JP4688327B2 - Carbon monoxide removal method - Google Patents

Carbon monoxide removal method Download PDF

Info

Publication number
JP4688327B2
JP4688327B2 JP2001091759A JP2001091759A JP4688327B2 JP 4688327 B2 JP4688327 B2 JP 4688327B2 JP 2001091759 A JP2001091759 A JP 2001091759A JP 2001091759 A JP2001091759 A JP 2001091759A JP 4688327 B2 JP4688327 B2 JP 4688327B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
catalyst
iron
gas
remover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001091759A
Other languages
Japanese (ja)
Other versions
JP2002284503A (en
Inventor
満秋 越後
健 田畑
修 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001091759A priority Critical patent/JP4688327B2/en
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to KR1020037012239A priority patent/KR100856098B1/en
Priority to EP02708659.4A priority patent/EP1382567B1/en
Priority to CNB2005100696201A priority patent/CN100344526C/en
Priority to CA2657329A priority patent/CA2657329C/en
Priority to KR1020087007535A priority patent/KR100978331B1/en
Priority to CA2442152A priority patent/CA2442152C/en
Priority to US10/472,983 priority patent/US8591850B2/en
Priority to PCT/JP2002/002870 priority patent/WO2002079084A1/en
Priority to EP11004374.2A priority patent/EP2380848B1/en
Priority to CA2657318A priority patent/CA2657318C/en
Priority to CNB2005100696220A priority patent/CN1308223C/en
Priority to KR1020087007534A priority patent/KR100899851B1/en
Priority to CNB028075404A priority patent/CN100445197C/en
Publication of JP2002284503A publication Critical patent/JP2002284503A/en
Priority to US12/013,650 priority patent/US7972585B2/en
Application granted granted Critical
Publication of JP4688327B2 publication Critical patent/JP4688327B2/en
Priority to US13/118,774 priority patent/US8357341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Industrial Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素と一酸化炭素を含む混合ガス中の一酸化炭素を、一酸化炭素除去触媒に接触させて除去する一酸化炭素除去方法に関するものである。
【0002】
【従来の技術】
従来、天然ガス等の化石燃料を原燃料として、水素と一酸化炭素を含む改質ガス(水素を40体積%以上含むガス(ドライベース))を製造する燃料改質システムにあっては、前記原燃料を、連設した脱硫器、改質器で、脱硫、水蒸気改質(場合によっては部分燃焼改質、もしくは水蒸気改質と部分燃焼改質の組み合わせ)して、水素を主成分とし一酸化炭素、二酸化炭素(CO2)、水分(H2O)等を含む改質ガスを得ていた。又、前記アルコール類、例えばメタノールを原燃料とする燃料改質装置は、メタノール改質触媒を内装したメタノール改質器を備え、メタノールから、水素を主成分とし、一酸化炭素、二酸化炭素、水分等を含む改質ガスを得ていた。
【0003】
ここで、リン酸型燃料電池に供する改質ガスを製造する燃料改質システムにあっては、一酸化炭素の存在によって、燃料電池の電極触媒が被毒することが知られており、前記水素を主成分とする改質ガスを一酸化炭素変成器に導入し、一酸化炭素変成反応によって、前記一酸化炭素を二酸化炭素(CO2)に変換し、ガス中の一酸化炭素濃度を所定値以下(例えば、0.5%)とした改質ガスを得ていた。
しかし、固体高分子型燃料電池に供する改質ガスを製造する燃料改質システムにあっては、固体高分子型燃料電池が約80℃という低温で作動することから、微量の一酸化炭素によっても電極触媒が被毒されてしまうために、更に前記一酸化炭素を低減する必要があり、前記一酸化炭素変成器の下流に、一酸化炭素を除去する一酸化炭素除去触媒を収容した一酸化炭素除去器を設けて、前記一酸化炭素変成器で処理された前記改質ガスに、空気等の酸化剤を添加してこれに導入し、この一酸化炭素除去触媒の存在下で、一酸化炭素を二酸化炭素に酸化し、一酸化炭素濃度を所定濃度以下(例えば、100ppm以下)にまで低減した改質ガスを得ていた。又、固体高分子型燃料電池のより高い性能や耐久性を確保するために、一酸化炭素濃度を10ppm以下にまで低減した改質ガスを得ていた。
【0004】
前記一酸化炭素除去器は、筐体に、ルテニウム(Ru)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)等をアルミナ等の担体に担持した一酸化炭素除去触媒から構成される触媒層を収容する収容部を設けてあって、ガス流入口より前記収容部の前記触媒層に前記改質ガスに空気などの酸化剤を添加したガス(反応ガス)を導入して、前記一酸化炭素除去触媒と接触させ、これによって、前記改質ガス中の一酸化炭素を二酸化炭素に変換していた。そして、前記触媒層を通過して一酸化炭素濃度が減少した前記反応ガスを、前記筐体に貫設されたガス流出口から排出していた。又、前記一酸化炭素除去触媒は、触媒層の温度が80〜200℃程度のときに、選択的に一酸化炭素を酸化する反応が進行し易くなるので、温度調整手段(ヒータ、冷却器など)を前記筐体に付設して、前記触媒層がその温度域になるように保持していた。
【0005】
なお、従来、前記燃料改質装置を構成する部材としては、耐侯性、耐熱性、強度、加工性、コストなどの諸事情を勘案して、ステンレス鋼が主として用いられていた。
【0006】
【発明が解決しようとする課題】
ところが、前記一酸化炭素除去器を、前記一酸化炭素除去触媒の作用に適した温度域で長期間に亘って運転すると、徐々に前記一酸化炭素除去器から排出される前記改質ガス中の一酸化炭素濃度が高まって数十ppmに達し、前記固体高分子型燃料電池の燃料として供するには一酸化炭素濃度が高くなりすぎる場合があることを、本願発明者らは見出した。
このような前記一酸化炭素除去触媒の性能劣化の原因は、従来判明していなかったものであり、本願発明者らが見出した新知見である。
【0007】
従って、本発明の目的は、上記欠点に鑑み、水素と一酸化炭素を含む混合ガス中の一酸化炭素濃度を長期間に亘って低減可能な技術を提供することにある。
【0011】
【課題を解決するための手段】
この目的を達成するための本発明の一酸化炭素除去方法の特徴手段は、請求項に記載されているように、水素と一酸化炭素を含む混合ガス中の一酸化炭素を、一酸化炭素除去触媒に接触させて除去する一酸化炭素除去方法において、前記混合ガスに混入した鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を予め除去した後に、前記混合ガスを前記一酸化炭素除去触媒に接触させる点にある。
そして、これらの作用効果は、以下の通りである。
【0012】
本発明は、一酸化炭素除去器に内装した水素と一酸化炭素を含む混合ガス中の一酸化炭素を除去する一酸化炭素除去触媒が、鉄又は鉄化合物によって被毒されるという新知見に基づくものである。
【0013】
発明者らは、前記一酸化炭素除去器による一酸化炭素除去率が徐々に低下する(劣化する)原因を解明すべく、鋭意研究を進めた結果、前記劣化した触媒の表面の状態を電子プローブ微量分析(EPMA)により解析することによって、その表面に何らかの形態で鉄原子が存在していることを確認した。又、発明者らは、劣化していない触媒の表面にほとんど鉄原子が存在しないことも同時に確認しており、前記触媒の劣化に、前記鉄又は鉄化合物、或いは前記鉄及び鉄化合物双方の存在が深く関与していると考えた。
【0014】
そこで、更に、前記劣化した触媒に存在する鉄又は鉄化合物の由来について検討した結果、前記燃料改質システムを構成する部品(例えば、ステンレス鋼製の反応器や配管、熱交換器など)に含まれる鉄又は鉄化合物が、前記改質ガスに混入して、前記一酸化炭素除去器に内装した前記触媒に付着して活性点を塞いで、活性が低下する虞れがあることが分かった。
これまで、一酸化炭素除去器を通常の条件で使用するにあたって、一酸化炭素除去触媒が鉄被毒を受けるとは考えられていなかったが、鉄や鉄化合物が前記改質ガスに混入し、一酸化炭素除去触媒が鉄被毒され得る原因について考察してみると、可能性の一つとして、以下の様なプロセスが推測される。
先ず、前記一酸化炭素変成器を通過して一酸化炭素濃度を低減した改質ガス(例えば、代表的な組成としては、水素65%、二酸化炭素19%、一酸化炭素0.5%、水蒸気15.5%)は、前記一酸化炭素変成器の出口温度(約200℃程度)と同程度の温度で、前記一酸化炭素変成器から排出されるわけであるが、後続する前記一酸化炭素除去器の運転温度は、これより低い(80〜200℃程度)ため、前記一酸化炭素除去器に導入する前に、前記一酸化炭素変成器と前記一酸化炭素除去器とを接続する反応器や配管、熱交換器中などで放熱して、その温度が下がる。このとき、前記改質ガスは、水素の濃度が高く、又、前記配管や熱交換器などを構成するステンレス鋼材等には鉄、ニッケルが存在しているので、鉄と一酸化炭素とが結合することによって鉄カルボニル(Fe(CO)5)のような形態を取って遊離し易い条件となっている。従って、鉄が前記改質ガスと共に移動して、前記一酸化炭素除去器に流入して、前記一酸化炭素除去触媒に付着することによって、被毒するものと考えられる。
又、前記一酸化炭素変成器と前記一酸化炭素除去器との間で一酸化炭素を除去するために添加する酸化剤や、前記一酸化炭素変成器と前記一酸化炭素除去器との間で結露する水等も前記鉄被毒のプロセスに関与している可能性がある。
【0015】
ここで、前記筐体がステンレス鋼からなるものであったとしても、前記触媒部周辺の一酸化炭素濃度が触媒反応によって低下するので、前記鉄カルボニルの発生は、前記一酸化炭素除去器の上流域からの流入と比べて、少ないものと考えられる。
【0016】
そこで、発明者らは、前記一酸化炭素除去器に供給する前記改質ガスから鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を除去した後に、前記触媒と接触させることによって、前記触媒の被毒を防ぐことに想到し、鋭意研究の結果、本発明を完成するに至った。
【0024】
求項に記載されているように、水素と一酸化炭素を含む混合ガス中の一酸化炭素を、一酸化炭素除去触媒に接触させて除去する一酸化炭素除去方法において、前記混合ガスに混入した鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を予め除去しておくと、上述したように、前記一酸化炭素除去触媒を被毒する原因物質を、前記一酸化炭素除去触媒と接触する前に取り除くことができる。従って、鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を除去した混合ガスを前記一酸化炭素除去触媒に接触させると鉄被毒が抑えられ、長期間に亘って、その活性を高く維持することができるようになる。従って、前記一酸化炭素除去触媒との反応によって、水素と一酸化炭素を含む混合ガス中の一酸化炭素濃度の低減が長期間に亘って可能になる。
ここで、温度や共存物質の影響によって鉄の存在形態が変化することを考慮すると、前記鉄被毒の発生を確実に抑制するには、一酸化炭素除去触媒に接触させて除去する混合ガスから、鉄及び鉄化合物を除去することが好ましい。
【0025】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は、酸化炭素除去器を備えた燃料改質システムを示す。この燃料改質システムは、天然ガス(都市ガス)を原燃料として、固体高分子型燃料電池に供する水素ガスを主成分とする改質ガスを製造するものであって、前記原燃料を供給する原燃料供給系1、脱硫触媒が内装された脱硫器2、改質触媒が内装された改質器4、一酸化炭素変成触媒が内装された一酸化炭素変成器5及酸化炭素除去器6が、その記載順に夫々配管を介して連結されていて、これらを通過して改質された改質ガスは、固体高分子型燃料電池7に供給される。
【0026】
前記原燃料供給系1から導入された天然ガスは、前記脱硫器2を通過する際に、前記脱硫触媒と接触して硫黄分が除去される。そして、水蒸気発生器3から供給される水蒸気と混合された後に、前記改質器4に搬送されて、ここで、前記改質触媒と接触して、前記天然ガス中のメタン等の炭化水素が水素、一酸化炭素、二酸化炭素に改質される。このようにして得られた改質ガスは、水素を主成分とするものの、副生成物としての一酸化炭素を十数%含むので、直接供給すると前記固体高分子型燃料電池7の電極が被毒する。そこで、前記一酸化炭素変成器5を200℃程度で運転して、前記改質ガスを前記前記一酸化炭素変成触媒と接触させて、一酸化炭素を二酸化炭素に変成し、一酸化炭素濃度を0.5〜1%にまで下げる。
【0027】
更に、一酸化炭素濃度を0.5〜1%に低減した前記改質ガスは、酸化剤供給器9から供給される空気(酸素が酸化剤として作用する)と混合された後に、反応ガスとして酸化炭素除去器6に導入される。
この一酸化炭素除去器6は、筐体に、鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を捕集する鉄捕集手段(例えば、アルミナ球などの多孔質体)を設けた捕集部6aと、その下流側に前記一酸化炭素除去触媒(例えば、ルテニウム、白金、ロジウム、パラジウム等の貴金属をアルミナ球等の担体に担持したもの)から構成される触媒部6bとを設けてあって、前記捕集部6aを通過した反応ガスが、前記触媒部6bに到達するように構成されている。
一酸化炭素濃度を0.5〜1%に低減した前記反応ガスは、先ず、前記捕集部6aに流入し、ここで、前記反応ガス中の鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質は、前記鉄捕集手段に捕集されて、ガス流中の鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質の濃度が削減される。そして、この鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質の濃度が低減した前記反応ガスは、前記触媒部6bに流入し、前記触媒と接触することで、一酸化炭素が酸素により酸化され、二酸化炭素となる。このようにして、最終的には、前記反応ガス(改質ガス)中の一酸化炭素濃度は10ppm以下にまで削減され、前記固体高分子型燃料電池7に供給される。
又、前記一酸化炭素除去器は、通常、前記触媒を約80〜200℃で運転するので、この範囲に前記筐体の温度を調節するための温度調整手段8を備えている。この温度調節手段8は、前記筐体を加熱するためのヒータ並びに前記筐体を冷却するための冷却器を備えている。又、前記鉄補集手段がアルミナ等の場合、80〜200℃で鉄捕集能力が高いので、この温度調整手段8によって、触媒と同様に温度調節することが好ましい。
又、前記一酸化炭素除去器は、前記触媒層が180℃になるように運転すると、副反応の進行が抑制され、これによって前記改質ガス中の水素が消費されることを抑制することができる。
【0028】
【実施例】
以下、酸化炭素除去器の性能を実証するための試験について説明する。
【0029】
直径2〜4mmの球状のγ−アルミナ担体を三塩化ルテニウム水溶液に浸漬し、含浸法よりルテニウムを担持させた。これを乾燥させた後、炭酸ナトリウム水溶液に浸漬して前記担体に前記ルテニウムを固定化して、水洗、乾燥し、前駆体を得た。この前駆体をヒドラジン溶液に浸漬して前記前駆体表面のルテニウムを還元し、再度水洗し、105℃で乾燥させてRu/アルミナ触媒を得た。得られたRu/アルミナ触媒中のルテニウム濃度は0.5重量%であった。
【0030】
(実施例)
図2に示すように、前記Ru/アルミナ触媒(一酸化炭素除去触媒)8ccを、ヒータ及び冷却器を備えた温度調節手段62をその外周に設けたSUS製反応管61の下流(出口)側に充填して触媒部6bを形成し、さらに、前記反応管61の前記触媒部6bの上流(入口)側に、鉄捕集手段としてのアルミナ球を8cc充填して、捕集部6aを形成し、一酸化炭素除去器6を作製した。尚、前記アルミナ球には、鉄及び多くの鉄化合物が吸着によって捕捉される。
この前記一酸化炭素除去器6の入口から前記反応管61内部に導入された反応模擬ガスは、前記捕集部6aを通過した後に、前記触媒部6bを通過して、前記出口から前記反応管61外に放出される。又、この一酸化炭素除去器6内の温度は、前記反応模擬ガスの前記一酸化炭素除去器6の入口部における温度を測定する測定点63a、及び、前記捕集部6a及び前記触媒部6bの温度を測定する測定点63bを設けた熱電対63によってモニタする。尚、これらの位置は可変である。このモニタの結果に基づいて、前記温度調節手段62は、前記反応管61を加熱・冷却し、前記反応管61の温度を制御可能に構成してある。なお、前記反応管61の前段には、後述する反応模擬ガスを調製する際に水蒸気を供給するためのSUS製気化管(図示省略)が設置され、この気化管と前記反応管とはSUS製配管で接続されている。
【0031】
この一酸化炭素除去器に、活性化ガス(水素6%、窒素94%)を、1000Nml/分の流量で導入しながら、前記温度調節手段により、前記反応管温度が220℃になるまで昇温して、220℃で1.5時間保持して前処理した。この前処理は、前記反応模擬ガスに対して、以下に説明する本処理を低温(120℃)で行なう場合に、初期活性を高く維持する為に必要な処理である。
この後、前記反応管の温度を120℃にまで降温させて、そのまま120℃に保ち、反応模擬ガスを、前記入口ガスの温度が120℃、空間速度(GHSV)が7500/時間(ドライベース)となるように、前記反応管に導入して、一酸化炭素の除去反応(本処理)を行なった。前記反応模擬ガスとしては、前記一酸化炭素変成器の出口ガスに対して一酸化炭素(CO)に対する酸素(O2)のモル比が1.6となるように空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.8%、窒素3.1%、残部が水素である混合ガス(1000Nml/分)に湿りガス中の水蒸気濃度が20%となるように水蒸気を添加したガス)を用いた。
なお、このときの、前記触媒層の最高温度は147℃であった。
【0032】
(比較例)
反応管に鉄捕集手段としてのアルミナ球を充填しなかった以外は、上記実施例と同様の構成を有する一酸化炭素除去器を用いて、前処理の際に前記活性化ガスの替わりに前記反応模擬ガスを使用した以外は前記実施例と同様の操作により、一酸化炭素の除去反応を行なった。
【0033】
上記実施例及び比較例による一酸化炭素の除去反応によって得られた改質ガス(出口ガス)における一酸化炭素濃度(ドライベース)の推移を、図3に示す。
実施例に係る一酸化炭素除去器にあっては、運転開始当初より、出口ガス中の一酸化炭素濃度は10ppm以下に抑えられ、100時間の連続運転中、その水準を保ちつづけた。一方、前記比較例に係る一酸化炭素除去器にあっては、運転開始より40時間経過するまで、出口ガス中の一酸化炭素濃度は10ppm弱であったが、これ以降、徐々に一酸化炭素が上昇し、100時間経過時には40ppmにまで達した。
【0034】
又、前記実施例で使用した触媒を、一酸化炭素の選択酸化反応終了後(100時間運転後)取り出して、EPMAにより表面分析した結果、前記触媒の表面の鉄原子の存在濃度は、検出限界以下であった。一方、比較例で使用したRu/アルミナ触媒をEPMAにより表面分析した結果、その測定点において、16.7重量%の鉄原子が検出された。
又、前記実施例で前記鉄捕集手段として用いたアルミナ球を取り出したところ、前記アルミナ球の表面に茶色く変色した部分があった。その部分をEPMAで分析したところ、鉄原子が存在していることが判った。
【0035】
これらの結果から、前記触媒の活性低下と前記触媒表面への前記鉄又は鉄化合物の付着との間に相関関係があることは明らかであり、酸化炭素除去器は、前記捕集層を設けて、前記触媒層への鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質の流入を阻止することで、前記触媒の活性を高く維持することが出来る。
【0036】
〔別実施形態〕
以下に別実施形態を説明する。
(イ) 酸化炭素除去器は、その上流に設けられる器材を、特に選ばない。従って、前記燃料改質システムで用いる脱硫触媒、改質触媒、一酸化炭素変成触媒は、その種類を限定する必要はなく、公知のものを使用することができる。又、酸化炭素除去器は、メタノールやナフサ等の改質により得られた燃料ガスに含まれる一酸化炭素の除去にも使用することができる。
(ロ) 又、一酸化炭素除去器を含めて、公知の構成の燃料改質システムにおける、前記一酸化炭素除去触媒の鉄被毒を防止するとすれば、前記一酸化炭素除去器の入口の前段に、鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を捕集可能な鉄捕集手段を備えた捕集部を設けたフィルタを設置すれば良い。かかる構成によれば、前記燃料ガスに含まれる鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質は、前記鉄捕集手段に捕集されてその下流に流出しないので、従来の構成の一酸化炭素除去器への鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質の流入を防止することができる。従って、前記一酸化炭素除去触媒への被毒を防いで、その活性を高く維持することができる。
(ハ) 酸化炭素除去器及びこれを備えた燃料改質システムは、一酸化炭素を酸化除去するものに限られず、一酸化炭素をメタン化して除去する一酸化炭素メタン化除去にも使用することができる。
この場合、前掲の触媒を収容した前記一酸化炭素除去器には、酸化剤を導入せず、200℃程度の温度で運転する。こうすることによって、一酸化炭素と水素とが反応してメタンが生成し、一酸化炭素を除去することができる。
【図面の簡単な説明】
【図1】本発明の実施例を表わす概念図
【図2】本発明を実施するための反応管の断面図
【図3】本発明の効果を表わすグラフ
【符号の説明】
5 一酸化炭素変成器
6 一酸化炭素除去器
7 固体高分子型燃料電池
6a 捕集部
6b 触媒部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon monoxide removal method in which carbon monoxide in a mixed gas containing hydrogen and carbon monoxide is removed by contacting with a carbon monoxide removal catalyst .
[0002]
[Prior art]
Conventionally, in a fuel reforming system for producing reformed gas containing hydrogen and carbon monoxide (gas containing 40% by volume or more of hydrogen (dry base)) using fossil fuel such as natural gas as raw fuel, The raw fuel is desulfurized and steam reformed (in some cases partial combustion reforming or a combination of steam reforming and partial combustion reforming) in a continuous desulfurizer or reformer, and the main fuel is made of hydrogen. A reformed gas containing carbon oxide, carbon dioxide (CO 2 ), moisture (H 2 O) and the like has been obtained. The fuel reformer using the alcohols, for example, methanol as a raw fuel, includes a methanol reformer having a methanol reforming catalyst incorporated therein, and is mainly composed of hydrogen from methanol, carbon monoxide, carbon dioxide, moisture. The reformed gas containing etc. was obtained.
[0003]
Here, in a fuel reforming system that produces reformed gas for use in a phosphoric acid fuel cell, it is known that the electrode catalyst of the fuel cell is poisoned by the presence of carbon monoxide. Is introduced into a carbon monoxide converter, the carbon monoxide is converted into carbon dioxide (CO 2 ) by a carbon monoxide conversion reaction, and the concentration of carbon monoxide in the gas is set to a predetermined value. The reformed gas was obtained below (for example, 0.5%).
However, in a fuel reforming system that produces reformed gas for use in a polymer electrolyte fuel cell, the polymer electrolyte fuel cell operates at a low temperature of about 80 ° C. Since the electrode catalyst is poisoned, it is necessary to further reduce the carbon monoxide, and carbon monoxide containing a carbon monoxide removal catalyst for removing carbon monoxide downstream of the carbon monoxide converter. An oxidizer such as air is added to the reformed gas treated by the carbon monoxide converter by introducing a remover, and introduced into the reformed gas. In the presence of the carbon monoxide removal catalyst, carbon monoxide Was oxidized to carbon dioxide, and a reformed gas having a carbon monoxide concentration reduced to a predetermined concentration or lower (for example, 100 ppm or lower) was obtained. Further, in order to ensure higher performance and durability of the polymer electrolyte fuel cell, a reformed gas having a carbon monoxide concentration reduced to 10 ppm or less has been obtained.
[0004]
The carbon monoxide remover is a catalyst composed of a carbon monoxide removal catalyst in which ruthenium (Ru), rhodium (Rh), platinum (Pt), palladium (Pd) or the like is supported on a carrier such as alumina in a casing. And a gas (reaction gas) in which an oxidizing agent such as air is added to the reformed gas is introduced from the gas inlet into the catalyst layer of the storage unit. The carbon monoxide in the reformed gas was converted into carbon dioxide by contacting with a carbon removal catalyst. And the said reaction gas which the carbon monoxide density | concentration decreased through the said catalyst layer was discharged | emitted from the gas outflow port penetrated by the said housing | casing. Further, since the carbon monoxide removing catalyst is likely to undergo a reaction of selectively oxidizing carbon monoxide when the temperature of the catalyst layer is about 80 to 200 ° C., temperature adjusting means (heater, cooler, etc.) ) Was attached to the casing, and the catalyst layer was held so as to be in its temperature range.
[0005]
Conventionally, stainless steel has been mainly used as a member constituting the fuel reformer in consideration of various circumstances such as weather resistance, heat resistance, strength, workability, and cost.
[0006]
[Problems to be solved by the invention]
However, when the carbon monoxide remover is operated over a long period of time in a temperature range suitable for the action of the carbon monoxide removal catalyst, the carbon monoxide remover in the reformed gas gradually discharged from the carbon monoxide remover. The inventors of the present application have found that the carbon monoxide concentration increases to several tens of ppm, and the carbon monoxide concentration may be too high to be used as a fuel for the polymer electrolyte fuel cell.
The cause of such performance deterioration of the carbon monoxide removal catalyst has not been clarified in the past, and is a new finding found by the present inventors.
[0007]
Accordingly, an object of the present invention is to provide a technique capable of reducing the concentration of carbon monoxide in a mixed gas containing hydrogen and carbon monoxide over a long period of time in view of the above drawbacks.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the characteristic means of the carbon monoxide removal method of the present invention is characterized in that, as described in claim 1 , carbon monoxide in a mixed gas containing hydrogen and carbon monoxide is converted into carbon monoxide. In the carbon monoxide removal method of removing in contact with a removal catalyst, after removing at least one or more substances selected from the group consisting of iron and iron compounds mixed in the mixed gas in advance, the mixed gas is removed from the one of the mixed gases. It is in the point of contacting with the carbon oxide removal catalyst.
These functions and effects are as follows.
[0012]
The present invention is based on the new finding that a carbon monoxide removal catalyst for removing carbon monoxide in a mixed gas containing hydrogen and carbon monoxide incorporated in a carbon monoxide remover is poisoned by iron or an iron compound. Is.
[0013]
The inventors of the present invention have made extensive studies to elucidate the reason why the carbon monoxide removal rate by the carbon monoxide remover gradually decreases (deteriorates). As a result, the state of the surface of the deteriorated catalyst is determined by an electron probe. Analysis by microanalysis (EPMA) confirmed the presence of iron atoms in some form on the surface. The inventors have also confirmed that there are almost no iron atoms on the surface of the catalyst that has not deteriorated, and that the deterioration of the catalyst includes the presence of the iron or iron compound, or both the iron and iron compound. Thought deeply involved.
[0014]
Therefore, as a result of further study on the origin of iron or iron compounds present in the deteriorated catalyst, the fuel reforming system includes components (for example, stainless steel reactors and piping, heat exchangers, etc.). It was found that the iron or iron compound to be mixed into the reformed gas adheres to the catalyst built in the carbon monoxide remover, blocks the active site, and the activity may decrease.
Until now, when using a carbon monoxide remover under normal conditions, it was not thought that the carbon monoxide removal catalyst would be subjected to iron poisoning, but iron and iron compounds were mixed in the reformed gas, Considering the reason why the carbon monoxide removal catalyst may be poisoned with iron, one of the possibilities is as follows.
First, a reformed gas that has passed through the carbon monoxide transformer and has reduced the concentration of carbon monoxide (for example, typical compositions include 65% hydrogen, 19% carbon dioxide, 0.5% carbon monoxide, steam, 15.5%) is discharged from the carbon monoxide converter at the same temperature as the outlet temperature of the carbon monoxide converter (about 200 ° C.). Since the operating temperature of the remover is lower than this (about 80 to 200 ° C.), the reactor for connecting the carbon monoxide converter and the carbon monoxide remover before introduction into the carbon monoxide remover. Radiates heat in the pipes, heat exchangers, etc., and the temperature drops. At this time, the reformed gas has a high hydrogen concentration, and since iron and nickel are present in the stainless steel material and the like constituting the pipe and heat exchanger, the iron and carbon monoxide are combined. By doing so, it is in a condition such as iron carbonyl (Fe (CO) 5 ) and is easily released. Therefore, iron is considered to be poisoned by moving together with the reformed gas, flowing into the carbon monoxide remover, and adhering to the carbon monoxide removal catalyst.
Further, an oxidant added to remove carbon monoxide between the carbon monoxide converter and the carbon monoxide remover, or between the carbon monoxide transformer and the carbon monoxide remover. Condensed water may also be involved in the iron poisoning process.
[0015]
Here, even if the casing is made of stainless steel, the carbon monoxide concentration around the catalyst portion is lowered by a catalytic reaction, so that the generation of the iron carbonyl is caused by the top of the carbon monoxide remover. Compared to the inflow from the basin, it is considered to be less.
[0016]
Therefore, the inventors remove at least one substance selected from the group consisting of iron and iron compounds from the reformed gas supplied to the carbon monoxide remover, and then contact the catalyst with the catalyst. The inventors have conceived to prevent poisoning of the catalyst, and as a result of intensive studies, the present invention has been completed.
[0024]
Motomeko as described in 1, the carbon monoxide in the mixed gas containing hydrogen and carbon monoxide, in the carbon monoxide removing method of removing by contacting the carbon monoxide removal catalyst, in the mixed gas When at least one substance selected from the group consisting of mixed iron and iron compounds is removed in advance, as described above, the causative substance poisoning the carbon monoxide removal catalyst is the carbon monoxide. It can be removed before contacting the removal catalyst. Therefore, when a mixed gas from which at least one substance selected from the group consisting of iron and iron compounds is removed is brought into contact with the carbon monoxide removal catalyst, iron poisoning is suppressed, and its activity is maintained over a long period of time. Can be kept high. Therefore, the carbon monoxide concentration in the mixed gas containing hydrogen and carbon monoxide can be reduced over a long period of time by the reaction with the carbon monoxide removal catalyst.
Here, considering that the existence form of iron changes due to the influence of temperature and coexisting substances, in order to reliably suppress the occurrence of iron poisoning, it is necessary to remove from the mixed gas removed in contact with the carbon monoxide removal catalyst. It is preferable to remove iron and iron compounds.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Figure 1 shows a fuel reforming system having the carbon monoxide remover. This fuel reforming system produces a reformed gas mainly composed of hydrogen gas supplied to a polymer electrolyte fuel cell using natural gas (city gas) as a raw fuel, and supplies the raw fuel. raw fuel supply system 1, the desulfurizer 2 desulfurization catalyst is decorated, the reforming catalyst reformer 4 is decorated, the carbon monoxide shift converter carbon monoxide shift catalyst is furnished 5及carbon monoxide remover 6 However, the reformed gases that are connected through the pipes in the order of description and are reformed through the pipes are supplied to the polymer electrolyte fuel cell 7.
[0026]
When the natural gas introduced from the raw fuel supply system 1 passes through the desulfurizer 2, the natural gas comes into contact with the desulfurization catalyst to remove sulfur. Then, after being mixed with the steam supplied from the steam generator 3, it is transported to the reformer 4, where it comes into contact with the reforming catalyst, and hydrocarbons such as methane in the natural gas are mixed. Reformed to hydrogen, carbon monoxide, carbon dioxide. The reformed gas obtained in this way contains hydrogen as a main component, but contains dozens of carbon monoxide as a by-product. Therefore, when supplied directly, the electrode of the polymer electrolyte fuel cell 7 is covered. Poison. Therefore, the carbon monoxide converter 5 is operated at about 200 ° C., the reformed gas is brought into contact with the carbon monoxide conversion catalyst, carbon monoxide is converted into carbon dioxide, and the carbon monoxide concentration is increased. Reduce to 0.5-1%.
[0027]
Further, the reformed gas whose carbon monoxide concentration is reduced to 0.5 to 1% is mixed with air (oxygen acts as an oxidant) supplied from the oxidant supplier 9, and then as a reaction gas. It is introduced into the carbon monoxide remover 6.
The carbon monoxide remover 6 has an iron collecting means (for example, a porous body such as an alumina sphere) for collecting at least one substance selected from the group consisting of iron and an iron compound in a casing. A catalyst unit 6b composed of a collecting unit 6a provided, and a catalyst for removing carbon monoxide (for example, a noble metal such as ruthenium, platinum, rhodium, palladium supported on a carrier such as an alumina sphere) on the downstream side thereof; The reaction gas that has passed through the collection part 6a reaches the catalyst part 6b.
The reaction gas whose carbon monoxide concentration has been reduced to 0.5 to 1% first flows into the collection unit 6a, where at least selected from the group consisting of iron and iron compounds in the reaction gas. One or more substances are collected by the iron collecting means, and the concentration of at least one substance selected from the group consisting of iron and iron compounds in the gas stream is reduced. And the said reaction gas in which the density | concentration of the at least 1 or more types of substance selected from the group which consists of this iron and an iron compound reduced flows in into the said catalyst part 6b, and carbon monoxide is made to contact with the said catalyst. Oxidized by oxygen to carbon dioxide. In this way, the carbon monoxide concentration in the reaction gas (reformed gas) is finally reduced to 10 ppm or less and supplied to the polymer electrolyte fuel cell 7.
Further, the carbon monoxide remover normally operates the catalyst at about 80 to 200 ° C., and thus includes a temperature adjusting means 8 for adjusting the temperature of the casing in this range. The temperature adjusting means 8 includes a heater for heating the casing and a cooler for cooling the casing. Further, when the iron collecting means is alumina or the like, since the iron collecting ability is high at 80 to 200 ° C., it is preferable to adjust the temperature by the temperature adjusting means 8 in the same manner as the catalyst.
Further, when the carbon monoxide remover is operated so that the catalyst layer reaches 180 ° C., the progress of the side reaction is suppressed, thereby suppressing the consumption of hydrogen in the reformed gas. it can.
[0028]
【Example】
The following describes the test to demonstrate the performance of the carbon monoxide remover.
[0029]
A spherical γ-alumina carrier having a diameter of 2 to 4 mm was immersed in an aqueous ruthenium trichloride solution, and ruthenium was supported by an impregnation method. After drying this, it was immersed in an aqueous sodium carbonate solution to immobilize the ruthenium on the carrier, washed with water and dried to obtain a precursor. This precursor was immersed in a hydrazine solution to reduce ruthenium on the surface of the precursor, washed again with water, and dried at 105 ° C. to obtain a Ru / alumina catalyst. The ruthenium concentration in the obtained Ru / alumina catalyst was 0.5% by weight.
[0030]
(Example)
As shown in FIG. 2, 8 cc of the Ru / alumina catalyst (carbon monoxide removal catalyst) is provided on the downstream (outlet) side of a SUS reaction tube 61 provided with a temperature adjusting means 62 having a heater and a cooler on its outer periphery. The catalyst portion 6b is formed by filling the catalyst tube 6b, and further 8 cc of alumina spheres as iron collecting means are filled on the upstream (inlet) side of the catalyst portion 6b of the reaction tube 61 to form the collection portion 6a. The carbon monoxide remover 6 was produced. Incidentally, iron and many iron compounds are captured by the alumina sphere by adsorption.
The reaction simulation gas introduced into the reaction tube 61 from the inlet of the carbon monoxide remover 6 passes through the catalyst unit 6b after passing through the collection unit 6a, and then passes through the reaction tube from the outlet. 61 is released to the outside. Further, the temperature in the carbon monoxide remover 6 includes a measurement point 63a for measuring the temperature of the reaction simulated gas at the inlet of the carbon monoxide remover 6, and the collection unit 6a and the catalyst unit 6b. The temperature is monitored by a thermocouple 63 provided with a measurement point 63b for measuring the temperature. Note that these positions are variable. Based on the result of the monitoring, the temperature adjusting means 62 is configured to heat / cool the reaction tube 61 and to control the temperature of the reaction tube 61. An SUS vaporization tube (not shown) for supplying water vapor when preparing a reaction simulation gas, which will be described later, is installed in the previous stage of the reaction tube 61. The vaporization tube and the reaction tube are made of SUS. Connected by piping.
[0031]
While introducing the activated gas (hydrogen 6%, nitrogen 94%) into this carbon monoxide remover at a flow rate of 1000 Nml / min, the temperature control means increases the temperature of the reaction tube to 220 ° C. And it pre-processed by hold | maintaining at 220 degreeC for 1.5 hours. This pretreatment is necessary for maintaining high initial activity when the following treatment described below is performed at a low temperature (120 ° C.) for the reaction simulation gas.
Thereafter, the temperature of the reaction tube is lowered to 120 ° C. and kept at 120 ° C., and the reaction simulation gas is obtained at a temperature of the inlet gas of 120 ° C. and a space velocity (GHSV) of 7500 / hour (dry base). Then, it was introduced into the reaction tube to carry out carbon monoxide removal reaction (main treatment). The reaction simulation gas corresponds to a mixture of air so that the molar ratio of oxygen (O 2 ) to carbon monoxide (CO) is 1.6 with respect to the outlet gas of the carbon monoxide converter. A gas of composition (carbon monoxide 0.5%, methane 0.5%, carbon dioxide 20.9%, oxygen 0.8%, nitrogen 3.1%, and the balance is hydrogen (1000 Nml / min) A gas in which water vapor was added so that the water vapor concentration in the wet gas was 20% was used.
At this time, the maximum temperature of the catalyst layer was 147 ° C.
[0032]
(Comparative example)
Except that the reaction tube was not filled with alumina spheres as iron collecting means, using a carbon monoxide remover having the same configuration as in the above example, the pretreatment was performed instead of the activated gas. The removal reaction of carbon monoxide was performed by the same operation as in the above example except that the reaction simulation gas was used.
[0033]
FIG. 3 shows the transition of the carbon monoxide concentration (dry base) in the reformed gas (outlet gas) obtained by the carbon monoxide removal reaction according to the above examples and comparative examples.
In the carbon monoxide remover according to the example, the concentration of carbon monoxide in the outlet gas was suppressed to 10 ppm or less from the beginning of operation, and the level was maintained during 100 hours of continuous operation. On the other hand, in the carbon monoxide remover according to the comparative example, the carbon monoxide concentration in the outlet gas was less than 10 ppm until 40 hours passed from the start of operation. Rose to 40 ppm after 100 hours.
[0034]
Further, the catalyst used in the above example was taken out after completion of the selective oxidation reaction of carbon monoxide (after 100 hours of operation) and subjected to surface analysis by EPMA. As a result, the presence concentration of iron atoms on the surface of the catalyst was found to be a detection limit. It was the following. On the other hand, as a result of surface analysis of the Ru / alumina catalyst used in the comparative example by EPMA, 16.7% by weight of iron atoms was detected at the measurement point.
Further, when the alumina sphere used as the iron collecting means in the above embodiment was taken out, there was a brownish colored portion on the surface of the alumina sphere. When this portion was analyzed by EPMA, it was found that iron atoms were present.
[0035]
From these results, it is clear that there is a correlation between the deposition of the active reduction of the catalyst the iron or iron compound to the catalyst surface, carbon monoxide remover is provided with the collecting layer The activity of the catalyst can be kept high by preventing the flow of at least one substance selected from the group consisting of iron and iron compounds into the catalyst layer.
[0036]
[Another embodiment]
Another embodiment will be described below.
(B) carbon monoxide remover is a equipment provided upstream thereof, not particularly selected. Accordingly, the desulfurization catalyst, reforming catalyst, and carbon monoxide conversion catalyst used in the fuel reforming system need not be limited in their types, and known ones can be used. Also, carbon monoxide remover can also be used to remove carbon monoxide contained in the fuel gas obtained by reforming, such as methanol or naphtha.
(B) In addition, in a fuel reforming system having a known configuration including a carbon monoxide remover, if iron poisoning of the carbon monoxide removal catalyst is to be prevented, a stage upstream of the inlet of the carbon monoxide remover. In addition, a filter provided with a collection unit provided with an iron collection means capable of collecting at least one substance selected from the group consisting of iron and iron compounds may be installed. According to such a configuration, at least one substance selected from the group consisting of iron and iron compounds contained in the fuel gas is collected in the iron collecting means and does not flow downstream thereof. Inflow of at least one substance selected from the group consisting of iron and iron compounds to the carbon monoxide remover having the structure can be prevented. Therefore, it is possible to prevent poisoning of the carbon monoxide removal catalyst and maintain its activity high.
(C) a fuel reforming system with carbon monoxide remover and this is not limited to carbon monoxide that is removed oxide, also using carbon monoxide into carbon monoxide methanation removed is removed by methanation be able to.
In this case, the carbon monoxide remover containing the above catalyst is operated at a temperature of about 200 ° C. without introducing an oxidant. By doing so, carbon monoxide and hydrogen react to generate methane, and carbon monoxide can be removed.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an embodiment of the present invention. FIG. 2 is a sectional view of a reaction tube for carrying out the present invention. FIG. 3 is a graph showing the effect of the present invention.
5 Carbon monoxide transformer 6 Carbon monoxide remover 7 Polymer electrolyte fuel cell 6a Collection part 6b Catalyst part

Claims (1)

水素と一酸化炭素を含む混合ガス中の一酸化炭素を、一酸化炭素除去触媒に接触させて除去する一酸化炭素除去方法において、In the carbon monoxide removal method of removing carbon monoxide in a mixed gas containing hydrogen and carbon monoxide by contacting with a carbon monoxide removal catalyst,
前記混合ガスに混入した鉄及び鉄化合物からなる群から選択される少なくとも1種以上の物質を予め除去した後に、前記混合ガスを前記一酸化炭素除去触媒に接触させる一酸化炭素除去方法。A method for removing carbon monoxide, wherein after removing at least one substance selected from the group consisting of iron and iron compounds mixed in the mixed gas in advance, the mixed gas is brought into contact with the carbon monoxide removal catalyst.
JP2001091759A 2001-03-28 2001-03-28 Carbon monoxide removal method Expired - Lifetime JP4688327B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2001091759A JP4688327B2 (en) 2001-03-28 2001-03-28 Carbon monoxide removal method
CA2657318A CA2657318C (en) 2001-03-28 2002-03-25 Method of removing carbon monoxide, method of operating fuel reforming system, carbon monoxide removal reactor, fuel reforming system using the removal reactor, and filter
CNB2005100696201A CN100344526C (en) 2001-03-28 2002-03-25 Carbon monoxide removing device, filter, and method for removing carbon monoxide by using them
CA2657329A CA2657329C (en) 2001-03-28 2002-03-25 Method of removing carbon monoxide, method of operating fuel reforming system, carbon monoxide removal reactor, fuel reforming system using the removal reactor, and filter
KR1020087007535A KR100978331B1 (en) 2001-03-28 2002-03-25 Carbon monoxide removal method, carbon monoxide remover, and filter
CA2442152A CA2442152C (en) 2001-03-28 2002-03-25 Method of removing carbon monoxide, method of operating fuel reforming system, carbon monoxide removal reactor, fuel reforming system using the removal reactor, and filter
US10/472,983 US8591850B2 (en) 2001-03-28 2002-03-25 Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter
PCT/JP2002/002870 WO2002079084A1 (en) 2001-03-28 2002-03-25 Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter
KR1020037012239A KR100856098B1 (en) 2001-03-28 2002-03-25 Carbon monoxide removal method, and operating method for fuel reforming system
EP02708659.4A EP1382567B1 (en) 2001-03-28 2002-03-25 Carbon monoxide removal method
CNB2005100696220A CN1308223C (en) 2001-03-28 2002-03-25 Method for removing carbon monoxide
KR1020087007534A KR100899851B1 (en) 2001-03-28 2002-03-25 Carbon monoxide remover, and fuelreforming system having the carbon monoxide remove
CNB028075404A CN100445197C (en) 2001-03-28 2002-03-25 Carbon monoxide removel method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having carbon monoxide remover, and filter
EP11004374.2A EP2380848B1 (en) 2001-03-28 2002-03-25 Carbon monoxide removal reactor, fuel reforming system and method of removing carbon monoxide
US12/013,650 US7972585B2 (en) 2001-03-28 2008-01-14 Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover , fuel removal system having the carbon monoxide remover, and filter
US13/118,774 US8357341B2 (en) 2001-03-28 2011-05-31 Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel removal system having the carbon monoxide remover, and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091759A JP4688327B2 (en) 2001-03-28 2001-03-28 Carbon monoxide removal method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010188204A Division JP5364057B2 (en) 2010-08-25 2010-08-25 Carbon monoxide remover and filter

Publications (2)

Publication Number Publication Date
JP2002284503A JP2002284503A (en) 2002-10-03
JP4688327B2 true JP4688327B2 (en) 2011-05-25

Family

ID=18946325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091759A Expired - Lifetime JP4688327B2 (en) 2001-03-28 2001-03-28 Carbon monoxide removal method

Country Status (2)

Country Link
JP (1) JP4688327B2 (en)
CN (2) CN1308223C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550385B2 (en) * 2003-08-11 2010-09-22 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
JP4790230B2 (en) * 2004-04-28 2011-10-12 東京瓦斯株式会社 Method for removing deposited carbon in fuel reformer and system therefor
JP4954510B2 (en) * 2005-08-22 2012-06-20 富士電機株式会社 Fuel cell system
JP4772659B2 (en) * 2006-12-26 2011-09-14 日揮触媒化成株式会社 Catalyst for removing carbon monoxide and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283563A (en) * 1986-06-02 1987-12-09 Toshiba Corp Fuel cell device
JPS63133068U (en) * 1986-10-27 1988-08-31
JPH10203803A (en) * 1997-01-20 1998-08-04 Ngk Insulators Ltd Apparatus for recovery, purification and storage of hydrogen gas
JPH11260387A (en) * 1998-03-05 1999-09-24 Sanyo Electric Co Ltd Co removing device and co removing device operating method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943550A (en) * 1989-06-14 1990-07-24 Phillips Petroleum Company Catalysts for oxidation of carbon monoxide
US5017357A (en) * 1989-06-14 1991-05-21 Phillips Petroleum Company Catalytic process for oxidation of carbon monoxide
DE3925564A1 (en) * 1989-08-02 1991-02-07 Krupp Koppers Gmbh METHOD FOR GENERATING A HYDROGENIC GAS
CN1027802C (en) * 1990-01-19 1995-03-08 波克集团股份有限公司 Low temp. purification of gases
EP0550242B1 (en) * 1991-12-30 1996-11-20 Texaco Development Corporation Processing of synthesis gas
JPH09180749A (en) * 1995-12-27 1997-07-11 Matsushita Electric Ind Co Ltd Carbon monoxide eliminating catalyst and method for eliminating carbon monoxide contained in reformed gas using the catalyst
JPH09266005A (en) * 1996-03-29 1997-10-07 Toshiba Corp Solid high polymer fuel cell system
JPH11260837A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Chip mounting method and device
KR100320767B1 (en) * 1998-07-29 2002-01-18 모리시타 요이찌 Hydrogen purifying apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283563A (en) * 1986-06-02 1987-12-09 Toshiba Corp Fuel cell device
JPS63133068U (en) * 1986-10-27 1988-08-31
JPH10203803A (en) * 1997-01-20 1998-08-04 Ngk Insulators Ltd Apparatus for recovery, purification and storage of hydrogen gas
JPH11260387A (en) * 1998-03-05 1999-09-24 Sanyo Electric Co Ltd Co removing device and co removing device operating method therefor

Also Published As

Publication number Publication date
CN1689964A (en) 2005-11-02
CN1689963A (en) 2005-11-02
CN100344526C (en) 2007-10-24
JP2002284503A (en) 2002-10-03
CN1308223C (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US8357341B2 (en) Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel removal system having the carbon monoxide remover, and filter
US20070098615A1 (en) Method of activating carbon monoxide removing catalyst, carbon monoxide removing catalyst, method of removing carbon monoxide and method of operating fuel cell system
JP4284028B2 (en) Carbon monoxide removal method and fuel cell system operating method using the same
WO2005115912A1 (en) Hydrogen production apparatus and fuel cell system using the same
JP3473896B2 (en) Hydrogen purification equipment
JP4688327B2 (en) Carbon monoxide removal method
US20040241509A1 (en) Hydrogen generator and fuel cell system
JP4100876B2 (en) Carbon monoxide removal method, fuel reforming system operation method using the same, and iron poisoning prevention method
JP5364057B2 (en) Carbon monoxide remover and filter
JP4240787B2 (en) Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
JP4801273B2 (en) Carbon monoxide remover and fuel reforming system provided with the same
JP4342148B2 (en) Carbon monoxide removal catalyst and carbon monoxide removal method
JP2003212512A (en) Method of removing carbon monoxide and solid polymer fuel cell system
JP2007075816A (en) Catalyst for removing carbon monoxide and method for removing carbon monoxide
JP4521970B2 (en) Carbon monoxide removal catalyst and carbon monoxide removal method using the same
JP2006240952A (en) Fuel reforming device and fuel cell system
Chin Preferential oxidation of carbon monoxide on structured supports
JP2005162581A (en) Hydrogen refining unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

EXPY Cancellation because of completion of term