fibers having a single fiber diameter of 3 to 100 μm is usually 0.001 to 10 g / m 2 , preferably 0.01 to 3.0 g / a m 2. If the basis weight is less than 0.01 g / m 2 , it tends to be difficult to uniformly coat the fine fiber on the surface of the fiber structure. On the other hand, if it exceeds 3.0 g / m 2 , the air permeability decreases. There is a tendency.

なお、上記極細繊維から不織布を製造する方法には特に限定はなく、従来公知の方法が任意に採用できる。また不織布の形状や物性などにも特に限定はない。   In addition, there is no limitation in particular in the method of manufacturing a nonwoven fabric from the said ultrafine fiber, A conventionally well-known method can be employ | adopted arbitrarily. There is no particular limitation on the shape and physical properties of the nonwoven fabric.

また、耐熱性、耐薬品性に優れた芳香族ポリアミド極細繊維から構成されるため、ごみ焼却施設用耐熱バグフィルターなどの用途に使用することが望ましい。なぜなら、本発明の複合繊維構造体の表面には、極細繊維が積層されているため、バグフィルターにて焼却により発生するダストがフィルターを構成するフェルトに代表される繊維構造体内部にまで到達しにくく、極細繊維表面にダストが捕集、積層される捕集機構である表面ろ過の形態を取る。また、極細繊維より構成される繊維構造体表面は、1μm程度の細孔径を持った比較的平滑な表面を有する。そのため、フィルター表面に蓄積されたダストを振動等の付与によって払い落とす際、容易にダストの脱落が可能である。   Further, since it is composed of an aromatic polyamide ultrafine fiber excellent in heat resistance and chemical resistance, it is desirable to use it for applications such as heat resistant bag filters for refuse incineration facilities. Because the fine fiber is laminated on the surface of the composite fiber structure of the present invention, the dust generated by incineration in the bag filter reaches the inside of the fiber structure represented by the felt constituting the filter. It is difficult and takes the form of surface filtration, which is a collection mechanism in which dust is collected and laminated on the surface of ultrafine fibers. The surface of the fiber structure composed of ultrafine fibers has a relatively smooth surface with a pore diameter of about 1 μm. Therefore, when dust accumulated on the filter surface is removed by applying vibration or the like, the dust can be easily removed.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、実施例における各物性は以下の方法により求めたものである。
(1)捕集効率
使用ダストとしてJIS8901試験用標準ダスト10種(フライアッシュ;日本粉体工業協会製)を用い、捕集効率を、複合繊維構造体を通過したダスト濃度から次式を用いて算出した。数値が高い程、捕集効率に優れると言える。
(捕集効率)=[(ダスト供給濃度−吹き漏れダスト濃度)/ダスト供給濃度]×100
(2)残留圧力損失
50サイクル後の圧縮空気によるダストの払い落とし直後の圧力損失とする。数値が低いほど払い落とし性に優れると言える。
(3)集塵サイクル時間
50サイクル後のダストが払い落とされてから、次の払い落としまでに要する時間とする。数値が高い程、目詰まりに対する寿命が長いと言える。結果を表2に示す。
Hereinafter, the present invention will be described in more detail based on examples. In addition, each physical property in an Example is calculated | required with the following method.
(1) Collection efficiency 10 kinds of standard dust for JIS8901 test (fly ash; manufactured by Japan Powder Industry Association) are used as the used dust, and the collection efficiency is calculated from the dust concentration that has passed through the composite fiber structure using the following formula. Calculated. It can be said that the higher the numerical value, the better the collection efficiency.
(Collection efficiency) = [(dust supply concentration−blown dust concentration) / dust supply concentration] × 100
(2) Residual pressure loss The pressure loss immediately after dust removal by compressed air after 50 cycles. It can be said that the lower the number, the better the payout performance.
(3) Dust collection cycle time The time required for the next dust removal after the dust after 50 cycles is dusted off. It can be said that the higher the value, the longer the life against clogging. The results are shown in Table 2.

[実施例1]
芳香族ポリアミド繊維フェルト(目付490g/m)表面にポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミド粉末状体、塩化リチウム、溶媒N,N−ジメチルアセトアミドを10:1:89の重量比で溶解させたポリマー溶液を調製した。次に、エレクトロスピニング法にて印加電圧20kV下で繊維径が65nmの芳香族ポリアミド極細繊維を目付0.5g/m積層させ複合繊維構造体を作製した。得られた複合繊維構造体を用いフィルターとしての性能を評価した。結果を表1に示す。
[Example 1]
Aromatic polyamide fiber felt (weight per unit area: 490 g / m 2 ) Aromatic polyamide powder mainly composed of polymetaphenylene isophthalamide, lithium chloride, solvent N, N-dimethylacetamide in a weight ratio of 10: 1: 89 A polymer solution dissolved in was prepared. Next, a composite fiber structure was produced by laminating 0.5 g / m 2 of an aromatic polyamide ultrafine fiber having a fiber diameter of 65 nm under an applied voltage of 20 kV by an electrospinning method. The obtained composite fiber structure was used to evaluate the performance as a filter. The results are shown in Table 1.

