JP4689306B2 - Reflective optical element - Google Patents

Reflective optical element Download PDF

Info

Publication number
JP4689306B2
JP4689306B2 JP2005069799A JP2005069799A JP4689306B2 JP 4689306 B2 JP4689306 B2 JP 4689306B2 JP 2005069799 A JP2005069799 A JP 2005069799A JP 2005069799 A JP2005069799 A JP 2005069799A JP 4689306 B2 JP4689306 B2 JP 4689306B2
Authority
JP
Japan
Prior art keywords
optical element
reflective optical
metal film
crystal
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005069799A
Other languages
Japanese (ja)
Other versions
JP2006251539A5 (en
JP2006251539A (en
Inventor
慶一 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005069799A priority Critical patent/JP4689306B2/en
Priority to US11/101,443 priority patent/US7344263B2/en
Publication of JP2006251539A publication Critical patent/JP2006251539A/en
Publication of JP2006251539A5 publication Critical patent/JP2006251539A5/ja
Application granted granted Critical
Publication of JP4689306B2 publication Critical patent/JP4689306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、金属板をプレス成形することにより反射光学素子を製造する技術に関するものである。   The present invention relates to a technique for manufacturing a reflective optical element by press-molding a metal plate.

従来より、反射光学素子を用いた画像システムとして、フライトシミュレータ、ヘッドマウントディスプレイ、プロジェクタ等が知られている。その中でも、特に金属材料を主体とした反射光学素子用材料もしくは反射光学素子の提案として、特開平7−243027号公報(特許文献1)に開示されているようなAl(アルミニウム)圧延材の表面にAl基金属を連続蒸着した反射用材料や、特開平8−36222号公報(特許文献2)に開示されているように鏡面に研磨した特にステンレス板材をプレス成形やバルジ成形により加工して曲面鏡を製造する方法や、特開平9−120705号公報(特許文献3)に開示されているようなAlまたはAl合金またはステンレスをへら絞り成形または液圧成形により曲面形状とし、その後各種研磨法により照明用鏡を得る方法、等が知られている。
特開平7−243027号公報 特開平8−36222号公報 特開平9−120705号公報 特開2002−316226号公報
Conventionally, flight simulators, head-mounted displays, projectors, and the like are known as image systems using reflective optical elements. Among them, the surface of an Al (aluminum) rolled material as disclosed in Japanese Patent Application Laid-Open No. 7-243027 (Patent Document 1) as a proposal for a reflective optical element material or a reflective optical element mainly composed of a metal material. A reflective material obtained by continuously vapor-depositing an Al-based metal on the surface, and a stainless steel plate that has been polished to a mirror surface as disclosed in JP-A-8-36222 (Patent Document 2) is processed into a curved surface by press molding or bulge molding. A method of manufacturing a mirror, Al or an Al alloy or stainless steel as disclosed in Japanese Patent Application Laid-Open No. 9-120705 (Patent Document 3) is formed into a curved shape by spatula drawing or hydraulic forming, and then by various polishing methods A method for obtaining a mirror for illumination is known.
Japanese Patent Laid-Open No. 7-243027 JP-A-8-36222 Japanese Patent Laid-Open No. 9-120705 JP 2002-316226 A

しかしながら、従来の金属光学素子用素材は、素材の圧延方向に平行な結晶異方性を有し、素材の圧延方向とその圧延方向に直交する方向とで機械的な特性が異なる。また、板厚方向に圧縮されているために、素材表面の硬度が非常に高い。そのため、プレス加工により凹面鏡などの成形品を製造する場合では、圧延方向と圧延方向に直交する方向でプレス型の転写性が異なるために高度な形状精度を得ることが困難であるとともに、素材表面の硬度が高いために、プレス型の表面の平滑性を成形品の表面に十分に転写することが困難であった。   However, the conventional metal optical element material has crystal anisotropy parallel to the rolling direction of the material, and the mechanical characteristics differ between the rolling direction of the material and the direction orthogonal to the rolling direction. Moreover, since it is compressed in the plate thickness direction, the hardness of the material surface is very high. Therefore, when manufacturing a molded product such as a concave mirror by pressing, it is difficult to obtain high shape accuracy because the transferability of the press mold differs in the rolling direction and the direction orthogonal to the rolling direction. Because of the high hardness, it was difficult to sufficiently transfer the smoothness of the surface of the press die to the surface of the molded product.

そこで、ほとんどの金属反射光学素子は、特許文献1乃至3に見られるように、最終的には長工程を費やして研磨・鏡面加工処理を行い、形状精度及び表面粗度を確保していた。   Therefore, as can be seen in Patent Documents 1 to 3, most of the metal reflective optical elements are finally subjected to polishing and mirror finishing processing by taking a long process to ensure shape accuracy and surface roughness.

面粗度のみに注目した素材も開発されており、特許文献1に開示されているAl圧延材表面にAl基金属を連続蒸着した反射用材料では、結晶粒度が小さくなり面粗度が向上されている。確かに、結晶粒度を小さくすることにより、素材自身の表面粗さは低下し、反射率も改善される。しかし、蒸着工程で結晶粒度を小さくするように蒸着を行なうと、ホールペッチの効果により、蒸着層が高硬度化し、プレス工程でプレス型の表面の平滑性を成形品の表面に十分に転写することができないとともに、表面割れが生じやすくなり、滑らかで且つ曲率半径の小さい自由曲面を成形することは困難である。   A material that focuses only on surface roughness has been developed. In the reflective material in which an Al-based metal is continuously deposited on the surface of an Al rolled material disclosed in Patent Document 1, the crystal grain size is reduced and the surface roughness is improved. ing. Certainly, by reducing the crystal grain size, the surface roughness of the material itself is lowered and the reflectance is improved. However, when vapor deposition is performed so that the crystal grain size is reduced in the vapor deposition process, the vapor deposition layer becomes hard due to the effect of the Hall Petch, and the smoothness of the surface of the press die is sufficiently transferred to the surface of the molded product in the press process. It is difficult to form a free curved surface having a small curvature radius and a surface crack that is liable to occur.

