JP4685975B2 - High temperature coal charging method - Google Patents

High temperature coal charging method Download PDF

Info

Publication number
JP4685975B2
JP4685975B2 JP2010529169A JP2010529169A JP4685975B2 JP 4685975 B2 JP4685975 B2 JP 4685975B2 JP 2010529169 A JP2010529169 A JP 2010529169A JP 2010529169 A JP2010529169 A JP 2010529169A JP 4685975 B2 JP4685975 B2 JP 4685975B2
Authority
JP
Japan
Prior art keywords
coal
charging
carbonization chamber
gas
temperature coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010529169A
Other languages
Japanese (ja)
Other versions
JPWO2010119682A1 (en
Inventor
一秀 土井
裕城 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010529169A priority Critical patent/JP4685975B2/en
Application granted granted Critical
Publication of JP4685975B2 publication Critical patent/JP4685975B2/en
Publication of JPWO2010119682A1 publication Critical patent/JPWO2010119682A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B31/00Charging devices
    • C10B31/02Charging devices for charging vertically
    • C10B31/04Charging devices for charging vertically coke ovens with horizontal chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • C10B41/005Safety devices, e.g. signalling or controlling devices for use in the discharge of coke for charging coal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coke Industry (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)

Description

本発明は、装炭車からコークス炉の各炭化室内に高温石炭を装入する高温石炭の装入方法に関する。
本願は、2009年4月14日に、日本に出願された特願2009−98220号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a high-temperature coal charging method in which high-temperature coal is charged into each carbonization chamber of a coke oven from a charcoal vehicle.
This application claims priority based on Japanese Patent Application No. 2009-98220 filed in Japan on April 14, 2009, the contents of which are incorporated herein by reference.

従来、コークス炉の各炭化室内への石炭の装入は、以下の手順で行われている。
まず、コークス炉に設けられた石炭塔の石炭積込み可能位置に装炭車を移動させ、石炭塔内の石炭をこの装炭車の複数の受炭ホッパーへ供給する。次に、石炭が供給された装炭車を、炭化室の上方に移動させた後、装炭車の複数の受炭ホッパーから、炭化室に設けられた各石炭装入口を介して、減圧状態の炭化室内に石炭を装入している。
Conventionally, charging of coal into each carbonization chamber of a coke oven is performed according to the following procedure.
First, the coal loading vehicle is moved to the coal loading position of the coal tower provided in the coke oven, and the coal in the coal tower is supplied to a plurality of coal receiving hoppers of the coal loading vehicle. Next, after moving the coal car supplied with coal to the upper side of the carbonization chamber, carbonization in a reduced pressure state is performed from a plurality of coal receiving hoppers of the charcoal vehicle through each coal charging inlet provided in the carbonization chamber. Coal is charged in the room.

このように、装炭車から各炭化室内に石炭を装入する方法として、例えば、特許文献1には、炭化室内に装入される石炭のプロフィールを目標のプロフィールに制御するため、石炭の装入(給炭)初期において、上昇管(ガス吸引部)に近いほど石炭装入口に装入する石炭の量を少なくする方法が開示されている。   Thus, as a method of charging coal into each carbonization chamber from a charcoal vehicle, for example, Patent Document 1 discloses that coal charging is performed in order to control the profile of coal charged into the carbonization chamber to a target profile. (Coal feeding) In the initial stage, a method is disclosed in which the amount of coal charged into the coal charging inlet is reduced as it is closer to the riser pipe (gas suction part).

特開平8−12974号公報JP-A-8-12974

各石炭装入口から石炭が装入されると、装入初期に多量の石炭ガスが発生する。炭化室内では、上昇管に向かう炉内ガスの流れにより、この石炭ガスがドライメーン(排出口)から排出される。しかしながら、特許文献1に記載の方法では、各石炭装入口からの石炭の装入を同時に開始しているため、上昇管に近い石炭装入口から装入されて落下中(堆積前)の石炭が、上昇管に向かう炉内ガスの流れを阻害する。そのため、石炭ガスがドライメーンから排出されにくく、図4Aに示すように炭化室内のガス圧が急激に増加する。
従来から使用されている湿炭(装入温度が60℃以下の石炭)を炭化室に装入した場合には、装入初期に発生する石炭ガス量がそれほど多くない。そのため、上述した炉内ガスの流れが阻害された場合であっても、炉内ガスは、石炭装入装置と炭化室の石炭装入口との間のシール部からめったに漏洩しない。
しかし、近年、100℃以上に加熱した高温石炭が、炭化室に装入され始めている。この高温石炭を炭化室に装入すると、装入初期に多量の石炭ガスが発生する。そのため、上述した炉内ガスの流れが阻害されると、炭化室内のガス圧の上昇によってシール部から炉内ガスが漏洩する。
When coal is charged from each coal charging inlet, a large amount of coal gas is generated at the initial charging stage. In the carbonization chamber, this coal gas is discharged from the dry main (discharge port) by the flow of the gas in the furnace toward the riser. However, in the method described in Patent Document 1, since the charging of coal from each coal charging inlet is started at the same time, the coal that is being charged from the coal charging inlet close to the riser and is falling (before deposition) Hinder the flow of gas in the furnace toward the riser. Therefore, the coal gas is hardly discharged from the dry main, and the gas pressure in the carbonization chamber increases rapidly as shown in FIG. 4A.
When the conventionally used wet coal (coal having a charging temperature of 60 ° C. or less) is charged into the carbonization chamber, the amount of coal gas generated at the initial stage of charging is not so large. Therefore, even when the above-described flow of the in-furnace gas is inhibited, the in-furnace gas rarely leaks from the seal portion between the coal charging device and the coal charging inlet of the carbonization chamber.
However, in recent years, high-temperature coal heated to 100 ° C. or higher has begun to be charged into the carbonization chamber. When this high-temperature coal is charged into the carbonization chamber, a large amount of coal gas is generated at the beginning of charging. For this reason, when the above-described flow of the in-furnace gas is inhibited, the in-furnace gas leaks from the seal portion due to an increase in the gas pressure in the carbonization chamber.

本発明は、かかる事情に鑑みてなされたもので、炭化室に設けられた複数の石炭装入口を介して装炭車から炭化室内に高温石炭を装入する際に、炭化室内のガス圧の急激な上昇と、炉内ガスの炉外への流出(漏洩)とを抑制可能な高温石炭の装入方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and when charging high-temperature coal from a coal cart into a carbonization chamber via a plurality of coal charging ports provided in the carbonization chamber, the gas pressure in the carbonization chamber is rapidly increased. It is an object of the present invention to provide a method for charging high-temperature coal that can suppress a significant increase and outflow (leakage) of gas in the furnace to the outside of the furnace.

本発明は、上記の課題を解決するために、以下の手段を採用した。
(1)上部に複数の石炭装入口が並べて配置され、前記上部の端部に第一のガス吸引部を有する炭化室内へ、切出機を備えた複数のホッパーから前記石炭装入口を介して平均温度が100℃以上の高温石炭を装入する方法であって、前記第一のガス吸引部から最も離れた前記石炭装入口から前記第一のガス吸引部に向かうように、前記各石炭装入口に対する前記高温石炭の装入開始順序を決定し;この装入開始順序に従って、所定時間毎に前記切出機を駆動して前記の各ホッパーから前記高温石炭を順次連続して装入し;前記炭化室への前記高温石炭の装入が終了したら前記切出機の駆動を停止する;高温石炭の装入方法。
The present invention employs the following means in order to solve the above problems.
(1) A plurality of coal charging inlets are arranged side by side in the upper portion, and into a carbonization chamber having a first gas suction portion at the upper end portion, from a plurality of hoppers equipped with a cutting machine via the coal charging inlet. A method of charging high-temperature coal having an average temperature of 100 ° C. or higher , wherein each of the coal charging units is directed from the coal charging inlet furthest away from the first gas suction unit toward the first gas suction unit. Determining a charging start order of the high-temperature coal to the inlet; according to the charging start order, the cutting machine is driven at predetermined time intervals to successively charge the high-temperature coal from the hoppers ; When the charging of the high temperature coal into the carbonization chamber is completed, the driving of the cutting machine is stopped; a method of charging high temperature coal.

