JP4684475B2 - Dynamic balance testing machine for propeller shaft - Google Patents

Dynamic balance testing machine for propeller shaft Download PDF

Info

Publication number
JP4684475B2
JP4684475B2 JP2001193213A JP2001193213A JP4684475B2 JP 4684475 B2 JP4684475 B2 JP 4684475B2 JP 2001193213 A JP2001193213 A JP 2001193213A JP 2001193213 A JP2001193213 A JP 2001193213A JP 4684475 B2 JP4684475 B2 JP 4684475B2
Authority
JP
Japan
Prior art keywords
dynamic balance
propeller shaft
shaft
testing machine
vibration frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001193213A
Other languages
Japanese (ja)
Other versions
JP2003004576A (en
Inventor
利幸 藤本
金次郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Nagahama Seisakusho Ltd
Original Assignee
Toyota Motor Corp
Nagahama Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nagahama Seisakusho Ltd filed Critical Toyota Motor Corp
Priority to JP2001193213A priority Critical patent/JP4684475B2/en
Publication of JP2003004576A publication Critical patent/JP2003004576A/en
Application granted granted Critical
Publication of JP4684475B2 publication Critical patent/JP4684475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、動釣合い試験機に関し、特に、自動車のプロペラシャフトの動釣合いを測定するための動釣合い試験機に関する。
【0002】
【従来の技術】
図1に、プロペラシャフト用動釣合い試験機の一例の正面図を示し、図2にその平面図を示す。
図1および図2を参照して、プロペラシャフト用動釣合い試験機は、ベッド1上に配置された左架台2および右架台3という、一対の架台2,3を有する。
架台2には、振動枠4と、振動枠4に備えられた回転主軸5と、回転主軸5の先端に備えられたチャッキング装置6とが含まれている。回転主軸5にはユニバーサルジョイント7によって駆動軸8が連結されている。駆動軸8の奥側には、モータ9が配置されていて、モータ9の回転力はベルト10を介して駆動軸8に与えられ、駆動軸8を回転する。
【0003】
右架台3も、左架台2と同様の構成であり、振動枠11、回転主軸12、チャッキング装置13を有する。回転主軸12には駆動軸14が連結されており、駆動軸14はベルト15を介してベッド1の奥側に配置されモータ16により回転される。
プロペラシャフトの動釣合い試験を行う場合には、図1に1点鎖線で示すように、プロペラシャフト17の左端部はチャッキング装置6により保持され、プロペラシャフト17の右端部はチャッキング装置13により保持される。その際、動釣合い試験をするプロペラシャフト17の長さに合わせて、右架台3は、ベッド1上を左右方向に移動可能である。すなわち、ハンドル18を回転させることにより、右架台3全体(振動枠11,回転主軸12およびチャッキング装置13を含む右架台3全体)が、左右方向に、所定の位置に変位可能である。
【0004】
なお、右架台3が所定の位置にセットされた状態で、回転主軸12と駆動軸14とがユニバーサルジョイントその他の連結具19で連結される。
そしてその状態で、モータ9により、ベルト10を介して駆動軸8が回転され、これにより回転主軸5が回転されて、チャッキング装置6で保持されたプロペラシャフト17は、所定の方向へ、所定の測定速度で回転される。このように、左架台2側が、主駆動部として動作する。
【0005】
一方、右架台3側は、副駆動部として動作する。より具体的には、モータ16の回転力はベルト15を介して駆動軸14に与えられ、回転主軸12を回転させる。この場合、回転主軸12の回転速度が左側の回転主軸5の回転速度よりも少し遅い回転速度で、回転主軸5と同じ方向へ回転される。この結果、プロペラシャフト17には、動釣合い試験時に、一定のトルクがかかるようになっている。この理由は、プロペラシャフト17は、中央部に中間スライド機構(インボリュートスプラインにて構成)を有しており、このスライド部のがたつきが測定,修正に悪影響を与えない様にする為である。すなわち、トルク負荷によりスライド部が調芯する作用を利用した測定技術である。
【0006】
【発明が解決しようとする課題】
図3は、図1,図2に示す動釣合い試験機における右架台3とモータ16とベルト15との配置関係を示す側面図である。図3に示すように、従来の構成は、架台3の奥にモータ16が配置されて、モータ16の回転力はベルト15で架台3の回転主軸12に伝達される構成である。このため、機械構造が複雑で、しかもベルト15が不釣合い測定の数値に影響を及ぼす場合がある等の不具合があった。
【0007】
この発明は、かかる不具合を解決するためになされたものである。
この発明の目的は、装置の小型化を実現できる構成を提供することである。
【0008】
【課題を解決するための手段および発明の効果】
請求項1記載の発明は、自動車用のプロペラシャフトに対し、動釣合い試験中にプロペラシャフトに一定のトルクがかかるようにした動釣合い試験機であって、左右一対の架台を有し、各架台には、それぞれ別々の、振動枠と、振動枠に備えられた動釣合い試験をするプロペラシャフトの端部を取り付ける回転主軸とが設けられている動釣合い試験機において、両方の架台において、前記各回転主軸を駆動するための駆動装置が各架台の振動枠に取り付けられ、一方の駆動装置は主駆動側として、回転主軸を所定の測定回転速度で回転させるものであり、他方の駆動装置は副駆動側として、回転主軸を一方の架台の回転主軸よりも低い回転速度で回転させるものであり、それによって、両回転主軸に両端が取り付けられたプロペラシャフトに一定のトルクをかけられることを特徴とする、プロペラシャフト用動釣合い試験機である。
【0010】
請求項1の構成によれば、少なくとも一方の架台において、回転主軸を駆動するための駆動装置が振動枠に取り付けられているので、動釣合い試験時に、駆動装置は振動枠とともに振動する。このため、従来のような、駆動装置(モータ)は固定配置されていて、その回転力がベルトを介して振動枠に取り付けられている回転主軸に伝達される構成に比べ、ベルトのテンション力が振動枠の振動に影響を及ぼす等の不具合がない。
【0011】
また、駆動装置は振動枠に取り付けられているから、駆動装置が振動枠と別の位置に固定配置されている場合に比べ、装置全体の構成の小型化が図れる。
プロペラシャフト用の動釣合い試験機では、従来技術の項でも説明したように、通常、主駆動側の架台によってプロペラシャフトを回転し、副駆動側の架台では、主駆動側の回転速度よりも少し低い速度でプロペラシャフトを回転させる。これは、プロペラシャフトの中で、中間スライド機構を有するものは、そのスライド部のがたつきが、測定,修正精度に悪影響を与えない様に、一定のトルクをかける必要があるからである。
【0012】
このため、副駆動側の架台では、駆動装置は小型のものでよいから、振動枠に駆動装置を取り付けるという構成を採用しやすい。
また、左右一対の架台の両方に対し、振動枠に駆動装置を取り付けるという構成を採用しているよって、動釣合い試験機全体の小型化を図れ、しかも製作費を低減できる。
【0013】
【発明の実施の形態】
以下には、図面を参照して、この発明の一実施形態について説明をする。
図4は、この発明の一実施形態に係る動釣合い試験機の架台の構成を説明するための側面図である。
この実施形態にかかる架台20は、図示しないベッドに取り付けられる固定ブロック21と、固定ブロック21の上部に備えられた振動ブロック22と、固定ブロック21と振動ブロック22とを連結する板ばね23とを含んでおり、これが振動枠として機能する。
【0014】
振動ブロック22には回転主軸24が備えられている。この実施形態の特徴は、振動ブロック22にモータ25が取り付けられていることである。モータ25の回転軸26にはプーリ27が連結され、プーリ27と回転主軸2との間にはベルト27が張られている。よって、モータ25によりベルト27を介して回転主軸24が回転される。
このように振動ブロック22にモータ25を配置することで、架台の構成を小型化でき、動釣合い試験機全体の小型化を実現できる。
【0015】
図1で説明した従来のプロペラシャフト用動釣合い試験機において、右架台3およびそれに付設されたモータ16およびベルト15等の構成に代えて、図4に示す構成を採用することができる。
また、図1で示したプロペラシャフト用動釣合い試験機における左架台2およびモータ9,ベルト10等からなる主駆動側の構成を、図4に示す構成で置き換えてもよい。
【0016】
図4に示すような構成を採用すれば、駆動用のベルト27のテンション力による影響が振動枠における振動に影響を及ぼすことがなく、プロペラシャフトの動釣合い試験がより正確に行える。
また、機械装置の小型化を図ることができ、製作費の低減を図れる。
この発明は、以上説明した実施形態に限定されるものではなく、請求項記載の範囲内において種々の変更が可能である。
【図面の簡単な説明】
【図1】従来のプロペラシャフト用動釣合い試験機の一例を示す正面図である。
【図2】従来のプロペラシャフト用動釣合い試験機の一例を示す平面図である。
【図3】従来のプロペラシャフト用動釣合い試験機における架台の構成を説明するための側面図である。
【図4】この発明の一実施形態に係るプロペラシャフト用動釣合い試験きの架台の構成を説明するための側面図である。
【符号の説明】
20 架台(振動枠)
21 固定ブロック
22 振動ブロック
23 板ばね
24 回転主軸
25 モータ
27 ベルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dynamic balance tester, and more particularly to a dynamic balance tester for measuring the dynamic balance of a propeller shaft of an automobile.
[0002]
[Prior art]
FIG. 1 shows a front view of an example of a propeller shaft dynamic balance testing machine, and FIG. 2 shows a plan view thereof.
Referring to FIGS. 1 and 2, the propeller shaft dynamic balance testing machine has a pair of mounts 2 and 3, a left mount 2 and a right mount 3 disposed on a bed 1.
The gantry 2 includes a vibration frame 4, a rotation main shaft 5 provided in the vibration frame 4, and a chucking device 6 provided at the tip of the rotation main shaft 5. A drive shaft 8 is connected to the rotation main shaft 5 by a universal joint 7. A motor 9 is disposed on the back side of the drive shaft 8, and the rotational force of the motor 9 is applied to the drive shaft 8 via the belt 10 to rotate the drive shaft 8.
[0003]
The right gantry 3 has the same configuration as the left gantry 2, and includes a vibration frame 11, a rotation main shaft 12, and a chucking device 13. A driving shaft 14 is connected to the rotating main shaft 12, and the driving shaft 14 is disposed on the back side of the bed 1 via a belt 15 and is rotated by a motor 16.
When performing a dynamic balance test of the propeller shaft, as shown by a one-dot chain line in FIG. Retained. At this time, the right gantry 3 can move in the left-right direction on the bed 1 in accordance with the length of the propeller shaft 17 that performs the dynamic balance test. That is, by rotating the handle 18, the entire right frame 3 (the entire right frame 3 including the vibration frame 11, the rotation main shaft 12 and the chucking device 13) can be displaced to a predetermined position in the left-right direction.
[0004]
In addition, the rotation main shaft 12 and the drive shaft 14 are connected by a universal joint or other connection tool 19 in a state where the right frame 3 is set at a predetermined position.
In this state, the drive shaft 8 is rotated by the motor 9 via the belt 10, whereby the rotation main shaft 5 is rotated, and the propeller shaft 17 held by the chucking device 6 is predetermined in a predetermined direction. Rotated at the measuring speed. Thus, the left gantry 2 side operates as a main drive unit.
[0005]
On the other hand, the right gantry 3 side operates as a sub-driving unit. More specifically, the rotational force of the motor 16 is applied to the drive shaft 14 via the belt 15 to rotate the rotary main shaft 12. In this case, the rotation speed of the rotation spindle 12 is rotated in the same direction as the rotation spindle 5 at a slightly lower rotation speed than the rotation speed of the left rotation spindle 5. As a result, a certain torque is applied to the propeller shaft 17 during the dynamic balance test. The reason for this is that the propeller shaft 17 has an intermediate slide mechanism (configured by an involute spline) at the center, so that rattling of the slide does not adversely affect measurement and correction. . In other words, this is a measurement technique that uses the effect that the slide portion is aligned by torque load.
[0006]
[Problems to be solved by the invention]
FIG. 3 is a side view showing the positional relationship among the right gantry 3, the motor 16 and the belt 15 in the dynamic balance testing machine shown in FIGS. 1 and 2. As shown in FIG. 3, the conventional configuration is a configuration in which a motor 16 is disposed at the back of the gantry 3, and the rotational force of the motor 16 is transmitted to the rotary spindle 12 of the gantry 3 by a belt 15. For this reason, there is a problem that the mechanical structure is complicated and the belt 15 may affect the numerical value of the unbalance measurement.
[0007]
The present invention has been made to solve such problems.
An object of the present invention is to provide a configuration capable of realizing downsizing of the apparatus.
[0008]
[Means for Solving the Problems and Effects of the Invention]
The invention according to claim 1 is a dynamic balance testing machine in which a constant torque is applied to a propeller shaft during a dynamic balance test with respect to a propeller shaft for an automobile, and has a pair of left and right mounts. In a dynamic balance testing machine provided with a separate vibration frame and a rotation main shaft to which an end of a propeller shaft for performing a dynamic balance test provided on the vibration frame is provided, both of the above-mentioned each A driving device for driving the rotation main shaft is attached to the vibration frame of each gantry. One driving device is used as a main driving side to rotate the rotation main shaft at a predetermined measurement rotational speed, and the other driving device is a sub driving device. As the drive side, the rotating main shaft is rotated at a lower rotational speed than the rotating main shaft of one of the gantry, so that the propeller shaft with both ends attached to both rotating main shafts Characterized in that it is subjected to a constant torque, a dynamic balancing machine for propeller shafts.
[0010]
According to the configuration of the first aspect, since the drive device for driving the rotary main shaft is attached to the vibration frame in at least one of the mounts, the drive device vibrates together with the vibration frame during the dynamic balance test. For this reason, the driving force (motor) is fixedly arranged as in the prior art, and the tension force of the belt is smaller than the configuration in which the rotational force is transmitted to the rotating main shaft attached to the vibration frame via the belt. There are no problems such as affecting the vibration of the vibration frame.
[0011]
In addition, since the drive device is attached to the vibration frame, the overall configuration of the device can be reduced as compared with the case where the drive device is fixedly arranged at a position different from the vibration frame.
In the dynamic balance testing machine for the propeller shaft, as explained in the section of the prior art, the propeller shaft is usually rotated by the main drive side frame, and the sub drive side frame is slightly faster than the main drive side rotation speed. Rotate the propeller shaft at low speed. This is because, among propeller shafts having an intermediate slide mechanism, it is necessary to apply a constant torque so that the rattling of the slide portion does not adversely affect the measurement and correction accuracy.
[0012]
Therefore, in the secondary drive side of the gantry, the drive from may be of small size, easy to adopt a structure of attaching the drive unit to the vibration frame.
Furthermore, for both the left and right pair of frame adopts the configuration of attaching the drive unit to the vibration frame. Therefore , the whole dynamic balance testing machine can be reduced in size, and the manufacturing cost can be reduced.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a side view for explaining the configuration of the gantry of the dynamic balance testing machine according to the embodiment of the present invention.
The gantry 20 according to this embodiment includes a fixed block 21 attached to a bed (not shown), a vibration block 22 provided on an upper portion of the fixed block 21, and a leaf spring 23 that connects the fixed block 21 and the vibration block 22. This functions as a vibration frame.
[0014]
The vibration block 22 is provided with a rotation main shaft 24. A feature of this embodiment is that a motor 25 is attached to the vibration block 22. A pulley 27 is connected to the rotating shaft 26 of the motor 25, and a belt 27 is stretched between the pulley 27 and the rotating main shaft 2. Therefore, the rotation main shaft 24 is rotated by the motor 25 via the belt 27.
By arranging the motor 25 in the vibration block 22 in this way, the configuration of the gantry can be reduced in size, and the overall dynamic balance testing machine can be reduced in size.
[0015]
In the conventional propeller shaft dynamic balance testing machine described with reference to FIG. 1, the configuration shown in FIG. 4 can be adopted instead of the configuration of the right gantry 3 and the motor 16 and belt 15 attached thereto.
Further, the configuration on the main drive side composed of the left gantry 2, the motor 9, the belt 10 and the like in the propeller shaft dynamic balance tester shown in FIG. 1 may be replaced with the configuration shown in FIG.
[0016]
If the configuration shown in FIG. 4 is adopted, the influence of the tension force of the driving belt 27 does not affect the vibration in the vibration frame, and the propeller shaft dynamic balance test can be performed more accurately.
In addition, the size of the mechanical device can be reduced, and the production cost can be reduced.
The present invention is not limited to the embodiment described above, and various modifications can be made within the scope of the claims.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a conventional dynamic balance testing machine for a propeller shaft.
FIG. 2 is a plan view showing an example of a conventional dynamic balance testing machine for propeller shafts.
FIG. 3 is a side view for explaining a configuration of a gantry in a conventional propeller shaft dynamic balance testing machine.
FIG. 4 is a side view for explaining the configuration of a propeller shaft dynamic balance test frame according to an embodiment of the present invention.
[Explanation of symbols]
20 frame (vibration frame)
21 Fixed block 22 Vibrating block 23 Leaf spring 24 Spindle 25 Motor 27 Belt

Claims (1)

自動車用のプロペラシャフトに対し、動釣合い試験中にプロペラシャフトに一定のトルクがかかるようにした動釣合い試験機であって、
左右一対の架台を有し、各架台には、それぞれ別々の、振動枠と、振動枠に備えられた動釣合い試験をするプロペラシャフトの端部を取り付ける回転主軸とが設けられている動釣合い試験機において、
両方の架台において、前記各回転主軸を駆動するための駆動装置が各架台の振動枠に取り付けられ、
一方の駆動装置は主駆動側として、回転主軸を所定の測定回転速度で回転させるものであり、
他方の駆動装置は副駆動側として、回転主軸を一方の架台の回転主軸よりも低い回転速度で回転させるものであり、
それによって、両回転主軸に両端が取り付けられたプロペラシャフトに一定のトルクをかけられることを特徴とする、プロペラシャフト用動釣合い試験機。
A dynamic balance testing machine that applies a certain torque to a propeller shaft during a dynamic balance test for a propeller shaft for an automobile,
A dynamic balance test having a pair of left and right mounts, each of which is provided with a separate vibration frame and a rotating main shaft to which an end of a propeller shaft for performing a dynamic balance test provided on the vibration frame is attached. In the machine
In both mounts, a drive device for driving each rotating spindle is attached to the vibration frame of each mount,
One drive device is the main drive side, and rotates the rotating spindle at a predetermined measurement rotational speed.
The other drive device is the auxiliary drive side, and rotates the rotation main shaft at a lower rotation speed than the rotation main shaft of one of the gantry,
A propeller shaft dynamic balance testing machine characterized in that a constant torque can be applied to the propeller shaft having both ends attached to both rotating main shafts.
JP2001193213A 2001-06-26 2001-06-26 Dynamic balance testing machine for propeller shaft Expired - Lifetime JP4684475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193213A JP4684475B2 (en) 2001-06-26 2001-06-26 Dynamic balance testing machine for propeller shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193213A JP4684475B2 (en) 2001-06-26 2001-06-26 Dynamic balance testing machine for propeller shaft

Publications (2)

Publication Number Publication Date
JP2003004576A JP2003004576A (en) 2003-01-08
JP4684475B2 true JP4684475B2 (en) 2011-05-18

Family

ID=19031544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193213A Expired - Lifetime JP4684475B2 (en) 2001-06-26 2001-06-26 Dynamic balance testing machine for propeller shaft

Country Status (1)

Country Link
JP (1) JP4684475B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862541B2 (en) * 2006-08-01 2012-01-25 株式会社ジェイテクト Driving force transmission device testing method and manufacturing method
CN102997821A (en) * 2012-11-29 2013-03-27 苏州博德自动化科技有限公司 Rotating transmission device for motor rotor shaft jumping detector
CN103017700A (en) * 2012-11-29 2013-04-03 苏州博德自动化科技有限公司 Lifting and rotating transmission device of motor rotor shaft jump detector
CN116481717B (en) * 2023-06-04 2024-03-01 滕州市鑫岩石料有限责任公司 Dynamic balance detector for equipment motor spindle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343585A (en) * 1975-10-03 1978-04-19 Schenck Ag Carl Method and device for balancing test of combined parts
JPS64434A (en) * 1987-02-13 1989-01-05 Carl Schenck Ag Machine for centering mass of rotating body
JPH02165028A (en) * 1988-12-20 1990-06-26 Nagahama Seisakusho:Kk Dynamic balance tester
JPH02173539A (en) * 1988-12-26 1990-07-05 Nagahama Seisakusho:Kk Dynamic balancing test machine
JPH03181835A (en) * 1989-12-12 1991-08-07 Toyota Motor Corp Balance tester
JPH11337453A (en) * 1998-05-28 1999-12-10 Toyota Motor Corp Method for measuring vibration characteristic of power transmission device
JP2000234979A (en) * 1999-02-15 2000-08-29 Akashi Corp Balancing machine and balancing test facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343585A (en) * 1975-10-03 1978-04-19 Schenck Ag Carl Method and device for balancing test of combined parts
JPS64434A (en) * 1987-02-13 1989-01-05 Carl Schenck Ag Machine for centering mass of rotating body
JPH02165028A (en) * 1988-12-20 1990-06-26 Nagahama Seisakusho:Kk Dynamic balance tester
JPH02173539A (en) * 1988-12-26 1990-07-05 Nagahama Seisakusho:Kk Dynamic balancing test machine
JPH03181835A (en) * 1989-12-12 1991-08-07 Toyota Motor Corp Balance tester
JPH11337453A (en) * 1998-05-28 1999-12-10 Toyota Motor Corp Method for measuring vibration characteristic of power transmission device
JP2000234979A (en) * 1999-02-15 2000-08-29 Akashi Corp Balancing machine and balancing test facility

Also Published As

Publication number Publication date
JP2003004576A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US7523668B2 (en) Device for performing vibration measurements on a test part having at least one rotor, especially a transmission
US6584835B2 (en) Spindle assembly for a tire or wheel testing machine
JP3144173B2 (en) Vehicle drive system test equipment
JP2010071864A (en) Apparatus and method for testing coupling
JP4684475B2 (en) Dynamic balance testing machine for propeller shaft
JP3438333B2 (en) Dynamic balance testing machine and its measuring method
JPS62288744A (en) Method of balancing damper pulley
JP2006145530A (en) Bearing device for use in device for detecting unbalance and nonuniformity, and method for detecting unbalance and nonuniformity
JP3367424B2 (en) Method for measuring vibration characteristics of power transmission device
JPS6298230A (en) Wheel balancing machine for wheel for automobile
JP4634927B2 (en) Crankshaft dynamic balance tester and crankshaft retainer
CN220912634U (en) Buffer performance test equipment
JPH09178616A (en) Test device for vehicle
JP3164694B2 (en) Balance testing machine
JP2004117047A (en) Method and apparatus for measuring unbalance in body of revolution in shape of extended shaft
JP2651796B2 (en) Buffing machine
JPS6157570B2 (en)
JP2001099730A (en) Testing device of transmission machine
JP4020025B2 (en) Rotating body imbalance measurement method
CN117007307A (en) Buffer performance test equipment
JP5994184B2 (en) Mass centering machine and rotor holding device
JPS61130842A (en) Dynamic balance tester
JP3622393B2 (en) Powertrain test equipment
JP4412514B2 (en) Driving device for X-type electric gun
JPS63221971A (en) Dynamic balancer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term