[実施例2]
芳香族ポリアミド粉末状体、塩化リチウム、溶媒N,N−ジメチルアセトアミドの重量比を12:1:87に変更した以外は実施例1と同様にして複合構造体を得た、フィルターとしての性能を評価した。結果を表1に示す。
[Example 2]
A composite structure was obtained in the same manner as in Example 1 except that the weight ratio of the aromatic polyamide powder, lithium chloride, and the solvent N, N-dimethylacetamide was changed to 12: 1: 87. evaluated. The results are shown in Table 1.

[比較例1]
実施例1で用いた芳香族ポリアミド繊維フェルト(目付490g/m)をそのまま用いフィルターとしての性能を評価した。結果を表1に示す。
[Comparative Example 1]
The performance as a filter was evaluated using the aromatic polyamide fiber felt (weight per unit area 490 g / m 2 ) used in Example 1 as it was. The results are shown in Table 1.

Figure 0004693509
Figure 0004693509

本発明の複合繊維構造体は、芳香族ポリアミド極細繊維で構成されているため耐熱性、耐薬品性が良好であり、しかも捕集したダストの払い落とし性にも優れ長期間の使用が可能であるため、ごみ焼却設備の耐熱バグフィルターなどの用途に好適に使用することができる。   The composite fiber structure of the present invention is composed of aromatic polyamide ultrafine fibers, so it has excellent heat resistance and chemical resistance, and also has excellent dust removal properties and can be used for a long time. Therefore, it can be suitably used for applications such as heat-resistant bag filters for waste incineration facilities.

Claims (4)

繊維構造体に極細繊維が積層してなる複合繊維構造体であって、該極細繊維が単繊維の直径が1〜3,000nmであるポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミド極細繊維であり、該繊維構造体が単繊維の直径が3〜100μmである繊維からなる繊維構造体であることを特徴とする複合繊維構造体。   A composite fiber structure obtained by laminating ultrafine fibers on a fiber structure, wherein the ultrafine fiber is an aromatic polyamide ultrafine fiber whose main component is polymetaphenylene isophthalamide having a single fiber diameter of 1 to 3,000 nm A composite fiber structure characterized in that the fiber structure is a fiber structure composed of fibers having a single fiber diameter of 3 to 100 μm. ポリメタフェニレンイソフタルアミドを主成分とする芳香族ポリアミドが極性溶媒に0.1〜20重量%の濃度で溶解しておりかつアルカリ金属塩を0.1〜1重量%含む溶液に、1〜50kVの電圧を印加して紡糸し芳香族ポリアミド極細繊維を成形し、これを繊維構造体上に積層することを特徴とする複合繊維構造体の製造方法。   1 to 50 kV in a solution in which an aromatic polyamide mainly composed of polymetaphenylene isophthalamide is dissolved in a polar solvent at a concentration of 0.1 to 20% by weight and an alkali metal salt is contained in an amount of 0.1 to 1% by weight. A process for producing a composite fiber structure, comprising spinning an aromatic polyamide ultrafine fiber by applying a voltage of 5 and forming a laminate on the fiber structure. 極性溶媒が、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラメチル尿素、N−メチルカプロラクタム、N−メチルビペリジンのいずれかである請求項2記載の複合繊維構造体の製造方法。   The composite fiber according to claim 2, wherein the polar solvent is any one of N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetramethylurea, N-methylcaprolactam, and N-methylbiperidine. Manufacturing method of structure. アルカリ金属塩が、塩化リチウム、塩化カルシウム、塩化ナトリウム、塩化カリウム、塩化マグネシウムのいずれかである請求項2記載の複合繊維構造体の製造方法。   The method for producing a composite fiber structure according to claim 2, wherein the alkali metal salt is any one of lithium chloride, calcium chloride, sodium chloride, potassium chloride, and magnesium chloride.
JP2005165471A 2005-06-06 2005-06-06 Composite structure and manufacturing method thereof Active JP4693509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165471A JP4693509B2 (en) 2005-06-06 2005-06-06 Composite structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165471A JP4693509B2 (en) 2005-06-06 2005-06-06 Composite structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006336173A JP2006336173A (en) 2006-12-14
JP4693509B2 true JP4693509B2 (en) 2011-06-01

Family

ID=37556971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165471A Active JP4693509B2 (en) 2005-06-06 2005-06-06 Composite structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4693509B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108392A1 (en) * 2007-03-07 2008-09-12 Toyo Boseki Kabushiki Kaisha Microfiber and method for production thereof
JP5614474B2 (en) * 2007-04-03 2014-10-29 日清紡ホールディングス株式会社 Antibacterial expression method of fiber
JP5140886B2 (en) * 2007-05-07 2013-02-13 帝人株式会社 Composite fiber structure
CN101827962B (en) * 2007-10-18 2012-10-10 帝人高科技产品株式会社 Aromatic polyamide nanofiber and fiber structure containing the same
JP5268730B2 (en) * 2008-03-28 2013-08-21 グンゼ株式会社 Composite fabric
JP5246652B2 (en) * 2008-05-02 2013-07-24 公立大学法人首都大学東京 Method for producing ultrafine nanofiber
JP2010115919A (en) * 2008-10-14 2010-05-27 Teijin Techno Products Ltd Composite structure and separator for electronic component including the same
KR101687426B1 (en) * 2008-12-25 2016-12-19 주식회사 쿠라레 Filtration material for filters, and filter cartridge
JP5714939B2 (en) * 2011-03-01 2015-05-07 帝人株式会社 Method for producing ultrafine continuous fiber
JP6113953B2 (en) * 2011-12-28 2017-04-12 帝人株式会社 Filter materials and filter composites
CN104928804B (en) * 2015-07-07 2017-10-03 哈尔滨工业大学 A kind of preparation method of polymer nanofiber
KR101984852B1 (en) * 2017-12-29 2019-05-31 한국과학기술원 Electrode Using Nano Fiber Net Structure and Manufacturing Method thereof
CN110935325B (en) * 2019-12-31 2022-08-16 杭州帝凡过滤技术有限公司 Ultrahigh-flux nanofiber filtering membrane and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287782U (en) * 1975-12-25 1977-06-30
JPS5287783U (en) * 1975-12-25 1977-06-30
JPS61167009A (en) * 1985-01-16 1986-07-28 Teijin Ltd Cake of synthetic fibrid
JPH08192017A (en) * 1995-01-20 1996-07-30 Teijin Ltd Filter cloth improved in durability
JPH09313832A (en) * 1996-05-31 1997-12-09 Teijin Ltd High performance filter cloth
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus
JP2005200779A (en) * 2004-01-14 2005-07-28 Teijin Ltd Para-type aromatic polyamide-based fiber, fiber structure and method for producing the same
JP2006069142A (en) * 2004-09-06 2006-03-16 Teijin Techno Products Ltd Composite fiber structure and its manufacturing method
JP2006525391A (en) * 2003-05-08 2006-11-09 テイジン・トゥワロン・ビー.ブイ. Non-fibrous polymer solution of p-aramid with high relative viscosity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287782U (en) * 1975-12-25 1977-06-30
JPS5287783U (en) * 1975-12-25 1977-06-30
JPS61167009A (en) * 1985-01-16 1986-07-28 Teijin Ltd Cake of synthetic fibrid
JPH08192017A (en) * 1995-01-20 1996-07-30 Teijin Ltd Filter cloth improved in durability
JPH09313832A (en) * 1996-05-31 1997-12-09 Teijin Ltd High performance filter cloth
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus
JP2006525391A (en) * 2003-05-08 2006-11-09 テイジン・トゥワロン・ビー.ブイ. Non-fibrous polymer solution of p-aramid with high relative viscosity
JP2005200779A (en) * 2004-01-14 2005-07-28 Teijin Ltd Para-type aromatic polyamide-based fiber, fiber structure and method for producing the same
JP2006069142A (en) * 2004-09-06 2006-03-16 Teijin Techno Products Ltd Composite fiber structure and its manufacturing method

Also Published As

Publication number Publication date
JP2006336173A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4693509B2 (en) Composite structure and manufacturing method thereof
JP5037034B2 (en) Filter filter medium, its production method and method of use, and filter unit
KR102313590B1 (en) Dustproof net for fine dust filtering
KR102340662B1 (en) Multilayer filtration material for filter, method for manufacturing same, and air filter
KR101315000B1 (en) Filtration media for filtering particulate material from gas streams
US9186608B2 (en) Process for forming a high efficiency nanofiber filter
KR20080017324A (en) Filter medium, process for producing the same, method of use thereof and filter unit
JP7077575B2 (en) Mixed non-woven fabrics, laminates, filter media for filters, and methods for manufacturing these
JP7340037B2 (en) Filtration media containing a polyamide nanofiber layer
KR20100075456A (en) Filter element and filter unit
JP2010221210A (en) Antistatic filter cloth for surface filtration type dust collector
JP2010264430A (en) Filter fabric for bag filter
JP7177394B2 (en) COMPOSITE STRUCTURE, MANUFACTURING METHOD THEREOF, AND FILTER MEDIUM CONTAINING THE COMPOSITE STRUCTURE
JP2007222813A (en) Cylindrical filter
JP2017113670A (en) Filter medium for air filter and air filter
JP2010274144A (en) Filter medium
JP2009112888A (en) Filter medium and filter bag
JP2014128758A (en) Air filter material and its manufacturing method
JP6888242B2 (en) Extra fine fiber sheet
Akgul et al. Nanofibrous composite air filters
JP5076883B2 (en) Filter felt
WO2020153174A1 (en) Filter medium and filter using same
JP2009248324A (en) Composite fiber structure, its manufacturing method, and filter medium for bag filter
JP2006069142A (en) Composite fiber structure and its manufacturing method
CN103721478A (en) Porous hollow fiber fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250