(2)上部に複数の石炭装入口が並べて配置され、前記上部の両端部に第一のガス吸引部と第二のガス吸引部とを有する炭化室内へ、切出機を備えた複数のホッパーから前記石炭装入口を介して平均温度が100℃以上の高温石炭を装入する方法であって、前記第一のガス吸引部と前記第二のガス吸引部との中間点から前記第一のガス吸引部に向かうように、かつ、前記中間点から前記第二のガス吸引部に向かうように、前記各石炭装入口に対する前記高温石炭の装入開始順序を決定し;この装入開始順序に従って、所定時間毎に前記切出機を駆動して前記の各ホッパーから前記高温石炭を順次連続して装入前記炭化室への前記高温石炭の装入が終了したら前記切出機の駆動を停止する;高温石炭の装入方法。 (2) A plurality of hoppers equipped with a cutting machine into a carbonization chamber in which a plurality of coal charging inlets are arranged side by side in the upper part and have a first gas suction part and a second gas suction part at both ends of the upper part. From the intermediate point between the first gas suction part and the second gas suction part. Determining the start order of charging of the high temperature coal with respect to each of the coal charging ports so as to go to the gas suction part and from the intermediate point to the second gas suction part; according to the charging start order; the drives the switching extruder was charged sequentially continuously the hot coal from the hopper of the predetermined time intervals; wherein the driving of the switching extruder After charging the high-temperature coal completely into the carbonization chamber The method of charging high-temperature coal.

(3)上記(1)または(2)に記載の高温石炭の装入方法では、前記所定時間が、2秒以上10秒以下であってもよい。
(4)上記(1)または(2)に記載の高温石炭の装入方法では、前記高温石炭の平均温度が、350℃以下であってもよい。
(3) In the high temperature coal charging method according to the above (1) or (2), the predetermined time may be not less than 2 seconds and not more than 10 seconds.
(4) In the high temperature coal charging method described in (1) or (2) above, the average temperature of the high temperature coal may be 350 ° C. or less .

本発明に係る高温石炭の装入方法では、ガス吸引部と石炭装入口との距離に応じて、各石炭装入口に対する高温石炭の装入開始順序を決定し、この装入開始順序に従って、所定時間毎に各石炭装入口に高温石炭を装入する。そのため、装入初期においても、ガス吸引部に近い石炭装入口から装入されて落下中(堆積前)の石炭によってガス吸引部に向かう炉内ガスの流れが阻害されず、多量に発生した石炭ガスを排出することができる。
従って、炭化室に設けられた複数の石炭装入口を介して装炭車から炭化室内に高温石炭を装入する際に、炭化室内のガス圧の急激な上昇と、これに起因する炉内ガスの炉外への流出とを抑制することができる。
In the high temperature coal charging method according to the present invention, the high temperature coal charging start order for each coal charging inlet is determined according to the distance between the gas suction portion and the coal charging inlet, and the predetermined order is determined according to this charging start order. Hot coal is charged into each coal charging inlet every hour. Therefore, even in the initial stage of charging, a large amount of coal is generated without being disturbed by the flow of the gas in the furnace toward the gas suction part due to the coal being charged from the coal inlet near the gas suction part and falling (before deposition) Gas can be discharged.
Therefore, when high-temperature coal is charged into the carbonization chamber from the coal loading vehicle via a plurality of coal charging ports provided in the carbonization chamber, the gas pressure in the carbonization chamber rises rapidly and the gas in the furnace resulting from this rises. Outflow to the outside of the furnace can be suppressed.

本発明の一実施形態に係る高温石炭の装入方法を適用する装入装置の説明図である。It is explanatory drawing of the charging apparatus which applies the charging method of the high temperature coal which concerns on one Embodiment of this invention. 本発明の一実施形態に係る高温石炭の装入方法を使用した場合の炭化室内のガス圧変動を示す図である。It is a figure which shows the gas pressure fluctuation | variation in the carbonization chamber at the time of using the charging method of the high temperature coal which concerns on one Embodiment of this invention. 各切出機の駆動開始時間の間隔と炭化室内の最大ガス圧力との関係を示す図である。It is a figure which shows the relationship between the space | interval of the drive start time of each cutting machine, and the maximum gas pressure in a carbonization chamber. 各石炭装入口に同時に高温石炭を装入した場合の炭化室内のガス圧変動を示す説明図である。It is explanatory drawing which shows the gas pressure fluctuation | variation in the carbonization chamber at the time of charging high temperature coal simultaneously to each coal charging inlet. 本発明の高温石炭の装入方法と異なる順序で高温石炭を装入した場合の炭化室内のガス圧変動を示す説明図である。It is explanatory drawing which shows the gas pressure fluctuation | variation in the carbonization chamber at the time of charging high temperature coal in the order different from the charging method of the high temperature coal of this invention. 本発明の一実施形態に係る高温石炭の装入方法を使用した場合の炭化室内のガス圧変動を示す説明図である。It is explanatory drawing which shows the gas pressure fluctuation | variation in the carbonization chamber at the time of using the charging method of the high temperature coal which concerns on one Embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明の理解を助けるために本発明の具体的な実施形態について説明する。
まず、本発明の一実施形態に係る高温石炭の装入方法を適用する装入装置について説明する。
図1に示すコークス炉10は、複数の炭化室11(図1には、1つの炭化室の部分断面を示す)を有しており、隣り合う炭化室11の間には燃焼室(図示しない)が設けられている。
Next, specific embodiments of the present invention will be described with reference to the accompanying drawings in order to help understanding of the present invention.
First, a charging apparatus to which a high temperature coal charging method according to an embodiment of the present invention is applied will be described.
A coke oven 10 shown in FIG. 1 has a plurality of carbonization chambers 11 (a partial cross section of one carbonization chamber is shown in FIG. 1), and a combustion chamber (not shown) is provided between adjacent carbonization chambers 11. ) Is provided.

各炭化室11の上部には、複数(例えば、3個以上5個以下、ここでは5個)の石炭装入口12〜16が、炭化室11の押出機側PSからガイド車側CSへかけて、間隔を有して並べて配置されている。
なお、各炭化室11の押出機側PS(第一の上端部)には、ドライメーン17と接続される上昇管(第一のガス吸引部の一例)18が設けられている。この上昇管18は、エジェクタ機能を備えており、炭化室11内で発生した炉内ガスを、強制的にドライメーン17へ排出することができる。この上昇管18には、炭化室11内のガス圧を測定する圧力計19が設けられている。
In the upper part of each carbonization chamber 11, a plurality of (for example, 3 to 5 and 5 in this case) coal charging inlets 12 to 16 extend from the extruder side PS of the carbonization chamber 11 to the guide vehicle side CS. , Are arranged side by side with a gap.
A riser pipe (an example of a first gas suction unit) 18 connected to the dry main 17 is provided on the extruder side PS (first upper end portion) of each carbonization chamber 11. The riser pipe 18 has an ejector function, and the furnace gas generated in the carbonization chamber 11 can be forcibly discharged to the dry main 17. The ascending pipe 18 is provided with a pressure gauge 19 for measuring the gas pressure in the carbonization chamber 11.

また、炭化室11のガイド車側CS(第二の上端部)には、この炭化室11の内部と、この炭化室11の近傍の他の炭化室の内部とを連通するジャンパー管(第二のガス吸引部の一例)19aを設けてもよい。このジャンパー管19aは、例えば、特開2008−150536号公報に開示されたミニスタンドパイプである。なお、ジャンパー管19aの代わりに、上記した上昇管18と同様の機能を備えた上昇管を設けてもよい。このように、炭化室11の押出機側PS(第一の上端部)とガイド車側CS(第二の上端部)とに、それぞれ上昇管18とジャンパー管19aとを設けた場合には、炭化室11内のガスは、上昇管18とジャンパー管19aとから吸引され、炭化室11外へ排気される。ここで、ジャンパー管19は、上述した他の炭化室に設けられた上昇管を通じて炭化室11内のガスを吸引する。ガイド車側CS(第二の上端部)に上昇管(第一のガス吸引部の一例)のみを設けてもよい。   A jumper pipe (second pipe) that communicates the inside of the carbonizing chamber 11 with the inside of another carbonizing chamber near the carbonizing chamber 11 is connected to the guide wheel side CS (second upper end portion) of the carbonizing chamber 11. An example of the gas suction part) 19a may be provided. The jumper pipe 19a is, for example, a mini stand pipe disclosed in Japanese Patent Laid-Open No. 2008-150536. Instead of the jumper pipe 19a, a riser pipe having the same function as the riser pipe 18 described above may be provided. Thus, when the rising pipe 18 and the jumper pipe 19a are respectively provided on the extruder side PS (first upper end portion) and the guide wheel side CS (second upper end portion) of the carbonization chamber 11, The gas in the carbonization chamber 11 is sucked from the ascending pipe 18 and the jumper pipe 19a and exhausted outside the carbonization chamber 11. Here, the jumper pipe 19 sucks the gas in the carbonization chamber 11 through the riser pipe provided in the other carbonization chamber described above. Only the riser pipe (an example of the first gas suction part) may be provided on the guide wheel side CS (second upper end part).

コークス炉10の上部には、高温石炭を搭載した装炭車20(移動機械)が、各炭化室11の上方を移動できるように配置されている。装炭車20には、高温石炭を貯留する複数(ここでは、5個)の受炭ホッパー21〜25が、炭化室11の正面(押出機側PS)から背面(ガイド車側CS)へかけて、間隔を有して並べて配置されている。受炭ホッパー21〜25の下部には、貯留した高温石炭を切出す切出機26〜30が設けられている。さらに、これらの切出機26〜30の下部には、シュート31〜35が設けられている。これらのシュート31〜35が上下動することにより、これらのシュート31〜35の下端が、炭化室11の各石炭装入口12〜16と着脱可能である。   On the upper part of the coke oven 10, a coal loading vehicle 20 (moving machine) loaded with high-temperature coal is arranged so as to be able to move above each carbonization chamber 11. The coal loading vehicle 20 includes a plurality (here, 5) of coal receiving hoppers 21 to 25 that store high-temperature coal from the front (extruder side PS) to the back (guide vehicle side CS) of the carbonization chamber 11. , Are arranged side by side with a gap. Under the coal receiving hoppers 21 to 25, cutting machines 26 to 30 for cutting out the stored high temperature coal are provided. Further, chutes 31 to 35 are provided below the cutting machines 26 to 30. By moving these chutes 31 to 35 up and down, the lower ends of these chutes 31 to 35 can be attached to and detached from the coal inlets 12 to 16 of the carbonization chamber 11.

また、シュート31〜35を下降して、このシュート31〜35の下端を石炭装入口12〜16に接続した後、各切出機26〜30を駆動することにより、各受炭ホッパー21〜25内の高温石炭を、石炭装入口12〜16を介して炭化室11内に装入できる。   Moreover, after lowering | hanging the chute | shoots 31-35 and connecting the lower end of this chute | shoot 31-35 to the coal loading inlets 12-16, by driving each cutting machine 26-30, each coal receiving hoppers 21-25 are driven. The high temperature coal inside can be charged into the carbonization chamber 11 through the coal charging ports 12 to 16.

続いて、本実施形態に係る高温石炭の装入方法について説明する。
本実施形態に係る高温石炭の装入方法では、例えば、図1に示すような装入装置を用いて、各石炭装入口12〜16を介して炭化室11内へ高温石炭を装入する。以下に、この高温石炭の装入方法の具体例について詳しく説明する。
Then, the charging method of the high temperature coal which concerns on this embodiment is demonstrated.
In the high temperature coal charging method according to the present embodiment, for example, the high temperature coal is charged into the carbonization chamber 11 through the coal charging inlets 12 to 16 using a charging device as shown in FIG. Below, the specific example of the charging method of this high temperature coal is demonstrated in detail.

まず、平均温度200℃の高温石炭を、5つの石炭装入口から減圧状態の炭化室内に装入しながら、炭化室内のガス圧変動を調査した。なお、炭化室の室内容積は、44mであり、この炭化室内に装入する高温石炭の量は、33トン(受炭ホッパー1個あたり6.6トン)であった。また、上昇管に設けた圧力計を用いて炭化室内のガス圧を測定した。
従来、高温石炭を装入する際には、各ホッパーの下部に設けられた各切出機を、同時に駆動していた。炭化室の床面及び壁面の温度が高いため、装入初期において炭化室の床面及び壁面に高温石炭が付着または衝突すると、大量のガスが発生する。その結果、炭化室内のガス圧が急激に上昇して一時的に減圧状態から正圧状態に変化し、各石炭装入口と各シュートの下端とを連接するシール部から炉内ガスが流出していた。なお、炭化室の床面に高温石炭が堆積してこの床面を覆うと、高温石炭の装入に伴うガスの発生量が低下する。したがって、炉内ガス圧を減圧状態に保つためには、上昇管を通して装入初期に発生するガスを円滑に炭化室の外へ排気する必要がある。
First, while charging high-temperature coal with an average temperature of 200 ° C. from five coal charging inlets into a reduced-pressure carbonization chamber, gas pressure fluctuations in the carbonization chamber were investigated. The chamber volume of the carbonization chamber was 44 m 3 , and the amount of high-temperature coal charged into the carbonization chamber was 33 tons (6.6 tons per coal receiving hopper). Moreover, the gas pressure in the carbonization chamber was measured using a pressure gauge provided in the rising pipe.
Conventionally, when charging high temperature coal, each cutting machine provided at the lower part of each hopper has been driven simultaneously. Since the temperature of the floor surface and wall surface of the carbonization chamber is high, a large amount of gas is generated when high-temperature coal adheres to or collides with the floor surface and wall surface of the carbonization chamber in the initial stage of charging. As a result, the gas pressure in the carbonization chamber suddenly increases and temporarily changes from a reduced pressure state to a positive pressure state, and the gas in the furnace flows out from the seal part connecting each coal charging inlet and the lower end of each chute. It was. In addition, when high temperature coal accumulates on the floor surface of a carbonization chamber and this floor surface is covered, the generation amount of the gas accompanying charging of high temperature coal will fall. Therefore, in order to keep the in-furnace gas pressure in a reduced pressure state, it is necessary to smoothly exhaust the gas generated at the initial stage of charging through the riser to the outside of the carbonization chamber.

