JP4684402B2 - Method for producing perfluoroalkadiene - Google Patents
Method for producing perfluoroalkadiene Download PDFInfo
- Publication number
- JP4684402B2 JP4684402B2 JP2000313523A JP2000313523A JP4684402B2 JP 4684402 B2 JP4684402 B2 JP 4684402B2 JP 2000313523 A JP2000313523 A JP 2000313523A JP 2000313523 A JP2000313523 A JP 2000313523A JP 4684402 B2 JP4684402 B2 JP 4684402B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- perfluoroalkadiene
- producing
- iodine
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリマーの原料、あるいは半導体用のエッチングガスとして利用可能なα,ω−ペルフルオロアルカジエンの製造方法に関する。
【0002】
【従来の技術】
α,ω−ペルフルオロアルカジェンの合成方法として、最も典型的なものでは、炭素数4から成る化合物のペルフルオロブタジエンが古くから研究されている。
例えば、R.N.Haszeldine;J.Chem.Soc.,4423(1952)には、CClF=CF2を原料にしてIClの付加によりCClF2−CClFIを得、続いてHgの存在下、光反応によってCClF2−CClF−CClF−CClF2を合成し、これをエタノール中、亜鉛で処理を行うことによってCF2=CF−CF=CF2を得る方法が報告されている。しかし、この方法では、工程が数多く、水銀など環境上好ましくない原材料を使用するなどの問題がある。
【0003】
また、R.N.Haszeldineは、J.Chem.Soc.,4026(1954)において、ペルフルオロアジピン酸塩の熱分解によるCF2=CF−CF=CF2の合成を報告している。しかし、この反応は収率が低く、異性体が多量に生成するなど工業的な製法としては好ましくない。
【0004】
W.T.Millerによる米国特許第2,668,182号明細書では、CClF=CF2を原料に550℃パイレックス管中で反応を行い、CF2=CF−CClF−CClF2を得て、これを塩素化あるいは臭素化し、それぞれCClF2−CClF−CClF−CClF2またはCBrF2−CBrF−CClF−CClF2に転化後、前述のJ.Chem.Soc.,4423(1952)の方法と同様に亜鉛によって脱ハロゲン化反応を行い、CF2=CF−CF=CF2を得るものである。この反応では第一段のCF2=CF−CClF−CClF2を得る反応の収率が低く、副生物が多いことから、これもまた工業的に適した方法とは言いがたい。
【0005】
G.Bargigia, V.Tortelli, C.Tonelli, S.Mondenaらの欧州特許出願第0 270 956号明細書、同じグループらによる特開昭62−26240号公報、E.S.Elizabath:J.Org.Chem.,36(1971)364などでは、CF2=CF2を原料として、これにヨウ素付加または臭素付加することによって得られるXCF2−CF2X(X=I,Br)のテロメリゼーション反応により生成するXCF2−CF2−CF2−CF2Xを−80℃から+150℃の範囲で非プロトン溶媒中、Mg,Zn,CdまたはLiの有機金属化合物との反応によってCF2=CF−CF=CF2を得る反応が報告されている。この方法では、比較的容易に原料のXCF2−CF2−CF2−CF2Xが入手でき、比較的工業化しやすい方法と言えなくもない。しかし、脱離させるハロゲンが高価な臭素とヨウ素及びフッ素に限定されており、安価な塩素を使用することが出来ない。また、脱ハロゲン化反応において、活性の高い有機金属化合物を多量に必要とすることから依然、工業化には適さない。
【0006】
なぜならば、有機金属化合物は次のような問題がある。
▲1▼水分に対して鋭敏であるので、加水分解をしないように特別な注意が必要である。
▲2▼有機金属化合物は、製造時にかなりの危険が伴い、例えば、グリニャール試薬を合成する時、冷却が足りなかった場合など反応の制御を誤ると、反応が暴走し、爆発的に進行することがしばしば見られる。
▲3▼有機金属化合物は、水分・酸素などと容易に反応する極めて活性な化合物であるので、大量に保存・使用することは難しく、工業的に取り扱うことは貯蔵の面でも危険と考えられる。
▲4▼有機金属化合物は、上記の理由によって価格がかなり高く、工業的に大量に使用することはコスト的にも不利益であると考えられる。
【0007】
【発明が解決しようとする課題】
上記のような従来技術の諸欠点に鑑み、本発明は、これらの欠点が大幅に軽減ないし払拭された安全で、工業的実施に適したペルフルオロアルカジエン類の製造方法を提供することを主たる目的としている。
【0008】
かくして、本発明は、塩素原子を含む分子も反応に使用できるためにより安価な化合物を利用することが出来る。例えば、I.L.Knunyants and G.G.Yakobson(Eds.):Synthesis of Fluoroorganic Compounds,P.16(1985)Springer−Verlagによれば、クロロトリフルオロエチレンを原料として容易に製造可能であるとされている1,2−ジクロロ−4−ヨードペルフルオロブタンが原料として使用できる上記製造方法を提供する。
【0009】
本発明の目的は、α,ω−ペルフルオロアルカジエンを工業的かつ安価に製造することが可能な方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上述の課題を解決すべく成された発明である。
本発明の基本概念は、ハロゲン化アルキルを触媒として反応系内に存在させ、金属とテトラハロゲン化ペルフルオロアルカンを反応させる製造方法であり、Mgを例にとれば、触媒量のハロゲン化アルキルとMgを別個に分けて入れることで、危険な有機金属化合物を直接扱う必要がなく、水分の混入も反応系を窒素シールする程度で防ぐことができる。従って、薬剤そのものの取り扱いが非常に容易である。本法では、大量の溶媒中で少量の触媒と脱ハロゲン化剤とによる反応(グリニャール反応を行う際の1/2〜1/20のスケール)を行うことが出来るので、反応が穏やかで安全である。さらに貯蔵上の問題も比較的活性の少ない金属とハロゲン化アルキルとを分けて用いることによって解消できる。使用するアルキルハライドの量も1/2〜1/20に低減できるので、これもコスト的に有利である。
【0011】
即ち、本発明の具体的態様においては、工業的に入手可能なあるいは種々の手法によって合成の可能なテトラハロゲン化ペルフルオロアルカンを−78℃から+200℃の範囲でテトラヒドロフランなどの有機溶媒中、触媒として適量のハロゲン化アルキルの存在下、Mg,Zn,Cd,Al,Cu,NaまたはLiなどの金属と反応させ、脱ハロゲン反応を行うことによって高収率でα,ω−ペルフルオロアルカジエンを得るものである。吸湿性が高く、分解しやすく、かつ高価な有機金属化合物を使用しないことから、安価で大量生産に適した製造方法であると共に作業性及び安全性の向上も図れる。
【0012】
本発明で目的とする化合物は、炭素鎖の両末端に2重結合を有する下記の一般式(1):
CF2=CF−(CF2CF2)a(CF2CF(CF3))b−CF=CF2 (1)
(式中、aとbは0〜2の整数であり、同一または異なっていても良い。)
で示されるペルフルオロアルカジエン類である。
【0013】
反応の原料として使用されるテトラハロゲン化ペルフルオロアルカン類は下式(2):
XCF2CFX(CF2CF2)a(CF2CF(CF3))b−CFY−CF2X(2)
(式中、aとbは前記と同意義であり、Xは塩素、臭素またはヨウ素を示し、Yは塩素、臭素、ヨウ素またはフッ素を示す。)
で示される。
【0014】
触媒として用いられるハロゲン化アルキルは、次の一般式(3):
RX (3)
(式中、Xは塩素、臭素、ヨウ素のいずれかであり、Rは直鎖状、分枝状、環状のアルキル基を示す。)で示される。触媒として使用されるハロゲン化アルキルの量は、原料のテトラハロゲン化ペルフルオロアルカン類に対して0.05当量から0.5当量の範囲内で行われる。0.05当量未満では触媒効果が低く、満足する収率で目的物を得ることができない。逆に0.5当量超に触媒の量を増量しても得られる効果は同様であり、コスト面から0.5当量以下が望ましい。
【0015】
また、反応の活性剤として一般式X−R’−Xで示されるアルキレンジハライド(R’は炭素数が1〜7の直鎖状、分枝状、あるいは環状の炭化水素を示し、Xは前記の通り。)やヨウ素などを少量添加すると反応を容易に開始させることができ、さらに望ましい。
【0016】
反応に使用される金属としては、Mg,Zn,Cd,Al,Cu,NaまたはLiなどが望ましい。これらの金属を1種または2種以上の組合せて使用する。形状としては、切削片状または塊状、粉末状であり、大きさは適宜選択できる。使用量としては、当量以上であるが、反応効率とコスト面から1.0〜5当量程度が好ましい。
【0017】
反応を実施するに使用できる溶媒は、テトラヒドロフラン、ジオキサン、エチルエーテル、イソプロピルエーテルなどの直鎖状、分枝状あるいは環状エーテルや、ジメトキシエタン、2−メトキシエチルエーテルなどのポリエーテルまたはヘキサン、オクタン、ノナン、石油エーテルなどの炭化水素類、酢酸エチル、酢酸メチル、プロピオン酸エチルなどのエステル類、ホスホン酸トリエチルなどのリン酸エステル、炭酸ジエチルあるいは炭酸エチレンなどの鎖状、環状炭酸エステル、アセトニトリルやベンゾニトリルなどのアルキルまたはアリールニトリル、アセトン、メチルエチルケトンなどのケトン類、無水酢酸などの酸無水物、N,N’−ジメチルホルムアミド(DMF)やN,N’−ジメチルアセトアミドなどのアミド類、ジメチルスルホキシド(DMSO)のようなスルホキシド類、ニトロエタンまたはニトロベンゼンのような脂肪族または芳香族ニトロ化合物、ピリジン、ピペリジンなどの含窒素複素環化合物、ジメチルスルホンやフェニルスルホンなどのスルホン化合物、硫化ジエチルまたは硫化ジフェニルなどのジアルキルあるいはジアリールスルフィド類などである。
【0018】
反応温度は、−78℃から+200℃の範囲内で行われる。
上述の有機溶媒中で、金属とハロゲン化アルキルとを加え、加熱または沸騰還流を行うことで前述式(2)から式(1)のペルフルオロアルカジエン類を製造する。
【0019】
使用する溶媒の量は、反応の原料となるテトラハロゲン化ペルフルオロアルカンが反応時に0.1M〜2M、望ましくは0.2M〜1.0Mになるように調整することが好ましいが、原料種によってはこの範囲内に限定するものではない。反応の原料として用いられるテトラハロゲン化ペルフルオロアルカンは上述の溶媒と同じ溶媒で希釈することが望ましい。
【0020】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
【0021】
【実施例1】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.5当量のMgとテトラヒドロフラン20mL,1,2−ジブロモエタン2滴(1滴は0.05mL),さらに触媒のブロモエタンを0.2当量加えた。この溶液を還流状態まで加熱し、これに5mLのテトラヒドロフランで希釈した5.0gの1,2−ジクロロ−4−ヨードペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶媒中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は1.77g生成していた(収率;83%)。
【0022】
【実施例2】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.2当量のMgとテトラヒドロフラン20mL,1,2−ジブロモエタン2滴、さらに触媒のイソプロピルブロミドを0.2当量加えた。この溶液を還流状態まで加熱し、これに5mLのテトラヒドロフランで希釈した5.0gの1,2−ジクロロ−4−ブロモペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶液中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集させた液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は2.07g生成していた(収率;85%)。
【0023】
【実施例3】
−78℃に冷却したトラップ管に連結されたビクロー管付の蒸留装置と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.2当量のMgとテトラヒドロフラン50mL,1,2−ジブロモエタン2滴、さらに触媒のブロモプロパンを0.1当量加えた。この溶液を還流状態まで加熱し、これに10mLのテトラヒドロフランで希釈した5.0gの1,2−ジクロロ−6−ヨードペルフルオロヘキサンを泡立ちが激しすぎないようにゆっくりと加えた。反応生成物は蒸留装置を通して溶媒と共に留出される。滴下終了後も沸騰還流を続け、反応溶液中に残存する生成物も蒸留装置を通して溶媒と共に留出させた。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF2−CF2−CF=CF2は1.96g生成していた(収率;72%)。
【0024】
【実施例4】
−78℃冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.2当量のMgとテトラヒドフラン20mL,1,2−ジブロモエタン2滴、さらに触媒のブロモエタンを0.2当量加えた。この溶液を還流状態まで加熱し、これに5mLのテトラヒドロフランで希釈した5.0gの1,2,3,4,−テトラクロロペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶媒中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は2.34g生成していた(収率;88%)。
【0025】
【実施例5】
実施例2で、Mgの代わりにZn−Cu(95:5の組合せ)を、触媒のイソプロピルブロミドの代わりにブロモエタンを用いた以外は同様の方法で、5.0gの1,2−ジクロロ−ブロモペルフルオロブタンを加え、沸騰還流を行った。トラップ中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は2.04g生成していた(収率;84%)。
【0026】
【比較例1】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた200mLの3つ口フラスコを窒素雰囲気下、3当量のZnと50mLのエタノールを加えた。この溶液を還流状態まで加熱し、これに5mLのエタノールで希釈した5.0gの1,2−ジクロロ−4−ヨードペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶媒中に残存するガスを追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は僅かに認められたのみで、得られたガスのほとんどが4H−ペルフルオロ−1−ブテンであった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing α, ω-perfluoroalkadiene that can be used as a raw material for a polymer or an etching gas for a semiconductor.
[0002]
[Prior art]
As the most typical method for synthesizing α, ω-perfluoroalkagen, perfluorobutadiene, a compound having 4 carbon atoms, has been studied for a long time.
For example, R.A. N. Haszeldine; Chem. Soc. , The 4423 (1952), to give the CClF 2 -CClFI by the addition of ICl to a CClF = CF 2 in the raw material, followed by the presence of Hg, to synthesize CClF 2 -CClF-CClF-CClF 2 by photoreaction, It has been reported that CF 2 = CF-CF = CF 2 is obtained by treating this with zinc in ethanol. However, in this method, there are many steps, and there are problems such as using environmentally undesirable raw materials such as mercury.
[0003]
R. N. Haszeldine, J. et al. Chem. Soc. In 4026 (1954), reported the synthesis of CF 2 = CF-CF = CF 2 by thermal decomposition of the perfluoro adipate. However, this reaction is not preferable as an industrial production method because the yield is low and isomers are produced in large quantities.
[0004]
W. T.A. In US Pat. No. 2,668,182 by Miller, CClF═CF 2 is used as a raw material to react in a Pyrex tube at 550 ° C. to obtain CF 2 ═CF—CClF—CClF 2 , which is chlorinated or bromination, after conversion respectively CClF 2 -CClF-CClF-CClF 2 or CBrF 2 -CBrF-CClF-CClF 2 , the aforementioned J. Chem. Soc. , 4423 (1952), a dehalogenation reaction is performed with zinc to obtain CF 2 = CF-CF = CF 2 . In this reaction, the yield of the reaction for obtaining the first stage CF 2 = CF—CClF—CClF 2 is low, and there are many by-products, so this is also not an industrially suitable method.
[0005]
G. Bargilia, V. Tortelli, C.I. Tonelli, S.M. Mondena et al., European Patent Application 0 270 956, JP 62-26240, E. S. Elizabath: J.M. Org. Chem. , 36 (1971) 364, etc., produced by telomerization reaction of XCF 2 —CF 2 X (X═I, Br) obtained by adding iodine or bromine to CF 2 ═CF 2 as a raw material. XCF 2 —CF 2 —CF 2 —CF 2 X is reacted with an organometallic compound of Mg, Zn, Cd or Li in an aprotic solvent in the range of −80 ° C. to + 150 ° C. to give CF 2 ═CF—CF═ Reactions to obtain CF 2 have been reported. In this method, the raw material XCF 2 —CF 2 —CF 2 —CF 2 X can be obtained relatively easily, and it can be said that this method is relatively easy to industrialize. However, the halogen to be eliminated is limited to expensive bromine, iodine and fluorine, and inexpensive chlorine cannot be used. Further, since a large amount of highly active organometallic compound is required in the dehalogenation reaction, it is still not suitable for industrialization.
[0006]
This is because organometallic compounds have the following problems.
(1) Since it is sensitive to moisture, special care is required not to hydrolyze.
(2) Organometallic compounds are associated with considerable danger during production. For example, when synthesizing a Grignard reagent, if the reaction is miscontrolled, such as when cooling is insufficient, the reaction may run away and proceed explosively. Is often seen.
(3) Since organometallic compounds are extremely active compounds that easily react with moisture, oxygen, etc., it is difficult to store and use them in large quantities, and industrial handling is considered dangerous in terms of storage.
{Circle around (4)} The organometallic compound is quite expensive for the above reasons, and it is considered disadvantageous in terms of cost to use it in large quantities industrially.
[0007]
[Problems to be solved by the invention]
In view of the above-mentioned drawbacks of the prior art, the main object of the present invention is to provide a method for producing perfluoroalkadienes that is safe and suitable for industrial practice, in which these drawbacks are greatly reduced or eliminated. It is said.
[0008]
Thus, in the present invention, a molecule containing a chlorine atom can be used for the reaction, so that a cheaper compound can be used. For example, I.I. L. Knunants and G.K. G. Yakobson (Eds.): Synthesis of Fluoroorganic Compounds, P.M. 16 (1985) Springer-Verlag provides the above production method in which 1,2-dichloro-4-iodoperfluorobutane, which can be easily produced using chlorotrifluoroethylene as a raw material, can be used as a raw material. .
[0009]
An object of the present invention is to provide a method capable of industrially and inexpensively producing α, ω-perfluoroalkadiene.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems.
The basic concept of the present invention is a production method in which an alkyl halide is present in a reaction system as a catalyst and a metal and a tetrahalogenated perfluoroalkane are reacted. Taking Mg as an example, a catalytic amount of an alkyl halide and Mg By separately putting in, it is not necessary to handle dangerous organometallic compounds directly, and mixing of moisture can be prevented only by sealing the reaction system with nitrogen. Therefore, handling of the medicine itself is very easy. In this method, a reaction with a small amount of a catalyst and a dehalogenating agent (a scale of 1/2 to 1/20 when performing a Grignard reaction) can be performed in a large amount of solvent, so that the reaction is gentle and safe. is there. Further, storage problems can be solved by using a relatively less active metal and an alkyl halide separately. Since the amount of alkyl halide used can be reduced to 1/2 to 1/20, this is also advantageous in terms of cost.
[0011]
That is, in a specific embodiment of the present invention, a tetrahalogenated perfluoroalkane which is industrially available or can be synthesized by various methods is used as a catalyst in an organic solvent such as tetrahydrofuran at a temperature range of −78 ° C. to + 200 ° C. Reacting with metals such as Mg, Zn, Cd, Al, Cu, Na or Li in the presence of an appropriate amount of alkyl halide to obtain α, ω-perfluoroalkadiene in high yield by dehalogenation reaction It is. Since it is highly hygroscopic, easily decomposed, and does not use an expensive organometallic compound, it is a manufacturing method that is inexpensive and suitable for mass production, and can improve workability and safety.
[0012]
The target compound of the present invention is represented by the following general formula (1) having double bonds at both ends of the carbon chain:
CF 2 = CF- (CF 2 CF 2) a (CF 2 CF (CF 3)) b -CF = CF 2 (1)
(Wherein, a and b are integers of 0 to 2 and may be the same or different.)
Are perfluoroalkadienes.
[0013]
Tetrahalogenated perfluoroalkanes used as raw materials for the reaction are represented by the following formula (2):
XCF 2 CFX (CF 2 CF 2 ) a (CF 2 CF (CF 3 )) b -CFY-CF 2 X (2)
(Wherein, a and b are as defined above, X represents chlorine, bromine or iodine, and Y represents chlorine, bromine, iodine or fluorine.)
Indicated by
[0014]
The alkyl halide used as the catalyst has the following general formula (3):
RX (3)
(Wherein X is any one of chlorine, bromine and iodine, and R represents a linear, branched or cyclic alkyl group). The amount of the alkyl halide used as the catalyst is in the range of 0.05 equivalent to 0.5 equivalent relative to the starting tetrahalogenated perfluoroalkane. If it is less than 0.05 equivalent, the catalytic effect is low, and the target product cannot be obtained in a satisfactory yield. Conversely, the effect obtained by increasing the amount of the catalyst to more than 0.5 equivalent is the same, and 0.5 equivalent or less is desirable from the viewpoint of cost.
[0015]
Further, 'the alkylene dihalide represented by -X (R' formula X- R as a reaction of the active agent is a straight, branched, or cyclic hydrocarbon of 1-7 carbon atoms, X is the street.) and the like can be started easily react with addition of a small amount of iodine, more desirable.
[0016]
As the metal used for the reaction, Mg, Zn, Cd, Al, Cu, Na, Li or the like is desirable. These metals are used alone or in combination of two or more. The shape is a cut piece, block, or powder, and the size can be selected as appropriate. The amount used is equal to or more than the equivalent, but is preferably about 1.0 to 5 equivalents from the viewpoint of reaction efficiency and cost.
[0017]
Solvents that can be used to carry out the reaction are linear, branched or cyclic ethers such as tetrahydrofuran, dioxane, ethyl ether, isopropyl ether, polyethers such as dimethoxyethane, 2-methoxyethyl ether or hexane, octane, Nonanes, hydrocarbons such as petroleum ether, esters such as ethyl acetate, methyl acetate and ethyl propionate, phosphate esters such as triethyl phosphonate, chain chains such as diethyl carbonate and ethylene carbonate, cyclic carbonates, acetonitrile and benzo Alkyl or aryl nitrile such as nitrile, ketones such as acetone and methyl ethyl ketone, acid anhydrides such as acetic anhydride, amides such as N, N′-dimethylformamide (DMF) and N, N′-dimethylacetamide, dimethyl Sulfoxides such as sulfoxide (DMSO), aliphatic or aromatic nitro compounds such as nitroethane or nitrobenzene, nitrogen-containing heterocyclic compounds such as pyridine and piperidine, sulfone compounds such as dimethylsulfone and phenylsulfone, diethyl sulfide or diphenyl sulfide And dialkyl or diaryl sulfides.
[0018]
The reaction temperature is in the range of −78 ° C. to + 200 ° C.
A perfluoroalkadiene of the formula (1) is produced from the above formula (2) by adding a metal and an alkyl halide in the above-mentioned organic solvent and heating or boiling reflux.
[0019]
The amount of the solvent to be used is preferably adjusted so that the tetrahalogenated perfluoroalkane used as a raw material for the reaction is 0.1M to 2M, preferably 0.2M to 1.0M during the reaction. It is not limited to this range. The tetrahalogenated perfluoroalkane used as a raw material for the reaction is preferably diluted with the same solvent as described above.
[0020]
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to this.
[0021]
[Example 1]
In a 100 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibrium pipe, 1.5 equivalents of Mg and 20 mL of tetrahydrofuran, 1,2- 2 drops of dibromoethane (1 drop is 0.05 mL) and 0.2 equivalent of catalyst bromoethane were added. The solution was heated to reflux and 5.0 g of 1,2-dichloro-4-iodoperfluorobutane diluted with 5 mL of tetrahydrofuran was slowly added to the solution so that foaming was not too intense. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, boiling reflux was continued, and CF 2 = CF-CF = CF 2 remaining in the reaction solvent was driven out. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 1.77 g (yield: 83%).
[0022]
[Example 2]
In a 100 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibrium pipe, 1.2 equivalents of Mg and 20 mL of tetrahydrofuran, 1,2- Two drops of dibromoethane and 0.2 equivalent of catalyst isopropyl bromide were added. The solution was heated to reflux and 5.0 g of 1,2-dichloro-4-bromoperfluorobutane diluted with 5 mL of tetrahydrofuran was slowly added to the solution so that foaming was not excessive. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, boiling reflux was continued, and CF 2 = CF-CF = CF 2 remaining in the reaction solution was driven out. The solution was collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 2.07 g (yield: 85%).
[0023]
[Example 3]
In a 100 mL three-necked flask equipped with a distillation apparatus with a Vicra tube connected to a trap tube cooled to −78 ° C. and a dropping funnel with a pressure equilibrium tube, 1.2 equivalents of Mg and 50 mL of tetrahydrofuran under a nitrogen atmosphere, Two drops of 1,2-dibromoethane and 0.1 equivalent of the catalyst bromopropane were added. This solution was heated to reflux, and 5.0 g of 1,2-dichloro-6-iodoperfluorohexane diluted with 10 mL of tetrahydrofuran was slowly added to the solution so that foaming was not excessive. The reaction product is distilled with the solvent through a distillation apparatus. After completion of the dropwise addition, boiling reflux was continued, and the product remaining in the reaction solution was distilled together with the solvent through a distillation apparatus. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF 2 -CF 2 -CF = CF 2 was generated 1.96 g (yield: 72%) .
[0024]
[Example 4]
In a 100 mL three-necked flask equipped with a reflux condenser connected to a trap tube cooled at −78 ° C. and a dropping funnel equipped with a pressure equilibration tube, 1.2 equivalents of Mg and tetrahydrofuran 20 mL, 1, 2, -2 drops of dibromoethane and 0.2 equivalents of catalytic bromoethane were added. This solution was heated to reflux, and 5.0 g of 1,2,3,4, -tetrachloroperfluorobutane diluted with 5 mL of tetrahydrofuran was slowly added thereto so that foaming was not excessive. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, boiling reflux was continued, and CF 2 = CF-CF = CF 2 remaining in the reaction solvent was driven out. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 2.34 g (yield: 88%).
[0025]
[Example 5]
In a similar manner to Example 2, except that Zn-Cu (95: 5 combination) was used instead of Mg and bromoethane was used instead of the catalyst isopropyl bromide, 5.0 g of 1,2-dichloro-bromo Perfluorobutane was added and refluxed to the boil. The liquid trapped in the trap was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 2.04 g (yield: 84%).
[0026]
[Comparative Example 1]
In a 200 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibrium pipe, 3 equivalents of Zn and 50 mL of ethanol were added under a nitrogen atmosphere. The solution was heated to reflux and 5.0 g of 1,2-dichloro-4-iodoperfluorobutane diluted with 5 mL of ethanol was slowly added to the solution so that foaming was not too intense. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, the boiling reflux was continued, and the gas remaining in the reaction solvent was expelled. When the liquid collected in the trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was found only slightly, and most of the obtained gas was 4H-perfluoro-1 -Butene.
Claims (3)
CF2=CF−(CF2CF2)a(CF2CF(CF3))b−CF=CF2 (1)
(式中、aとbは0〜2の整数であり、同一または異なっていても良い。)
で示されるペルフルオロアルカジエンを製造する方法において、
次の一般式(2):
XCF2CFX−(CF2CF2)a(CF2CF(CF3))b−CFY−CF2X
(2)
(式中、aとbは前記と同意義であり、Xは塩素、臭素またはヨウ素を示し、Yは塩素、臭素、ヨウ素またはフッ素を示す。)
で示されるテトラハロゲン化ペルフルオロアルカンを;
有機溶媒中で、Mg,Zn及びCuから選択される少なくとも1種の金属、1,2−ジブロモエタン及び次の一般式(3):
RX (3)
(式中、Xは塩素、臭素、ヨウ素のいずれかであり、Rは直鎖状、分枝状、環状のアルキル基を示す。)で示されるハロゲン化アルキルの存在下、加熱ないしは沸騰還流を行うことを特徴とする、一般式(2)のテトラハロゲン化ペルフルオロアルカンから一般式(1)のペルフルオロアルカジエンを製造する方法。The following general formula (1) having double bonds at both ends of the carbon chain:
CF 2 = CF- (CF 2 CF 2) a (CF 2 CF (CF 3)) b -CF = CF 2 (1)
(Wherein, a and b are integers of 0 to 2 and may be the same or different.)
In a method for producing a perfluoroalkadiene represented by:
The following general formula (2):
XCF 2 CFX- (CF 2 CF 2 ) a (CF 2 CF (CF 3)) b -CFY-CF 2 X
(2)
(Wherein, a and b are as defined above, X represents chlorine, bromine or iodine, and Y represents chlorine, bromine, iodine or fluorine.)
A tetrahalogenated perfluoroalkane represented by:
In an organic solvent, at least one metal selected from Mg, Zn and Cu , 1,2-dibromoethane and the following general formula (3):
RX (3)
(Wherein X is any one of chlorine, bromine, and iodine, and R represents a linear, branched, or cyclic alkyl group). A process for producing a perfluoroalkadiene of general formula (1) from a tetrahalogenated perfluoroalkane of general formula (2), characterized in that it is carried out.
RX (3)
(式中、Xは塩素、臭素、ヨウ素のいずれかであり、Rは直鎖状、分枝状、環状のアルキル基を示す。)で示されるハロゲン化アルキルを原料のテトラハロゲン化ペルフルオロアルカンに対し0.05〜0.5当量の範囲で加える、請求項1記載のペルフルオロアルカジエンを製造する方法。Formula (3):
RX (3)
(Wherein X is any one of chlorine, bromine, and iodine, and R represents a linear, branched, or cyclic alkyl group .) The alkyl halide represented by the raw material is a tetrahalogenated perfluoroalkane. The method for producing perfluoroalkadiene according to claim 1, which is added in an amount of 0.05 to 0.5 equivalents.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000313523A JP4684402B2 (en) | 1999-10-26 | 2000-10-13 | Method for producing perfluoroalkadiene |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30422799 | 1999-10-26 | ||
JP11-304227 | 1999-10-26 | ||
JP2000313523A JP4684402B2 (en) | 1999-10-26 | 2000-10-13 | Method for producing perfluoroalkadiene |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001192347A JP2001192347A (en) | 2001-07-17 |
JP2001192347A5 JP2001192347A5 (en) | 2007-11-29 |
JP4684402B2 true JP4684402B2 (en) | 2011-05-18 |
Family
ID=26563828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000313523A Expired - Lifetime JP4684402B2 (en) | 1999-10-26 | 2000-10-13 | Method for producing perfluoroalkadiene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4684402B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100852900B1 (en) * | 2007-04-20 | 2008-08-19 | (주)후성 | Method of manufacturing perfluroalkadiene |
RU2528334C1 (en) * | 2013-05-27 | 2014-09-10 | Закрытое акционерное общество научно-производственное Объединение "ПиМ-Инвест" (ЗАО НПО "Пим-Инвест") | Method of synthesysing 6,6,7,7,8,8,8-heptafluoro-5,5-(trifluoromethyl)octadiene-1,3-prospective monomer for fluorine-containing polymers |
EP3590912A4 (en) * | 2017-02-03 | 2020-12-30 | Daikin Industries, Ltd. | Method for producing perfluoroalkadiene compounds |
JP6813003B2 (en) * | 2018-06-15 | 2021-01-13 | ダイキン工業株式会社 | Method for producing perfluoroalkaziene compound |
JP7158906B2 (en) * | 2018-06-15 | 2022-10-24 | ダイキン工業株式会社 | Method for producing perfluoroalkadiene compound |
CN112154133A (en) * | 2018-06-22 | 2020-12-29 | 昭和电工株式会社 | Process for producing hexafluoro-1, 3-butadiene |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1207496B (en) * | 1985-05-29 | 1989-05-25 | Montefluos Spa | PROCEDURE FOR THE SYNTHESIS OF HEXAFLUOROBUTADIENE AND HIGHER FLUORINATED DIENES. |
IT1199678B (en) * | 1986-11-27 | 1988-12-30 | Ausimont Spa | PROCEDURE FOR THE SYNTHESIS OF PERFLUOROALCADIENI |
JPS63162633A (en) * | 1986-12-26 | 1988-07-06 | Mitsui Petrochem Ind Ltd | Production of fluorine-containing olefin |
JP2503552B2 (en) * | 1987-12-01 | 1996-06-05 | 旭硝子株式会社 | Novel fluorinated compound and method for producing the same |
JP2503549B2 (en) * | 1987-12-01 | 1996-06-05 | 旭硝子株式会社 | Method for producing fluorine-containing compound |
JP2638105B2 (en) * | 1988-08-02 | 1997-08-06 | 旭硝子株式会社 | New fluorine-containing compound and method for producing the same |
JP2833260B2 (en) * | 1991-04-23 | 1998-12-09 | 旭硝子株式会社 | New fluorine-containing compound and method for producing the same |
-
2000
- 2000-10-13 JP JP2000313523A patent/JP4684402B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001192347A (en) | 2001-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Umemoto et al. | Discovery of practical production processes for arylsulfur pentafluorides and their higher homologues, bis-and tris (sulfur pentafluorides): Beginning of a new era of “super-trifluoromethyl” arene chemistry and its industry | |
CN101522611B (en) | Substituted phenylsulfur trifluoride and other like fluorinating agents | |
JPH09500900A (en) | Method for producing perfluoroalkyl iodides | |
KR20070057155A (en) | Chemical production processes and systems | |
JPS6226240A (en) | Synthesis of hexafluorobutadiene and higher perfluorinated diene | |
JP4684402B2 (en) | Method for producing perfluoroalkadiene | |
JP4684401B2 (en) | Method for producing perfluoroalkadiene | |
JP4106520B2 (en) | Method for producing fluorine-containing alkyl iodide | |
JP2004501160A (en) | Fluorine tin compound and method of using fluorine tin compound | |
JPS62228492A (en) | Prevention of corrosion by mixture of hydrogen fluoride and antimony pentahalide | |
JP2589108B2 (en) | Method for synthesizing perfluoroalkanediene | |
JP2004026800A (en) | Method for manufacturing perfluoro unsaturated hydrocarbon by dehalogenation reaction | |
US4379768A (en) | Process for producing perfluorosuccinyl fluoride | |
JPH0360813B2 (en) | ||
JP2002532445A (en) | Method for adding haloalkanes to alkenes contacted with organophosphine compound | |
JPS638102B2 (en) | ||
JPH0620560B2 (en) | New catalyst for liquid phase fluorination | |
JP3398719B2 (en) | Method for producing hexafluoroisobutene | |
JP5315710B2 (en) | Process for producing 1-bromo-3-fluoro-5-difluoromethylbenzene | |
Van Der Puy | Trifluoroethylation of olefins with trichlorotrifluoroethane | |
Kvíčala et al. | (9H-Fluoren-9-ylidene) fluoromethyllithium, a Stabilized Fluoroalkenyl Carbanion. Preparation, Reactions, 13 C and 19 F NMR Spectra | |
JPH06128247A (en) | Production of fluorine-containing dioxolane compound | |
JP2008184410A (en) | Method for producing 2,2-difluoro-phenylacetoacetate | |
JP3921282B2 (en) | Method for producing perfluorocarboxylic acid halide | |
Zhu et al. | Chemical transformation of bis ((perfluoroalkyl) sulfonyl) methanes and 1, 1, 3, 3‐tetraoxopolyfluoro‐1, 3‐dithiaycloalkanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4684402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |