JP4688097B2 - Wind generator operating state determination method - Google Patents

Wind generator operating state determination method Download PDF

Info

Publication number
JP4688097B2
JP4688097B2 JP2005058349A JP2005058349A JP4688097B2 JP 4688097 B2 JP4688097 B2 JP 4688097B2 JP 2005058349 A JP2005058349 A JP 2005058349A JP 2005058349 A JP2005058349 A JP 2005058349A JP 4688097 B2 JP4688097 B2 JP 4688097B2
Authority
JP
Japan
Prior art keywords
vibration
frequency
output power
vibration frequency
wind power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005058349A
Other languages
Japanese (ja)
Other versions
JP2006246604A (en
Inventor
英文 阿部
督 内藤
孝紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Tokyo Electric Power Co Inc
Original Assignee
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY, Tokyo Electric Power Co Inc filed Critical NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority to JP2005058349A priority Critical patent/JP4688097B2/en
Publication of JP2006246604A publication Critical patent/JP2006246604A/en
Application granted granted Critical
Publication of JP4688097B2 publication Critical patent/JP4688097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は、風力発電機が系統連系される系統連系システムにおける風力発電機の運転状態判別方法に関する。   The present invention relates to a method for determining an operating state of a wind power generator in a grid interconnection system in which wind power generators are grid-connected.

風力発電機として広く使用される交流発電機は、極数切換型誘導発電機と可変速型発電機との2つのタイプに大別される。極数切換型誘導発電機は極数を切り替えて回転数を切り替えるものであり、通常2種類の回転数を持っている。極数切換型誘導発電機は、極数切換時の突入電流による急激な電圧低下などの電力品質問題などがあり、電圧低下量は切換後の極数により異なるため、極数状態を示す回転数の把握が必要となる。   Alternating power generators widely used as wind power generators are roughly classified into two types: pole-switching induction generators and variable speed generators. A pole-switching induction generator switches the number of revolutions by switching the number of poles, and usually has two kinds of revolutions. The pole switching type induction generator has power quality problems such as a sudden voltage drop due to inrush current when switching the number of poles, and the voltage drop varies depending on the number of poles after switching. It is necessary to grasp this.

一方、可変速型発電機は、風速にあわせ回転数を変える超同期セルビウス誘導発電機や、系統と周波数変換器を通して系統連系され交流励磁が与えられて同期発電機を可変速運転するものである。可変速型発電機では、風速に会わせて回転数を変化させる複雑な制御を行うため、予めシミュレーションを行い電力品質上の問題の有無などを検討する必要がある。   On the other hand, the variable speed generator is a super-synchronous Serbius induction generator that changes the rotation speed according to the wind speed, or is connected to the system through a frequency converter and AC excitation is applied to operate the synchronous generator at a variable speed. is there. In variable speed generators, it is necessary to perform simulations in advance and examine whether there is a problem in power quality or the like in order to perform complex control that changes the rotational speed in accordance with the wind speed.

すなわち、極数切換型誘導発電機と可変速型発電機とのいずれのタイプであっても、その基礎となるモデル化には発電機実測データが必要となり、その基礎データの一つに回転数がある。回転数は、風力発電機が連系される電力会社では直接測定できず、得られるデータは系統連系システムとの責任分界点の電力量計での二相電力計法での電圧及び電流しかない。   In other words, regardless of the type of pole-switching induction generator or variable-speed generator, modeling data that is the basis for that type requires generator measurement data, and one of the basic data is the number of revolutions. There is. The number of revolutions cannot be measured directly by the power company with which the wind power generator is linked, and the data obtained is only the voltage and current in the two-phase wattmeter method with the watt hour meter at the demarcation point with the grid interconnection system. Absent.

風力発電機の回転数を得るための手段として、風車のブレード回転による風力発電機の出力電力P(t)の脈動を利用できる。すなわち、風車の塔付近は、塔体の影響で風速が弱まる傾向があり、それに起因して、風力発電機の出力が低下するため、風力発電機の出力電力P(t)に脈動が生じるというタワーシャドウ効果が生じる。   As means for obtaining the rotational speed of the wind power generator, the pulsation of the output power P (t) of the wind power generator due to the rotation of the blade of the wind turbine can be used. That is, in the vicinity of the tower of the windmill, the wind speed tends to be weakened due to the effect of the tower body, and as a result, the output of the wind power generator is reduced, so that the output power P (t) of the wind power generator pulsates. A tower shadow effect occurs.

例えば、極数切換型の風力発電機での2つの脈動の周波数(理論振動周波数)ft1、ft2は、ブレード回転数をni(rpm)、ブレード枚数NBとすると、次式で与えられる。 For example, two pulsation frequency (theoretical vibration frequency) f t1, f t2 of wind power generator of the number of poles switching type is a blade rotation speed n i (rpm), when the number of blades N B, given by: It is done.

[数1]
ti=niB/60 …(1)
(i=1,2)
これより、風力発電機の出力電力P(t)の脈動の周波数ftiが分かれば、風力発電機の回転数を知ることができる。なお、以後の説明を簡潔にするため、理論振動周波数を単にfと表記する。
[Equation 1]
f ti = n i N B / 60 (1)
(I = 1, 2)
Thus, if the pulsation frequency f ti of the output power P (t) of the wind power generator is known, the rotation speed of the wind power generator can be known. In order to simplify the following description, simply referred to as f t the theoretical vibration frequencies.

次に、理論振動周波数fの推定法を説明する。いま、風力発電機の出力電力P(t)は(2)式に示すように正弦波であるとする。Pは出力電力P(t)の波高値、θは位相である。 Next, the estimation method of the theoretical vibration frequency f t. Now, it is assumed that the output power P (t) of the wind power generator is a sine wave as shown in equation (2). P m is the peak value of the output power P (t), and θ 0 is the phase.

[数2]
P(t)=Pmcos(2πftt+θ0)…(2)
上式の風力発電機出力P(t)に対して、時刻tを中心に時間領域t+T/2〜t−T/2の両端で方形波窓を適用しフーリェ変換を施す。この場合、積分時間Tは(3)式に示す関係にあるとする。
[Equation 2]
P (t) = P m cos (2πf t t + θ 0) ... (2)
A square wave window is applied to both ends of the time domain t + T / 2 to t−T / 2 with respect to the wind power generator output P (t) of the above expression around the time t to perform Fourier transform. In this case, it is assumed that the integration time T has a relationship shown in the equation (3).

[数3]
2πftT=2πN …(3)
(Nは振動周期数)
そうすると、フーリェ変換値の絶対値|χ(t,ω)|は、(4)式で示される。

Figure 0004688097
[Equation 3]
2πft t = 2πN (3)
(N is the number of vibration cycles)
Then, the absolute value | χ (t, ω) | of the Fourier transform value is expressed by equation (4).
Figure 0004688097

ここで、ω=ωt+δω、ωt=2πft、θ(t)=ωt+θ0、δω:角周波数誤差である。 Here, ω = ωt + δω, ωt = 2πft, θ (t) = ωt + θ 0 , δω: angular frequency error.

次に、(4)式のcos(δωT)項をマクローリン展開し4次項まで近似し、さらにδωは十分小とし、{δω/(2ω+δω)}2項は無視し、2ωt+δω≒2ωtと近似すればフーリェ変換値の絶対値|χ(t,ω)|は次の(5)式のように近似される。

Figure 0004688097
Next, the cos (δωT) term of the equation (4) is macrourin expanded and approximated to the 4th order term, and δω is sufficiently small, the {δω / (2ω t + δω)} 2 term is ignored and 2ω t + δω≈2ω. If approximated with t , the absolute value | χ (t, ω) | of the Fourier transform value is approximated as the following equation (5).
Figure 0004688097

さらに、(5)式の右辺の第4項を十分小として無視すれば、次の(6)式に示
す近似式が得られる。

Figure 0004688097
Furthermore, if the fourth term on the right side of equation (5) is sufficiently small and ignored, the approximate equation shown in equation (6) below is obtained.
Figure 0004688097

この(6)式より根号内の第2項までを考察すると、δω=0の場合にフーリェ変換値の絶対値|χ(t,ω)|は最大となるので、このωを求めるものとする。なお、第3項までを考慮する場合には角周波数誤差δωに関する極値条件より、フーリェ変換値の絶対値|χ(t,ω)|を最大とする角周波数誤差δωは次の(7)式の関係で示される。

Figure 0004688097
Considering up to the second term in the root sign from this equation (6), when δω = 0, the absolute value of the Fourier transform value | χ (t, ω) | To do. When considering up to the third term, the angular frequency error δω that maximizes the absolute value | χ (t, ω) | of the Fourier transform value is given by the following (7) from the extreme value condition regarding the angular frequency error δω. It is shown in relation to the formula.
Figure 0004688097

(7)式から分かるように、角周波数誤差δωは時間関数であり、次の特性を持つことが分かる。   As can be seen from the equation (7), the angular frequency error δω is a time function and has the following characteristics.

(a)角周波数誤差δωは振動周期数Nの2乗N2に反比例するので、フーリェ変換時に窓長である積分時間Tを大きくすれば急激に減少する。 (A) Since the angular frequency error δω is inversely proportional to the square N 2 of the vibration period number N, it decreases rapidly if the integration time T, which is the window length, is increased during Fourier transformation.

(b)cos(2ωtt+2θ0)に比例するので、フーリェ変換すると、角周波数誤差δωのトレンドはftの2倍調波で振動する。 (B) it is proportional to cos (2ω t t + 2θ 0 ), when Fourier transformation, the trend of the angular frequency error δω vibrates at twice harmonics of f t.

(7)式より振動周期数Nによる振動誤差ε(ε=δω/ωt)の最大値は、cos(2ωtt+2θ0)=1のときであり、下記の表1のように与えられる。

Figure 0004688097
From Equation (7), the maximum value of the vibration error ε (ε = δω / ω t ) due to the number of vibration periods N is when cos (2ω t t + 2θ 0 ) = 1, and is given as shown in Table 1 below.
Figure 0004688097

表1に示すように、振動周期数NがN=1では振動誤差εが15.2%と大きく、実用性に乏しいことが分かる。このため、振動誤差εの抑制を考慮した振動周期数NがN=3が実用面から採用されてきた。   As shown in Table 1, when the vibration period number N is N = 1, the vibration error ε is as large as 15.2%, indicating that the practicality is poor. For this reason, a vibration period number N = 3 in consideration of suppression of vibration error ε has been adopted from a practical aspect.

しかしながら、風車のタワーシャドウ効果による風力発電機の出力電力P(t)の振動は3周期も持続せず、振動周波数の推定ができない場合もある。このため、振動周期数Nが2以下の場合でも推定が可能な方法が望まれる。また、振動周期数NがN=3の場合には、振動周波数が3周期に亘って平均化される。   However, the vibration of the output power P (t) of the wind power generator due to the tower shadow effect of the windmill does not continue for three periods, and the vibration frequency may not be estimated. For this reason, a method that can be estimated even when the vibration period number N is 2 or less is desired. When the number of vibration cycles N is N = 3, the vibration frequency is averaged over three cycles.

そのため、データ上、振動が持続しない区間(以後、非良質区間と呼ぶ)であっても、一見して振動が発生しているような結果を与える場合もある。従って、データの非良質区間を自動的に判断可能な推定方法も望まれている。   For this reason, even in a section where the vibration does not persist in the data (hereinafter, referred to as a non-good quality section), there may be a result that the vibration appears at first glance. Therefore, an estimation method that can automatically determine a non-quality section of data is also desired.

そこで、本出願人の発明者らは、系統連系される風力発電機の出力電力の振動周波数を短い振動周期数で正確に推定できる風力発電機の運転状態判別方法を発明し、特願2004−168021号により特許出願した。   Accordingly, the inventors of the present applicant have invented a method for determining the operating state of a wind power generator that can accurately estimate the vibration frequency of the output power of the wind power generator that is grid-connected with a short number of vibration cycles. A patent application was filed under No.-168021.

すなわち、風力発電機の出力電力信号の理論振動周波数fを中心とする移動平均法による帯域フィルタに通し、積分時間領域(1/ft)秒のフーリェ変換を施してそのフーリェ変換値の絶対値が最大となる周波数を推定振動周波数信号f1として求め、順次2倍調波の誤差振動を含む推定振動周波数fk(k=1/2i)を移動平均法による高域フィルタに通し、積分時間領域(1/2it)秒のフーリェ変換を施し推定振動周波数信号fk+1(k+1=1/2i+1)を求め、さらに、推定振動周波数信号fk+1に対して積分時間領域(2/2i+1)秒のフーリェ変換を施して推定振動周波数信号fm(m=2/2i+1)を求め、数値デジタル低域フィルタを通して最終の周波数推定値fTを決定する。 That is, through a band filter using the moving average method around the theoretical vibration frequency f t of the output power signal of the wind power generator, the absolute of the Fourier transform value by performing integration time domain (1 / f t) the Fourier transform of s The frequency having the maximum value is obtained as the estimated vibration frequency signal f 1 , and the estimated vibration frequency f k (k = 1/2 i ) including the error vibration of 2 j harmonics is sequentially passed through the high-pass filter by the moving average method. The estimated vibration frequency signal f k + 1 (k + 1 = 1/2 i + 1 ) is obtained by performing a Fourier transform in the integration time region (1/2 i f t ) seconds, and further, the estimated vibration frequency signal f k + 1 seeking integration time domain (2/2 i + 1 f t) estimated vibration subjected to Fourier transform of the second frequency signal f m (m = 2/2 i + 1) for the final frequency through numerical digital low-pass filter to determine the estimated value f T.

これにより、風車発電機の出力電力の振動をより正確に抽出し、風力発電機の出力電力の振動が持続する区間をより正確に抽出するとともに、風力発電機の出力電力の振動の周波数推定値をより正確に推定できるようにした。   As a result, the vibration of the output power of the wind turbine generator is more accurately extracted, the section where the vibration of the output power of the wind power generator is sustained is more accurately extracted, and the frequency estimate of the vibration of the output power of the wind turbine generator is extracted. Can be estimated more accurately.

この特願2004−168021号のものでは、風力発電機の出力電力振動がある程度継続した場合には、その振動の周波数推定を正確に推定できるが、出力電力振動の持続時間が短い場合には、振動が持続しない非良質区間と判定してしまい、良質区間が殆どないと判定してしまうことがあることが分かった。   In this Japanese Patent Application No. 2004-168021, when the output power vibration of the wind power generator continues to some extent, the frequency estimation of the vibration can be accurately estimated, but when the duration of the output power vibration is short, It was determined that the non-good quality section in which the vibration did not persist was determined, and that there were few good quality sections.

本発明の目的は、系統連系される風力発電機の出力電力振動の持続時間が短い場合であっても風力発電機の振動周波数を正確に推定でき、風力発電機の回転数と出力電力との関係などの運転状態判別を行うことができる風力発電機の運転状態判別方法を提供することである。   The object of the present invention is to accurately estimate the vibration frequency of the wind power generator even when the duration of the output power vibration of the wind power generator connected to the grid is short. It is an object to provide a method for determining an operating state of a wind power generator capable of determining an operating state such as the relationship of

請求項1の発明に係わる風力発電機の運転状態判別方法は、測定された振動分を含む極数切換型の風力発電機の出力電力信号を所定の周期でサンプリングして出力電力信号の時系列データを入力し、前記出力電力信号の振動として理論的に推定される理論振動周波数を中心とする移動平均法による帯域フィルタに前記時系列データを通し、前記帯域フィルタにより低周波分や高周波分が除去された出力電力信号の時系列データを集積し、集積した出力電力信号の時系列データを予め用意した減衰振動の自己回帰モデルに適用し、時系列データを適用した自己回帰モデルの係数から出力電力信号の振動周波数を算出し、予め定めた条件に基づいて得られた振動周波数の妥当性を判定し、予め定めた条件を満たす振動周波数を振動周波数推定値として抽出し、振動周波数推定値に基づいて風力発電機の回転数を特定することを特徴とする。   The wind generator operating state determination method according to the invention of claim 1 is a time series of output power signals obtained by sampling an output power signal of a pole-switching wind generator including a measured vibration component at a predetermined period. Data is input, and the time series data is passed through a band-pass filter based on a moving average method centered on a theoretical vibration frequency that is theoretically estimated as vibration of the output power signal. The time series data of the removed output power signal is accumulated, the time series data of the accumulated output power signal is applied to the autoregressive model of the damped oscillation prepared in advance, and output from the coefficient of the autoregressive model to which the time series data is applied The vibration frequency of the power signal is calculated, the validity of the vibration frequency obtained based on the predetermined condition is determined, and the vibration frequency satisfying the predetermined condition is determined as the vibration frequency estimated value. Extracted Te, and identifies the rotational speed of the wind turbine based on the vibration frequency estimate.

請求項2の発明に係わる風力発電機の運転状態判別方法は、測定された振動分を含む可変速型の風力発電機の出力電力信号を所定の周期でサンプリングして出力電力信号の時系列データを入力し、前記出力電力信号の振動が存在すると推定される存在領域をn等分した各領域の中心周波数を前記出力電力信号の振動として理論的に推定される理論振動数とし、その各理論振動数を中心とする移動平均法による帯域フィルタに前記時系列データを通し、各理論振動数毎に前記帯域フィルタにより低周波分や高周波分が除去された出力電力信号の時系列データを集積し、集積した各理論振動数毎の出力電力信号の時系列データを予め用意した減衰振動の自己回帰モデルに適用し、各理論振動数毎の時系列データを適用した自己回帰モデルの係数から出力電力信号の振動周波数を算出し、予め定めた条件に基づいて得られた各振動周波数の妥当性を判定し、予め定めた条件を満たす各振動周波数を各振動周波数推定値として抽出し、各振動周波数推定値に基づいて風力発電機の回転数を特定することを特徴とする。   According to a second aspect of the present invention, there is provided a method for discriminating an operating state of a wind power generator by sampling an output power signal of a variable speed type wind power generator including a measured vibration component at a predetermined period and time series data of the output power signal. And the center frequency of each region obtained by equally dividing the existence region in which the vibration of the output power signal is present into n equal parts is defined as the theoretical frequency that is theoretically estimated as the vibration of the output power signal. The time-series data is passed through a band-pass filter based on the moving average method centering on the frequency, and the time-series data of the output power signal from which the low-frequency and high-frequency components are removed by the band-pass filter is accumulated for each theoretical frequency. Apply the time series data of the accumulated output power signal for each theoretical frequency to the auto-regression model of the damped vibration prepared in advance, and the coefficient of the auto-regression model applying the time series data for each theoretical frequency. Calculate the vibration frequency of the output power signal, determine the appropriateness of each vibration frequency obtained based on a predetermined condition, extract each vibration frequency satisfying a predetermined condition as each vibration frequency estimate, The rotational speed of the wind power generator is specified based on the estimated vibration frequency.

請求項3の発明に係わる風力発電機の運転状態判別方法は、請求項1または2の発明において、前記測定された振動分を含む風力発電機の出力電力信号を、前記帯域フィルタに2回通すことを特徴とする。   According to a third aspect of the present invention, there is provided a method for determining an operating state of a wind power generator, wherein the output power signal of the wind power generator including the measured vibration component is passed through the band filter twice. It is characterized by that.