上述したように、各切出機を同時に駆動する場合、各受炭ホッパー内の高温石炭が、炭化室内に同時に装入される。この場合には、装入初期において、各石炭口から装入されている高温石炭から多量のガス(石炭ガス)が発生する。この装入初期に発生した多量のガスによって、上昇管に向かう炉内ガスの流れが発生する。しかしながら、この炉内ガスの流れは、上昇管に近い石炭装入口から装入中(堆積前)の高温石炭によって阻害される。
その結果、炉内ガスを上昇管にスムーズに流入させることができず、炭化室の室内ガス圧が高くなり、各石炭装入口と各シュートの下端とを連接するシール部から炉内ガスが流出する。この場合、特に、上昇管(ガス吸引部)から遠い位置で発生したガスは、上昇管に流入しにくいため、シール部から流出しやすい。
As mentioned above, when driving each cutting machine simultaneously, the high temperature coal in each coal receiving hopper is simultaneously charged into the carbonization chamber. In this case, a large amount of gas (coal gas) is generated from the high-temperature coal charged from each coal port at the initial charging stage. Due to the large amount of gas generated at the beginning of charging, a flow of in-furnace gas toward the riser pipe is generated. However, the flow of the gas in the furnace is hindered by the high-temperature coal being charged (before deposition) from the coal inlet near the riser.
As a result, the gas in the furnace cannot be smoothly flowed into the riser, the gas pressure in the carbonization chamber increases, and the gas in the furnace flows out from the seal portion connecting each coal charging inlet and the lower end of each chute. To do. In this case, in particular, the gas generated at a position far from the ascending pipe (gas suction part) is unlikely to flow into the ascending pipe, and thus easily flows out from the seal part.

そこで、本実施形態では、上昇管18から最も離れた石炭装入口16から上昇管18側(上昇管18に最も近い石炭装入口21)に向かうように、各石炭装入口に対する高温石炭の装入開始順序(昇順)を決定し、この装入開始順序に従って、所定時間毎に各石炭装入口へ高温石炭を装入する。ここで、炭化室11内のガス圧を確実に減圧状態にするために、各石炭装入口に対する高温石炭の装入開始順序について、各石炭装入口は、それぞれ異なる優先順位を有することが好ましい。すなわち、各石炭装入口へ高温石炭を装入するタイミングは、すべて同じでないことが好ましい。具体的には、石炭装入口16の上方の切出機30、石炭装入口15の上方の切出機29、石炭装入口14の上方の切出機28、石炭装入口13の上方の切出機27、石炭装入口12の上方の切出機26の順番で、所定時間毎に各切出機26〜30を順次駆動する。石炭装入口13の上方の切出機27を駆動した際のガス発生量が少ない場合(例えば、所定時間が長い場合)には、石炭装入口13の上方の切出機27及び石炭装入口12の上方の切出機26を駆動するタイミングを上記所定時間より短くしてもよい。
このように、所定時間間隔(ここでは、5秒程度の間隔)で各切出機26〜30を順次駆動することで、図2に示すように、炭化室11内のガス圧が急激に増加することなく、常に炭化室11内の減圧状態を維持できた。ここで、図2中の矢印は、各切出機26〜30の駆動開始時間を示している。
また、図4A〜4C中に、各切出機26〜30の駆動開始時間と炉内ガスの最大圧力との関係を示す。各切出機26〜30を同時に駆動した場合には、図4Aに示すように、高温石炭の装入初期に炭化室11内のガス圧が急激に増加する。同様に、本実施形態と異なる装入開始順序(逆順)で高温石炭を装入した場合には、図4Bに示すように、ガス吸引部に近い側の石炭装入口から装入されて落下中の石炭によってガス吸引部に向かう炉内ガスの流れが阻害されるため、高温石炭の装入初期に炭化室11内のガス圧が急激に増加する。しかしながら、本実施形態では、図4Cに示すように、炭化室11内のガス圧の変動は、ほとんど見られない。図4A〜4C中の矢印は、各切出機26〜30の駆動開始時間を示している。
Therefore, in the present embodiment, high-temperature coal is charged into each coal charging inlet so as to go from the coal charging inlet 16 farthest from the rising pipe 18 toward the rising pipe 18 (coal charging inlet 21 closest to the rising pipe 18). A starting order (ascending order) is determined, and high-temperature coal is charged into each coal charging inlet at predetermined time intervals in accordance with this charging start order. Here, in order to ensure that the gas pressure in the carbonization chamber 11 is in a reduced pressure state, the coal charging inlets preferably have different priorities with respect to the charging start order of the high-temperature coal with respect to the coal charging inlets. That is, it is preferable that the timing for charging high temperature coal into each coal charging inlet is not the same. Specifically, a cutting machine 30 above the coal charging inlet 16, a cutting machine 29 above the coal charging inlet 15, a cutting machine 28 above the coal charging inlet 14, and a cutting above the coal charging inlet 13. The cutting machines 26 to 30 are sequentially driven every predetermined time in the order of the machine 27 and the cutting machine 26 above the coal inlet 12. When the gas generation amount when driving the cutting machine 27 above the coal charging port 13 is small (for example, when the predetermined time is long), the cutting machine 27 and the coal charging port 12 above the coal charging port 13. The timing of driving the upper cutting machine 26 may be shorter than the predetermined time.
Thus, by sequentially driving each of the cutting machines 26 to 30 at a predetermined time interval (here, an interval of about 5 seconds), the gas pressure in the carbonization chamber 11 is rapidly increased as shown in FIG. Therefore, the depressurized state in the carbonization chamber 11 could always be maintained. Here, the arrow in FIG. 2 has shown the drive start time of each cutting machine 26-30.
Moreover, in FIG. 4A-4C, the relationship between the drive start time of each cutting machine 26-30 and the maximum pressure of the gas in a furnace is shown. When each of the cutting machines 26 to 30 is driven at the same time, as shown in FIG. 4A, the gas pressure in the carbonizing chamber 11 increases rapidly at the initial charging stage of the high temperature coal. Similarly, when high-temperature coal is charged in a charging start order (reverse order) different from that of the present embodiment, as shown in FIG. 4B, it is being dropped from the coal charging inlet on the side close to the gas suction part. Since the flow of the gas in the furnace heading to the gas suction unit is hindered by the coal, the gas pressure in the carbonization chamber 11 increases rapidly at the initial charging stage of the high temperature coal. However, in this embodiment, as shown in FIG. 4C, the gas pressure in the carbonization chamber 11 hardly varies. The arrows in FIGS. 4A to 4C indicate the drive start times of the cutting machines 26 to 30.

また、炭化室11の上端部(上部の端部)に更にジャンパー管19aを設けた場合は、上昇管18とジャンパー管19aとの中間点(上昇管18とジャンパー管19aとから等距離にある点)から上昇管18に向かうように、かつ、上昇管18とジャンパー管19aとの中間点からジャンパー管19aに向かうように、各石炭装入口に対する高温石炭の装入開始順序(昇順)を決定する。その後、この装入開始順序に従って、所定時間毎に各石炭装入口へ高温石炭を装入する。具体的には、上昇管18とジャンパー管19aとから略等距離にある石炭装入口14の上方の切出機28、石炭装入口13、15の上方の切出機27、29、石炭装入口12、16の上方の切出機26、30の順番で、所定時間毎に各切出機26〜30を順次駆動する。このとき、切出機27と切出機29とを、同時に駆動してもよく、また順次駆動してもよい。また、切出機26と切出機30とを、同時に駆動してもよく、また順次駆動してもよい。
また、石炭装入口14の上方の切出機28、石炭装入口13の上方の切出機27、石炭装入口12の上方の切出機26、石炭装入口15の上方の切出機29、石炭装入口16の上方の切出機30の順番で、又は切出機28、切出機29、切出機30、切出機27、切出機26の順番で、所定時間毎に各切出機26〜30を順次駆動してもよい。
すなわち、上昇管18とジャンパー管19aとの中間点より上昇管18側の石炭装入口について、上昇管18とジャンパー管19aとの中間点から上昇管18に向かうように、かつ、各石炭装入口の優先順位がすべて異なる(すなわち、各石炭装入口へ高温石炭を装入するタイミングがすべて同じにならない)ように、各石炭装入口に対する高温石炭の装入開始順序を決定する。同様に、上昇管18とジャンパー管19aとの中間点よりジャンパー管19a側の石炭装入口について、上昇管18とジャンパー管19aとの中間点からジャンパー管19aに向かうように、かつ、各石炭装入口の優先順位がすべて異なるように、各石炭装入口に対する高温石炭の装入開始順序を決定する。
石炭装入口の数が偶数である場合には、2つのガス吸引部から略等距離にある2つの石炭装入口に対応する切出機を同時に駆動してもよく、また順次駆動してもよい。
Further, when a jumper pipe 19a is further provided at the upper end portion (upper end portion) of the carbonization chamber 11, an intermediate point between the rising pipe 18 and the jumper pipe 19a (equal distance from the rising pipe 18 and the jumper pipe 19a). Point) to the riser pipe 18 and from the intermediate point between the riser pipe 18 and the jumper pipe 19a to the jumper pipe 19a, the start order (ascending order) of the high-temperature coal for each coal charge inlet is determined. To do. Thereafter, according to this charging start order, high temperature coal is charged into each coal charging inlet at predetermined time intervals. Specifically, the cutting machine 28 above the coal inlet 14, the cutting machines 27 and 29 above the coal inlets 13 and 15, and the coal inlet at a substantially equal distance from the ascending pipe 18 and the jumper pipe 19 a. The cutting machines 26 to 30 are sequentially driven every predetermined time in the order of the cutting machines 26 and 30 above 12 and 16. At this time, the cutting machine 27 and the cutting machine 29 may be driven simultaneously or sequentially. Further, the cutting machine 26 and the cutting machine 30 may be driven simultaneously or sequentially.
Further, a cutting machine 28 above the coal charging inlet 14, a cutting machine 27 above the coal charging inlet 13, a cutting machine 26 above the coal charging inlet 12, a cutting machine 29 above the coal charging inlet 15, Each cutting is performed at predetermined intervals in the order of the cutting machine 30 above the coal inlet 16 or in the order of the cutting machine 28, the cutting machine 29, the cutting machine 30, the cutting machine 27, and the cutting machine 26. The unloaders 26 to 30 may be sequentially driven.
That is, with respect to the coal charging inlet on the side of the rising pipe 18 from the intermediate point between the rising pipe 18 and the jumper pipe 19a, the coal charging inlet is directed from the intermediate point between the rising pipe 18 and the jumper pipe 19a toward the rising pipe 18. Are different in order of priority (that is, the timing of charging high temperature coal into each coal inlet is not all the same), the order of starting the high temperature coal with respect to each coal inlet is determined. Similarly, with respect to the coal charging inlet on the side of the jumper pipe 19a from the intermediate point between the rising pipe 18 and the jumper pipe 19a, the coal charging inlet is directed from the intermediate point between the rising pipe 18 and the jumper pipe 19a to the jumper pipe 19a. The order of starting the high-temperature coal charging for each coal charging inlet is determined so that all of the inlet priorities are different.
When the number of coal charging inlets is an even number, the cutting machines corresponding to two coal charging inlets that are substantially equidistant from the two gas suction portions may be driven simultaneously or sequentially. .

ここで、各切出機26〜30は、2秒以上10秒以下の所定時間毎に順次駆動するのが好ましい。
所定時間(間隔)について、図3を参照しながら説明する。図3は、各切出機の駆動開始時間の間隔と炭化室内の最大ガス圧力との関係を示している。なお、図3では、切出機の駆動を開始する間隔以外の操業条件は、上述した図2と同様である。全ての切出機を同時に駆動した場合、この図3中の切出機の駆動開始時間の間隔は、0秒である。
Here, it is preferable that each of the cutting machines 26 to 30 is sequentially driven every predetermined time of 2 seconds to 10 seconds.
The predetermined time (interval) will be described with reference to FIG. FIG. 3 shows the relationship between the drive start time interval of each cutting machine and the maximum gas pressure in the carbonization chamber. In FIG. 3, the operating conditions other than the interval at which the driving of the cutting machine is started are the same as those in FIG. When all the cutting machines are driven at the same time, the driving start time interval of the cutting machine in FIG. 3 is 0 second.

図3に示すように、各切出機の駆動を開始する間隔が2秒未満の場合、ガス圧が正圧になりやすい。ガス圧が正圧になる原因は、切出機の駆動を開始する間隔が短か過ぎて、切出機の駆動後に上昇するガス圧が低下する前に、このガス圧に、次の切出機の駆動後に上昇するガス圧が加わるためであると考えられる。より確実にガス圧を減圧に維持するために、間隔(所定時間)は、3秒以上であることがより好ましい。
一方、間隔が10秒を超える場合、間隔が長過ぎて、全炭化室へ高温石炭を装入するために要する時間が長くなり、コークス炉の稼働率が低下する。図3に示すように、間隔が7〜8秒になると、ガス圧が略一定となる傾向がある。そのため、作業効率の観点から、間隔は、8秒以下であることがより好ましい。
従って、各切出機の駆動開始間隔(所定時間)は、3秒以上10秒以下であることが好ましい。最も好ましい間隔(所定時間)の上限は、7秒、下限は、4秒である。なお、各間隔(所定時間)は、同一でもよく、また異なってもよい。
As shown in FIG. 3, the gas pressure tends to be positive when the interval at which each cutting machine is started is less than 2 seconds. The reason why the gas pressure becomes positive is that the interval at which the cutting machine starts to be driven is too short, and the gas pressure that rises after the cutting machine is driven is reduced before the gas pressure increases. This is thought to be due to the gas pressure that rises after the machine is driven. In order to more reliably maintain the gas pressure at a reduced pressure, the interval (predetermined time) is more preferably 3 seconds or more.
On the other hand, when the interval exceeds 10 seconds, the interval is too long, the time required for charging the high-temperature coal into all the carbonization chambers becomes long, and the operating rate of the coke oven is lowered. As shown in FIG. 3, when the interval is 7 to 8 seconds, the gas pressure tends to be substantially constant. Therefore, from the viewpoint of work efficiency, the interval is more preferably 8 seconds or less.
Therefore, the drive start interval (predetermined time) of each cutting machine is preferably 3 seconds or more and 10 seconds or less. The upper limit of the most preferable interval (predetermined time) is 7 seconds, and the lower limit is 4 seconds. Each interval (predetermined time) may be the same or different.

また、本実施形態では、100℃以上350℃以下の高温石炭が好適に用いられる。炭化室11内に装入する高温石炭の温度が高くなると、高温石炭がガス化し易くなる。そのため、炭化室11に装入する高温石炭の平均温度が、100℃以上350℃以下である場合には、ガス圧の急激な上昇を抑制できる効果が顕著になる。
従って、高温石炭の平均温度は、100℃以上350℃以下であることが好ましい。高温石炭の平均温度の下限を150℃、更には200℃とすることで、上述した効果が更に顕著になる。
In the present embodiment, high-temperature coal of 100 ° C. or higher and 350 ° C. or lower is preferably used. When the temperature of the high temperature coal charged into the carbonization chamber 11 is increased, the high temperature coal is easily gasified. Therefore, when the average temperature of the high-temperature coal charged into the carbonization chamber 11 is 100 ° C. or higher and 350 ° C. or lower, the effect of suppressing a rapid increase in gas pressure becomes significant.
Therefore, the average temperature of the high temperature coal is preferably 100 ° C. or higher and 350 ° C. or lower. By setting the lower limit of the average temperature of the high-temperature coal to 150 ° C. and further to 200 ° C., the above-described effects become more remarkable.

以上の操作後、炭化室11内への高温石炭の装入が終了すれば、各切出機26〜30の駆動を停止する。その後、各シュート31〜35を石炭装入口12〜16から取外し、装炭車20を、次に高温石炭を装入する他の炭化室11まで移動させ、上述の操作を繰返す。
従って、炭化室11の上部に並べて配置された複数の石炭装入口12〜16を介して装炭車20から炭化室11内に高温石炭を装入する際に、炭化室11内のガス圧の急激な上昇を抑制して、外部への炉内ガスの流出を防止できる。
なお、上記実施形態では、石炭装入口へ高温石炭を装入するために、装炭車20及び各切出機26〜30を用いた。装炭車20は、高温石炭の装炭量を正確に秤量でき、高温石炭を密閉(外気と遮断)しながらできる限り安全に輸送できる。そのため、高温石炭の輸送方法として、装炭車が最も好適に用いられる。しかしながら、石炭装入口へ高温石炭を装入するために、ベルトコンベアまたはチェーンコンベア及びシュートを使用してもよい。
After the above operation, when the charging of the high-temperature coal into the carbonization chamber 11 is completed, the driving of each of the cutting machines 26 to 30 is stopped. Thereafter, the chutes 31 to 35 are removed from the coal charging inlets 12 to 16, and the charcoal vehicle 20 is moved to another carbonization chamber 11 into which high temperature coal is next charged, and the above-described operation is repeated.
Accordingly, when high temperature coal is charged into the carbonization chamber 11 from the coal loading vehicle 20 via the plurality of coal charging inlets 12 to 16 arranged side by side above the carbonization chamber 11, the gas pressure in the carbonization chamber 11 is rapidly increased. It is possible to prevent a rise in the furnace gas to the outside.
In addition, in the said embodiment, in order to insert high temperature coal into a coal charging entrance, the coal loading vehicle 20 and each cutting machine 26-30 were used. The coal loading vehicle 20 can accurately weigh the amount of high-temperature coal, and can transport it as safely as possible while sealing the high-temperature coal (blocking from the outside air). Therefore, a charcoal vehicle is most preferably used as a method for transporting high-temperature coal. However, a belt conveyor or chain conveyor and chute may be used to charge high temperature coal into the coal inlet.

次に、本発明の作用効果を確認するために行った実施例について、図1を参照しながら説明する。
高温石炭を装入する炭化室11の上部には、5個の石炭装入口12〜16が、炭化室11の正面から背面へかけて、間隔を有して並べて配置されている。また、炭化室11の室内容積は、44mである。なお、炭化室11の炉内温度を1000〜1100℃程度に設定した。
この炭化室11内に、異なる平均温度の各種高温石炭を、装入開始の順序と間隔とを変更して装入した。高温石炭の装入中の炭化室11内のガス圧を上昇管18内の圧力計19で測定し、炭化室11内からの炉内ガスの流出の有無を調査した。
この結果を、表1に示す。
Next, an example performed for confirming the effects of the present invention will be described with reference to FIG.
Five coal charging inlets 12 to 16 are arranged side by side at intervals from the front to the back of the carbonization chamber 11 in the upper portion of the carbonization chamber 11 in which the high-temperature coal is charged. Moreover, the indoor volume of the carbonization chamber 11 is 44 m 3 . In addition, the furnace temperature of the carbonization chamber 11 was set to about 1000 to 1100 ° C.
Various high temperature coals having different average temperatures were charged into the carbonization chamber 11 while changing the order and interval of the charging start. The gas pressure in the carbonizing chamber 11 during charging of high-temperature coal was measured with a pressure gauge 19 in the riser pipe 18 to investigate the presence or absence of outflow of furnace gas from the carbonizing chamber 11.
The results are shown in Table 1.

Figure 0004685975
Figure 0004685975

表1中の「ガス吸引部」は、炭化室11に設けられたガス吸引部の種類を示している。即ち、「上昇管」では、炭化室11の押出機側PSに上昇管18のみを設けている。また、「上昇管+ジャンパー管」では、炭化室11の押出機側PSに上昇管18を、ガイド車側CSにジャンパー管19aを、それぞれ設けている。
また、「高温石炭の装入開始」の「順番」に記載された番号は、図1に示す各受炭ホッパー21〜25の番号である。ここで、各番号の間の「矢印(→)」では、各受炭ホッパー21〜25に対応する各切出機26〜30の駆動を所定「間隔」で順番に開始する。また、「、」では、各受炭ホッパー21〜25に対応する切出機26〜30を同時に駆動する。
炉内ガスの流出の有無は、目視で白煙を確認することにより判断した。白煙を確認できない場合、「無」と判断し、白煙を確認できた場合、「有」と判断した。
“Gas suction part” in Table 1 indicates the type of gas suction part provided in the carbonization chamber 11. That is, in the “rising pipe”, only the rising pipe 18 is provided on the extruder side PS of the carbonization chamber 11. In the “rising pipe + jumper pipe”, the raising pipe 18 is provided on the extruder side PS of the carbonization chamber 11, and the jumper pipe 19 a is provided on the guide wheel side CS.
Moreover, the number described in the “order” of “starting charging of high temperature coal” is the number of each of the coal receiving hoppers 21 to 25 illustrated in FIG. 1. Here, in the “arrows (→)” between the numbers, the driving of the cutting machines 26 to 30 corresponding to the coal receiving hoppers 21 to 25 is sequentially started at predetermined “intervals”. In “,”, the cutting machines 26 to 30 corresponding to the coal receiving hoppers 21 to 25 are simultaneously driven.
The presence or absence of outflow of gas in the furnace was judged by visually confirming white smoke. When white smoke could not be confirmed, it was judged as “No”, and when white smoke was confirmed, it was judged as “Yes”.

表1中の実施例1〜7では、各受炭ホッパー21〜25に設けられた各切出機26〜30を、所定時間(2〜8秒)毎に順次駆動している。
なお、実施例1〜3では、ガス吸引部として上昇管18を使用した。この場合には、上昇管18から最も離れた石炭装入口16から、上昇管18に最も近い石炭装入口12へ向けて高温石炭の装入を開始した。すなわち、受炭ホッパー25、受炭ホッパー24、受炭ホッパー23、受炭ホッパー22、及び受炭ホッパー21の順番(高温石炭を装入する石炭装入口の優先順位)は、それぞれ「1」番目、「2」番目、「3」番目、「4」番目、及び「5」番目である。実施例4〜7では、ガス吸引部として上昇管18とジャンパー管19aとの双方を使用した。この場合には、上昇管18とジャンパー管19aの双方から略等距離にある石炭装入口14から、上昇管18に最も近い石炭装入口12とジャンパー管19aに最も近い石炭装入口16とへ向けて高温石炭の装入を開始した。
一方、比較例1及び2では、各受炭ホッパー21〜25の各切出機26〜30を同時に駆動した。なお、比較例1では、ガス吸引部として上昇管18を使用した。また、比較例2では、ガス吸引部として上昇管18とジャンパー管19aとの双方を使用した。
In Examples 1 to 7 in Table 1, the cutting machines 26 to 30 provided in the coal receiving hoppers 21 to 25 are sequentially driven every predetermined time (2 to 8 seconds).
In Examples 1 to 3, the rising pipe 18 was used as the gas suction part. In this case, charging of the high-temperature coal was started from the coal charging inlet 16 farthest from the rising pipe 18 toward the coal charging inlet 12 closest to the rising pipe 18. That is, the order of the coal receiving hopper 25, the coal receiving hopper 24, the coal receiving hopper 23, the coal receiving hopper 22, and the coal receiving hopper 21 (priority of coal charging inlet for charging high temperature coal) is “1” th, respectively. , “2”, “3”, “4”, and “5”. In Examples 4 to 7, both the ascending pipe 18 and the jumper pipe 19a were used as the gas suction part. In this case, from the coal inlet 14 that is substantially equidistant from both the riser pipe 18 and the jumper pipe 19a, to the coal inlet 12 that is closest to the riser pipe 18 and the coal inlet 16 that is closest to the jumper pipe 19a. And started charging high-temperature coal.
On the other hand, in Comparative Examples 1 and 2, the cutting machines 26 to 30 of the coal receiving hoppers 21 to 25 were simultaneously driven. In Comparative Example 1, the rising pipe 18 was used as the gas suction part. Moreover, in the comparative example 2, both the riser pipe 18 and the jumper pipe | tube 19a were used as a gas suction part.

実施例1〜7では、各受炭ホッパー21〜25の各切出機26〜30を順次駆動した。そのため、実施例1〜7では、比較例1及び2と比較して、炉内ガスの最大圧力を低減でき、炉内ガスの流出を抑制できた。
なお、実施例5では、高温石炭の装入開始の間隔(所定時間)が、上述した最適範囲(例えば、3秒以上)の下限値よりも短いため、炉内ガスが僅かに流出した。しかしながら、この炉内ガス流出量では、操業上の問題は、生じない。実施例1〜4、6、7では、高温石炭の装入開始の間隔(所定時間)を3秒以上にしたため、炉内ガスの流出を防止できた。
比較例1及び2では、各受炭ホッパー21〜25の各切出機26〜30を同時に駆動した。そのため、図4Aに示すように、炉内ガスの最大圧力が急激に増加し、操業上問題となる量の炉内ガスが流出した。
In Examples 1-7, each cutting machine 26-30 of each coal receiving hopper 21-25 was driven sequentially. Therefore, in Examples 1-7, compared with Comparative Examples 1 and 2, the maximum pressure of the furnace gas could be reduced, and the outflow of the furnace gas could be suppressed.
In Example 5, since the high-temperature coal charging start interval (predetermined time) was shorter than the lower limit of the optimum range (for example, 3 seconds or more) described above, the gas in the furnace slightly flowed out. However, this outflow amount in the furnace does not cause operational problems. In Examples 1-4, 6, and 7, since the high temperature coal charging start interval (predetermined time) was set to 3 seconds or more, outflow of gas in the furnace could be prevented.
In Comparative Examples 1 and 2, the cutting machines 26 to 30 of the coal receiving hoppers 21 to 25 were simultaneously driven. Therefore, as shown in FIG. 4A, the maximum pressure of the in-furnace gas rapidly increased, and an amount of the in-furnace gas causing an operational problem flowed out.

また、炭化室11の上端部(上部の端部)に上昇管18のみを設けた場合(実施例1〜3)の結果と、炭化室11の両上端部(上部の両端部)にそれぞれ上昇管18及びジャンパー管19aの双方を設けた結果(実施例4〜7)とを比較することにより、炉内ガスの最大圧力及び炉内ガスの流出は、ジャンパー管19aの設置に影響されないことを確認した。
本発明の高温石炭の装入方法を使用することで、高温石炭の装入初期に多量にガスが発生する条件において、ガス吸引部に近い側の石炭装入口から装入中の石炭によってガス吸引部に向かう炉内ガスの流れが阻害されないことを確認した。さらに、炭化室内のガス圧の急激な上昇を抑制して、炭化室からの発煙を抑制、更には防止できることを確認した。
In addition, the results obtained when only the rising pipe 18 is provided at the upper end (upper end) of the carbonization chamber 11 (Examples 1 to 3) and the upper ends (upper both ends) of the carbonization chamber 11 are raised. By comparing the results (Examples 4 to 7) in which both the pipe 18 and the jumper pipe 19a are provided, the maximum pressure of the furnace gas and the outflow of the furnace gas are not affected by the installation of the jumper pipe 19a. confirmed.
By using the high temperature coal charging method of the present invention, gas is sucked by the coal being charged from the coal charging inlet on the side close to the gas suction portion under the condition that a large amount of gas is generated in the initial stage of high temperature coal charging It was confirmed that the flow of gas in the furnace heading to the section was not obstructed. Furthermore, it was confirmed that the rapid increase in the gas pressure in the carbonization chamber can be suppressed, and the smoke generation from the carbonization chamber can be suppressed and further prevented.

以上、上記実施形態を参照して本発明を説明した。しかしながら、本発明は、上記実施形態に記載の構成に限定されない。すなわち、本発明は、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施形態及び変形例も含む。例えば、上記実施形態及び変形例の一部又は全部を組合せて本発明の高温石炭の装入方法を構成する場合も本発明の権利範囲に含まれる。   The present invention has been described above with reference to the above embodiment. However, the present invention is not limited to the configuration described in the above embodiment. In other words, the present invention includes other embodiments and modifications that can be considered within the scope of the matters described in the claims. For example, a case where the high temperature coal charging method of the present invention is configured by combining a part or all of the above embodiment and the modified examples is also included in the scope of the right of the present invention.

炭化室に配置された複数の石炭装入口を介して装炭車から炭化室内に高温石炭を装入する際に、炭化室内のガス圧の急激な上昇を抑制して、炉内ガスが外部へ流出することを防止可能な高温石炭の装入方法を提供する。   When charging high-temperature coal from a coal loading vehicle into the carbonization chamber via a plurality of coal inlets arranged in the carbonization chamber, the rapid increase in gas pressure in the carbonization chamber is suppressed, and the gas in the furnace flows out to the outside Provided is a method for charging high-temperature coal that can be prevented.

10 コークス炉
11 炭化室
12〜16 石炭装入口
17 ドライメーン
18 上昇管(ガス吸引部、第一のガス吸引部)
19 圧力計
19a ジャンパー管(ガス吸引部、第二のガス吸引部)
20 装炭車
21〜25 受炭ホッパー
26〜30 切出機
31〜35 シュート
DESCRIPTION OF SYMBOLS 10 Coke oven 11 Coking chamber 12-16 Coal charging inlet 17 Dry main 18 Rising pipe (gas suction part, 1st gas suction part)
19 Pressure gauge 19a Jumper tube (gas suction part, second gas suction part)
20 Charcoal vehicles 21-25 Coal receiving hoppers 26-30 Cutting machines 31-35 Chute

Claims (4)