また他の方法としては、高価な市販の光学用アルミ素材を用いる方法もあり、特開2002−316226号公報(特許文献4)には、高純度アルミと低純度アルミの合板をローラーバニッシングで光沢を出し、超高応力でエンボス加工を施し、φ1〜2mm程度の金属光学素子を得る方法が開示されている。この方法では、元々素材が平滑なうえ、極微小領域に高荷重を与えることが出来るため、素材の加工硬化以上の降伏強度を付与できるが、素材表面の硬度が高いために型の平滑性を十分に転写することができず、表面粗さは10nm以上であった。しかも、このアルミ光学素子は、元の素材に強い異方性を有しているため、光学素子の要求精度を満たすためには、φ2mm以下の小型の成形品を得ることしか出来なかった。   As another method, there is a method using an expensive commercially available optical aluminum material. JP 2002-316226 A (Patent Document 4) glosses high-purity aluminum and low-purity aluminum plywood with roller burnishing. And embossing with ultra-high stress to obtain a metal optical element having a diameter of about 1 to 2 mm is disclosed. In this method, since the material is originally smooth and a high load can be applied to a very small area, it can provide yield strength that is higher than the work hardening of the material. It was not possible to transfer sufficiently, and the surface roughness was 10 nm or more. Moreover, since this aluminum optical element has a strong anisotropy with respect to the original material, in order to satisfy the required accuracy of the optical element, it was only possible to obtain a small molded product of φ2 mm or less.

従って、本発明は上述した課題に鑑みてなされたものであり、その目的は、金属板をプレス加工して光学素子を成形する場合に、高い形状精度と高い表面平滑性を容易に得られるようにすることである。   Therefore, the present invention has been made in view of the above-described problems, and the object thereof is to easily obtain high shape accuracy and high surface smoothness when an optical element is formed by pressing a metal plate. Is to do.

上述した課題を解決し、目的を達成するために、本発明に係わる反射光学素子は、金属製の板材からなる基材と、該基材上に形成され、結晶構造を有する金属からなる金属膜とを備える金属製板をプレス成形することにより製造された反射光学素子であって、前記結晶構造のうち、前記金属膜の表面に現れ結晶面の法線と、前記反射光学素子の目標表面形状の法線とのなす角度をθとした場合、前記角度θの前記反射光学素子の光学有効面内における平均値θaが、0°≦θa≦40°を満たすことを特徴とする。 In order to solve the above-described problems and achieve the object, a reflective optical element according to the present invention includes a base material made of a metal plate material, and a metal film made of metal having a crystal structure formed on the base material. a metal plate provided with bets, a reflective optical element manufactured by press molding, among the crystal structures, the normal of the crystal plane appears on the surface of the metal film, the target of the reflective optical element If the angle of the normal of the surface shape was theta, average .theta.a the optical effective surface within the reflective optical element of the angle theta is characterized by satisfying 0 ° ≦ θa ≦ 40 °.

また、この発明に係わる反射光学素子において、前記金属膜の平均結晶粒径が0.5μm以下であることを特徴とする。   In the reflective optical element according to the present invention, the metal film has an average crystal grain size of 0.5 μm or less.

また、この発明に係わる反射光学素子において、前記金属膜の表面には酸化膜が形成されており、該酸化膜の厚さが10nm以下であることを特徴とする。 Further, in the reflective optical element according to the present invention, the surface of the metal film is formed is an oxide film, and the thickness of the oxide film is 10nm or less.

また、この発明に係わる反射光学素子において、前記金属膜の表面に形成されている酸化膜がアモルファスと微細結晶との混晶であることを特徴とする。   In the reflective optical element according to the present invention, the oxide film formed on the surface of the metal film is a mixed crystal of amorphous and fine crystals.

また、この発明に係わる反射光学素子において、前記金属膜が98mol%以上の純度の単一金属からなることを特徴とする。   In the reflective optical element according to the present invention, the metal film is made of a single metal having a purity of 98 mol% or more.

また、この発明に係わる反射光学素子において、前記金属膜の表面の表面粗さRaが、10nm以下であることを特徴とする。   In the reflective optical element according to the present invention, the surface roughness Ra of the surface of the metal film is 10 nm or less.

また、この発明に係わる反射光学素子において、前記反射光学素子の目標表面形状からの形状誤差をPV値で表わした場合に、PV≦5μmであることを特徴とする。 In the reflective optical element according to the present invention, when the shape error from the target surface shape of the reflective optical element is expressed by a PV value, PV ≦ 5 μm.

本発明によれば、金属板をプレス加工して光学素子を成形する場合に、高い形状精度と高い表面平滑性を容易に得られるようにすることができる。   According to the present invention, when an optical element is formed by pressing a metal plate, high shape accuracy and high surface smoothness can be easily obtained.

以下、本発明の好適な一実施形態について図面を参照して説明する。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.

図1は、曲面鏡を製造するための材料となる板材10を示す断面図であり、板材10は金属製の基材1の片面に蒸着により高純度金属膜3を形成して構成されている。基材1の表面には、基材1と高純度金属膜3の密着性を高めるためにアンダーコート2が施されている。高純度金属膜3の表面には、その蒸着工程における周囲の雰囲気中の酸素により酸化された酸化膜5が形成されている。高純度金属膜3の蒸着時の周囲の雰囲気としては、空気中、不活性ガス中、真空中などが考えられるが、空気中はもとより、不活性ガス中、真空中などでもその中に含まれる少量の酸素により高純度金属膜3の表面が酸化されるため、酸化膜5はその厚みは様々であるが必ず形成されるものである。また、酸化膜5はアモルファス状態であり、結晶化していない。   FIG. 1 is a cross-sectional view showing a plate 10 that is a material for manufacturing a curved mirror. The plate 10 is formed by forming a high-purity metal film 3 on one side of a metal base 1 by vapor deposition. . An undercoat 2 is applied to the surface of the base material 1 in order to improve the adhesion between the base material 1 and the high-purity metal film 3. On the surface of the high-purity metal film 3, an oxide film 5 oxidized by oxygen in the surrounding atmosphere in the vapor deposition process is formed. The ambient atmosphere during the deposition of the high-purity metal film 3 may be in air, in an inert gas, in a vacuum, or the like, but is also included in the air, in an inert gas, in a vacuum, or the like. Since the surface of the high-purity metal film 3 is oxidized by a small amount of oxygen, the oxide film 5 is always formed although its thickness varies. The oxide film 5 is in an amorphous state and is not crystallized.

図2は、図1に示す板材10を成形型によりプレス成形して製造された最終成形品(反射光学素子)の断面図である。図2は、反射光学素子としての凹面鏡を成形した状態を示している。   FIG. 2 is a cross-sectional view of a final molded product (reflection optical element) manufactured by press-molding the plate material 10 shown in FIG. 1 with a molding die. FIG. 2 shows a state in which a concave mirror as a reflective optical element is molded.

図3は、図1に示す板材10における高純度金属膜3の内部の結晶構造を示す図である。本実施形態では、高純度金属膜3を形成する金属材料として、面心立方格子の結晶構造を有する例えばAl(アルミニウム)を用いる。このような材料は蒸着することにより図3に示すような柱状結晶組織を形成する。   FIG. 3 is a diagram showing a crystal structure inside the high-purity metal film 3 in the plate 10 shown in FIG. In the present embodiment, for example, Al (aluminum) having a face-centered cubic lattice crystal structure is used as the metal material for forming the high-purity metal film 3. Such a material is deposited to form a columnar crystal structure as shown in FIG.