請求項4の発明に係わる風力発電機の運転状態判別方法は、請求項1ないし3のいずれか一の発明において、 前記帯域フィルタを通過した風力発電機の出力電力信号のうち、所定の閾値以下の区間の出力電力信号は、除外することを特徴とする。   A wind power generator operating state determination method according to the invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the output power signal of the wind power generator that has passed through the bandpass filter is equal to or less than a predetermined threshold value. The output power signal in the section is excluded.

請求項5の発明に係わる風力発電機の運転状態判別方法は、請求項1ないし4のいずれか1の発明において、前記自己回帰モデルの係数のうち、振動を示す正弦項を含む係数の前記正弦項の絶対値が1以下の条件で、振動周波数の妥当性を判定することを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for determining an operating state of a wind power generator according to any one of the first to fourth aspects, wherein the sine of a coefficient including a sine term indicating vibration among the coefficients of the autoregressive model. The validity of the vibration frequency is determined under the condition that the absolute value of the term is 1 or less.

請求項6の発明に係わる風力発電機の運転状態判別方法は、請求項1ないし5のいずれか1の発明において、前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の前記時定数の値が正である条件で、振動周波数の妥当性を判定することを特徴とする。   According to a sixth aspect of the present invention, there is provided a method for determining an operating state of a wind power generator according to any one of the first to fifth aspects, wherein the coefficient includes a time constant indicating a damped oscillation among the coefficients of the autoregressive model. The validity of the vibration frequency is determined under the condition that the value of the time constant is positive.

請求項7の発明に係わる風力発電機の運転状態判別方法は、請求項6の発明において、前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の前記時定数の範囲は前記時系列データに基づいて推定した値より大なる条件で、振動周波数の妥当性を判定することを特徴とする。   According to a seventh aspect of the invention, there is provided the wind power generator operating state determination method according to the sixth aspect of the invention, wherein the time constant range of the coefficient including the time constant indicating the damped oscillation is the coefficient of the autoregressive model. The validity of the vibration frequency is determined under a condition larger than the value estimated based on the time series data.

請求項8の発明に係わる風力発電機の運転状態判別方法は、請求項6の発明において、前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の範囲は、前記時系列データに基づいて推定した値以上で、かつ前記時定数を無限大とした場合の値に余裕値を加味した値以下の条件で、振動周波数の妥当性を判定することを特徴とする。   The wind power generator operating state determination method according to the invention of claim 8 is the invention according to claim 6, wherein the coefficient range including the time constant indicating the damped oscillation among the coefficients of the autoregressive model is the time series data. The validity of the vibration frequency is determined under a condition that is equal to or greater than the value estimated based on the above and less than a value obtained by adding a margin value to the value when the time constant is infinite.

請求項9の発明に係わる風力発電機の運転状態判別方法は、請求項1ないし8のいずれか1の発明において、前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の変動分が予め定めた閾値より小なる条件で、振動周波数の妥当性を判定することを特徴とする。   According to a ninth aspect of the present invention, there is provided the method for determining an operating state of a wind power generator according to any one of the first to eighth aspects, wherein among the coefficients of the autoregressive model, variation of a coefficient including a time constant indicating a damped oscillation. The validity of the vibration frequency is determined under the condition that the minute is smaller than a predetermined threshold value.

請求項10の発明に係わる風力発電機の運転状態判別方法は、請求項1ないし9のいずれか1の発明において、振動周波数の妥当性の判定として、推定領域での振動周波数の平均値の±15%以内の振動周波数を対象とすることを特徴とする。   According to a tenth aspect of the present invention, there is provided a method for determining an operating state of a wind power generator according to any one of the first to ninth aspects, wherein the mean value of the vibration frequency in the estimation region is ± It is characterized by targeting vibration frequencies within 15%.

請求項11の発明に係わる風力発電機の運転状態判別方法は、請求項1ないし10のいずれか1の発明において、振動周波数の妥当性の判定として、推定領域で振動周波数の一定継続している時間長が所定の時間長以下である振動周波数は除外することを特徴とする。   The wind turbine generator operating state determination method according to the invention of claim 11 is the invention according to any one of claims 1 to 10, wherein the vibration frequency is kept constant in the estimation region as the determination of the validity of the vibration frequency. The vibration frequency whose time length is below a predetermined time length is excluded.

本発明によれば、出力電力信号の時系列データに基づいて出力電力信号の減衰振動の自己回帰モデルを作成し、自己回帰モデルの係数から出力電力信号の振動周波数を算出するので、短い振動期間の時系列データでも出力電力信号の振動周波数を算出できる。また、自己回帰モデルとして先験的に減衰振動波形モデルを採用するので、分解能は時系列データを得るサンプリング間隔で規定されない。また、振動周波数を算出するための計算量が少なくて済む。さらに、減衰振動波形モデルを仮定するので、実データから得られる風力発電機の時定数との対応から、推定結果である振動周波数の妥当性の判定が容易に行える。   According to the present invention, the autoregressive model of the damped oscillation of the output power signal is created based on the time series data of the output power signal, and the oscillation frequency of the output power signal is calculated from the coefficient of the autoregressive model. The vibration frequency of the output power signal can be calculated even with the time series data. Further, since the damped vibration waveform model is adopted a priori as the autoregressive model, the resolution is not defined by the sampling interval for obtaining time series data. In addition, the calculation amount for calculating the vibration frequency is small. Furthermore, since a damped vibration waveform model is assumed, the validity of the vibration frequency as an estimation result can be easily determined from the correspondence with the time constant of the wind power generator obtained from actual data.

以下、本発明の実施の形態を説明する。図1は、本発明の実施の形態に係わる風力発電機の運転状態判別方法のフローチャートである。この実施の形態では極数切換型の風力発電機を対象としている。極数切換型の風力発電機の出力電力は、極数切換型の風力発電機が連系される系統連系システムの電力量計で測定される。測定された極数切換型の風力発電機の出力電力信号にはタワーシャドウ効果による脈動分が含まれている。   Embodiments of the present invention will be described below. FIG. 1 is a flowchart of a wind generator operating state determination method according to an embodiment of the present invention. This embodiment is intended for a pole-switching wind power generator. The output power of the pole number switching type wind power generator is measured by a watt hour meter of a grid interconnection system in which the pole number switching type wind power generator is linked. The measured output power signal of the pole-switching wind generator includes a pulsation due to the tower shadow effect.

まず、測定された振動分を含む極数切換型の風力発電機の出力電力信号P(t)を所定のサンプリング周期で読み込み(S1)、出力電力信号の振動として理論的に推定される理論振動周波数fを中心とする移動平均法による帯域フィルタに通し、低周波分や高周波分が除去された出力電力信号PB(t)を求める(S2)。そして、所定のサンプリング数の時系列データPB,n(t)(n=1、2、…N)を集積する(S3)。 First, the output power signal P (t) of the pole-switching wind power generator including the measured vibration is read at a predetermined sampling period (S1), and the theoretical vibration theoretically estimated as the vibration of the output power signal. An output power signal P B (t) from which a low-frequency component and a high-frequency component are removed is obtained through a band-pass filter based on the moving average method centering on the frequency f t (S2). Then, time-series data P B, n (t) (n = 1, 2,... N) with a predetermined sampling number is accumulated (S3).

次に、出力電力信号の時系列データPB,n(t)に基づいて出力電力信号の減衰振動の自己回帰モデルを作成する(S4)。帯域フィルタ適用後の電力PB(t)は、一般に振動領域は減衰振動であるので、自己回帰モデルARM(Auto Regressive Model)として2次モデルを採用する。すなわち、後述するように、振動を示す正弦項を含む係数と減衰振動を示す時定数を含む係数との2個の係数を用いて、複数個の時系列データPB,n(t)の関係式を導き自己回帰モデルを作成する。 Next, an autoregressive model of the damped oscillation of the output power signal is created based on the time series data P B, n (t) of the output power signal (S4). Since the power P B (t) after application of the bandpass filter is generally damped vibration in the vibration region, a quadratic model is adopted as an autoregressive model ARM (Auto Regressive Model). That is, as will be described later, the relationship between a plurality of time-series data P B, n (t) using two coefficients, a coefficient including a sine term indicating vibration and a coefficient including a time constant indicating damped vibration. Create an autoregressive model by deriving the formula.

そして、自己回帰モデルの関係式の2個の係数から出力電力信号P(t)の振動周波数fを算出し(S5)、算出された振動周波数fの妥当性を予め定めた条件に基づいて判定する(S6)。振動周波数fの妥当性の判定の仕方については後述する。この判定により、予め定めた条件を満たす振動周波数を振動周波数推定値fTとして抽出し(S7)、振動周波数推定値fTに基づいて風力発電機の回転数を特定する(S8)。(1)式のftiに振動周波数推定値fTを代入して風力発電機の回転数niを特定する。 Then, the vibration frequency f of the output power signal P B (t) is calculated from the two coefficients of the relational expression of the autoregressive model (S5), and the validity of the calculated vibration frequency f is based on a predetermined condition. Determine (S6). A method for determining the validity of the vibration frequency f will be described later. This determination to extract satisfies oscillation frequency predetermined as a vibration frequency estimate f T (S7), to identify the rotational speed of the wind power generator on the basis of the oscillation frequency estimate f T (S8). By substituting the estimated vibration frequency f T into f ti in the equation (1), the rotational speed n i of the wind power generator is specified.

以下、各ステップS1〜S7の処理内容につき詳細に説明する。まず、帯域フィルタについて説明する。風力発電機の回転数の推定を行うに際し、風力発電機の出力信号P(t)に含まれるタワーシャドウ効果による振動を抽出するわけであるが、タワーシャドウ効果による振動に低周波振動が重畳することがあり、低周波振動が重畳すると基本波の振動誤差が発生する。そこで、これを抑制するとともに、高周波振動を除去するために帯域フィルタを適用する。すなわち、極数切換型の風力発電機では(1)式で与えられる理論振動周波数は2種類しかないので、これらを通過率が最大の周波数とする帯域フィルタを適用する。   Hereinafter, the processing contents of steps S1 to S7 will be described in detail. First, the band filter will be described. When estimating the rotational speed of the wind power generator, the vibration due to the tower shadow effect included in the output signal P (t) of the wind power generator is extracted, but the low frequency vibration is superimposed on the vibration due to the tower shadow effect. In some cases, when low-frequency vibration is superimposed, a fundamental wave vibration error occurs. Therefore, a bandpass filter is applied to suppress this and remove high frequency vibration. In other words, since there are only two types of theoretical vibration frequencies given by the equation (1) in the pole number switching type wind power generator, a band-pass filter using these as the frequencies having the maximum pass rate is applied.

この場合の帯域フィルタとしては、位相が対周波数特性を持たない移動平均法の低域フィルタと高域フィルタとを組み合わせたものを使用する。帯域フィルタはフィルタ中心の周波数を理論振動周波数ftとし、かつ、その通過率Kの対周波数(f)特性が次式で与えられるものを採用する。

Figure 0004688097
As the band filter in this case, a combination of a moving average method low-pass filter and a high-pass filter whose phase does not have frequency characteristics is used. Band filter frequency of the filter center and the theoretical vibration frequency f t, and versus frequency (f) characteristic of the passing ratio K B is adopted as given by the following equation.
Figure 0004688097

また、帯域フィルタは風力発電機の出力電力信号P(t)に対し、必要に応じて連続2回適用する。これにより、風力発電機の出力電力信号P(t)に含まれる低周波振動及び高周波振動を除去する。   In addition, the bandpass filter is continuously applied twice to the output power signal P (t) of the wind power generator as necessary. Thereby, the low frequency vibration and high frequency vibration included in the output power signal P (t) of the wind power generator are removed.

図2は、本発明の実施の形態で使用する帯域フィルタの通過率Kの対周波数特性図である。図2に示すように、帯域フィルタは中心の周波数を理論振動周波数ftとし、通過率KBが0.4であるフィルタである。 Figure 2 is a vs. frequency characteristic diagram of the passing rate K B of the bandpass filter used in the embodiment of the present invention. As shown in FIG. 2, bandpass filter frequency of the center and the theoretical vibration frequency f t, a filter passing ratio K B is 0.4.

図3は、測定された風力発電機の出力電力信号P(t)に連続2回に亘って帯域フィルタを適用した場合の風力発電機の出力電力信号PB(t)の対周波数特性図である。図3では、測定された風力発電機の出力電力信号P(t)と帯域フィルタを適用した後の風力発電機の出力電力信号PB(t)とを示しており、時刻4秒の近傍で2周期程度の振動のみを持つP(t)とPB(t)とを比較図示しているが、帯域フィルタにより十分平滑化されていることが分かる。 FIG. 3 is a frequency characteristic diagram of the output power signal P B (t) of the wind power generator when the bandpass filter is applied to the measured output power signal P (t) of the wind power generator twice in succession. is there. FIG. 3 shows the measured output power signal P (t) of the wind power generator and the output power signal P B (t) of the wind power generator after applying the bandpass filter. Although P (t) and P B (t) having only about two cycles of vibration are shown in a comparative diagram, it can be seen that they are sufficiently smoothed by the bandpass filter.

次に、帯域フィルタを通過した風力発電機の出力電力信号PB(t)のうち、所定の閾値PB,C以下の区間の出力電力信号PB(t)は、必要に応じて除外する。これは、タワーシャドウ効果による振動振幅が小の場合には推定結果の信頼性は低く、出力電力信号PB(t)の脈動が小の領域での推定結果を除外することが望ましいからである。このため、除外の指標としての出力電力信号P(t)の振幅値に対する閾値PB,Cは、以下のように設定する。 Next, of the output power signal P B of the wind turbine that has passed through the band-pass filter (t), a predetermined threshold value P B, the output power signal P B of C following section (t) is optionally excluded . This is because the reliability of the estimation result is low when the vibration amplitude due to the tower shadow effect is small, and it is desirable to exclude the estimation result in a region where the pulsation of the output power signal P B (t) is small. . For this reason, the threshold value P B, C for the amplitude value of the output power signal P B (t) as an exclusion index is set as follows.

まず、発電機は定格電圧VNで一定、かつ力率も1であるとすると、電流脈動分により電力脈動分が決定される。従って、A/D変換器の1ビットに対応した有効電力の跳び幅Δpは、MビットのA/D変換器の入力レンジVinと、定格電流INに対し電圧換算された入力信号レベルVIとを用いて表すと、次の(9)式で与えられる。

Figure 0004688097
First, assuming that the generator is constant at the rated voltage V N and the power factor is 1, the power pulsation is determined by the current pulsation. Thus, jump width of the effective power corresponding to 1-bit A / D converter Δp has an input range V in the M-bit A / D converter, the rated current I N to the voltage converted input signal level V When using I , the following equation (9) is given.
Figure 0004688097

ここで、β=2M-1(VI/Vin)である。 Here, β = 2 M−1 (V I / V in ).

さらに、帯域フィルタを2回通し帯域フィルタの通過率Kが0.4であることを考慮すれば、出力電力信号PB(t)の飛び幅ΔpBは0.4Δpになる。これより、図4に示すように、出力電力信号PB(t)の閾値PB,CはA/D変換器の最小分解能(Δp/2)が臨界値となる。実際のトレンドは正弦波ではないので余裕度α(α0≧α≧1)を用いて、閾値PB,Cは(10)式に示すように設定する。

Figure 0004688097
Furthermore, given that passing ratio K B of the bandpass filter through the band pass filter 2 times of 0.4, jumping width Delta] p B of the output power signal P B (t) becomes 0.4Derutapi. Accordingly, as shown in FIG. 4, the threshold value P B, C of the output power signal P B (t) has a critical value at the minimum resolution (Δp B / 2) of the A / D converter. Since the actual trend is not a sine wave, the threshold value P B, C is set as shown in Equation (10) using the margin α (α 0 ≧ α ≧ 1).
Figure 0004688097

次に、出力電力信号P(t)の時系列データPB,n(t)は、サンプリング周期Δt毎に得られるので、順次、サンプリング周期Δt毎の時系列データPB,n(t)(n=1、2、…N)を集積する。 Next, since the time series data P B, n (t) of the output power signal P B (t) is obtained for each sampling period Δt, the time series data P B, n (t) for each sampling period Δt is sequentially provided. (N = 1, 2,... N) are accumulated.

自己回帰モデルは、帯域フィルタ適用後の電力PB(t)の振動領域が減衰振動であることから、(11)式に示すような2次モデルを採用する。

Figure 0004688097
Since the vibration region of the power P B (t) after application of the bandpass filter is damped vibration, the autoregressive model adopts a quadratic model as shown in the equation (11).
Figure 0004688097

ここで、Pは出力電力信号P(t)の波高値、ωは出力電力信号PB(t)の角周波数、θは出力電力信号PB(t)の位相、Tは減衰の時定数である。そして、(11)式を書き換えると(12)式が得られる。

Figure 0004688097
Here, P is the peak value of the output power signal P B (t), omega is the output power signal P angular frequency of B (t), theta is the output power signal P B of the (t) phase, T is the time of the attenuation constant It is. Then, rewriting equation (11) yields equation (12).
Figure 0004688097

この(12)式のtに各々のサンプリング時点の時刻nΔt(n=1,2,…N)を代入すると、各々の時系列データPB,n(t)(n=1、2、…N)となる。いま、(12)式のtに時刻(n−2)Δtを代入すると、時系列データPB,n-2は(13)式で示される。

Figure 0004688097
Substituting the time nΔt (n = 1, 2,... N) at each sampling time into t in the equation (12), each time series data P B, n (t) (n = 1, 2,... N) ) Now, when time (n−2) Δt is substituted for t in equation (12), time-series data P B, n−2 is represented by equation (13).
Figure 0004688097

そして、時間を進める演算子Z(Z=ελΔt)を導入すると、時系列データPB,n-1と時系列データPB,n-2との関係は(14)式で示される。

Figure 0004688097
Then, when an operator Z (Z = ελΔt ) for advancing time is introduced, the relationship between the time series data P B, n-1 and the time series data P B, n-2 is expressed by equation (14).
Figure 0004688097

(13)式及び(14)式より、Phελ(n-2)Δt及び(Phελ(n-2)Δt*を求めると、(15)式が得られる。

Figure 0004688097
By calculating P h ελ (n−2) Δt and (P h ελ (n−2) Δt ) * from the equations (13) and (14), the equation (15) is obtained.
Figure 0004688097

一方、時系列データPB,nと時系列データPB,n-2との関係は、時間を進める演算子Z(Z=ελΔt)を用いて表すと、(16)式で示される。

Figure 0004688097
On the other hand, the relationship between the time-series data P B, n and the time-series data P B, n-2 is expressed by equation (16) when expressed using an operator Z (Z = ελΔt ) that advances time.
Figure 0004688097

(16)式に(15)式で求めたPhελ(n-2)Δt及び(Phελ(n-2)Δt*を代入すると、(17)式が得られる。

Figure 0004688097
Substituting P h ε λ (n−2) Δt and (P h ε λ (n−2) Δt ) * obtained in equation (15) into equation (16) yields equation (17).
Figure 0004688097

時間を進める演算子Zとその複素共役Z*との和(Z+Z*)をa1、時間を進める演算子Zとその複素共役Z*との積(ZZ*)をa2とおくと、(18)式が得られる。

Figure 0004688097
The sum of the advance time operator Z and its complex conjugate Z * (Z + Z *) to a 1, the product (ZZ *) with operators Z advancing the time and its complex conjugate Z * putting the a 2, ( 18) Equation is obtained.
Figure 0004688097

(18)式から分かるように、時系列データPB,nは、1サンプリング前の時系列データPB,n-1に係数a1を乗算したものと、2サンプリング前の時系列データPB,n-2に係数a2 を乗算したものとの和で示され、係数a1及び係数a2は(19)式で示される。

Figure 0004688097
As can be seen from the equation (18), the time series data P B, n is obtained by multiplying the time series data P B, n-1 before one sampling by the coefficient a 1 and the time series data P B before two samplings. , n−2 multiplied by the coefficient a 2 , and the coefficient a 1 and the coefficient a 2 are expressed by equation (19).
Figure 0004688097

(19)式から分かるように、係数a1は振動を示す正弦項を含む係数であり、係数a2は減衰振動を示す時定数Tを含む係数である。この係数a1、a2は、4個の時系列データから求めることができる。すなわち、3個の時系列データPB,n、PB,n-1、PB,n-2からなる(18)式と、1サンプリング前の3個の時系列データPB,n-1、PB,n-2、PB,n-3からなる(18)式との連立方程式により、係数a1、a2を求めることができる。つまり、4個の時系列データPB,n、PB,n-1、PB,n-2、PB,n-3から(18)式を用いて連立方程式を立てて係数a1、a2を求めることができる。 As can be seen from the equation (19), the coefficient a 1 is a coefficient including a sine term indicating vibration, and the coefficient a 2 is a coefficient including a time constant T indicating damped vibration. The coefficients a 1 and a 2 can be obtained from four pieces of time series data. That is, the equation (18) consisting of three time series data P B, n , P B, n-1 and P B, n-2 and the three time series data P B, n-1 before one sampling. , P B, n-2 , P B, n-3 , the coefficients a 1 and a 2 can be obtained by simultaneous equations with the equation (18). In other words, a simultaneous equation is established from the four time series data P B, n , P B, n−1 , P B, n−2 , P B, n−3 using the equation (18), and the coefficients a 1 , a 2 can be obtained.

本発明の実施の形態では、測定精度を考慮しN個の連続データ列を用い最小自乗法により係数a1、a2を求める。そして、得られた係数a1、a2より、(19)式を用いて振動周波数を求める。まず、減衰時定数Tは(19)式の第2式より(20)式で求められる。

Figure 0004688097
In the embodiment of the present invention, the coefficients a 1 and a 2 are obtained by the least square method using N continuous data strings in consideration of the measurement accuracy. Then, from the obtained coefficients a 1, a 2, obtaining the oscillation frequency using the equation (19). First, the decay time constant T is obtained by the equation (20) from the second equation of the equation (19).
Figure 0004688097

また、振動周波数fは(19)式の第1式に第2式を代入し、ω=2πfであることから、振動周波数fは(21)式で求められる。

Figure 0004688097
Also, the vibration frequency f is obtained by substituting the second equation into the first equation (19) and ω = 2πf, so that the vibration frequency f is obtained by equation (21).
Figure 0004688097

図5は、風力発電機の出力電力信号PB、振動周波数f及び減衰振動を示す時定数Tを含む係数a2のトレンド図である。図5に示すように、風力発電機の出力電力信号PBは146s〜149sの間で脈動を生じている。一方、算出された振動周波数fは、145.85s付近で立ち上がり、145.9s〜147.85sの間で、0.9Hz〜1.0Hzの範囲でほぼ一定の振動が継続している。そして、147.85s付近で立ち下がり、147.9s〜147.4sの間で、再び、0.8Hz〜0.9Hzの範囲でほぼ一定の振動が継続している。さらに、147.4s付近で立ち下がり、147.6s〜148.15sの間で、0.65Hz〜0.75Hzの範囲でもほぼ一定の振動が継続している。148.3s以降においては振動周波数fは大きく変動しており、ほぼ一定の振動が継続している期間は短い。 FIG. 5 is a trend diagram of the coefficient a 2 including the time constant T indicating the output power signal P B , the vibration frequency f, and the damped vibration of the wind power generator. As shown in FIG. 5, the output power signal P B of the wind power generator pulsates between 146 s and 149 s. On the other hand, the calculated vibration frequency f rises in the vicinity of 145.85 s, and substantially constant vibration continues in the range of 0.9 Hz to 1.0 Hz between 145.9 s and 147.85 s. And it falls in the vicinity of 147.85 s, and a substantially constant vibration continues in the range of 0.8 Hz to 0.9 Hz again between 147.9 s and 147.4 s. Furthermore, it falls near 147.4 s, and substantially constant vibration continues in the range of 0.65 Hz to 0.75 Hz between 147.6 s and 148.15 s. After 148.3 s, the vibration frequency f varies greatly, and the period during which substantially constant vibration continues is short.

この振動周波数fの特性から視察で判断すると、145.9s〜148.15sの間の振動周波数fが風力発電機の出力電力信号PBのタワーシャドウ効果による脈動の振動周波数であると推定できる。 Judging from the characteristics of the vibration frequency f, it can be estimated that the vibration frequency f between 145.9 s and 148.15 s is the vibration frequency of pulsation due to the tower shadow effect of the output power signal P B of the wind power generator.

本発明の実施の形態では、振動周波数fを精度良く得るために、測定結果である振動周波数fの妥当性の判断基準を設け妥当な振動周波数fを判定する。すなわち、自己回帰モデルによりタワーシャドウ効果による振動を減衰振動として取扱うため、実波形との対応が容易であり、得られた振動周波数fを妥当性の判定は、良否基準の設定が明確になることが期待できる。   In the embodiment of the present invention, in order to obtain the vibration frequency f with high accuracy, the appropriate vibration frequency f is determined by providing a criterion for determining the validity of the vibration frequency f that is the measurement result. In other words, since the vibration caused by the tower shadow effect is handled as a damped vibration by the autoregressive model, it is easy to correspond to the actual waveform, and the validity criteria of the obtained vibration frequency f can be determined clearly. Can be expected.

まず、第1の基準として、(20)式のcos項は絶対値は1以下なので、これを満足しないものは除外する。すなわち、(22)式の条件を満足しない振動周波数fは除外する。

Figure 0004688097
First, as a first criterion, since the absolute value of the cos term in the equation (20) is 1 or less, those not satisfying this are excluded. That is, the vibration frequency f that does not satisfy the condition of the expression (22) is excluded.
Figure 0004688097

次に、タワーシャドウ効果の振動は、風力発電機の制御系が働き制動するため、減衰振動になると思われる。そこで、減衰振動の条件より時定数Tは正との基準を導入する。   Next, the vibration of the tower shadow effect will be damped because the control system of the wind power generator works and brakes. Therefore, a criterion that the time constant T is positive is introduced from the condition of the damped vibration.

さらに、実データからの推定時定数を用いての第2の基準として、実データの推定減衰時定数Tはブレード回転が機械的なので、通常はT≧1秒の範囲に設定される。また、サンプリング周期Δtは0.02s程度と設定される。これにより、係数a2は(19)式の第2式より、時定数を無限大とした場合の値は1となる。 Furthermore, as a second reference using the estimated time constant from the actual data, the estimated attenuation time constant T of the actual data is normally set in the range of T ≧ 1 seconds because the blade rotation is mechanical. The sampling period Δt is set to about 0.02 s. As a result, the value of the coefficient a 2 when the time constant is infinite is 1 from the second expression of the expression (19).

ただし、うなり状の波形もあるため係数a2は1をはるかに超える場合もある。また、出力急変時には制御系が即応するためT<1の場合もある。これにより、係数a2の範囲による基準を次のように設定する。 However, since there is a beat-like waveform, the coefficient a 2 may be much larger than 1. In addition, there is a case where T <1 because the control system responds immediately when the output changes suddenly. Accordingly, the reference based on the range of the coefficient a 2 is set as follows.

[数23]
2,max≧a2≧a2,min …(23)
例えば、a2,maxとしては時定数Tを無限大とした場合の値1に余裕値、例えば0.02〜0.01を加味した値1.02〜1.01程度、a2,minとしては0.96〜0.99程度の値を用いる。これにより、例えば、145s〜146sの間及び149s〜150sの間の振動周波数fを排除できる。
[Equation 23]
a 2, max ≧ a 2 ≧ a 2, min (23)
For example, a2 , max is a value of 1 when the time constant T is infinite, for example, a value of about 1.02 to 1.01 including 0.02 to 0.01, and a2 , min Is about 0.96 to 0.99. Thereby, for example, the vibration frequency f between 145 s to 146 s and 149 s to 150 s can be eliminated.

次に、振動の減衰が滑らかな場合は係数a2はほぼ一定となるので、第3の基準として、係数a2の変化分の絶対値が所定の閾値よりも小である領域の振動周波数fを採用する。この場合、その前処理として移動平均法により平滑化された係数[a2]を求め、その平滑化された係数[a2]を用いて、平滑化された係数[a2]の変化分の絶対値|Δ[a2,k]|が所定の閾値[a2,c]よりも小であることで判定する。(24)式はその判定式である。 Next, when the vibration attenuation is smooth, the coefficient a 2 is substantially constant. Therefore, as a third reference, the vibration frequency f in a region where the absolute value of the change in the coefficient a 2 is smaller than a predetermined threshold value. Is adopted. In this case, a coefficient [a 2 ] smoothed by the moving average method is obtained as preprocessing, and the smoothed coefficient [a 2 ] is used to calculate the amount of change in the smoothed coefficient [a 2 ]. The absolute value | Δ [a 2, k ] | is determined by being smaller than a predetermined threshold value [a 2, c ]. Expression (24) is the determination expression.

[数24]
Δ[a2,k]=|[a2,k]−[a2,k-1]|<[a2,c] …(24)
ここで、kは時間ステップ、[a2,c]は[a2,k]の閾値である。
[Equation 24]
Δ [a 2, k ] = | [a 2, k ] − [a 2, k−1 ] | <[a 2, c ] (24)
Here, k is a time step, and [a 2, c ] is a threshold value of [a 2, k ].

図6は移動平均法により平滑化された係数[a2]及びその平滑化された係数[a2]の変化分の絶対値|Δ[a2,k]|のトレンド図である。係数[a2]の変化分の絶対値|Δ[a2,k]|の閾値[a2,k]の値を適切に設定することで、例えば、145s〜146sの間及び149s〜150sの間の振動周波数fを排除できる。 FIG. 6 is a trend diagram of the coefficient [a 2 ] smoothed by the moving average method and the absolute value | Δ [a 2, k ] | of the change in the smoothed coefficient [a 2 ]. By appropriately setting the threshold value [a 2, k ] of the absolute value | Δ [a 2, k ] | of the change of the coefficient [a 2 ], for example, between 145 s to 146 s and 149 s to 150 s The vibration frequency f in between can be eliminated.

さらに、これらの基準が厳しく、得られる推定値の領域が少ないため、視察では妥当と思われる領域も除外されることがある。そこで、その防止策として、推定領域に隣接した領域の振動周波数fの値が適切であるか否かを判定する次なる第4の基準を導入する。すなわち、推定領域の振動周波数fの平均値favに対し、隣接領域での振動周波数fの値が(25)式の条件を満たす領域まで推定領域を拡大する。これにより、振動周波数の妥当性の判定は、推定領域での振動周波数の平均値の±15%以内の振動周波数を対象とする。 Furthermore, since these criteria are strict and there are few areas of estimated values obtained, areas that seem to be appropriate for inspection may be excluded. Therefore, as a preventive measure, the following fourth reference for determining whether or not the value of the vibration frequency f in the region adjacent to the estimation region is appropriate is introduced. That is, with respect to the average value f av of the vibration frequency f in the estimated region, the estimated region is expanded to a region where the value of the vibration frequency f in the adjacent region satisfies the condition of the expression (25). As a result, the validity of the vibration frequency is determined for vibration frequencies within ± 15% of the average value of vibration frequencies in the estimation region.

[数25]
1.15fav≧f≧0.85fav …(25)
また、振動周波数の妥当性の判定として、推定領域で振動周波数fの一定継続している時間長が所定の時間長以下である振動周波数fは除外する。
[Equation 25]
1.15f av ≧ f ≧ 0.85f av ... (25)
In addition, as a determination of the validity of the vibration frequency, the vibration frequency f in which the constant time length of the vibration frequency f in the estimation region is equal to or less than a predetermined time length is excluded.

図7は、得られた振動周波数推定値TTの分布図である。測定結果である振動周波数fに対し、妥当性の判断基準を適用して得られた振動周波数推定値fTの分布示している。振動周波数推定値fTは、146.2s〜147.0sの間に0.8Hz〜1.0Hzの範囲で分布している。振動周波数fの特性から視察で判断した場合とほぼ同じ範囲に分布している。図7の場合には、振動周波数推定値fTはほぼ0.9Hz程度であることが分かる。振動周波数推定値fTを(1)式のftiに代入して風力発電機の回転数niを算出し特定する。 FIG. 7 is a distribution diagram of the obtained vibration frequency estimation value T T. The distribution of the vibration frequency estimated value f T obtained by applying the validity criterion to the vibration frequency f which is the measurement result is shown. The vibration frequency estimation value f T is distributed in the range of 0.8 Hz to 1.0 Hz between 146.2 s and 147.0 s. It is distributed in almost the same range as that determined by inspection from the characteristics of the vibration frequency f. In the case of FIG. 7, it can be seen that the vibration frequency estimation value f T is approximately 0.9 Hz. The rotational frequency n i of the wind power generator is calculated and specified by substituting the estimated vibration frequency f T into f ti in the equation (1).

以上の説明では、極数切換型の風力発電機の場合について説明したが、次に、可変速型の風力発電機について適用する場合について説明する。可変速型の発電機では、そのタワ−シャドウ効果による理論振動周波数ftは極数切換型の発電機とは異なり、一般に同期速度に対応する周波数f0を中心に約±30%の領域で変動する。そこで、出力電力信号の振動が存在すると推定される存在領域、すなわち同期速度に対応する周波数f0を中心に約±30%の領域をn等分し、そのn等分した各領域の中心周波数を出力電力信号P(t)の振動として理論的に推定される理論振動数fti(i=1,2,3,…n)とする。実用的には、例えば3分割し、分割した各領域において、その各理論振動数ft1、ft2、ft3を中心とする図1に示した処理を行う。 In the above description, the case of the pole number switching type wind power generator has been described. Next, the case of applying to a variable speed type wind power generator will be described. The variable-speed generator, the tower - shadow effect theory oscillation frequency by f t is different from the generator of the number of poles switching type, generally the frequency f 0 corresponding to the synchronous speed of about ± 30% of the area at the center fluctuate. Therefore, the existence region where the oscillation of the output power signal is estimated to be present, that is, the region of about ± 30% around the frequency f 0 corresponding to the synchronization speed is divided into n equal parts, and the center frequency of each region divided into n parts. Is the theoretical frequency f ti (i = 1, 2, 3,... N) theoretically estimated as the vibration of the output power signal P (t). Practically, for example, it is divided into three, and in each divided area, the processing shown in FIG. 1 centering on each theoretical frequency f t1 , f t2 , f t3 is performed.

図8は極数切換型の風力発電機の出力電力P(t)の特性及び可変速型の風力発電機の出力電力P(t)の特性の特性図である。図8(a)に示すように、極数切換型の風力発電機の出力電力P(t)の特性は理論振動数ftを中心としてタワ−シャドウ効果による振動を示す特性となるが、可変速型の風力発電機の出力電力P(t)の特性は、図8(b)に示すように、極数切換型に比しタワ−シャドウ効果による出力脈動量が極めて小である。これは、風力発電機の制御系が出力電力P(t)の変動を抑制するための制御を行うためである。 FIG. 8 is a characteristic diagram of the characteristics of the output power P (t) of the pole number switching type wind power generator and the characteristics of the output power P (t) of the variable speed type wind power generator. As shown in FIG. 8 (a), around the output power P characteristic of the (t) is the theoretical frequency f t of the wind power generator of the number of poles switching type tower - becomes a characteristic shown vibration caused by the shadow effect, variable As shown in FIG. 8B, the output power P (t) of the variable speed wind power generator has a very small output pulsation amount due to the tower shadow effect as compared with the pole number switching type. This is because the control system of the wind power generator performs control for suppressing fluctuations in the output power P (t).

このため、可変速型の風力発電機の出力電力P(t)に対して、図1に示した処理をそのまま適用したとき、例えば、同期速度に対応する周波数f0を中心とする帯域フィルタを2回連続適用したときには、周波数の存在範囲端部で約35%の減衰があるため、この近傍での振動が見落とされる懸念がある。この端部での減衰に対応するために、同期速度に対応する周波数f0を中心に約±30%の領域をn等分し、そのn等分した各領域の中心周波数を出力電力信号P(t)の振動として理論的に推定される理論振動数fti(i=1,2,3,…n)とする。 Therefore, when the process shown in FIG. 1 is applied to the output power P (t) of the variable speed wind power generator as it is, for example, a band filter centered on the frequency f 0 corresponding to the synchronous speed is used. When applied twice continuously, there is a concern that the vibration in this vicinity is overlooked because there is about 35% attenuation at the end of the frequency range. In order to cope with the attenuation at this end, the region of about ± 30% is divided into n equal parts around the frequency f 0 corresponding to the synchronization speed, and the center frequency of each divided region is divided into the output power signal P. The theoretical frequency f ti (i = 1, 2, 3,... N) theoretically estimated as the vibration of (t) is assumed.

例えば、周波数の存在範囲を3等分することで端部減衰が約10%と抑制される。さらに、各領域の中心周波数を理論振動数に模擬することで、それらの各領域に対して、図1の処理にて周波数推定を行えば、可変速型の風力発電機でも周波数推定が可能である。この場合、擬似的な理論振動数理論振動数fti(i=1,2,3)は次のように定義される。

Figure 0004688097
For example, the end attenuation is suppressed to about 10% by dividing the frequency existence range into three equal parts. Furthermore, by simulating the center frequency of each region to the theoretical frequency and performing frequency estimation in the processing of FIG. 1 for each region, frequency estimation is possible even with a variable speed type wind power generator. is there. In this case, the pseudo theoretical frequency theoretical frequency f ti (i = 1, 2, 3) is defined as follows.
Figure 0004688097

ここで、ftmaxはタワーシャドウ効果による周波数の最大値、ftminはタワーシャドウ効果による周波数の最小値である。 Here, f tmax is the maximum value of the frequency by the tower shadow effect, f tmin is the minimum value of the frequency by the tower shadow effect.

次に、可変速型の風力発電機の周波数推定においても、帯域フィルタを通過した風力発電機の出力電力信号PB(t)のうち、所定の閾値PB,C以下の区間の出力電力信号PB(t)は、必要に応じて除外する。 Next, also in the frequency estimation of the variable speed type wind power generator, the output power signal of the section below the predetermined threshold value P B, C among the output power signal P B (t) of the wind power generator that has passed through the bandpass filter. P B (t) is excluded as necessary.