上部に複数の石炭装入口が並べて配置され、前記上部の端部に第一のガス吸引部を有する炭化室内へ、切出機を備えた複数のホッパーから前記石炭装入口を介して平均温度が100℃以上の高温石炭を装入する方法であって、
前記第一のガス吸引部から最も離れた前記石炭装入口から前記第一のガス吸引部に向かうように、前記各石炭装入口に対する前記高温石炭の装入開始順序を決定し;
この装入開始順序に従って、所定時間毎に前記切出機を駆動して前記の各ホッパーから前記高温石炭を順次連続して装入
前記炭化室への前記高温石炭の装入が終了したら前記切出機の駆動を停止する;
ことを特徴とする高温石炭の装入方法。
A plurality of coal inlets are arranged side by side in the upper part, and an average temperature is passed through the coal inlets from a plurality of hoppers equipped with a cutting machine into a carbonization chamber having a first gas suction part at the upper end. A method of charging high temperature coal at 100 ° C or higher ,
Determining the start order of charging of the high-temperature coal with respect to each of the coal charging ports so as to go from the coal charging port farthest from the first gas suction port to the first gas suction port;
According to this charging start order, the drives the switching extruder was charged sequentially continuously the hot coal from the hopper of the predetermined time intervals;
When the charging of the high temperature coal into the carbonization chamber is finished, the drive of the cutting machine is stopped;
A method for charging high-temperature coal characterized by the above.
上部に複数の石炭装入口が並べて配置され、前記上部の両端部に第一のガス吸引部と第二のガス吸引部とを有する炭化室内へ、切出機を備えた複数のホッパーから前記石炭装入口を介して平均温度が100℃以上の高温石炭を装入する方法であって、
前記第一のガス吸引部と前記第二のガス吸引部との中間点から前記第一のガス吸引部に向かうように、かつ、前記中間点から前記第二のガス吸引部に向かうように、前記各石炭装入口に対する前記高温石炭の装入開始順序を決定し;
この装入開始順序に従って、所定時間毎に前記切出機を駆動して前記の各ホッパーから前記高温石炭を順次連続して装入
前記炭化室への前記高温石炭の装入が終了したら前記切出機の駆動を停止する;
ことを特徴とする高温石炭の装入方法。
A plurality of coal inlets are arranged side by side in the upper part, and the coal is supplied from a plurality of hoppers equipped with a cutting machine into a carbonization chamber having a first gas suction part and a second gas suction part at both ends of the upper part. A method of charging high temperature coal having an average temperature of 100 ° C. or higher through a charging port,
From the intermediate point between the first gas suction part and the second gas suction part toward the first gas suction part and from the intermediate point toward the second gas suction part, Determining the start sequence of charging the hot coal for each coal inlet;
According to this charging start order, the drives the switching extruder was charged sequentially continuously the hot coal from the hopper of the predetermined time intervals;
When the charging of the high temperature coal into the carbonization chamber is finished, the drive of the cutting machine is stopped;
A method for charging high-temperature coal characterized by the above.
前記所定時間は、2秒以上10秒以下であることを特徴とする請求項1または2に記載の高温石炭の装入方法。  The method for charging high-temperature coal according to claim 1 or 2, wherein the predetermined time is 2 seconds or more and 10 seconds or less. 前記高温石炭の平均温度は、350℃以下であることを特徴とする請求項1または2に記載の高温石炭の装入方法。The method for charging high-temperature coal according to claim 1 or 2, wherein an average temperature of the high-temperature coal is 350 ° C or lower .
JP2010529169A 2009-04-14 2010-04-14 High temperature coal charging method Active JP4685975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529169A JP4685975B2 (en) 2009-04-14 2010-04-14 High temperature coal charging method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009098220 2009-04-14
JP2009098220 2009-04-14
JP2010529169A JP4685975B2 (en) 2009-04-14 2010-04-14 High temperature coal charging method
PCT/JP2010/002721 WO2010119682A1 (en) 2009-04-14 2010-04-14 Method for charging high-temperature coal

Publications (2)

Publication Number Publication Date
JP4685975B2 true JP4685975B2 (en) 2011-05-18
JPWO2010119682A1 JPWO2010119682A1 (en) 2012-10-22

Family

ID=42982355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010529169A Active JP4685975B2 (en) 2009-04-14 2010-04-14 High temperature coal charging method

Country Status (5)

Country Link
JP (1) JP4685975B2 (en)
KR (1) KR101430299B1 (en)
CN (1) CN102395652B (en)
BR (2) BR122018009240B1 (en)
WO (1) WO2010119682A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182194B2 (en) * 2009-03-30 2013-04-10 新日鐵住金株式会社 High temperature coal charging method
JP5655686B2 (en) * 2011-04-15 2015-01-21 新日鐵住金株式会社 Coke oven operating method, coke oven control system and coke oven
KR102026028B1 (en) 2018-06-20 2019-09-26 양원석 Salt storage jar and salt storage method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239065Y2 (en) * 1981-07-14 1987-10-05
JPS62257984A (en) * 1986-05-01 1987-11-10 Kawasaki Steel Corp Smoke-free coal charging in coke oven

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2416151B1 (en) * 1974-04-03 1975-02-06 Hartung, Kuhn & Co Maschinenfabrik Gmbh, 4000 Duesseldorf
US4094420A (en) * 1974-04-03 1978-06-13 Hartung, Kuhn & Co. Charging of an oven chamber of a battery of coke ovens
JPH0913039A (en) * 1995-06-29 1997-01-14 Kawasaki Steel Corp Charging hopper for coke oven
TW409142B (en) * 1997-03-25 2000-10-21 Kawasaki Steel Co Method of operating coke and apparatus for implementing the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239065Y2 (en) * 1981-07-14 1987-10-05
JPS62257984A (en) * 1986-05-01 1987-11-10 Kawasaki Steel Corp Smoke-free coal charging in coke oven

Also Published As

Publication number Publication date
BR122018009240B1 (en) 2019-07-16
WO2010119682A1 (en) 2010-10-21
KR20110125270A (en) 2011-11-18
BRPI1013921A2 (en) 2016-04-05
CN102395652B (en) 2015-04-01
CN102395652A (en) 2012-03-28
BRPI1013921B1 (en) 2019-02-26
JPWO2010119682A1 (en) 2012-10-22
KR101430299B1 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
US9193913B2 (en) Reduced output rate coke oven operation with gas sharing providing extended process cycle
JP4685975B2 (en) High temperature coal charging method
CN110564428A (en) Method and apparatus for sharing volatile substances in stamp-charged coke ovens
CN107166934A (en) Slag processing unit
JP4676838B2 (en) Coke oven startup method
EA027450B1 (en) Method for adjusting the conveying speed of the material to be sintered in a sintering machine and regulator therefor
JP2011208010A (en) Method for charging coal into coke oven
JP4645354B2 (en) Coke oven loaded coal car, closed coal receiving method and sealed charging method
JP5182194B2 (en) High temperature coal charging method
CN203866241U (en) Vertical coke discharging and smelting furnace with built-in smoke guiding channel
JP5092845B2 (en) Chamber furnace coke oven and method of operating the same
JP6252526B2 (en) Coke oven operation method
JP2009228065A (en) Method for driving main exhauster in sintering machine
JP4448476B2 (en) Adhesive carbon incinerator around the coke oven coal charge
JP5942488B2 (en) Coal charging method for coke oven charging vehicle
KR100815686B1 (en) Apparatus for inserting cokes to cdqcoal dry quenching chamber
JP5966398B2 (en) Clinker cooling apparatus and method
SU1225848A1 (en) Method of smokeless charging of coke ovens with coal mixture and machine for effecting same
KR101241324B1 (en) Method for reducing fine coke particles in cokes oven gas
JP6481592B2 (en) Coke oven startup method
JP2020007439A (en) Coke dry extinguishment facility
JP2006233163A (en) Temperature-raising oven door for coke carbonizing oven
JP6036176B2 (en) Coke oven operation method
JP6270610B2 (en) Coke oven furnace combustion gas supply device
CN110684546A (en) Device and method for reducing sulfur dioxide emission in coal charging process of coke oven

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4685975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350