図4は、図1に示す板材を成形型によりプレス成形した後の、高純度金属膜3の内部の結晶構造を示す図である。本実施形態では、高純度金属膜3を室温で蒸着しているため、蒸着された高純度金属膜3は成形前の状態では比較的柔らかく、たとえて言うならば、降り積もったままの雪がまだ踏み固められていないような状態にある。そのため、高純度金属膜3の内部の結晶構造では、滑り、回転等が起こりやすく、成形型の表面の平滑面に倣って容易に変形することが可能であり、成形型の表面の平滑性が非常によく転写される。   FIG. 4 is a view showing a crystal structure inside the high-purity metal film 3 after the plate material shown in FIG. 1 is press-molded by a molding die. In this embodiment, since the high-purity metal film 3 is deposited at room temperature, the deposited high-purity metal film 3 is relatively soft before being formed. It is in a state that is not hardened. Therefore, the crystal structure inside the high-purity metal film 3 is likely to slip, rotate, etc., can be easily deformed following the smooth surface of the mold, and the surface of the mold is smooth. Very well transcribed.

以下、図1乃至図4を参照して、さらに詳しく説明する。   Hereinafter, a more detailed description will be given with reference to FIGS.

従来、圧延した板材を用いてプレス成形により大型の反射光学素子を製造しようとした場合、光学素材には圧延時の加工硬化以上の降伏荷重を十分付与することが必要であり、また、圧延による集合組織の影響も無視できなくなり、φ3mm以上の大型の反射光学素子を成形することは形状精度が得られず困難であった。また、加工硬化を上回る成形加工応力が必要となるため、光学素子が大型化するに従い、大荷重が得られる大型加工機が必要となり、コストや資源の浪費を上昇させる原因となっていた。   Conventionally, when a large reflective optical element is to be manufactured by press molding using a rolled plate material, it is necessary to give the optical material a sufficient yield load that is higher than work hardening at the time of rolling. The influence of the texture cannot be ignored, and it is difficult to mold a large reflective optical element having a diameter of 3 mm or more because the shape accuracy cannot be obtained. In addition, since a molding process stress that exceeds work hardening is required, a large processing machine capable of obtaining a large load is required as the optical element is increased in size, leading to an increase in waste of cost and resources.

そこで、本実施形態では、基材1の表面に基材1とは組織の異なる高純度金属膜3を形成している。その結果、基材1の表面粗さが多少粗くても、既に述べたように、雪が降り積もったままの踏み固められていないような状態の高純度金属膜3が成形型の表面の平滑性に倣って容易に変形するため、成形後の高純度金属膜3の表面は基材の影響を受けない超平滑な表面粗さとなる。また、本実施形態では、基材1として、圧延されていない板材、又は圧延された板材をアニール処理して、圧延により生じる板材の機械的な異方性を取り除いた板材を用いる。これにより、プレス成形時に方向によって変形の程度が異なることが防止され、成形品の形状精度を高めることができる。   Therefore, in the present embodiment, a high-purity metal film 3 having a structure different from that of the base material 1 is formed on the surface of the base material 1. As a result, even if the surface roughness of the base material 1 is somewhat rough, as described above, the high-purity metal film 3 in a state where the snow has piled up and has not been compacted has a smooth surface of the mold. The surface of the high-purity metal film 3 after forming has an ultra-smooth surface roughness that is not affected by the base material because it is easily deformed by copying. Moreover, in this embodiment, the board | plate material which annealed the board | plate material which is not rolled or the rolled board | plate material as the base material 1, and removed the mechanical anisotropy of the board | plate material produced by rolling is used. Thereby, it is prevented that the degree of deformation differs depending on the direction during press molding, and the shape accuracy of the molded product can be increased.

また、本実施形態では、成形後の高純度金属膜3の表面では、図5に示すように、その表面を形成する結晶の面Dが目標とするミラーの理想形状である理想鏡面形状の表面となるべく一致していることが所望の平滑面を得る上で望ましい。本実施形態のように、高純度金属膜3がアルミニウムのように面心立方格子の結晶構造を有する場合には、究極的には、その面心立方格子の結晶のミラー指数で表わした場合の(1,1,2)面が理想鏡面形状の表面に一致することが、本願発明者の実験によりわかっている。そのため、図5に示す実際の成形品であるミラーの表面を構成する結晶面Dの法線が、(1,1,2)面(理想鏡面)の法線と一致していることが理想である。   Further, in the present embodiment, on the surface of the high-purity metal film 3 after forming, as shown in FIG. 5, the surface of the ideal mirror surface, which is the ideal shape of the target mirror, is the crystal plane D forming the surface. In order to obtain a desired smooth surface, it is desirable to match as much as possible. When the high-purity metal film 3 has a face-centered cubic lattice crystal structure like aluminum as in the present embodiment, it is ultimately the case where the high-purity metal film 3 is represented by the Miller index of the face-centered cubic lattice crystal. It has been found by experiments of the present inventor that the (1,1,2) plane coincides with an ideal mirror surface. Therefore, it is ideal that the normal line of the crystal plane D constituting the surface of the mirror which is an actual molded product shown in FIG. 5 is coincident with the normal line of the (1, 1, 2) plane (ideal mirror plane). is there.

そこで、本願発明者が実験により確認したところ、実際に成形されたミラーの表面を構成する結晶面(そのミラー指数を(hkl)とする)Dの法線が(1,1,2)面の法線となす角θの光学有効面内における平均値θaが、次式を満たせば、高精度反射光学素子に要求される所望の平滑性を有する鏡面が得られることを見出した。   Therefore, when the inventors of the present application confirmed by experiment, the normal line of the crystal plane (its mirror index is (hkl)) D constituting the surface of the actually formed mirror is (1,1,2) plane. It has been found that a mirror surface having desired smoothness required for a high-precision reflective optical element can be obtained if the average value θa in the optical effective plane of the angle θ formed with the normal satisfies the following expression.

0.7≦cosθa=|(h+k+2l)/√{6×(h2+k2+l2)}|≦1 …(1)
この式は、次のような式に書き換えることもできる。
0.7 ≦ cos θa = | (h + k + 2l) / √ {6 × (h 2 + k 2 + l 2 )} | ≦ 1 (1)
This equation can be rewritten as the following equation.