図9は所定の閾値PB,Cを適用しない場合の周波数推定値fTのトレンド図である。図9から分かるように、所定の閾値PB,Cを適用しない場合には、150秒以降ではほぼ同時刻に大きく異なる推定周波数が存在し、物理的に不合理なことが分かる。その理由は、振動振幅が小の場合には推定結果の信頼性は低く、出力電力信号PB(t)の脈動が小の領域での推定結果を除外することが望ましいからである。 FIG. 9 is a trend diagram of the frequency estimation value f T when the predetermined threshold value P B, C is not applied. As can be seen from FIG. 9, when the predetermined threshold value P B, C is not applied, it can be seen that there are estimated frequencies that are substantially different at the same time after 150 seconds, which is physically unreasonable. The reason is that when the vibration amplitude is small, the reliability of the estimation result is low, and it is desirable to exclude the estimation result in a region where the pulsation of the output power signal P B (t) is small.

そこで、図10に示すように、帯域フィルタを通過した出力電力信号PB(t)に所定の閾値PB,Cを適用し、振動振幅が小である時間領域での振動を除外する。この結果、図11に示すように、物理的に不合理なものが除外され、風力発電機の周波数推定値fTのトレンドが得られる。 Therefore, as shown in FIG. 10, a predetermined threshold value P B, C is applied to the output power signal P B (t) that has passed through the bandpass filter, and vibrations in the time domain where the vibration amplitude is small are excluded. As a result, as shown in FIG. 11, physically unreasonable those are excluded, the trend of the frequency estimate f T of the wind power generator can be obtained.

以上述べたように、本発明の実施の形態によれば、出力電力信号の時系列データに基づいて出力電力信号の減衰振動の自己回帰モデルを作成し、自己回帰モデルの係数から出力電力信号の振動周波数を算出するので、短い振動期間の時系列データでも出力電力信号の振動周波数を算出できる。   As described above, according to the embodiment of the present invention, the autoregressive model of the damped oscillation of the output power signal is created based on the time series data of the output power signal, and the output power signal is calculated from the coefficient of the autoregressive model. Since the vibration frequency is calculated, the vibration frequency of the output power signal can be calculated even with time series data of a short vibration period.

すなわち、フーリェ変換による場合は一定振動モデルであるため、例えば、風力発電機の制御系が風速の変化などで発生した振動の抑制を開始し減衰させた場合、特に振動の持続時間が短い場合には、その減衰振動に対応しきれないが、本発明の実施の形態では、自己回帰モデルとして先験的に減衰振動波形モデルを採用するので、短い振動期間の時系列データでも出力電力信号の振動周波数を算出できる。   That is, since the Fourier transform is a constant vibration model, for example, when the control system of the wind power generator starts to suppress and attenuates vibrations caused by changes in wind speed, especially when the duration of vibration is short However, in the embodiment of the present invention, since the damped vibration waveform model is adopted a priori as the autoregressive model, the vibration of the output power signal can be obtained even with time series data of a short vibration period. The frequency can be calculated.

一方、自己回帰モデルの係数a1、a2を最小自乗法で求めるので、分解能は時系列データを得るサンプリング間隔で規定されないし、フーリェ変換による場合に比較して振動周波数を算出するための計算量が少なくて済む。さらに、減衰振動波形モデルを仮定するので、実データから得られる風力発電機の時定数との対応から、推定結果である振動周波数の妥当性の判定が容易に行える。 On the other hand, since the coefficients a 1 and a 2 of the autoregressive model are obtained by the method of least squares, the resolution is not defined by the sampling interval for obtaining the time series data, and is a calculation for calculating the vibration frequency as compared with the case of the Fourier transform. The amount is small. Furthermore, since a damped vibration waveform model is assumed, the validity of the vibration frequency as an estimation result can be easily determined from the correspondence with the time constant of the wind power generator obtained from actual data.

本発明の実施の形態に係わる風力発電機の運転状態判別方法のフローチャート。The flowchart of the operating state discrimination | determination method of the wind power generator concerning embodiment of this invention. 本発明の実施の形態で使用する帯域フィルタの通過率Kの対周波数特性図。Versus frequency characteristic diagram of the passing rate K B of the bandpass filter used in the embodiment of the present invention. 本発明の実施の形態において、測定された風力発電機の出力電力信号P(t)に連続2回に亘って帯域フィルタを適用した場合の風力発電機の出力電力信号PB(t)の対周波数トレンド図。In the embodiment of the present invention, the output power signal P B (t) of the wind power generator when the band-pass filter is applied to the measured output power signal P (t) of the wind power generator twice in succession. Frequency trend diagram. 本発明の実施の形態における所定の閾値PB,Cと帯域フィルタを通過した出力電力信号PB(t)との関係を示すトレンド図。Trend diagram showing a relationship between a predetermined threshold value P B, C the output power passed through the bandpass filter signal P B (t) in the embodiment of the present invention. 本発明の実施の形態において、風力発電機の出力電力信号PB、振動周波数f及び減衰振動を示す時定数Tを含む係数a2のトレンド図。In the embodiment of the present invention, trend diagram of the coefficient a 2, including a time constant T indicates output power signal P B of the wind power generator, the oscillation frequency f and damping vibrations. 本発明の実施の形態において、移動平均法により平滑化された係数[a2]及びその平滑化された係数[a2]の変化分の絶対値|Δ[a2,k]|のトレンド図。In the embodiment of the present invention, the trend diagram of the coefficient [a 2 ] smoothed by the moving average method and the absolute value | Δ [a 2, k ] | of the change of the smoothed coefficient [a 2 ] . 本発明の実施の形態において、得られた振動周波数推定値TTの分布図。In the embodiment of the present invention, the distribution diagram of the obtained vibration frequency estimation value T T. 極数切換型の風力発電機の出力電力P(t)の特性及び可変速型の風力発電機の出力電力P(t)の特性の特性図。The characteristic view of the characteristic of the output electric power P (t) of a pole number switching type wind generator and the characteristic of the output electric power P (t) of a variable speed type wind power generator. 帯域フィルタを通過した風力発電機の出力電力信号PB(t)に所定の閾値PB,Cを適用しない場合の周波数推定値fTのトレンド図。Trends diagram of a frequency estimate f T when the output power signal P B of the wind turbine that has passed through the band-pass filter (t) does not apply a predetermined threshold value P B, the C. 帯域フィルタを通過した出力電力信号PB(t)と所定の閾値PB,Cを示すトレンド図。Trend diagram showing output power signal P B that has passed through the band-pass filter (t) with a predetermined threshold value P B, the C. 帯域フィルタを通過した風力発電機の出力電力信号PB(t)に所定の閾値PB,Cを適用した場合の周波数推定値fTのトレンド図。Predetermined threshold value to the output power signal P B of the wind turbine that has passed through the band-pass filter (t) P B, trend diagram of a frequency estimate f T in the case of applying the C.

符号の説明Explanation of symbols

S1…出力電力読み込み処理、S2…帯域フィルタリング処理、S3…時系列データ集積処理、S4…自己回帰モデル作成処理、S5…振動周波数算出処理、S6…振動周波数妥当性判定処理、S7…振動周波数推定値抽出処理、S8…回転数特性処理

S1 ... Output power reading process, S2 ... Band filtering process, S3 ... Time series data accumulation process, S4 ... Autoregressive model creation process, S5 ... Vibration frequency calculation process, S6 ... Vibration frequency validity determination process, S7 ... Vibration frequency estimation Value extraction process, S8 ... rotational speed characteristic process

Claims (11)

測定された振動分を含む極数切換型の風力発電機の出力電力信号を所定の周期でサンプリングして出力電力信号の時系列データを入力し、前記出力電力信号の振動として理論的に推定される理論振動周波数を中心とする移動平均法による帯域フィルタに前記時系列データを通し、前記帯域フィルタにより低周波分や高周波分が除去された出力電力信号の時系列データを集積し、集積した出力電力信号の時系列データを予め用意した減衰振動の自己回帰モデルに適用し、時系列データを適用した自己回帰モデルの係数から出力電力信号の振動周波数を算出し、予め定めた条件に基づいて得られた振動周波数の妥当性を判定し、予め定めた条件を満たす振動周波数を振動周波数推定値として抽出し、振動周波数推定値に基づいて風力発電機の回転数を特定することを特徴とする風力発電機の運転状態判別方法。   The output power signal of the pole-switching wind power generator that includes the measured vibration component is sampled at a predetermined period, and time series data of the output power signal is input, which is theoretically estimated as the vibration of the output power signal. The time series data is passed through a band filter based on the moving average method centering on the theoretical vibration frequency, and the time series data of the output power signal from which the low frequency component and high frequency component are removed by the band filter is integrated, and the integrated output Apply the power signal time-series data to the damped vibration auto-regression model prepared in advance, calculate the vibration frequency of the output power signal from the coefficient of the auto-regression model to which the time-series data is applied, and obtain it based on the predetermined condition. The validity of the obtained vibration frequency is determined, the vibration frequency satisfying the predetermined condition is extracted as the vibration frequency estimated value, and the wind turbine generator is rotated based on the vibration frequency estimated value. Operating state discrimination method of a wind power generator, wherein the identifying the. 測定された振動分を含む可変速型の風力発電機の出力電力信号を所定の周期でサンプリングして出力電力信号の時系列データを入力し、前記出力電力信号の振動が存在すると推定される存在領域をn等分した各領域の中心周波数を前記出力電力信号の振動として理論的に推定される理論振動数とし、その各理論振動数を中心とする移動平均法による帯域フィルタに前記時系列データを通し、各理論振動数毎に前記帯域フィルタにより低周波分や高周波分が除去された出力電力信号の時系列データを集積し、集積した各理論振動数毎の出力電力信号の時系列データを予め用意した減衰振動の自己回帰モデルに適用し、各理論振動数毎の時系列データを適用した自己回帰モデルの係数から出力電力信号の振動周波数を算出し、予め定めた条件に基づいて得られた各振動周波数の妥当性を判定し、予め定めた条件を満たす各振動周波数を各振動周波数推定値として抽出し、各振動周波数推定値に基づいて風力発電機の回転数を特定することを特徴とする風力発電機の運転状態判別方法。   Presence that the output power signal of the variable speed type wind generator including the measured vibration component is sampled at a predetermined period and the time series data of the output power signal is input, and the vibration of the output power signal is estimated to exist The center frequency of each region obtained by dividing the region into n equal parts is the theoretical frequency that is theoretically estimated as the vibration of the output power signal, and the time series data is applied to the bandpass filter based on the moving average method centered on each theoretical frequency. The time-series data of the output power signal from which the low-frequency component and the high-frequency component are removed by the band filter for each theoretical frequency is integrated, and the time-series data of the output power signal for each integrated theoretical frequency is collected. Applied to the autoregressive model of damping vibration prepared in advance, the vibration frequency of the output power signal is calculated from the coefficient of the autoregressive model applying the time series data for each theoretical frequency, and based on the predetermined condition. The validity of each obtained vibration frequency is determined, each vibration frequency satisfying a predetermined condition is extracted as each vibration frequency estimated value, and the rotation speed of the wind power generator is specified based on each vibration frequency estimated value. A method for determining the operating state of a wind power generator. 前記測定された振動分を含む風力発電機の出力電力信号を、前記帯域フィルタに2回通すことを特徴とする請求項1または2記載の風力発電機の運転状態判別方法。   The wind power generator operating state determination method according to claim 1 or 2, wherein an output power signal of the wind power generator including the measured vibration component is passed through the band filter twice. 前記帯域フィルタを通過した風力発電機の出力電力信号のうち、所定の閾値以下の区間の出力電力信号は、除外することを特徴とする請求項1ないし3のいずれか一記載の風力発電機の運転状態判別方法。   4. The wind power generator according to claim 1, wherein output power signals of a section below a predetermined threshold are excluded from the output power signals of the wind power generator that have passed through the bandpass filter. 5. Operation state discrimination method. 前記自己回帰モデルの係数のうち、振動を示す正弦項を含む係数の前記正弦項の絶対値が1以下の条件で、振動周波数の妥当性を判定することを特徴とする請求項1ないし4のいずれか一記載の風力発電機の運転状態判別方法。   5. The validity of the vibration frequency is determined under the condition that the absolute value of the sine term of the coefficient including the sine term indicating vibration is 1 or less among the coefficients of the autoregressive model. The wind power generator operating state determination method according to any one of the above. 前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の前記時定数の値が正である条件で、振動周波数の妥当性を判定することを特徴とする請求項1ないし5のいずれか一記載の風力発電機の運転状態判別方法。   6. The validity of the vibration frequency is determined under the condition that the value of the time constant of the coefficient including the time constant indicating the damped vibration among the coefficients of the autoregressive model is positive. The wind power generator operating state determination method according to any one of the above. 前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の前記時定数の範囲は前記時系列データに基づいて推定した値より大なる条件で、振動周波数の妥当性を判定することを特徴とする請求項6記載の風力発電機の運転状態判別方法。   Among the coefficients of the autoregressive model, the validity of the vibration frequency is determined under the condition that the range of the coefficient including the time constant indicating the damped vibration is larger than the value estimated based on the time series data. The operating state discrimination method for a wind power generator according to claim 6. 前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の範囲は、前記時系列データに基づいて推定した値以上で、かつ前記時定数を無限大とした場合の値に余裕値を加味した値以下の条件で、振動周波数の妥当性を判定することを特徴とする請求項6記載の風力発電機の運転状態判別方法。   Among the coefficients of the autoregressive model, the range of the coefficient including the time constant indicating the damped oscillation is not less than the value estimated based on the time series data, and the margin value is a value when the time constant is infinite. The method of determining an operating state of a wind power generator according to claim 6, wherein the validity of the vibration frequency is determined under a condition that is less than or equal to a value that takes into account. 前記自己回帰モデルの係数のうち、減衰振動を示す時定数を含む係数の変動分が予め定めた閾値より小なる条件で、振動周波数の妥当性を判定することを特徴とする請求項1ないし8のいずれか一記載の風力発電機の運転状態判別方法。   9. The validity of a vibration frequency is determined under a condition that, among the coefficients of the autoregressive model, a variation of a coefficient including a time constant indicating a damped vibration is smaller than a predetermined threshold value. The operating state discrimination method of the wind power generator as described in any one of. 振動周波数の妥当性の判定として、推定領域での振動周波数の平均値の±15%以内の振動周波数を対象とすることを特徴とする請求項1ないし請求項9のいずれか一記載の風力発電機の運転状態判別方法。   10. The wind power generation according to claim 1, wherein the determination of the appropriateness of the vibration frequency is for a vibration frequency within ± 15% of an average value of the vibration frequency in the estimation region. Method for determining the operating state of the machine. 振動周波数の妥当性の判定として、推定領域で振動周波数の一定継続している時間長が所定の時間長以下である振動周波数は除外することを特徴とする請求項1ないし請求項10のいずれか一記載の風力発電機の運転状態判別方法。

11. The vibration frequency having a predetermined length of vibration frequency that is not longer than a predetermined time length is excluded as the determination of the validity of the vibration frequency. The operation state discrimination method of the wind power generator of one description.

JP2005058349A 2005-03-03 2005-03-03 Wind generator operating state determination method Expired - Fee Related JP4688097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058349A JP4688097B2 (en) 2005-03-03 2005-03-03 Wind generator operating state determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058349A JP4688097B2 (en) 2005-03-03 2005-03-03 Wind generator operating state determination method

Publications (2)

Publication Number Publication Date
JP2006246604A JP2006246604A (en) 2006-09-14
JP4688097B2 true JP4688097B2 (en) 2011-05-25

Family

ID=37052418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058349A Expired - Fee Related JP4688097B2 (en) 2005-03-03 2005-03-03 Wind generator operating state determination method

Country Status (1)

Country Link
JP (1) JP4688097B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435294B (en) * 2011-09-27 2013-02-06 成都阜特科技股份有限公司 Vibration analysis method applied to vibration analyzer
CN102629293A (en) * 2012-03-29 2012-08-08 昆明理工大学 Simulation calculation method for additional mechanical damping of hydropower set
CN103257296B (en) * 2013-05-08 2015-08-05 西南交通大学 A kind of low-frequency oscillation of electric power system on-line analysis and method for early warning
KR101674757B1 (en) * 2014-12-16 2016-11-10 전남대학교산학협력단 Apparatus and method for estimating oscilation mode
CN105548595B (en) * 2015-12-18 2019-04-30 国网河北能源技术服务有限公司 A kind of extraction wind turbine gearbox axis Rotating speed measring methods at different levels
CN111797537B (en) * 2020-07-13 2023-08-11 云南电网有限责任公司 Reliability assessment method and device for wind power-containing power distribution system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153093A (en) * 2000-11-08 2002-05-24 Tokyo Electric Power Co Inc:The Method for discriminating state of operation of wind turbine generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137420B2 (en) * 1992-03-31 2001-02-19 株式会社東芝 Angular velocity detector
JPH09252538A (en) * 1996-03-18 1997-09-22 Tokyo Electric Power Co Inc:The System stabilization apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153093A (en) * 2000-11-08 2002-05-24 Tokyo Electric Power Co Inc:The Method for discriminating state of operation of wind turbine generator

Also Published As

Publication number Publication date
JP2006246604A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4688097B2 (en) Wind generator operating state determination method
Blodt et al. On-line monitoring of mechanical faults in variable-speed induction motor drives using the Wigner distribution
Moore et al. Frequency relaying based on instantaneous frequency measurement [power systems]
JP7139122B2 (en) Autonomous procedures for machine monitoring and diagnostics based on electrical signature analysis
Kia et al. Efficient digital signal processing techniques for induction machines fault diagnosis
JP4679525B2 (en) Active filter
JP6000360B2 (en) Method and apparatus for obtaining a stationary signal for diagnosing an electromechanical system
Kia et al. Some digital signal processing techniques for induction machines diagnosis
Climente-Alarcon et al. Particle filter-based estimation of instantaneous frequency for the diagnosis of electrical asymmetries in induction machines
US20120303306A1 (en) Method of subsynchronous resonance detection
De Kooning et al. Online estimation of the power coefficient versus tip-speed ratio curve of wind turbines
Silva et al. A method for measuring torque of squirrel-cage induction motors without any mechanical sensor
CN114374210A (en) Electric power system low-frequency oscillation monitoring method adopting improved Prony algorithm
JP4458345B2 (en) Wind generator operating state determination method
CN111523231A (en) Subsynchronous oscillation analysis method based on EEMD and Prony method
CN116520005A (en) Unit inertia evaluation method and device based on broadband phasor monitoring
CN113358922B (en) Fundamental wave, harmonic wave and inter-harmonic wave electric energy power measurement method of unsteady state power grid signal
EP4022275B1 (en) Smart motor data analytics with real-time algorithm
Blodt et al. Fault indicators for stator current based detection of torque oscillations in induction motors at variable speed using time-frequency analysis
JP5517723B2 (en) Harmonic current compensation apparatus and harmonic current compensation method
Bliznyuk et al. Defining the equivalent inertia constant of generating unit based on electromechanical transient measurements
Noureddine et al. Features Extraction Faults of SCIG-Based Wind Turbine Using Non Parametric Methods
JP3916034B2 (en) Wind generator operating state determination method
Xin et al. Submersible motor rotor bars broken fault analysis based on HHT
Zhou et al. A Fast Tacho-Less Order Tracking Method for Gear Fault Diagnosis Under Large Rotational Speed Variation Conditions Based on Multi-stage Generalized Demodulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees