JP4684401B2 - Method for producing perfluoroalkadiene - Google Patents

Method for producing perfluoroalkadiene Download PDF

Info

Publication number
JP4684401B2
JP4684401B2 JP2000312981A JP2000312981A JP4684401B2 JP 4684401 B2 JP4684401 B2 JP 4684401B2 JP 2000312981 A JP2000312981 A JP 2000312981A JP 2000312981 A JP2000312981 A JP 2000312981A JP 4684401 B2 JP4684401 B2 JP 4684401B2
Authority
JP
Japan
Prior art keywords
reaction
perfluoroalkadiene
producing
formula
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000312981A
Other languages
Japanese (ja)
Other versions
JP2001192346A (en
JP2001192346A5 (en
Inventor
原 高
泰輔 米村
博至 荒川
宏治 嶋田
冬彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2000312981A priority Critical patent/JP4684401B2/en
Publication of JP2001192346A publication Critical patent/JP2001192346A/en
Publication of JP2001192346A5 publication Critical patent/JP2001192346A5/ja
Application granted granted Critical
Publication of JP4684401B2 publication Critical patent/JP4684401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば塗料用のポリマーの原料、あるいは半導体用のエッチングガスとして利用可能なα,ω−ペルフルオロアルカジエンの製造方法に関する。
【0002】
【従来の技術】
α,ω−ペルフルオロアルカジエンの合成方法として、最も典型的なものでは、炭素数4から成る化合物のペルフルオロブタジエンが古くから研究されている。
【0003】
例えば、R.N.Haszeldine:J.Chem.Soc.,4423(1952)には、CClF=CF2を原料にしてIClの付加によりCClF2−CClFIを得、続いてHgの存在下、光反応によってCClF2−CClF−CClF−CClF2を合成し、これをエタノール中、亜鉛で処理を行うことによってCF2=CF−CF=CF2を得る方法が報告されている。しかし、この方法では、工程が数多く、水銀など環境上好ましくない原材料を使用するなどの問題がある。
【0004】
また、R.N.Haszeldineは、J.Chem.Soc.,4026(1954)において、ペルフルオロアジピン酸塩の熱分解によるCF2=CF−CF=CF2の合成を報告している。しかし、この反応は収率が低く、異性体が多量に生成するなど工業的な製法としては好ましくない。
【0005】
W.T.Millerによる米国特許第2,668,182号明細書では、CClF=CF2を原料に550℃のパイレックス管中で反応を行い、CF2=CF−CClF−CClF2を得て、これを塩素化あるいは臭素化し、それぞれCClF2−CClF−CClF−CClF2またはCBrF2−CBrF−CClF−CClF2に転化後、前述のJ.Chem.Soc.,4423(1952)の方法と同様に亜鉛によって脱ハロゲン化反応を行い、CF2=CF−CF=CF2を得るものである。この反応では第一段のCF2=CF−CClF−CClF2を得る反応の収率が低く、副生物が多いことから、これもまた工業的に適した方法とは言いがたい。
【0006】
G.Bargigia, V.Tortelli, C.Tonelli,S.Mondenaらの欧州特許出願第0 270 956号、同グループらによる特開昭62−26240号公報、 E.S.Elizabath:J.Org.Chem.,36(1971)364などでは、CF2=CF2を原料にヨウ素付加または臭素付加によって得られるXCF2−CF2X(X=I,Br)のテロメリゼーション反応により生成するXCF2−CF2−CF2−CF2Xを−80℃から+150℃の範囲で非プロトン性の有機溶媒中、Mg,Zn,CdまたはLiの有機金属化合物との反応によってCF2=CF−CF=CF2を得る反応が報告されている。この方法では、比較的容易に原料のXCF2−CF2−CF2−CF2Xが入手でき、比較的工業化しやすい方法と言えなくもない。しかし、脱ハロゲン化反応において、活性の高い有機金属化合物を多量に必要とすることから依然、工業化には適さない。
【0007】
なぜならば、有機金属化合物は次のような問題がある。
▲1▼水分に対して鋭敏であるので、加水分解をしないように特別な注意が必要である。
▲2▼有機金属化合物は、製造時にかなりの危険が伴い、例えば、グリニャール試薬を合成する時、冷却が足りなかった場合など反応の制御を誤ると、反応が暴走し、爆発的に進行することがしばしば見られる。
▲3▼有機金属化合物は、水分・酸素などと容易に反応する極めて活性な化合物であるので、大量に保存・使用することは難しく、工業的に取り扱うことは貯蔵の面でも危険と考えられる。
▲4▼有機金属化合物は、上記の理由によって価格がかなり高く、工業的に大量に使用することはコスト的にも不利益であると考えられる。
【0008】
【発明が解決しようとする課題】
上記のような従来技術の諸欠点に鑑み、本発明はこれらの欠点が軽減ないし払拭された安全で、工業的実施に適したペルフルオロアルカジエン類の製造方法を提供することを主たる目的としている。
【0009】
かくして、本発明は有機金属化合物を使用することなく、ハロゲン化アルキルを触媒として反応系内に存在させ、金属とXCF2−CF2−CF2−CF2X(X=I,Br)を反応させる新しい製造方法を提供する。即ち、本発明においてMgを例にとれば、触媒量のハロゲン化アルキルとMgを分けて反応系に入れることで、危険な有機金属化合物を直接扱う必要がなく、水分の混入も反応系を窒素シールする程度で防ぐことができる。従って、試薬そのものの取り扱いが非常に容易である。本法では、大量の溶媒中で小規模の触媒と脱ハロゲン化剤とによる反応(グリニャール反応を行う際の1/2〜1/20のスケール)を行うことが出来るので、反応が穏やかで安全である。さらに貯蔵上の問題も比較的活性の少ない金属とハロゲン化アルキルとを分けて用いることによって解消できる。使用するハロゲン化アルキルの量も1/2〜1/20に低減できるので、これもコスト的に有利である。
【0010】
安価なα,ω−ペルフルオロアルカジエンを工業的に製造することが可能な方法を提供することも本発明の一目的である。
【0011】
【課題を解決するための手段】
本発明は、上述の課題を解決すべく成された発明である。即ち、工業的に入手可能なα,ω−ジヨードまたはジブロモペルフルオロアルカンを−78℃から+200℃の範囲でテトラヒドロフランなどの有機溶媒中、触媒として適量のハロゲン化アルキルの存在下、Mg,Zn,Cd,Al,Cu,NaまたはLiなどの金属と反応させ、脱IFあるいは脱BrFを行うことによって高収率でα,ω−ペルフルオロアルカジエンを得るものである。吸湿性が高く、分解しやすい上、高価な有機金属化合物を使用しないことから、安価で工業的に適した製造方法であると共に作業性及び安全性の向上も図れる。
【0012】
本発明で目的とする化合物は、炭素鎖の両末端に2重結合を有する下記の一般式(1):
CF2=CF−(CF2CF2a(CF2CF(CF3))b−CF=CF2(1)
(式中、aとbは0〜2の整数であり、同一または異なっていても良い。)
で示されるペルフルオロアルカジエン類である。
【0013】
反応の原料として使用されるα,ω-ジハロゲン化ペルフルオロアルカン類は、下式(2):
XCF2CF2−(CF2CF2a(CF2CF(CF3))b−CF2−CF2X(2)
(式中、aとbは前記と同意義であり、両端のXはヨウ素であるかもしくは臭素を示す。)
で示される。
【0014】
触媒として用いられるハロゲン化アルキルは、一般式(3):
RX (3)
で示され、Xは塩素、臭素、ヨウ素のいずれか、Rは直鎖状、分枝状、あるいは環状のアルキル基で示される化合物の中から選ばれる。触媒として使用されるハロゲン化アルキル(3)の量は、原料のα,ω−ジハロゲン化ペルフルオロアルカン類(2)に対して0.05当量から0.5当量の範囲内である。
【0015】
また、反応の活性剤として一般式X−R’−Xで示されるアルキレンジハライド(R’は炭素数が1〜7の直鎖状、分枝状、あるいは環状のアルキレン基で示される化合物の中から選ばれ、Xは前記の通り。)及び/またはヨウ素などを少量添加すると反応を容易に開始させることができ、さらに望ましい。
【0016】
反応に使用される金属としては、Mg,Zn,Cd,Al,Cu,NaまたはLiなどが望ましい。これらの金属を1種もしくは2種以上組合わせて使用する。形状としては、切削片状または塊状、粉末状のものを使用でき、大きさは適宜選択できる。使用量としては、当量以上であるが、反応効率とコスト面から1.0〜5当量程度が好ましい。
【0017】
反応を実施するのに使用できる溶媒は、テトラヒドロフラン、ジオキサン、エチルエーテル、イソプロピルエーテルなどの直鎖あるいは分枝状、環状エーテルや、ジメトキシエタン、2−メトキシエチルエーテルなどのポリエーテルまたはヘキサン、オクタン、ノナン、石油エーテルなどの炭化水素類、酢酸エチル、酢酸メチル、プロピオン酸エチルなどのエステル類、ホスホン酸トリエチルなどのリン酸エステル、炭酸ジエチルあるいは炭酸エチレンなどの鎖状、環状炭酸エステル、アセトニトリルやベンゾニトリルなどのアルキルまたはアリールニトリル、アセトン、メチルエチルケトンなどのケトン類、無水酢酸などの酸無水物、N,N'−ジメチルホルムアミド(DMF)やN,N'−ジメチルアセトアミドなどのアミド類、ジメチルスルホキシド(DMSO)のようなスルホキシド類、ニトロエタンまたはニトロベンゼンのような脂肪族または芳香族ニトロ化合物、ピリジン、ピペリジンなどの含窒素複素環化合物、ジメチルスルホンやフェニルスルホンなどのスルホン化合物、硫化ジエチルまたは硫化ジフェニルなどのジアルキルあるいはジアリールスルフィド類などである。
【0018】
反応温度は、−78℃から+200℃の範囲内で行うことが望ましい。
上記の有機溶媒中で、金属及びハロゲン化アルキルと共に、加熱ないしは沸騰還流を行うことで、前述の式(2)から式(1)のペルフルオロアルカジエン類を製造する。
【0019】
使用する溶媒の量は、反応の原料となるα,ω−ジハロゲン化ペルフルオロアルカン(2)が反応時に0.1M〜2M、望ましくは0.2M〜1.0Mになるように調整することが好ましいが、原料種によってはこの範囲内に限定するものではない。反応の原料として用いられるα,ω−ジハロゲン化ペルフルオロアルカンは上述の溶媒と同じ溶媒で希釈することが望ましい。
【0020】
以下に本発明の代表的な反応実施例を挙げて、本発明を更に説明するが、本発明は、これに限定されるものではない。
【0021】
【実施例1】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.2当量のMgとテトラヒドロフラン20mL,1,2−ジブロモエタン0.1mL、さらに触媒のブロモエタンを0.2当量加えた。この溶液を還流状態まで加熱し、これに5mLのテトラヒドロフランで希釈した5.0gの1,4−ジヨードペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶媒中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は1.57g生成していた(収率;88%)。
【0022】
【実施例2】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.2当量のMgとテトラヒドロフラン40mL,1,2−ジブロモエタン0.1mL、さらに触媒のイソプロピルブロミドを0.3当量加えた。この溶液を還流状態まで加熱し、これに10mLのテトラヒドロフランで希釈した5.0gの1,4−ジブロモペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶液中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は1.91g生成していた(収率;85%)。
【0023】
【実施例3】
−78℃に冷却したトラップ管に連結されたビクロー管付の蒸留装置と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、1.2当量のMgとテトラヒドロフラン50mL,1,2−ジブロモエタン0.1mL、さらに触媒の1−ブロモプロパンを0.1当量加えた。この溶液を還流状態まで加熱し、これに10mLのテトラヒドロフランで希釈した5.0gの1,6−ジヨードペルフルオロヘキサンを泡立ちが激しすぎないようにゆっくりと加えた。反応生成物は蒸留装置を通して溶媒と共に留出される。滴下終了後も沸騰還流を続け、反応溶液中に残存する生成物も蒸留装置を通して溶媒と共に留出させた。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF2−CF2−CF=CF2は1.85g生成していた(収率;78%)。
【0024】
【実施例4】
−78℃冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコを窒素雰囲気下、−70℃に冷却し、無水ヘキサン30mLと1.5当量のLi、さらに触媒の1−ブロモブタンを0.2当量加えた。この溶液を還流状態まで加熱し、これに5mLの無水ヘキサンで希釈した5.0gの1,4−ジヨードペルフルオロブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後、さらには沸騰還流を行い、反応溶媒中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は1.42g生成していた(収率;80%)。
【0025】
【実施例5】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた100mLの3つ口フラスコに窒素雰囲気下、−70℃に冷却し、無水ヘキサン40mLと1.5当量のNaを加えた。この溶液を還流状態まで加熱し、これに5mLの無水ヘキサンで希釈した5.0gの1,4−ジヨードペルフルオロブタンと0.2当量の1−ブロモブタンを泡立ちが激しすぎないようにゆっくりと加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後、さらに沸騰還流を行い、反応溶媒中に残存するCF2=CF−CF=CF2を追い出した。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は1.10g生成していた(収率;62%)。
【0026】
【実施例6】
実施例1で、Mgの代わりにZn−Cu(95:5の組合わせ)を用いた以外は同様の方法で、5.0gの1,4−ジヨードペルフルオロブタンを加え、沸騰還流を行った。トラップ管中に捕集された液をガスクロマトグラフィーによって分析を行ったところ、CF2=CF−CF=CF2は1.50g生成していた(収率;84%)。
【0027】
【比較例1】
−78℃に冷却したトラップ管に接続した還流冷却管と圧力平衡管付の滴下ロートを備えた200mLの3つ口フラスコを窒素雰囲気下、1.5当量のMgとテトラヒドロフラン40mL,1,2−ジブロモエタン0.1mL、さらに触媒のブロモエタンを0.02当量加えた。この溶液を還流状態まで加熱し、これに10mLのテトラヒドロフランで希釈した10.0gの1.4−ジヨードペルフルオロブタンを30分間かけて加えた。発生した気体は−78℃のトラップ管で捕集した。滴下終了後も沸騰還流を続け、反応溶媒中に残存するCF2=CF−CF=CF2を追い出した。気相部のガスをガスクロマトグラフィーによって分析を行ったところ、目的のCF2=CF−CF=CF2の僅かな生成は認められたが、トラップ管中に液はほとんど捕集されなかった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an α, ω-perfluoroalkadiene that can be used as a raw material for a polymer for paints or an etching gas for semiconductors, for example.
[0002]
[Prior art]
As the most typical method for synthesizing α, ω-perfluoroalkadiene, perfluorobutadiene, a compound having 4 carbon atoms, has been studied for a long time.
[0003]
For example, R.A. N. Haszeldine: J.M. Chem. Soc. , The 4423 (1952), to give the CClF 2 -CClFI by the addition of ICl to a CClF = CF 2 in the raw material, followed by the presence of Hg, to synthesize CClF 2 -CClF-CClF-CClF 2 by photoreaction, It has been reported that CF 2 = CF-CF = CF 2 is obtained by treating this with zinc in ethanol. However, in this method, there are many steps, and there are problems such as using environmentally undesirable raw materials such as mercury.
[0004]
R. N. Haszeldine, J. et al. Chem. Soc. In 4026 (1954), reported the synthesis of CF 2 = CF-CF = CF 2 by thermal decomposition of the perfluoro adipate. However, this reaction is not preferable as an industrial production method because the yield is low and isomers are produced in large quantities.
[0005]
W. T.A. In US Pat. No. 2,668,182 by Miller, CClF = CF 2 is used as a raw material to carry out a reaction in a Pyrex tube at 550 ° C. to obtain CF 2 = CF—CClF—CClF 2 , which is chlorinated. Alternatively brominated, after conversion respectively CClF 2 -CClF-CClF-CClF 2 or CBrF 2 -CBrF-CClF-CClF 2 , the aforementioned J. Chem. Soc. , 4423 (1952), a dehalogenation reaction is performed with zinc to obtain CF 2 = CF-CF = CF 2 . In this reaction, the yield of the reaction for obtaining the first stage CF 2 = CF—CClF—CClF 2 is low, and there are many by-products, so this is also not an industrially suitable method.
[0006]
G. Bargilia, V. Tortelli, C.I. Tonelli, S.M. Mondena et al European Patent Application No. 0 270 956, Japanese Patent Application Laid-Open No. 62-26240 by the group et al. S. Elizabath: J.M. Org. Chem. , 36 (1971) 364 In like, CF 2 = CF 2 to XCF 2 -CF 2 obtained by iodine addition or bromine added to the material X (X = I, Br) XCF 2 -CF produced by telomerization reactions of 2 -CF 2 organic solvent aprotic range from -CF 2 X a + 150 ℃ from -80 ℃, Mg, Zn, CF by reaction with an organometallic compound of Cd or Li 2 = CF-CF = CF 2 The reaction to obtain is reported. In this method, the raw material XCF 2 —CF 2 —CF 2 —CF 2 X can be obtained relatively easily, and it can be said that this method is relatively easy to industrialize. However, since a large amount of highly active organometallic compound is required in the dehalogenation reaction, it is still not suitable for industrialization.
[0007]
This is because organometallic compounds have the following problems.
(1) Since it is sensitive to moisture, special care is required not to hydrolyze.
(2) Organometallic compounds are associated with considerable danger during production. For example, when synthesizing a Grignard reagent, if the reaction is miscontrolled, such as when cooling is insufficient, the reaction may run away and proceed explosively. Is often seen.
(3) Since organometallic compounds are extremely active compounds that easily react with moisture, oxygen, etc., it is difficult to store and use them in large quantities, and industrial handling is considered dangerous in terms of storage.
{Circle around (4)} The organometallic compound is quite expensive for the above reasons, and it is considered disadvantageous in terms of cost to use it in large quantities industrially.
[0008]
[Problems to be solved by the invention]
In view of the above-mentioned drawbacks of the prior art, the main object of the present invention is to provide a method for producing perfluoroalkadienes which is safe and suitable for industrial practice, in which these drawbacks are reduced or eliminated.
[0009]
Thus, in the present invention, an alkyl halide is present as a catalyst in the reaction system without using an organometallic compound, and the metal and XCF 2 —CF 2 —CF 2 —CF 2 X (X═I, Br) are reacted. To provide a new manufacturing method. That is, taking Mg as an example in the present invention, a catalytic amount of alkyl halide and Mg are separately put into the reaction system, so that it is not necessary to handle dangerous organometallic compounds directly, and moisture is mixed in the reaction system with nitrogen. It can be prevented by sealing. Therefore, handling of the reagent itself is very easy. In this method, a reaction with a small-scale catalyst and a dehalogenating agent (a scale of 1/2 to 1/20 when performing a Grignard reaction) can be performed in a large amount of solvent, so the reaction is gentle and safe. It is. Further, storage problems can be solved by using a relatively less active metal and an alkyl halide separately. Since the amount of alkyl halide used can be reduced to 1/2 to 1/20, this is also advantageous in terms of cost.
[0010]
It is also an object of the present invention to provide a method capable of industrially producing an inexpensive α, ω-perfluoroalkadiene.
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems. That is, α, ω-diiodo or dibromoperfluoroalkane, which is industrially available, is used in an organic solvent such as tetrahydrofuran in the range of −78 ° C. to + 200 ° C. in the presence of an appropriate amount of alkyl halide as a catalyst. , Al, Cu, Na, Li, and the like are reacted with deIF or deBrF to obtain α, ω-perfluoroalkadiene in high yield. Since it is highly hygroscopic and easily decomposed and does not use an expensive organometallic compound, it is an inexpensive and industrially suitable production method and can improve workability and safety.
[0012]
The target compound of the present invention is represented by the following general formula (1) having double bonds at both ends of the carbon chain:
CF 2 = CF- (CF 2 CF 2) a (CF 2 CF (CF 3)) b -CF = CF 2 (1)
(Wherein, a and b are integers of 0 to 2 and may be the same or different.)
Are perfluoroalkadienes.
[0013]
The α, ω-dihalogenated perfluoroalkane used as a raw material for the reaction is represented by the following formula (2):
XCF 2 CF 2 - (CF 2 CF 2) a (CF 2 CF (CF 3)) b -CF 2 -CF 2 X (2)
(In the formula, a and b are as defined above, and X at both ends is iodine or bromine.)
Indicated by
[0014]
The alkyl halide used as the catalyst has the general formula (3):
RX (3)
Wherein X is any one of chlorine, bromine, and iodine, and R is selected from compounds represented by a linear, branched, or cyclic alkyl group . The amount of the alkyl halide (3) used as the catalyst is in the range of 0.05 equivalents to 0.5 equivalents relative to the starting α, ω-dihalogenated perfluoroalkane (2).
[0015]
Moreover, the general formula X- R 'alkylene dihalide (R represented by -X' and a reaction activator in a compound having a carbon number 1 to 7 of the linear, branched, or represented by a cyclic alkylene group X is as described above. )) And / or addition of a small amount of iodine or the like is preferable because the reaction can be easily started.
[0016]
As the metal used for the reaction, Mg, Zn, Cd, Al, Cu, Na, Li or the like is desirable. These metals are used alone or in combination. The shape can be a cut piece, block, or powder, and the size can be selected as appropriate. The amount used is equal to or more than the equivalent, but is preferably about 1.0 to 5 equivalents from the viewpoint of reaction efficiency and cost.
[0017]
Solvents that can be used to carry out the reaction are linear or branched, cyclic ethers such as tetrahydrofuran, dioxane, ethyl ether, isopropyl ether, polyethers such as dimethoxyethane, 2-methoxyethyl ether or hexane, octane, Nonanes, hydrocarbons such as petroleum ether, esters such as ethyl acetate, methyl acetate and ethyl propionate, phosphate esters such as triethyl phosphonate, chain chains such as diethyl carbonate and ethylene carbonate, cyclic carbonates, acetonitrile and benzo Alkyl or aryl nitrile such as nitrile, ketones such as acetone and methyl ethyl ketone, acid anhydrides such as acetic anhydride, amides such as N, N′-dimethylformamide (DMF) and N, N′-dimethylacetamide, dimethyl Sulfoxides such as sulfoxide (DMSO), aliphatic or aromatic nitro compounds such as nitroethane or nitrobenzene, nitrogen-containing heterocyclic compounds such as pyridine and piperidine, sulfone compounds such as dimethylsulfone and phenylsulfone, diethyl sulfide or diphenyl sulfide And dialkyl or diaryl sulfides.
[0018]
The reaction temperature is desirably within the range of −78 ° C. to + 200 ° C.
The perfluoroalkadiene of the formula (1) is produced from the above formula (2) by heating or boiling reflux together with the metal and the alkyl halide in the above organic solvent.
[0019]
The amount of the solvent to be used is preferably adjusted so that the α, ω-dihalogenated perfluoroalkane (2) as a raw material of the reaction is 0.1M to 2M, preferably 0.2M to 1.0M during the reaction. However, the raw material species is not limited to this range. It is desirable to dilute the α, ω-dihalogenated perfluoroalkane used as a raw material for the reaction with the same solvent as described above.
[0020]
Hereinafter, the present invention will be further described with reference to typical reaction examples of the present invention, but the present invention is not limited thereto.
[0021]
[Example 1]
In a 100 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibrium pipe, 1.2 equivalents of Mg and 20 mL of tetrahydrofuran, 1,2- Dibromoethane (0.1 mL) and catalytic bromoethane (0.2 equivalent) were added. This solution was heated to reflux, and 5.0 g of 1,4-diiodoperfluorobutane diluted with 5 mL of tetrahydrofuran was slowly added to the solution so as not to cause excessive foaming. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, boiling reflux was continued, and CF 2 = CF-CF = CF 2 remaining in the reaction solvent was driven out. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 1.57 g (yield: 88%).
[0022]
[Example 2]
In a 100 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibrium pipe, 1.2 equivalents of Mg and 40 mL of tetrahydrofuran, 1,2- Dibromoethane (0.1 mL) and catalytic isopropyl bromide (0.3 equivalent) were added. This solution was heated to reflux, and 5.0 g of 1,4-dibromoperfluorobutane diluted with 10 mL of tetrahydrofuran was slowly added thereto so as not to cause excessive foaming. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, boiling reflux was continued, and CF 2 = CF-CF = CF 2 remaining in the reaction solution was driven out. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 1.91 g (yield: 85%).
[0023]
[Example 3]
In a 100 mL three-necked flask equipped with a distillation apparatus with a Vicra tube connected to a trap tube cooled to −78 ° C. and a dropping funnel with a pressure equilibrium tube, 1.2 equivalents of Mg and 50 mL of tetrahydrofuran under a nitrogen atmosphere, 0.1 mL of 1,2-dibromoethane and 0.1 equivalent of catalyst 1-bromopropane were added. This solution was heated to reflux, and 5.0 g of 1,6-diiodoperfluorohexane diluted with 10 mL of tetrahydrofuran was slowly added thereto so as not to cause excessive foaming. The reaction product is distilled with the solvent through a distillation apparatus. After completion of the dropwise addition, boiling reflux was continued, and the product remaining in the reaction solution was distilled together with the solvent through a distillation apparatus. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF 2 -CF 2 -CF = CF 2 was generated 1.85 g (yield: 78%) .
[0024]
[Example 4]
A 100 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled at −78 ° C. and a dropping funnel equipped with a pressure equilibrium tube was cooled to −70 ° C. in a nitrogen atmosphere, and 30 mL of anhydrous hexane and 1.5 equivalents were added. Of Li and 0.2 equivalent of catalyst 1-bromobutane was added. This solution was heated to reflux, and 5.0 g of 1,4-diiodoperfluorobutane diluted with 5 mL of anhydrous hexane was slowly added thereto so as not to cause excessive foaming. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, further performs the boiling reflux expel CF 2 = CF-CF = CF 2 remaining in the reaction solvent. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 1.42 g (yield: 80%).
[0025]
[Example 5]
In a 100 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibration pipe, cooled to −70 ° C. in a nitrogen atmosphere, 40 mL anhydrous hexane and 1.5 mL An equivalent amount of Na was added. The solution was heated to reflux and 5.0 g of 1,4-diiodoperfluorobutane diluted with 5 mL of anhydrous hexane and 0.2 equivalents of 1-bromobutane were slowly added to avoid excessive bubbling. added. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, further subjected to boiling under reflux, to drive off the CF 2 = CF-CF = CF 2 remaining in the reaction solvent. The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 was generated 1.10 g (yield: 62%).
[0026]
[Example 6]
In Example 1, 5.0 g of 1,4-diiodoperfluorobutane was added in the same manner except that Zn—Cu (combination of 95: 5) was used in place of Mg, and boiling reflux was performed. . The liquid is collected in a trap tube was analyzed by gas chromatography, CF 2 = CF-CF = CF 2 had 1.50g produced (yield: 84%).
[0027]
[Comparative Example 1]
A 200 mL three-necked flask equipped with a reflux condenser connected to a trap pipe cooled to −78 ° C. and a dropping funnel with a pressure equilibrium pipe was placed under a nitrogen atmosphere, 1.5 equivalents of Mg and 40 mL of tetrahydrofuran, 1,2- Dibromoethane (0.1 mL) and catalytic bromoethane (0.02 equivalent) were added. The solution was heated to reflux and 10.0 g of 1.4-diiodoperfluorobutane diluted with 10 mL of tetrahydrofuran was added to it over 30 minutes. The generated gas was collected by a trap tube at -78 ° C. After completion of the dropwise addition, boiling reflux was continued, and CF 2 = CF-CF = CF 2 remaining in the reaction solvent was driven out. When the gas in the gas phase was analyzed by gas chromatography, the target CF 2 = CF-CF = CF 2 was slightly produced, but the liquid was hardly collected in the trap tube.

Claims (3)

炭素鎖の両末端に2重結合を有する下記の一般式(1):
CF2=CF−(CF2CF2a(CF2CF(CF3))b−CF=CF2 (1)
(式中、aとbは0〜2の整数であり、同一または異なっていても良い。)
で示されるペルフルオロアルカジエンを製造する方法において、
次式(2):
XCF2CF2−(CF2CF2a(CF2CF(CF3))b−CF2−CF2
(2)
(式中、aとbは前記と同意義であり、両端のXはヨウ素もしくは臭素を示す。)
で示されるα、ω−ジハロゲン化ペルフルオロアルカンを;
有機溶媒中で、Mg,Zn,Cu,Na及びLiから選択される少なくとも1種の金属、及び上記α,ω−ジハロゲン化ペルフルオロアルカンに対し0.05〜0.5当量の範囲の量の次式(3):
RX (3)
(式中、Xは塩素、臭素、ヨウ素のいずれかであり、Rは直鎖状、分枝状、環状のアルキル基を示す。)
で示されるハロゲン化アルキルと共に、加熱ないしは沸騰還流に付すことを特徴とする、一般式(1)式のペルフルオロアルカジエンを製造する方法。
The following general formula (1) having double bonds at both ends of the carbon chain:
CF 2 = CF- (CF 2 CF 2) a (CF 2 CF (CF 3)) b -CF = CF 2 (1)
(Wherein, a and b are integers of 0 to 2 and may be the same or different.)
In a method for producing a perfluoroalkadiene represented by:
Formula (2):
XCF 2 CF 2 - (CF 2 CF 2) a (CF 2 CF (CF 3)) b -CF 2 -CF 2 X
(2)
(Wherein, a and b are as defined above, and X at both ends represents iodine or bromine.)
An α, ω-dihalogenated perfluoroalkane represented by:
In an organic solvent, at least one metal selected from Mg, Zn 3 , Cu 2 , Na and Li, and an amount in the range of 0.05 to 0.5 equivalents relative to the α, ω-dihalogenated perfluoroalkane. Formula (3):
RX (3)
(In the formula, X is any one of chlorine, bromine, and iodine, and R represents a linear, branched, or cyclic alkyl group .)
A method for producing a perfluoroalkadiene of the general formula (1), which is subjected to heating or boiling reflux together with an alkyl halide represented by the formula:
活性剤として、一般式:X−R’−X(R’は炭素数が1〜7の直鎖状、分枝状あるいは環状のアルキレン基であり、Xは塩素、臭素またはヨウ素のいずれかである。)のアルキレンジハライドを存在させる請求項1に記載のペルフルオロアルカジエンを製造する方法As active agent, the general formula: X- R '-X (R' represents a linear 1-7 carbon atoms, a branched or cyclic alkylene group, X is chlorine, either bromine or iodine The process for producing a perfluoroalkadiene according to claim 1, wherein an alkylene dihalide is present. 乾燥ないし無水雰囲気下で反応を実施する請求項1または2に記載のペルフルオロアルカジエンを製造する方法The process for producing a perfluoroalkadiene according to claim 1 or 2, wherein the reaction is carried out in a dry or anhydrous atmosphere.
JP2000312981A 1999-10-26 2000-10-13 Method for producing perfluoroalkadiene Expired - Lifetime JP4684401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000312981A JP4684401B2 (en) 1999-10-26 2000-10-13 Method for producing perfluoroalkadiene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-304196 1999-10-26
JP30419699 1999-10-26
JP2000312981A JP4684401B2 (en) 1999-10-26 2000-10-13 Method for producing perfluoroalkadiene

Publications (3)

Publication Number Publication Date
JP2001192346A JP2001192346A (en) 2001-07-17
JP2001192346A5 JP2001192346A5 (en) 2007-11-29
JP4684401B2 true JP4684401B2 (en) 2011-05-18

Family

ID=26563816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000312981A Expired - Lifetime JP4684401B2 (en) 1999-10-26 2000-10-13 Method for producing perfluoroalkadiene

Country Status (1)

Country Link
JP (1) JP4684401B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852900B1 (en) * 2007-04-20 2008-08-19 (주)후성 Method of manufacturing perfluroalkadiene
EP3590912A4 (en) * 2017-02-03 2020-12-30 Daikin Industries, Ltd. Method for producing perfluoroalkadiene compounds
JP6813003B2 (en) * 2018-06-15 2021-01-13 ダイキン工業株式会社 Method for producing perfluoroalkaziene compound
JP7158906B2 (en) * 2018-06-15 2022-10-24 ダイキン工業株式会社 Method for producing perfluoroalkadiene compound
CN111269079B (en) * 2020-02-20 2024-04-05 扬州虹扬科技发展有限公司 Preparation system and preparation method of perfluoro 1, 3-butadiene
CN114014743A (en) * 2021-12-02 2022-02-08 苏州金宏气体股份有限公司 Method for continuously producing hexafluorobutadiene
CN115160103A (en) * 2022-06-27 2022-10-11 苏州金宏气体股份有限公司 Industrial synthesis method and device of hexafluorobutadiene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226240A (en) * 1985-05-29 1987-02-04 アウシモント・ソチエタ・ペル・アツイオニ Synthesis of hexafluorobutadiene and higher perfluorinated diene
JPS63141935A (en) * 1986-11-27 1988-06-14 アウシモント・ソチエタ・ペル・アツィオニ Synthesis of perfluoroalkanediene
JPS63162633A (en) * 1986-12-26 1988-07-06 Mitsui Petrochem Ind Ltd Production of fluorine-containing olefin
JPH01143843A (en) * 1987-12-01 1989-06-06 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof
JPH01143845A (en) * 1987-12-01 1989-06-06 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof
JPH0242038A (en) * 1988-08-02 1990-02-13 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof
JPH04327547A (en) * 1991-04-23 1992-11-17 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226240A (en) * 1985-05-29 1987-02-04 アウシモント・ソチエタ・ペル・アツイオニ Synthesis of hexafluorobutadiene and higher perfluorinated diene
JPS63141935A (en) * 1986-11-27 1988-06-14 アウシモント・ソチエタ・ペル・アツィオニ Synthesis of perfluoroalkanediene
JPS63162633A (en) * 1986-12-26 1988-07-06 Mitsui Petrochem Ind Ltd Production of fluorine-containing olefin
JPH01143843A (en) * 1987-12-01 1989-06-06 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof
JPH01143845A (en) * 1987-12-01 1989-06-06 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof
JPH0242038A (en) * 1988-08-02 1990-02-13 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof
JPH04327547A (en) * 1991-04-23 1992-11-17 Asahi Glass Co Ltd Novel fluorine-containing compound and production thereof

Also Published As

Publication number Publication date
JP2001192346A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
Umemoto et al. Discovery of practical production processes for arylsulfur pentafluorides and their higher homologues, bis-and tris (sulfur pentafluorides): Beginning of a new era of “super-trifluoromethyl” arene chemistry and its industry
JPS62135439A (en) Manufacture of hydrofluoroalkanes
JP4684401B2 (en) Method for producing perfluoroalkadiene
CN103068227B (en) The process of efficient preparation of fullerynes and method
JP4684402B2 (en) Method for producing perfluoroalkadiene
JP4106520B2 (en) Method for producing fluorine-containing alkyl iodide
JP2004501160A (en) Fluorine tin compound and method of using fluorine tin compound
JPH0244817B2 (en)
MacNeil et al. Regiospecific syn addition of (polyfluoroaryl) copper reagents to fluorinated acetylenes: preparation and subsequent functionalization of internal vinylcopper reagents
JP4222029B2 (en) Method for producing fluorine-containing compound
JP2004026800A (en) Method for manufacturing perfluoro unsaturated hydrocarbon by dehalogenation reaction
JPH0360813B2 (en)
JP2002532445A (en) Method for adding haloalkanes to alkenes contacted with organophosphine compound
JP3296519B2 (en) Method for producing halogenated aromatic compounds
EP0019804B1 (en) Bromination of side chain of m-phenoxytoluene
JPS638102B2 (en)
KR20010078281A (en) Process for the preparation of 3,5-bis-(trifluoromethyl)-benzoyl chlorides and novel 3,5-bis-(trihalogenomethyl)- and 3,5-dimethylbenzoyl halides
JP4081647B2 (en) Method for producing perfluoroalkyne compound
JP4066544B2 (en) Method for producing cyclopentenone
JP3398719B2 (en) Method for producing hexafluoroisobutene
Kvíčala et al. (9H-Fluoren-9-ylidene) fluoromethyllithium, a Stabilized Fluoroalkenyl Carbanion. Preparation, Reactions, 13 C and 19 F NMR Spectra
JP3921282B2 (en) Method for producing perfluorocarboxylic acid halide
JP2008184410A (en) Method for producing 2,2-difluoro-phenylacetoacetate
FR2604703A1 (en) PROCESS FOR THE PREPARATION OF POLYFLUOROENOLATES
JP3750749B2 (en) Method for producing organic fluorine compound

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250