0°≦θa≦40° …(2)
これは、本実施形態で得られる成形品である光学素子の重要な組織の特徴を表している。つまり、最終的な成形品の表面を形成する結晶面の法線と理想鏡面の法線のなす角が上式を満たせば、高精度反射光学素子の要求表面粗さを満足することができる。なお、既に述べたように、高純度金属膜3の表面にはアモルファス状の酸化膜5が形成されているため、図5に示すような結晶面がそのまま成形品であるミラーの表面に現れるわけではないが、アモルファス状の酸化膜5は非常に薄い層であるため、結晶面の形状がほとんどそのまま酸化膜5の表面に現れる。
0 ° ≦ θa ≦ 40 ° (2)
This represents an important structural feature of the optical element which is the molded product obtained in the present embodiment. In other words, if the angle formed by the normal of the crystal plane that forms the surface of the final molded product and the normal of the ideal mirror surface satisfies the above equation, the required surface roughness of the high-precision reflective optical element can be satisfied. As already described, since the amorphous oxide film 5 is formed on the surface of the high-purity metal film 3, the crystal plane as shown in FIG. 5 appears as it is on the surface of the mirror that is a molded product. However, since the amorphous oxide film 5 is a very thin layer, the shape of the crystal plane appears almost as it is on the surface of the oxide film 5.

また、本実施形態では、成形された反射光学素子の表面層(高純度金属膜3)の平均結晶粒径が0.5μm以下となるようにしている。   In the present embodiment, the average crystal grain size of the surface layer (high-purity metal film 3) of the formed reflective optical element is set to 0.5 μm or less.

このように、高純度金属膜3の平均結晶粒径が小さいことにより、高純度金属膜3を構成する柱状晶内部で非常に微細に剪断、すべり、回転を生じ、微細組織化することにより成形表面は超平滑な表面粗さに創生される。従来の素材(圧延材)を加工した場合、結晶内部に亜粒界が存在し、且つ結晶粒径自身は数十〜数百μmと大きく、また圧延方向に伸張した形状をしている。この様な結晶粒は圧延方向に強い異方性を有していると共に、結晶内部の転位密度が高い。このため、成形表面は超平滑な表面粗さを得ることが出来ず、また成形品の形状精度も悪化する。   As described above, since the average crystal grain size of the high-purity metal film 3 is small, the columnar crystals constituting the high-purity metal film 3 are very finely sheared, slid, and rotated, and formed into a fine structure. The surface is created with an ultra-smooth surface roughness. When a conventional material (rolled material) is processed, subgrain boundaries exist inside the crystal, the crystal grain size itself is as large as several tens to several hundreds μm, and has a shape extending in the rolling direction. Such crystal grains have a strong anisotropy in the rolling direction and a high dislocation density inside the crystal. For this reason, the molding surface cannot obtain an ultra-smooth surface roughness, and the shape accuracy of the molded product also deteriorates.

また、本実施形態では、成形された反射光学素子の表面(高純度金属膜3の表面)の酸化膜の厚さが10nm以下となるようにしている。   In the present embodiment, the thickness of the oxide film on the surface of the molded reflective optical element (the surface of the high-purity metal film 3) is set to 10 nm or less.

最表面に存在する酸化膜5はバンドギャップの広い薄膜で、厚くなるに従いその表面での反射光とその下面の金属表面での反射光により、光学的収差に影響を与える。また、酸化膜内に吸収される光も増し、反射率に影響を与える。従って、酸化膜厚が10nm以下であることが反射光学素子に必要となる。   The oxide film 5 present on the outermost surface is a thin film having a wide band gap. As the thickness increases, the reflected light on the surface and the reflected light on the metal surface on the lower surface affect the optical aberration. In addition, the light absorbed in the oxide film increases, which affects the reflectance. Therefore, it is necessary for the reflective optical element that the oxide film thickness is 10 nm or less.

また、本実施形態では、成形された反射光学素子の表面(高純度金属膜3の表面)の酸化膜がアモルファスと微細結晶との混晶である。   In the present embodiment, the oxide film on the surface of the formed reflective optical element (the surface of the high-purity metal film 3) is a mixed crystal of amorphous and fine crystals.

アモルファスと微細結晶との混晶であることにより、腐食の起点が微細且つ均一に分散することにより、局部腐食を防ぐことが可能となる。   By being a mixed crystal of amorphous and fine crystals, the starting point of corrosion is dispersed finely and uniformly, thereby making it possible to prevent local corrosion.

また、本実施形態では、上記のような特徴を有する反射光学素子を創生する素材として、まず、基材1と組織の異なる高純度金属膜3から成る板材10であって、高純度金属膜3の表面を形成する結晶面(そのミラー指数を(hkl)とする)Dの法線が(1,1,2)面の法線となす角θの光学有効面内における平均値θaが、次式を満たす板材を用いている。   In this embodiment, as a material for creating the reflective optical element having the above-described features, first, a plate material 10 composed of a high-purity metal film 3 having a different structure from that of the base material 1, which is a high-purity metal film 3, the average value θa in the optically effective plane of the angle θ formed by the normal of D (the mirror index is (hkl)) and the normal of the (1, 1, 2) plane, A plate material satisfying the following formula is used.

0.55≦cosθa=|(h+k+2l)/√{6×(h2+k2+l2)}|≦1 (3)
この式は、次のような式に書き換えることもできる。
0.55 ≦ cos θa = | (h + k + 2l) / √ {6 × (h 2 + k 2 + l 2 )} | ≦ 1 (3)
This equation can be rewritten as the following equation.

0°≦θa≦57° …(4)
これは、高純度金属膜3の柱状晶の表面が理想鏡面に既に若干配向していることを意味する。このような板材10を素材としてプレス成形をすることにより、最終的に上記の(1)式及び(2)式を満足する成形品を得ることができる。
0 ° ≦ θa ≦ 57 ° (4)
This means that the surface of the columnar crystal of the high purity metal film 3 is already slightly oriented to the ideal mirror surface. By performing press molding using such a plate material 10 as a raw material, a molded product that finally satisfies the expressions (1) and (2) can be obtained.

また、本実施形態では、高純度金属膜3が、その表面に垂直に50nm以上の柱状晶の金属組織を有するようにしている。   In the present embodiment, the high-purity metal film 3 has a columnar crystal metal structure of 50 nm or more perpendicular to the surface thereof.

このような組織では、従来のスキンパスした素材に比べて、転移がパイルアップするまでに十分移動することが可能で、上述のように粒内すべりが好適な剪断方向に生じ、すべり及び回転が自由であるため、展延性が良好となる。さらに、高純度金属膜3の表面に垂直な配向を有しており、高純度金属膜3の表面に平行な組織は等方的である。そのため、形状精度が安定し、目標通りの成形品を得ることが可能となる。   In such a structure, compared to conventional skin-passed materials, it can move sufficiently until the transition piles up, and as described above, intragranular slip occurs in a suitable shear direction, and free to slide and rotate. Therefore, the spreadability is good. Furthermore, it has an orientation perpendicular to the surface of the high purity metal film 3, and the structure parallel to the surface of the high purity metal film 3 is isotropic. For this reason, the shape accuracy is stable, and a molded product as intended can be obtained.

また、本実施形態では、高純度金属膜3が98mol%以上の純度の単一金属からなる高純度金属薄膜となるようにしている。   In the present embodiment, the high-purity metal film 3 is a high-purity metal thin film made of a single metal having a purity of 98 mol% or more.

一般式:τ=Gb/L(τ:剪断力、G:剪断弾性係数、b:剪断変位、L:不純物間距離)から、高純度化に従い成形圧が低下し加工が容易になることが判る。   From the general formula: τ = Gb / L (τ: shear force, G: shear elastic modulus, b: shear displacement, L: distance between impurities), it can be seen that the molding pressure decreases and the processing becomes easier as the purity increases. .

また、本実施形態では、成形により得られた金属反射光学素子の表面に保護膜、または増反射膜、もしくはこれらを複合的に積層した膜を形成している。   In the present embodiment, a protective film, an enhanced reflection film, or a film in which these are laminated in a composite manner is formed on the surface of the metal reflective optical element obtained by molding.

この成膜により、湿度に対する耐久性が格段に向上すると共に、超平滑化した面への増反射膜の効果は著しい。   By this film formation, the durability against humidity is remarkably improved, and the effect of the increased reflection film on the ultra-smoothed surface is remarkable.

また、本実施形態では、(3)式又は(4)式を満たす成形素材としての板材10を、一切の潤滑材を用いることなくプレス成形のみにより成形し、(1)式又は(2)式を満足する成形品を成形することで、Ra:10nm以下に超平坦化した表面層を得ると共に、面精度(歪み:PV)も5μm以下となる反射光学素子を得ることができる。   Further, in the present embodiment, the plate material 10 as a molding material satisfying the formula (3) or the formula (4) is molded only by press molding without using any lubricant, and the formula (1) or (2) By molding a molded product that satisfies the above conditions, it is possible to obtain a surface layer that is ultra-flattened to Ra: 10 nm or less and a reflective optical element that also has a surface accuracy (strain: PV) of 5 μm or less.

特に、プレス用金型は、その材質を超硬合金、工具鋼、あるいはセラミックス等とし、その表面を金属酸化物、あるいは金属炭化物、あるいは金属窒化物、あるいは高密度炭素、あるいは貴金属基膜、あるいはこれらを組合わせた積層膜で被覆する。これらの複合効果により、形状精度の向上と摩擦の低減、及び離型の改善に寄与し得る。   In particular, the press mold is made of cemented carbide, tool steel, ceramics, etc., and the surface thereof is a metal oxide, metal carbide, metal nitride, high-density carbon, noble metal base film, or The film is covered with a laminated film in which these are combined. These combined effects can contribute to improved shape accuracy, reduced friction, and improved mold release.

この様な観点から、高品質の反射光学素子が低価格で得られる最適条件を鋭意検討し、下記に実施例および比較例を記す。尚、本実施形態の反射光学素子表面の結晶表面の配向度は、任意の30000倍の視野内を後方散乱電子回折像(EBSP)にて蒸着アルミ最表面の各結晶粒単位で調査している。   From such a viewpoint, the optimum conditions under which a high-quality reflective optical element can be obtained at a low price are intensively studied, and examples and comparative examples are described below. Incidentally, the degree of orientation of the crystal surface on the surface of the reflective optical element of this embodiment is investigated for each crystal grain unit on the outermost surface of the deposited aluminum by a backscattered electron diffraction image (EBSP) in an arbitrary field of view of 30000 times. .

また、反射光学素子の高純度金属膜3の結晶粒径は断面を走査型電子顕微鏡(SEM)で観察し、その観察面の任意の箇所を縦横に直交横断し、d縦(縦の平均結晶粒径)=L(縦線の実寸)/n(縦線上の結晶粒数)/a(倍率)を算出するとともに、同様にd横を算出し、d平均=(d縦+d横)/2にて算出した。また、酸化膜5の膜厚は反射光学素子の断面を透過型電子顕微鏡(TEM)で観察し、実測した。同様にオージェ電子分光分析(AES)によっても数nm単位で概算値を求めることが可能である。酸化膜5の組織は電子線回折によって逆格子点の有無を確認した。目視にて判断が困難な場合は、電子線回折チャートより、動径分布関数を求め、二原子間の存在確率を比較する方法もある。または、薄膜X線回折により、ハローか、回折ピークがわずかに認められるか、を判断することにより確認することも可能である。さらに、巨視的な表面の面粗度の表記は、非接触の光学干渉測定装置であるNew View100を用い、任意の約300μm四方で測定した時の粗さデータ(Ra)を示した。また、形状データは、非接触の光学干渉測定装置であるZygo Mark4を用い、光学有効面全面の形状精度(PV)を示した。   Further, the crystal grain size of the high-purity metal film 3 of the reflective optical element is observed with a scanning electron microscope (SEM) in a cross section, and an arbitrary portion of the observation surface is orthogonally crossed vertically and horizontally, and d length (vertical average crystal Particle size) = L (actual size of vertical line) / n (number of crystal grains on vertical line) / a (magnification) is calculated in the same way, and d average is calculated, d average = (d vertical + d horizontal) / 2 It calculated in. The thickness of the oxide film 5 was measured by observing the cross section of the reflective optical element with a transmission electron microscope (TEM). Similarly, approximate values can be obtained in units of several nm by Auger electron spectroscopy (AES). The structure of the oxide film 5 was checked for the presence of reciprocal lattice points by electron diffraction. When it is difficult to visually determine, there is a method of obtaining a radial distribution function from an electron beam diffraction chart and comparing the existence probability between two atoms. Alternatively, it can be confirmed by determining whether a halo or a slight diffraction peak is recognized by thin film X-ray diffraction. Furthermore, the notation of the surface roughness of the macroscopic surface indicates roughness data (Ra) when measured in an arbitrary approximately 300 μm square using New View 100 which is a non-contact optical interference measuring device. Moreover, the shape data used Zygo Mark4 which is a non-contact optical interference measuring apparatus, and showed the shape accuracy (PV) of the whole optical effective surface.

次に、反射光学素子用の素材表面の柱状晶組織は、安価な製法としては、市販の圧延板上に高純度金属材料で表面を80°C以下(好ましくは室温)でPVDやCVD等にて成膜することとにより、一度に大面積の素材が得られる。なお、この場合は、圧延板の異方性をなくすためにアニールを行う。   Next, the columnar crystal structure on the surface of the material for the reflective optical element can be produced at low cost by using a high-purity metal material on a commercially available rolled plate at a temperature of 80 ° C. or less (preferably room temperature) for PVD or CVD. In this way, a large area material can be obtained at a time. In this case, annealing is performed to eliminate the anisotropy of the rolled sheet.

また、一方向凝固法により得られたインゴットから素材を切出すことも一手段であるし、また板形状の鋳型に溶融金属を流し込み、徐冷し、表面に柱状晶を発達させて、素材を得ることも一手段である。   In addition, cutting out the material from the ingot obtained by the unidirectional solidification method is one means, and pouring the molten metal into a plate-shaped mold, cooling it slowly, developing columnar crystals on the surface, Getting is one way.

上記の方法により作成された反射光学素子用素材(板材10)の成形を実施する前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、面粗度Ra≦10nmにした曲面型を用い、一切の潤滑剤を用いず、反射光学素子用素材をプレス成形のみにより、反射素子表面粗度がRa≦10nm、且つ光学有効面の形状精度が型の形状に対してPV≦5μmとなるように成形荷重と成形速度を制御した。   As a pretreatment for forming the reflective optical element material (plate material 10) prepared by the above method, no various types of polishing were performed. Molding is performed using a curved surface mold with a surface roughness Ra ≦ 10 nm under a molding temperature lower than the recrystallization temperature and in any of air, vacuum, or inert atmosphere, without using any lubricant. The forming load and the forming speed were controlled only by press forming the material for the reflecting optical element so that the surface roughness of the reflecting element was Ra ≦ 10 nm and the shape accuracy of the optical effective surface was PV ≦ 5 μm with respect to the shape of the mold. .

尚、下記の実施例は本発明を限定するものではなく、上記の趣旨を考慮して光学素子用板材料やその構成材料、手段、および製造方法や成形品の変更を行うことはいずれも本発明の範囲内に含まれるものである。   It should be noted that the following examples do not limit the present invention, and any change in the plate material for an optical element, its constituent materials, means, manufacturing method, and molded product in consideration of the above-described purpose. It is included within the scope of the invention.

<実施例1>
市販の特にスキンパス等を施していないJIS規格純アルミ素材表面に、雰囲気2×10-5torr、材料99.99mol%の純度のアルミにて、室温で膜厚2μmの柱状晶組織を形成した。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、面粗度Ra≦10nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより、光学反射素子を得た。この反射素子の表面粗度はRa:6nm、且つ光学有効面の形状精度は型の形状に対してPV:1.1μmであった。この反射光学素子のEBSP結果から、反射光学素子表面に(113)面が配向していたことから、(1)式又は(2)式を満たしていた。また、成形断面内の結晶粒径はSEM観察より0.30μmであった。酸化膜厚はTEM観察より5nmであり、この酸化膜の組織は電子線回折より、アモルファスと結晶との混晶であることが確認できた。得られた成形品にSiO2保護膜を形成し、耐久性を改善した。
<Example 1>
A columnar crystal structure with a film thickness of 2 μm was formed at room temperature on a commercially available JIS standard pure aluminum material surface not subjected to skin pass or the like with aluminum having an atmosphere of 2 × 10 −5 torr and a purity of 99.99 mol%. As a pre-molding treatment, this material was not subjected to any polishing. Molding is performed using a curved surface mold with a surface roughness Ra ≦ 10 nm under a molding temperature lower than the recrystallization temperature and in any of air, vacuum, or inert atmosphere, without using any lubricant. An optical reflection element was obtained from this material only by press molding. The surface roughness of this reflective element was Ra: 6 nm, and the shape accuracy of the optically effective surface was PV: 1.1 μm with respect to the mold shape. From the EBSP result of this reflective optical element, since the (113) plane was oriented on the surface of the reflective optical element, the expression (1) or (2) was satisfied. The crystal grain size in the molded cross section was 0.30 μm from SEM observation. The oxide film thickness was 5 nm from TEM observation, and the structure of this oxide film was confirmed to be a mixed crystal of amorphous and crystal by electron diffraction. A SiO 2 protective film was formed on the obtained molded product to improve durability.

<実施例2>
成形素材としての板材に、市販の圧延アルミ板をアニール処理して使用した以外は実施例1と同様に成形を行なった。その結果、実施例1と同様の成形品を得ることができた。
<Example 2>
Molding was performed in the same manner as in Example 1 except that a commercially available rolled aluminum plate was annealed and used for the plate material as the molding material. As a result, a molded product similar to that in Example 1 could be obtained.

<実施例3>
市販の特にスキンパス等を施していない超塑性アルミ合金素材表面に、雰囲気2×10-5torr、材料99.9mol%の純度の銀にて、室温で膜厚1.5μmの柱状晶組織を形成した。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、面粗度Ra≦10nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより、光学反射素子を得た。この反射素子の表面粗度はRa:8nm、且つ光学有効面の形状精度は型の形状に対してPV:1.6μmであった。この反射光学素子のEBSP結果から、反射光学素子表面に(422)面が配向していたことから、(1)式又は(2)式を満たしていた。また、成形断面内の結晶粒径はSEM観察より0.17μmであった。酸化膜厚はTEM観察より4nmであり、この酸化膜の組織は電子線回折より、アモルファスと結晶との混晶であることが確認できた。得られた成形品にSiO2保護膜を形成し、耐久性を改善した。
<Example 3>
A columnar crystal structure with a film thickness of 1.5 μm is formed at room temperature on the surface of a commercially available superplastic aluminum alloy material not subjected to skin pass or the like, with an atmosphere of 2 × 10 −5 torr and a purity of 99.9 mol% of material. did. As a pre-molding treatment, this material was not subjected to any polishing. Molding is performed using a curved surface mold with a surface roughness Ra ≦ 10 nm under a molding temperature lower than the recrystallization temperature and in any of air, vacuum, or inert atmosphere, without using any lubricant. An optical reflection element was obtained from this material only by press molding. The surface roughness of the reflecting element was Ra: 8 nm, and the shape accuracy of the optically effective surface was PV: 1.6 μm with respect to the mold shape. From the EBSP result of this reflective optical element, since the (422) plane was oriented on the surface of the reflective optical element, the formula (1) or (2) was satisfied. The crystal grain size in the molded cross section was 0.17 μm from SEM observation. The oxide film thickness was 4 nm from TEM observation, and the structure of this oxide film was confirmed to be a mixed crystal of amorphous and crystal by electron beam diffraction. A SiO 2 protective film was formed on the obtained molded product to improve durability.

<実施例4>
市販の特にスキンパス等を施していないJIS規格無酸素銅素材表面に、雰囲気2×10-5torr、材料99.99mol%の純度の銅にて、室温で膜厚2μmの柱状晶組織を形成した。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れ化の条件下で、面粗度Ra≦10nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより、光学反射素子を得た。この反射素子の表面粗度はRa:5nm、且つ光学有効面の形状精度は型の形状に対してPV:0.7μmであった。この反射光学素子のEBSP結果から、反射光学素子表面に(331)面が配向していたことから、(1)式又は(2)式を満たしていた。また、成形断面内の結晶粒径はSEM観察より0.27μmであった。酸化膜厚はTEM観察より7nmであり、この酸化膜の組織は電子線回折より、アモルファスと結晶との混晶であることが確認できた。得られた成形品にAl増反射膜とSiO2保護膜を形成し、赤外線の反射率の向上と耐久性を改善した。
<Example 4>
A columnar crystal structure having a film thickness of 2 μm was formed at room temperature on a commercially available JIS standard oxygen-free copper material surface that was not subjected to skin pass or the like with copper having an atmosphere of 2 × 10 −5 torr and a purity of 99.99 mol%. . As a pre-molding treatment, this material was not subjected to any polishing. Molding is performed using a curved surface mold with a surface roughness Ra ≦ 10 nm under a molding temperature below the recrystallization temperature and any conditions in the air, vacuum or inert atmosphere, without using any lubricant, An optical reflection element was obtained from this material only by press molding. The surface roughness of this reflective element was Ra: 5 nm, and the shape accuracy of the optically effective surface was PV: 0.7 μm with respect to the shape of the mold. From the EBSP result of this reflective optical element, since the (331) plane was oriented on the surface of the reflective optical element, the expression (1) or (2) was satisfied. The crystal grain size in the molded cross section was 0.27 μm from SEM observation. The oxide film thickness was 7 nm from TEM observation, and the structure of this oxide film was confirmed to be a mixed crystal of amorphous and crystal by electron diffraction. An Al-enhanced reflection film and a SiO 2 protective film were formed on the obtained molded product to improve infrared reflectivity and durability.

<比較例1>
99%の高純度アルミと95%以下のアルミまたはアルミ合金とを熱間圧延により合板とし、さらに冷間スキンパスによる光沢処理を施した。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、面粗度Ra≦10nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより成形した。その結果、この反射光学素子の表面粗度はRa:11nm、且つ光学有効面の形状精度は型の形状に対してPV:9μmと大きく歪み、高精度な反射光学素子を得ることが出来なかった。この反射光学素子のEBSP結果から、反射光学素子表面に(220)面が配向していたことから、(1)式及び(2)式を満たしていなかった。また、成形断面内の結晶粒径はSEM観察より37μmであった。酸化膜厚はTEM観察より5nmであり、この酸化膜の組織は電子線回折より、完全な結晶であった。
<Comparative Example 1>
99% high-purity aluminum and 95% or less aluminum or an aluminum alloy were made into plywood by hot rolling and further subjected to a gloss treatment by a cold skin pass. As a pre-molding treatment, this material was not subjected to any polishing. Molding is performed using a curved surface mold with a surface roughness Ra ≦ 10 nm under a molding temperature lower than the recrystallization temperature and in any of air, vacuum, or inert atmosphere, without using any lubricant. This material was molded only by press molding. As a result, the surface roughness of this reflective optical element was Ra: 11 nm, and the shape accuracy of the optically effective surface was greatly distorted with PV: 9 μm relative to the shape of the mold, and a highly accurate reflective optical element could not be obtained. . From the EBSP result of this reflective optical element, since the (220) plane was oriented on the reflective optical element surface, the expressions (1) and (2) were not satisfied. The crystal grain size in the molded cross section was 37 μm from SEM observation. The oxide film thickness was 5 nm from TEM observation, and the structure of this oxide film was a complete crystal by electron diffraction.

<比較例2>
99.8%の高純度銅圧延板材にさらに面粗度を低下させるため、十分な冷間スキンパスを施した。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、面粗度Ra≦10nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより成形した。その結果、この反射素子の表面粗度はRa:16nm、且つ光学有効面の形状精度は型の形状に対してPV:10μmと大きく歪み、高精度な反射光学素子を得ることが出来なかった。この反射光学素子のEBSP結果から、反射光学素子表面に(200)面が配向していたことから、(1)式及び(2)式を満たしていなかった。また、成形断面内の結晶粒径はSEM観察より28μmであった。酸化膜厚はTEM観察より13nmであり、酸化膜の組織は電子線回折より、完全な結晶であった。
<Comparative example 2>
In order to further reduce the surface roughness, 99.8% high-purity copper rolled sheet material was subjected to sufficient cold skin pass. As a pre-molding treatment, this material was not subjected to any polishing. Molding is performed using a curved surface mold with a surface roughness Ra ≦ 10 nm under a molding temperature lower than the recrystallization temperature and in any of air, vacuum, or inert atmosphere, without using any lubricant. This material was molded only by press molding. As a result, the surface roughness of this reflective element was Ra: 16 nm, and the shape accuracy of the optically effective surface was greatly distorted with respect to the mold shape, PV: 10 μm, and a highly accurate reflective optical element could not be obtained. From the EBSP result of this reflective optical element, since the (200) plane was oriented on the reflective optical element surface, the expressions (1) and (2) were not satisfied. The crystal grain size in the molded cross section was 28 μm from SEM observation. The oxide film thickness was 13 nm from TEM observation, and the structure of the oxide film was a complete crystal from electron diffraction.

以上説明したように、上記の実施形態によれば、基材1と高純度金属薄膜3で構成した板材10を塑性加工した金属光学素子は、金属組織学的側面からこれまでにはない改善を行うことにより、従来にはない優れた面粗度を安価に得ることが出来た。   As described above, according to the above-described embodiment, the metal optical element obtained by plastic processing the plate material 10 composed of the base material 1 and the high-purity metal thin film 3 has an unprecedented improvement from the metallographic viewpoint. By carrying out the process, it was possible to obtain an excellent surface roughness that was not found in the past at low cost.

曲面鏡を製造するための材料となる板材を示す断面図である。It is sectional drawing which shows the board | plate material used as the material for manufacturing a curved mirror. 図1に示す板材を成形型によりプレス成形して製造された最終成形品の断面図である。It is sectional drawing of the final molded product manufactured by press-molding the board | plate material shown in FIG. 1 with a shaping | molding die. 図1に示す板材における高純度金属膜の内部の結晶構造を示す図である。It is a figure which shows the crystal structure inside the high purity metal film in the board | plate material shown in FIG. 図1に示す板材を成形型によりプレス成形した後の、高純度金属膜2の内部の結晶構造を示す図である。It is a figure which shows the crystal structure inside the high purity metal film | membrane 2 after press-molding the board | plate material shown in FIG. 1 with a shaping | molding die. 結晶表面の理想鏡面に対する傾きを示す概念図である。It is a conceptual diagram which shows the inclination with respect to the ideal mirror surface of a crystal surface.

符号の説明Explanation of symbols

1 基材
2 高純度金属膜
3 酸化膜
10 板材
1 Base Material 2 High-Purity Metal Film 3 Oxide Film 10 Plate Material

Claims (7)

金属製の板材からなる基材と、該基材上に形成され、結晶構造を有する金属からなる金属膜とを備える金属製板を、プレス成形することにより製造された反射光学素子であって、
前記結晶構造のうち、前記金属膜の表面に現れた結晶面の法線と、前記反射光学素子の目標表面形状の法線とのなす角度をθとした場合、前記角度θの前記反射光学素子の光学有効面内における平均値θaが、
0°≦θa≦40°
を満たすことを特徴とする反射光学素子。
A reflective optical element produced by press-molding a metal plate comprising a base material made of a metal plate material, and a metal film formed on the base material and made of a metal having a crystal structure,
Of the crystal structure, when the angle between the normal of the crystal plane appearing on the surface of the metal film and the normal of the target surface shape of the reflective optical element is θ, the reflective optical element at the angle θ The average value θa in the optical effective plane of
0 ° ≦ θa ≦ 40 °
The reflective optical element characterized by satisfy | filling.
前記金属膜の平均結晶粒径が0.5μm以下であることを特徴とする請求項1に記載の反射光学素子。   The reflective optical element according to claim 1, wherein an average crystal grain size of the metal film is 0.5 μm or less. 前記金属膜の表面には酸化膜が形成されており、該酸化膜の厚さが10nm以下であることを特徴とする請求項1に記載の反射光学素子。   The reflective optical element according to claim 1, wherein an oxide film is formed on a surface of the metal film, and the thickness of the oxide film is 10 nm or less. 前記金属膜の表面に形成されている酸化膜がアモルファスと微細結晶との混晶であることを特徴とする請求項1に記載の反射光学素子。   2. The reflective optical element according to claim 1, wherein the oxide film formed on the surface of the metal film is a mixed crystal of amorphous and fine crystals. 前記金属膜が98mol%以上の純度の単一金属からなることを特徴とする請求項1に記載の反射光学素子。   The reflective optical element according to claim 1, wherein the metal film is made of a single metal having a purity of 98 mol% or more. 前記金属膜の表面の表面粗さRaが、10nm以下であることを特徴とする請求項1に記載の反射光学素子。   The reflective optical element according to claim 1, wherein the surface roughness Ra of the surface of the metal film is 10 nm or less. 前記反射光学素子の目標表面形状からの形状誤差をPV値で表わした場合に、PV≦5μmであることを特徴とする請求項1に記載の反射光学素子。   2. The reflective optical element according to claim 1, wherein when the shape error from the target surface shape of the reflective optical element is expressed by a PV value, PV ≦ 5 μm.
JP2005069799A 2004-04-13 2005-03-11 Reflective optical element Expired - Fee Related JP4689306B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005069799A JP4689306B2 (en) 2005-03-11 2005-03-11 Reflective optical element
US11/101,443 US7344263B2 (en) 2004-04-13 2005-04-08 Optical element and processing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069799A JP4689306B2 (en) 2005-03-11 2005-03-11 Reflective optical element

Publications (3)

Publication Number Publication Date
JP2006251539A JP2006251539A (en) 2006-09-21
JP2006251539A5 JP2006251539A5 (en) 2008-04-17
JP4689306B2 true JP4689306B2 (en) 2011-05-25

Family

ID=37092081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069799A Expired - Fee Related JP4689306B2 (en) 2004-04-13 2005-03-11 Reflective optical element

Country Status (1)

Country Link
JP (1) JP4689306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8393297B2 (en) * 2008-01-30 2013-03-12 Nv Bekaert Sa Aquaculture net with steel wires coated with metal strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836222A (en) * 1994-07-22 1996-02-06 Hitachi Ltd Metallic concave mirror, display using the mirror and perception integrating system provided with the display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836222A (en) * 1994-07-22 1996-02-06 Hitachi Ltd Metallic concave mirror, display using the mirror and perception integrating system provided with the display

Also Published As

Publication number Publication date
JP2006251539A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US20090114317A1 (en) Metallic mirrors formed from amorphous alloys
US8051678B2 (en) Press molding method for manufacturing of glass substrate
US8916087B2 (en) Method of blow molding a bulk metallic glass
CN1274431C (en) Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
US9752220B2 (en) Magnesium alloy coil stock
US7344263B2 (en) Optical element and processing method for the same
JP3988888B2 (en) Manufacturing method of magnesium alloy plate with excellent plastic workability
CN102465222A (en) Aluminum alloy substrate used for magnetic disc, and method of manufacturing the same
WO2017154981A1 (en) Martensitic stainless steel foil and method for manufacturing same
WO2015019960A1 (en) Aluminum foil for visible-light-reflecting material and method for producing said foil
JP4689306B2 (en) Reflective optical element
JPH06345593A (en) Shaping of article containing polycrystalline diamond and diamond
Akhtar et al. Microstructural evaluation of sputtered Ru–Pt multilayer anti-stick coatings for glass molding
JP6058050B2 (en) Aluminum alloy plate for negative pressure can lid
JP7168210B2 (en) Manufacturing method of pure titanium metal material thin plate and manufacturing method of speaker diaphragm
JP2020534443A (en) Magnesium or magnesium alloy having ultra-high room temperature moldability and its manufacturing method
JP2005326822A (en) Optical element and processing method for the same
Sakurai et al. Searching for Pt–Zr–Ni thin film amorphous alloys for optical glass lenses molding materials
JP2616181B2 (en) Method for producing high-gloss titanium foil with excellent moldability
JP2001300643A (en) Manufacturing method of magnesium product
JP3960533B2 (en) Manufacturing method of aluminum alloy substrate for magnetic disk and aluminum alloy substrate for magnetic disk.
JP2009074163A (en) Al OR Al ALLOY SHEET FOR PRESS-FORMING AND MANUFACTURING METHOD THEREOF
JP4667021B2 (en) Optical element molding method
WO2011040181A1 (en) Molding die and method for producing molding die
JP2002348629A (en) Aluminum alloy sheet material for transportation- related structure superior in coating property and press formability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees