JP4684022B2 - Electric energy metering method and electric energy metering device - Google Patents

Electric energy metering method and electric energy metering device Download PDF

Info

Publication number
JP4684022B2
JP4684022B2 JP2005186007A JP2005186007A JP4684022B2 JP 4684022 B2 JP4684022 B2 JP 4684022B2 JP 2005186007 A JP2005186007 A JP 2005186007A JP 2005186007 A JP2005186007 A JP 2005186007A JP 4684022 B2 JP4684022 B2 JP 4684022B2
Authority
JP
Japan
Prior art keywords
phase
current
conductor
circuit
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005186007A
Other languages
Japanese (ja)
Other versions
JP2007003431A (en
Inventor
康隆 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005186007A priority Critical patent/JP4684022B2/en
Publication of JP2007003431A publication Critical patent/JP2007003431A/en
Application granted granted Critical
Publication of JP4684022B2 publication Critical patent/JP4684022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

本発明は、電力量計量方法および電力量計量装置器具に関し、より詳細には交流電路の負荷電流や定格電圧に拘らず、単独電力量計を用いて電力量を計量できる電力量計量方法、および当該計量方法に使用される電力量計量装置器具に関する。   The present invention relates to a power metering method and a power meter device, and more particularly, a power metering method capable of metering power using a single wattmeter regardless of the load current and rated voltage of an AC circuit, and The present invention relates to a power meter device used in the metering method.

現在、交流電路の電力量を計量するための電力量計としては、交流電路に直接接続可能な単独電力量計(以下、単独計器ということがある。)、および交流電路に設置された計器用変成器と組み合わせて用いられる電力量計(以下、変成器組み合わせ計器ということがある。)の2種類に大別される。上記計器用変成器としては、計器用変流器(以下、CTということがある。)や計器用変圧変流器(以下、VCTということがある。)などが挙げられ、変成器組み合わせ計器は、これらの計器用変成器の2次側出力を導入するように構成されている。ここで、VCTとは、計器用変圧器(以下、VTということがある。)とCTとが接続され、これらが同一器体内に収納されたものである。   Currently, the watt-hour meter for measuring the amount of power in the AC circuit is a single watt-hour meter that can be directly connected to the AC circuit (hereinafter sometimes referred to as a single meter), and a meter installed in the AC circuit. There are two types of watt hour meters used in combination with transformers (hereinafter, sometimes referred to as transformer combination meters). Examples of the instrument transformer include an instrument current transformer (hereinafter sometimes referred to as CT) and an instrument transformer current transformer (hereinafter also referred to as VCT). The secondary output of these instrument transformers is configured to be introduced. Here, the VCT is an instrument transformer (hereinafter sometimes referred to as VT) and CT, which are stored in the same container.

上記2種類の電力量計は、交流電路の定格電圧および負荷電流の大きさによって使い分けることとされている。これは、低圧小電流の交流電路では、単独計器を直接当該電路に接続して電力量を計量することが可能であるが、高圧電路や低圧大電流電路では、単独計器に直接高電圧を印加しまたは大電流を流すことができないことによるものである。通常、定格電圧300V未満の低圧交流電路では、負荷(線)電流120A以下の場合単独計器が使用され、120Aを超える場合CT組み合わせ電力量計が使用される。また、定格電圧が300V以上の電路の場合には,VTとCTとを組み合わせた電力量計が用いられ、高圧電路では一般的にそれらを一体化したVCTが用いられる。   The two types of watt-hour meters are supposed to be properly used depending on the rated voltage of the AC circuit and the magnitude of the load current. This is because it is possible to measure the amount of power by connecting a single instrument directly to the current circuit in a low-voltage, small-current AC circuit, but in a high-voltage circuit or low-voltage, large-current circuit, a high voltage is directly applied to the single instrument. Or because a large current cannot flow. Normally, in a low voltage AC circuit with a rated voltage of less than 300 V, a single meter is used when the load (line) current is 120 A or less, and a CT combined watt hour meter is used when the load current exceeds 120 A. Further, in the case of an electric circuit with a rated voltage of 300 V or more, a watt hour meter combining VT and CT is used, and in a high piezoelectric circuit, a VCT in which these are integrated is generally used.

上記の単独計器と変成器組み合わせ計器とは、電圧信号および電流信号の入力方法が相違している。すなわち、単独計器では、交流電路を構成する電源側および負荷側の各相の配電線が所定の端子にそれぞれ接続される。例えば、三相3線式または単相3線式の電路に単独計器を設置する場合、当該計器の端子台にはそれぞれ電源側および負荷側の配電線各3線の合計6線が接続される。これは、電源側の3相のうち基準相を除く2相がそれぞれ計器内部で2線に分岐され、各線が電流回路および電圧回路にそれぞれ接続される構造となっていることによる。   The single instrument and the transformer combination instrument are different in the input method of the voltage signal and the current signal. That is, in the single meter, the distribution lines of the respective phases on the power supply side and the load side constituting the AC electric circuit are connected to predetermined terminals, respectively. For example, when a single meter is installed in a three-phase three-wire system or a single-phase three-wire circuit, a total of six wires, each of three wires on the power supply side and the load side, are connected to the terminal block of the meter. . This is because the two phases excluding the reference phase among the three phases on the power supply side are branched into two lines inside the meter, and each line is connected to the current circuit and the voltage circuit, respectively.

これに対して、変成器組み合わせ計器では、変成器としてCTを用いる場合、交流電路に設置された1つまたは複数のCTの2次電流および線間電圧は別個に電力量計に入力され、内部の電流回路および電圧回路にそれぞれ送られる。例えば、三相3線式または単相3線式の交流電路において、所定の基準相を除く2相にCTを設置するので、上記CT2次側の電流回線が各相2線、計4線と、3相のそれぞれに個別に接続された導線3線との合計7線を上記電力量計本体の所定の端子に接続する必要がある。なお、本明細書では、以下、用語「基準相」を、単相交流電路などのように電圧線と中性線とからなる場合には中性線の意味で用い、三相交流電路の場合には任意の1の相を使用することとする。   On the other hand, in the transformer combination meter, when CT is used as the transformer, the secondary current and the line voltage of one or more CTs installed in the AC circuit are separately input to the watt hour meter, To the current circuit and the voltage circuit. For example, in a three-phase three-wire or single-phase three-wire AC circuit, CTs are installed in two phases excluding a predetermined reference phase, so the current line on the CT secondary side has two wires for each phase, a total of four wires. It is necessary to connect a total of seven wires, including three conductor wires individually connected to each of the three phases, to a predetermined terminal of the watt-hour meter main body. In the present specification, hereinafter, the term “reference phase” is used to mean a neutral line when it is composed of a voltage line and a neutral line such as a single-phase AC circuit, and in the case of a three-phase AC circuit. Any one phase is used for.

このように、同じ電気方式の交流電路の場合でも、単独計器の6線端子に対してCT組み合わせ計器は7線端子が必要であり、両者は相互に交換して使用できない。そのため、計器メーカーでは、交流電路の電気方式ごとに単独計器と変成器組み合わせ計器とをそれぞれ供給可能なように製造し、ストックしておかなければならなかった。   Thus, even in the case of the AC circuit of the same electrical system, the CT combined instrument requires a 7-wire terminal with respect to the 6-wire terminal of a single instrument, and both cannot be used interchangeably. Therefore, the instrument manufacturer had to manufacture and stock a single instrument and a transformer combination instrument for each electrical system of the AC circuit.

また、電力取引にかかる電力量計は、定期的に検定を受けなければならず、検定を受けるに当たって当該電力量計の交換作業が必要となる。この場合、変成器組み合わせ計器において電力量計本体に変成器が内蔵されていれば問題はないが、電力量計本体と変成器とが別個に設置されている場合、変成器および電力量計本体の各端子に個別に電線を接続しなければならないため、交換作業に時間がかかるとともに、結線を誤り、交換後の電力量計が正しく電力量を計量しないといった事態が生じる可能性がある。このような問題は、特に交流電路と電力量計との設置場所が離れている場合、より顕著に生じるおそれがある。   In addition, a watt hour meter for power trading must be periodically certified, and the watt hour meter needs to be replaced before being certified. In this case, there is no problem if a transformer is built in the watt hour meter in the transformer combination meter, but if the watt hour meter and the transformer are installed separately, the transformer and the watt hour meter Since it is necessary to connect an electric wire to each of the terminals individually, replacement work takes time, and there is a possibility that the connection will be wrong and the watt hour meter after replacement will not correctly measure the amount of power. Such a problem may occur more conspicuously when the installation place of the AC electric circuit and the watt hour meter are separated from each other.

上記の誤結線の防止や作業時間の短縮を目的として、例えば特許文献1は、3相交流電路の電力量を計量する電力量計として、1つの特定線間電圧を入力する電圧入力手段と、三相交流電路の特定二相の線電流を変流器を介して入力する電流入力手段と、前記特定線間電圧から仮想三相電圧を求める仮想電圧変換手段と、前記特定二相の線電流および前記特定線間電圧と前記仮想三相電圧から電力量を求める電力量演算手段とを備えた電力量計を提案している。   For the purpose of preventing the above-described erroneous connection and shortening the working time, for example, Patent Document 1 is a watt hour meter that measures the amount of power of a three-phase AC circuit, and a voltage input unit that inputs one specific line voltage; Current input means for inputting a specific two-phase line current of a three-phase AC circuit via a current transformer, virtual voltage conversion means for obtaining a virtual three-phase voltage from the specific line voltage, and the specific two-phase line current And the watt-hour meter provided with the electric energy calculation means which calculates | requires electric energy from the said specific line voltage and the said virtual three-phase voltage is proposed.

しかし、上記提案の電力量計は、電路が平衡三相交流であることを前提とし、各相の位相差を用いて仮想三相電圧を求めることで、端子台への結線の数を減じるなどの効果を得るものであり、電力量計の設置や交換工事を容易に行うことができる利点はあるとしても、三相3線式の交流電路への使用に限られ、他の電気方式、例えば単相3線式などの単相交流電路などには使用することができないという問題がある。そのため、同じ3線式の交流電路であっても、単相の場合には上記提案にかかるもの以外に別個に電力量計を用意しなければならず、結果として計器メーカーは交流電路の電気方式ごとに各種電力量計をストックしておかなければならない点では従来と変わりがない。   However, the proposed watt-hour meter is based on the premise that the electric circuit is a balanced three-phase alternating current, and the number of connections to the terminal block is reduced by calculating the virtual three-phase voltage using the phase difference of each phase. Even if there is an advantage that the watt hour meter can be easily installed or replaced, it is limited to use in a three-phase three-wire AC circuit, and other electrical methods such as There is a problem that it cannot be used for a single-phase AC circuit such as a single-phase three-wire system. Therefore, even if it is the same three-wire AC circuit, in the case of a single phase, a watt hour meter must be prepared separately in addition to the one related to the above proposal. Each watt hour meter must be stocked every time.

特開2000−266788号公報JP 2000-266788 A

本発明は、上記事情に鑑み、交流電路の電圧の種別および負荷電流の大きさにかかわらず、従来の単独計器を用いた電力量の計量を可能とし、このように単独計器自体の汎用性を向上させることで、供給メーカー側におけるコスト削減を図ることができるのみならず、電力量計の設置や交換工事の際に誤結線を防止して容易かつ短時間に行うことが可能な電力量計量方法および電力量計量装置器具を提供することを目的とする。   In view of the above circumstances, the present invention makes it possible to measure the amount of electric power using a conventional single instrument regardless of the type of voltage of the AC circuit and the magnitude of the load current, and thus the versatility of the single instrument itself is thus achieved. By improving the system, it is possible not only to reduce costs on the part of the supplier, but also to measure energy easily and in a short time by preventing incorrect connections when installing or replacing electricity meters. It is an object to provide a method and a power meter device.

本発明者は、上記課題の下、鋭意検討を重ねた結果、変流器2次側の電流回線に交流電路の電圧を供給するか、または当該電路の電圧を降圧して供給することで単独計器を用いて電力量の計量が可能であり、電流回線に電路電圧を印加した場合でも、変流器の絶縁破壊を生じないことを見出し、本発明を完成するに至った。   As a result of intensive studies under the above-mentioned problems, the inventor alone supplied the AC circuit voltage to the current line on the secondary side of the current transformer or reduced the voltage of the circuit and supplied it alone. It has been found that the amount of electric power can be measured using a meter, and even when an electric circuit voltage is applied to the current line, dielectric breakdown of the current transformer does not occur, and the present invention has been completed.

すなわち、上記課題は、本発明の一局面によれば、交流電路の所定の基準相を含む各相の相導体にそれぞれ導体の一端を接続するとともに、2次側に電流回線を備えた変流器を前記基準相を除く残りの相に個別に設置し、前記変流器を設けた相に接続した導体の他端を当該変流器の電流回線の電源側にそれぞれ接続した後、前記電流回線のそれぞれを前記基準相に一端を接続した導体とともに単独電力量計に導入することを特徴とする電力量計量方法によって達成される。   That is, according to one aspect of the present invention, the above-described problem is a current transformer in which one end of each conductor is connected to a phase conductor of each phase including a predetermined reference phase of an AC circuit, and a current line is provided on the secondary side. And separately connecting the other end of the conductor connected to the phase provided with the current transformer to the power supply side of the current line of the current transformer, This is achieved by an energy metering method characterized in that each line is introduced into a single energy meter together with a conductor having one end connected to the reference phase.

また、上記目的は、本発明の別の局面によれば、交流電路の所定の基準相を含む各相の相導体にそれぞれ一端が接続された導体と、前記基準相を除く残りの相に個別に設置され、2次側に電流回線を備えた変流器と、単独電力量計本体とから構成され、前記変流器設置相のそれぞれに接続された導体の他端は当該変流器の電流回線の電源側に接続されており、前記電流回線のそれぞれは前記基準相に一端が接続された導体とともに単独電力量計に導入されるようにしたことを特徴とする電力量計量装置によって達成される。   In addition, according to another aspect of the present invention, the above object is achieved by the conductor having one end connected to the phase conductor of each phase including the predetermined reference phase of the AC circuit, and the remaining phases excluding the reference phase. And the other end of the conductor connected to each of the current transformer installation phases is connected to each of the current transformer installation phases. Achieved by a power meter that is connected to a power source side of a current line, and each of the current lines is introduced into a single watt hour meter together with a conductor having one end connected to the reference phase. Is done.

本発明の電力量計量方法および電力量計量装置を適用可能な交流電路としては特に限定されず、単相、多相のいずれでもよく、また上記電路の負荷電流および定格電圧の大きさにも制限されない。具体的には、単相2線式、単相3線式などの単相交流電路や三相3線式、三相4線式などの三相交流電路に適用でき、また高圧から低圧大電流の交流電路に適用できる。当該電路を構成する線(相導体)数は多いことが好ましく、3線式以上であるのがより好ましい。   The AC electric circuit to which the electric energy measuring method and the electric energy measuring device of the present invention can be applied is not particularly limited, and may be either single-phase or multi-phase, and is limited to the load current and rated voltage of the electric circuit. Not. Specifically, it can be applied to single-phase AC circuits such as single-phase two-wire systems and single-phase three-wire systems, and three-phase AC circuits such as three-phase three-wire systems and three-phase four-wire systems. It can be applied to the AC circuit. The number of lines (phase conductors) constituting the electric circuit is preferably large, and more preferably three or more.

本発明における導体は、各相の相導体と電力量計などの電気機器とを電気的に接続するのに使用される。この導体は、所定の容量を備えた導電性材料であればよく、具体的には、交流電路の定格電流や短絡電流に耐える仕様を備えた各種電線のほか、ブスバーなどの導電性金具などが好適に使用できる。電線としては、硬銅、軟銅、硬アルミ、耐熱アルミ、鋼心アルミなどの裸線や低圧用、高圧用の絶縁電線などが挙げられる。これらの導体はいずれも単独でまたは2種類以上を適宜組み合わせて好適に使用できる。上記の電線を使用する場合には、その両端には端子を設け、導電性金具を使用する場合には、上記各相の配電線のほか、各種導体や電気機器などに容易に接続可能な形状を両端に備えたものが好ましい。   The conductor in the present invention is used to electrically connect a phase conductor of each phase and an electric device such as a watt hour meter. The conductor may be a conductive material having a predetermined capacity. Specifically, in addition to various electric wires with specifications that can withstand the rated current and short-circuit current of an AC circuit, a conductive metal fitting such as a bus bar may be used. It can be used suitably. Examples of the electric wires include bare wires such as hard copper, annealed copper, hard aluminum, heat-resistant aluminum, and steel core aluminum, and low-voltage and high-voltage insulated wires. Any of these conductors can be suitably used alone or in appropriate combination of two or more. When using the above electric wires, provide terminals at both ends, and when using conductive metal fittings, it can be easily connected to various conductors and electrical equipment in addition to the distribution wires of the above phases. Are preferably provided at both ends.

本発明におけるCTは、単相または多相の交流電路において基準相を除く各相に従来公知の方法で設置される。一般に、CTには貫通形と巻線形とがあり、本発明においてはいずれのタイプも使用できる。   The CT in the present invention is installed in each phase excluding the reference phase in a single-phase or multi-phase AC circuit by a conventionally known method. Generally, there are a through type and a wound type in CT, and any type can be used in the present invention.

貫通形CTは、略中心に貫通孔を有する環状磁心とこれに巻回される2次巻線とを有し、通常、これらが筺体内に収納されているものである。貫通形CTとしては、交流電路への設置時に配電線などの相導体を直接上記貫通孔に挿通させ若しくは環状磁心に巻回させるタイプでもよく、または予め電源側配電線および負荷側配電線を接続可能な端子を両端にそれぞれ備えた硬銅線などの各種電線やブスバーなどの導電性金具などの導体(以下、上記両端に端子を備えた導体を1次導体片という。)を貫通孔に挿通させ、または環状磁心に巻回した状態で固定しておき、上記端子に相胴体を接続するタイプでもよい。前者のタイプの場合、さらに環状磁心が分割できる分割型および分割できない非分割型があり、相導体の敷設状況やCTの設置状況などを考慮して適宜選択できる。また、巻線形CTは、両端に端子を備えた1次巻線および2次巻線が巻回された環状磁心が筐体内に収納され、その外面に上記の1次側および2次側の端子が配置されているものである。このタイプのCTでは、電源側および負荷側の配電線などの相導体は上記1次側の端子に接続される。これらのCTのうち、本発明においては、1次導体片を備えた貫通形CTまたは巻線形CTを使用するのが好ましい。
なお、本明細書では、「相導体」の語を、配電線のほか、当該配電線に直列に接続される上記の1次導体片や1次巻線などを含んだ意味で使用する。また、「電流回線」の語を、2次巻線の両端から引き出された出力線を含み(環状磁心に巻回された巻線部分は除く。)、単独計器の電流回路に導入され、そこから2次巻線に帰還する往復路をいい、往路側(k極側)を特に「電源側」と呼ぶこととする。
The through-type CT has an annular magnetic core having a through-hole at substantially the center and a secondary winding wound around this, and these are usually housed in a casing. The through-type CT may be a type in which a phase conductor such as a distribution line is directly inserted into the through hole or wound around an annular magnetic core when installed in an AC circuit, or a power supply side distribution line and a load side distribution line are connected in advance. Conductors such as various types of electric wires, such as hard copper wires each having a possible terminal at both ends, and conductive metal fittings such as bus bars (hereinafter, the conductor having terminals at both ends are referred to as primary conductor pieces) are inserted into the through holes. Alternatively, it may be fixed in a state where it is wound around an annular magnetic core, and a phase body is connected to the terminal. In the case of the former type, there are a divided type in which the annular magnetic core can be divided and a non-divided type in which the annular magnetic core cannot be divided. In the winding CT, an annular magnetic core around which a primary winding and a secondary winding having terminals at both ends are wound is housed in a casing, and the primary and secondary terminals are placed on the outer surface thereof. Are arranged. In this type of CT, phase conductors such as power supply side and load side distribution lines are connected to the primary side terminal. Among these CTs, in the present invention, it is preferable to use a penetration type CT or a winding type CT provided with a primary conductor piece.
In the present specification, the term “phase conductor” is used to include the above-mentioned primary conductor piece and primary winding connected in series to the distribution line in addition to the distribution line. In addition, the term “current line” includes an output line drawn from both ends of the secondary winding (excluding the winding portion wound around the annular magnetic core), and is introduced into the current circuit of a single instrument. The round trip path returning from the secondary winding to the secondary winding is referred to as the forward path side (k pole side), particularly the “power supply side”.

本発明においては、上記例示の導体はその一端が上記の交流電路の各相の相導体にそれぞれ接続される。その接続位置は任意に設定できるが、接続作業における労力などを考慮すると、上記各相導体上に設けられた端子、例えばCTや単独計器が備える端子のほか、これらの周辺に設けられた端子などに所定の固定具を用いて接続するのが好ましい。また、相導体が導電性金具などの場合には、従来公知の方法を用いて適当な位置に導体を固定できるようにしてもよい。   In the present invention, one end of each of the exemplified conductors is connected to the phase conductor of each phase of the AC circuit. The connection position can be set arbitrarily, but considering the labor in connection work, etc., terminals provided on each phase conductor, for example, terminals provided on the periphery of these, in addition to terminals provided on CT and single instruments, etc. It is preferable to connect to each other using a predetermined fixing tool. Further, when the phase conductor is a conductive metal fitting or the like, the conductor may be fixed at an appropriate position using a conventionally known method.

電力量を計量しようとする交流電路の定格電圧が高い場合(現状の規制では、300V以上)、上記導体の途中に計器用変圧器(VT)を設置し、当該VTを介して上記導体を上記各CT2次側の電流回線の電源側に接続できる。導体途中へのVTの接続は、公知の方法によることができる。単相、多相を問わず、3線式電路の場合には、2個のVTを用意し、それぞれのVTの1次巻線とともに、2次巻線の負荷側を接続して共通としてもよい。この場合、共通とした1次巻線には交流電路の基準相からの導体が接続される。また、上記共通とした2次巻線の負荷側には別に用意した導体の一端が接続され、当該導体の他端が単独計器の所定の端子に導入される。VTは、CTと別個独立に交流電路に設置できるが、特に高圧電路の場合には、CTと接続され、同一の器体内に収納されたVCTとして当該電路に設置されてもよい。このVTおよびCTの組み合わせとVCTとは、交流電路の定格電圧が所定の値以上か、高圧かによって適宜選択すればよい。このように、CTとVTとの組み合わせまたはVCTを使用することで、交流電路の電圧および電流をいずれも小勢力に変成することができ、その結果電路の定格電圧にかかわらず単独計器に供給できる利点がある。   When the rated voltage of the AC circuit to measure the amount of electric power is high (in the current regulations, 300 V or more), an instrument transformer (VT) is installed in the middle of the conductor, and the conductor is connected to the conductor via the VT. It can be connected to the power supply side of each CT secondary current line. The connection of the VT in the middle of the conductor can be performed by a known method. Regardless of single-phase or multi-phase, in the case of a three-wire circuit, two VTs are prepared, and the load side of the secondary winding can be connected together with the primary winding of each VT to be common Good. In this case, a conductor from the reference phase of the AC circuit is connected to the common primary winding. Further, one end of a conductor prepared separately is connected to the load side of the common secondary winding, and the other end of the conductor is introduced into a predetermined terminal of the single meter. The VT can be installed in the AC circuit separately from the CT. However, particularly in the case of a high-voltage circuit, the VT may be installed in the circuit as a VCT connected to the CT and housed in the same vessel. The combination of VT and CT and VCT may be appropriately selected depending on whether the rated voltage of the AC circuit is higher than a predetermined value or high voltage. Thus, by using a combination of CT and VT or VCT, both the voltage and current of the AC circuit can be transformed into a small force, and as a result, it can be supplied to a single instrument regardless of the rated voltage of the circuit. There are advantages.

上記のように相導体に一端が接続された導体は、その他端がCT2次側の電流回線の電源側に接続される。また、当該導体の途中にVTが設置される場合には、VT2次側に一端が接続された導体の他端が電流回線の電源側に接続される。この導体と電流回線との接続位置については特に限定されず、例えばCT筐体内部であってもよく、CT筐体から単独計器に至る電流回線の途中であってもよい。前者の場合、上記導体の他端は、少なくとも上記2次巻線と前記環状磁心とが収納された筺体内において2次巻線の出力線(筺体に電流回線接続用端子が設けられている場合には、当該端子の筺体内の部分を含む。)の電源側に接続することができる。具体的には、CTが貫通形であれば、1次導体片の適当な位置に一端が接続された導体の他端が筺体内に引き入れられ、上記出力線の電源側に接続されるのがよい。また、巻線形CTであれば、CT筐体内に1次巻線や2次巻線が予め収納されているので、上記導体の他端を当該2次巻線の出力線の電源側に予め接続できるのみならず、筺体内において当該導体によって上記1次巻線の適当な位置と上記2次巻線の出力線の電源側とが電気的に接続することも可能となる。このように、導体をCT内部に予め接続して収容することで、変流器側での導体接続作業が不要となり、その分結線数を低減できるので、誤接続の発生を未然に抑制できる。また、後者の場合、CT筺体外面に設けられた電流回線接続用端子や単独計器の所定の接続端子において上記導体の他端を接続することを含むものとする。   As described above, the conductor whose one end is connected to the phase conductor is connected to the power source side of the current line on the CT secondary side at the other end. When a VT is installed in the middle of the conductor, the other end of the conductor having one end connected to the VT secondary side is connected to the power supply side of the current line. The connection position between the conductor and the current line is not particularly limited, and may be, for example, inside the CT case or in the middle of the current line from the CT case to the single instrument. In the former case, the other end of the conductor is connected to the output line of the secondary winding (when the current line connection terminal is provided in the casing) in the casing in which at least the secondary winding and the annular magnetic core are housed. Can be connected to the power source side of the terminal. Specifically, if CT is a through-type, the other end of the conductor having one end connected to an appropriate position of the primary conductor piece is drawn into the housing and connected to the power supply side of the output line. Good. In the case of a wound type CT, since the primary winding and the secondary winding are stored in advance in the CT housing, the other end of the conductor is connected in advance to the power supply side of the output line of the secondary winding. In addition to being able to do so, it is possible to electrically connect an appropriate position of the primary winding to the power supply side of the output line of the secondary winding by the conductor in the housing. Thus, by connecting the conductor in the CT in advance and storing it, the conductor connection work on the current transformer side becomes unnecessary, and the number of connection lines can be reduced, so that the occurrence of erroneous connection can be suppressed in advance. In the latter case, the other end of the conductor is connected to a current line connection terminal provided on the outer surface of the CT housing or a predetermined connection terminal of a single meter.

本発明の電力量計量装置に使用される単独電力量計本体は、電子式であると誘導形であるとを問わず、またパルス発信機能などの各種信号出力機能を備えていてもよい。また、上記CTやVTまたはVCTは、単独電力量計内部に収容されていてもよい。   The single watt-hour meter main body used in the watt-hour meter of the present invention may be provided with various signal output functions such as a pulse transmission function regardless of whether it is an electronic type or an induction type. Further, the CT, VT, or VCT may be accommodated inside the single watt hour meter.

本発明によれば、基準相を除く各相に接続される導体を直接または計器用変圧器を介してCT電流回線の電源側に接続し、上記電流回線を通じて電力量計に電圧を確実に供給することとしたので、交流電路に設置した計器用変成器の2次側出力を単独計器に導入して交流電路の電力量を計量でき、単独計器と変成器組み合わせ計器とを使い分ける必要がない。また、計器用変成器の2次側出力を使用するので、交流電路が低圧であると高圧であるとを問わず、単独計器は低圧用のものを使用することができる。したがって、交流電路の電気方式が同じであれば、交流電路の定格電圧や負荷電流によらず、1種類の単独計器を使用でき、その結果、単独計器の汎用性の向上が図られ、計器メーカーにおいては製造品種を低減でき、在庫管理が容易になるため、コスト削減が可能となる。   According to the present invention, the conductor connected to each phase except the reference phase is connected to the power source side of the CT current line directly or via an instrument transformer, and the voltage is reliably supplied to the watt hour meter through the current line. Therefore, the secondary output of the instrument transformer installed in the AC circuit can be introduced into a single instrument to measure the amount of power in the AC circuit, and there is no need to use a single instrument and a transformer combination instrument separately. Further, since the secondary output of the instrument transformer is used, the single instrument can be used for a low voltage regardless of whether the AC circuit is at a low voltage or a high voltage. Therefore, if the electrical system of the AC circuit is the same, one type of single instrument can be used regardless of the rated voltage or load current of the AC circuit, and as a result, the versatility of the single instrument can be improved, and the instrument manufacturer Can reduce production varieties and facilitate inventory management, thereby reducing costs.

本発明においては電力量計として単独計器を使用でき、従来の変成器組み合わせ計器よりもその結線数が少なくできることから、電力量計の設置、交換の際に誤結線の防止の可能性が低減される。また、本発明の電力量計量装置を用いることで、従来の単独計器を用いた電力量計量の場合よりも単独計器への結線数を低減できるので、さらに電力量計交換作業などにおける労力軽減が図れる。   In the present invention, a single meter can be used as a watt-hour meter, and the number of connections can be reduced as compared with a conventional transformer combination meter.Therefore, the possibility of preventing misconnection during the installation and replacement of a watt-hour meter is reduced. The In addition, by using the power meter of the present invention, the number of connections to a single meter can be reduced as compared with the case of conventional power meter using a single meter. I can plan.

以下、図面を参照して本発明の電力量計量方法および電力量計量装置についてより詳細に説明する。図1は、負荷電流150A以下の低圧単相3線式交流電路に設置された本発明の電力量計量装置の結線図である。この単相3線式の交流電路において、相P2を基準相(中性線)とする。この図において、白抜きの○印は、端子を表している。なお、図1に示す交流電路の電気方式は、電力量計量装置の結線方法および内部構造が略同じであるので、低圧三相3線式であってもよい。   Hereinafter, an electric energy measuring method and an electric energy measuring device according to the present invention will be described in more detail with reference to the drawings. FIG. 1 is a connection diagram of a power meter of the present invention installed in a low-voltage single-phase three-wire AC circuit with a load current of 150 A or less. In this single-phase three-wire AC circuit, the phase P2 is a reference phase (neutral wire). In this figure, open circles represent terminals. The electric system of the AC electric circuit shown in FIG. 1 may be a low-voltage three-phase three-wire system because the connection method and the internal structure of the power meter are substantially the same.

2つのCT11、13は、図1に示すように、基準相P2を除く各相の電圧線P1およびP3に設置される。2個のCTはそれぞれ1次導体片12,14を備えており、それぞれの電源側および負荷側の端部には、端子121、141および122、142が設けてある。この1次導体片12、14の電源側端子121、141には、電源側配電線(相導体)P1およびP3がそれぞれ接続され、負荷側端子122、142には負荷側配電線(相導体)P1およびP3がそれぞれ接続されている。   As shown in FIG. 1, the two CTs 11 and 13 are installed on the voltage lines P1 and P3 of each phase excluding the reference phase P2. The two CTs are each provided with primary conductor pieces 12 and 14, and terminals 121, 141 and 122, 142 are provided at the ends of the power supply side and the load side, respectively. Power supply side distribution lines (phase conductors) P1 and P3 are connected to the power supply side terminals 121 and 141 of the primary conductor pieces 12 and 14, respectively, and load side distribution lines (phase conductors) are connected to the load side terminals 122 and 142, respectively. P1 and P3 are connected to each other.

CT11、13の2次側では、これらのCT筐体外面に設けられた外部端子1S(電源側。一般にk極端子と呼ばれる。以下同じ。)、1L(負荷側。一般にL極端子と呼ばれる。以下同じ。)および3S(電源側端子)、3L(負荷側端子)にそれぞれ電流回線15(電源側),16(負荷側)および電流回線17(電源側),18(負荷側)の一端が接続され、これらの電流回線の他端はそれぞれ電力量計10の端子1S、1L、3Sおよび3Lに接続されている。かくして、各相内を流れる負荷電流に比例して小電流に変性された2次電流が電源側の電流回線15および17を流れ、単独計器10の電流回路に入力され、電流回線16および18を介してそれぞれ帰還する各CTの2次回路が形成される。なお、上記括弧内のL極は、本来小文字を使用すべきであるが、便宜上、数字の1との混同を防止するため、大文字を使用している。   On the secondary side of the CTs 11 and 13, external terminals 1S (power supply side. Generally referred to as a k-pole terminal. The same applies hereinafter) 1L (load side. Generally referred to as an L-pole terminal) provided on the outer surface of the CT casing. The same shall apply hereinafter.) And 3S (power supply side terminal) and 3L (load side terminal) are connected to one end of current lines 15 (power supply side) and 16 (load side) and current lines 17 (power supply side) and 18 (load side), respectively. The other ends of these current lines are connected to the terminals 1S, 1L, 3S and 3L of the watt-hour meter 10, respectively. Thus, the secondary current modified to a small current in proportion to the load current flowing in each phase flows through the current lines 15 and 17 on the power source side, and is input to the current circuit of the single meter 10. A secondary circuit of each CT that feeds back through is formed. The L pole in the parenthesis should originally use lower case letters, but for convenience, upper case letters are used to prevent confusion with the number 1.

本発明においては、図1に示すように、CT11の1次導体片12の電源側端子121に一端を接続された導体21が、CT11の電流回線15の電源側端子1Sに接続され、またCT13の1次導体片14の電源側端子141に一端を接続された導体22が、CT13の電流回線の電源側端子3Sに接続される。これらの導体21,22は、上記所定の端子間に予め接続されていてもよいし、CT設置時に接続するようにしてもよい。   In the present invention, as shown in FIG. 1, the conductor 21 having one end connected to the power supply side terminal 121 of the primary conductor piece 12 of the CT11 is connected to the power supply side terminal 1S of the current line 15 of the CT11, and CT13 The conductor 22 having one end connected to the power supply side terminal 141 of the primary conductor piece 14 is connected to the power supply side terminal 3S of the current line of CT13. These conductors 21 and 22 may be connected in advance between the predetermined terminals, or may be connected at the time of CT installation.

電流回線15および17と、相P2(基準相)途中に設けられた端子19に一端を接続された導体20との間にそれぞれ交流電路の線間電圧が印加される。このように、CTを設けた相のそれぞれに一端を接続された導体21、22を当該CT11、13の電流回線15,17にそれぞれ接続し、これら電流回線15、16および17、18とともに相P2の適当な接続点19に接続された導体20を単独計器10に導入することで、交流電路の電力量を計量できるようになる。   A line voltage of the AC circuit is applied between the current lines 15 and 17 and a conductor 20 having one end connected to a terminal 19 provided in the middle of the phase P2 (reference phase). Thus, the conductors 21 and 22 having one end connected to each of the phases provided with the CT are connected to the current lines 15 and 17 of the CTs 11 and 13 respectively, and the phase P2 together with the current lines 15, 16 and 17 and 18 are connected. By introducing the conductor 20 connected to the appropriate connection point 19 into the single meter 10, the amount of power in the AC circuit can be measured.

また、本実施形態においては、交流電路にCT11および13を設置してその2次側出力を電力量の計量に使用するにも拘らず、単独計器10には7線ではなく、CT2次側の電流回線4線と基準相に接続した導体1線の合計5線を接続すればよく、したがって、電力量計本体への誤接続の発生が防止できるとともに、作業時間の短縮が図れる。   In the present embodiment, the CT 11 and 13 are installed on the AC circuit, and the secondary output is used for measuring the electric energy. It is only necessary to connect a total of five wires including four current lines and one conductor line connected to the reference phase. Therefore, it is possible to prevent erroneous connection to the watt hour meter body and to shorten the working time.

図2は、高圧交流電路に設置された本発明の電力量計量装置の結線図である。この図において、交流電路P1,P2およびP3は、上記実施形態と同様に単相3線式の交流電路である。この交流電路にVCT30が設置され、その筐体外面にそれぞれ設けられた電源側接続端子P11,P21およびP31および負荷側接続端子P12,P22およびP32にそれぞれ各相の電源側の相導体(配電線)および負荷側の相導体(配電線)が接続されている。   FIG. 2 is a connection diagram of the electric energy meter of the present invention installed in the high-voltage AC circuit. In this figure, AC electric circuits P1, P2 and P3 are single-phase three-wire AC electric circuits as in the above embodiment. A VCT 30 is installed in the AC circuit, and power supply side connection terminals P11, P21 and P31 and load side connection terminals P12, P22 and P32 provided on the outer surface of the casing are respectively connected to phase conductors on the power supply side of each phase (distribution lines). ) And the load-side phase conductor (distribution line).

このVCT30の内部では、相P1および相P3にCT31および32がそれぞれ直列に接続され、各相の相導体にそれぞれ一端が接続された導体38,39および40がVT33の1次側に接続されている。CT31の2次側には、電流回線34(電源側),35(負荷側)が設けられ、これらがそれぞれVCTの外部接続端子1S、1Lに接続されている。また、上記CT31と同様に、CT32もその2次側に電流回線36(電源側),37(負荷側)を備え、これらがそれぞれVCTの外部端子3S、3Lに接続されている。このVT33の2次側からは、相(基準相)P2に対応する導体42がそのまま外部端子2Sに接続され、相P1およびP3に対応する導体41および43は、それぞれCT31および32の電源側の電流回線34および36に接続される。   In this VCT 30, CTs 31 and 32 are connected in series to the phase P1 and the phase P3, respectively, and conductors 38, 39 and 40 each having one end connected to the phase conductor of each phase are connected to the primary side of the VT 33. Yes. On the secondary side of the CT 31, current lines 34 (power supply side) and 35 (load side) are provided, and these are connected to the external connection terminals 1S and 1L of the VCT, respectively. Similarly to CT31, CT32 also has current lines 36 (power supply side) and 37 (load side) on its secondary side, which are connected to external terminals 3S and 3L of the VCT, respectively. From the secondary side of the VT 33, the conductor 42 corresponding to the phase (reference phase) P2 is directly connected to the external terminal 2S, and the conductors 41 and 43 corresponding to the phases P1 and P3 are respectively connected to the power supply side of the CTs 31 and 32. Connected to current lines 34 and 36.

VCTの外部端子1S、2S、3S、3Lおよび1Lにそれぞれ接続された信号線15、16、17、18および20は、上記VCT30の外部端子に対応した電力量計10の端子台の所定の端子1S、2S、3S、3Lおよび1Lに接続される。なお、VCTの外部端子2Sからの導体20は、図2に示すように、アース線25によって接地されている。   The signal lines 15, 16, 17, 18 and 20 connected to the external terminals 1S, 2S, 3S, 3L and 1L of the VCT are predetermined terminals of the terminal block of the watt-hour meter 10 corresponding to the external terminals of the VCT 30, respectively. Connected to 1S, 2S, 3S, 3L and 1L. The conductor 20 from the external terminal 2S of the VCT is grounded by a ground wire 25 as shown in FIG.

以上の構成にてこの交流電路に通電した場合、各相にそれぞれ接続された導体38、39間および39、40間の線間電圧は、VT33においてそれぞれ降圧され、2次側の導体41、42間および42、43間に出力され、導体41,43によってCT31および32の電源側の電流回線34および36と中性線からの導体42との間に2次電圧(通常、110V)が印加される。一方、CT31、32の電流回線の電源側34,36には、それぞれ2次電流が流れる。これらの電流回線34〜37および導体42が、VCTの外部端子から信号線15,16,17,18および20を介して単独計器10に導入されることで、この交流電路の電力量を計量できる。また、単独計器には上記のようにVCT30によって小勢力に変成された電流信号(通常、最大5A)および電圧信号(通常、最大110V)が入力されるので、交流電路が高圧の場合でも、低圧用の単独電力量計を使用できる。さらに、本実施形態においても、電力量計本体への結線数は、上記実施形態と同様に5線であるので、誤結線の発生が抑制されるとともに、作業時間の短縮が図られる。   When this AC circuit is energized with the above configuration, the line voltages between the conductors 38, 39 and 39, 40 respectively connected to each phase are stepped down at the VT 33, respectively, and the secondary side conductors 41, 42 are connected. And a secondary voltage (usually 110V) is applied between the current lines 34 and 36 on the power source side of the CTs 31 and 32 and the conductor 42 from the neutral line by the conductors 41 and 43. The On the other hand, secondary currents flow through the power supply sides 34 and 36 of the current lines of the CTs 31 and 32, respectively. By introducing these current lines 34 to 37 and the conductor 42 from the external terminal of the VCT to the single meter 10 via the signal lines 15, 16, 17, 18 and 20, it is possible to measure the amount of electric power in this AC circuit. . Moreover, since the current signal (normally maximum 5 A) and voltage signal (normally maximum 110 V) transformed into a small force by the VCT 30 as described above are input to the single meter, even if the AC circuit is high voltage, A single watt hour meter can be used. Furthermore, in the present embodiment, the number of connections to the watt hour meter main body is 5 as in the above embodiment, so that the occurrence of erroneous connections is suppressed and the working time is shortened.

以上、交流単相3線式電路および交流三相3線式電路について本発明の実施形態を説明したが、単相2線式電路の場合についても同様に本発明の電力量計量方法および電力量計量装置を適用できる。すなわち、当該電路の場合、電圧線と中性線から構成されるので、これら2線にそれぞれ導体の一端を接続するとともに、上記電圧線にCTを設置する。その後、当該CT2次側の電流回線の電源側に上記導体の他端を接続する。この電流回線2線とともに上記中性線に接続した導体を単相2線式電路用の単独計器(4線端子)に導入することで、本発明の電力量計量装置が形成され、電力量の計量が可能となる。この場合、電流回線および中性線からの導体の合計3線を単独計器に接続するだけでよい。   The embodiment of the present invention has been described above for the AC single-phase three-wire circuit and the AC three-phase three-wire circuit. However, the power amount measuring method and the power amount of the present invention are similarly applied to the case of the single-phase two-wire circuit. A weighing device can be applied. That is, in the case of the electric circuit, since it is composed of a voltage line and a neutral line, one end of a conductor is connected to each of these two lines, and a CT is installed on the voltage line. Thereafter, the other end of the conductor is connected to the power source side of the current line on the CT secondary side. By introducing a conductor connected to the neutral wire together with the two current lines into a single meter (four-wire terminal) for a single-phase two-wire electric circuit, the energy metering device of the present invention is formed. Weighing is possible. In this case, it is only necessary to connect a total of three conductors from the current line and the neutral line to the single meter.

また、三相4線式の交流電路の場合は、電圧線3線と中性線1線とから構成され、通常、上記電圧線3線にCTがそれぞれ個別に設置される。この場合、電圧線3線のそれぞれに設置された各CT2次側の電流回線の電源側に当該電圧線に一端が接続された導体をそれぞれ接続し、各CTの電流回線のそれぞれと基準相(中性線)に一端が接続された導体とをそれぞれ単独計器に導入することで、上記交流電路の電力量の計量が可能となる。この場合に使用される単独計器は10線端子を備えたものであるが、本発明においては7線を接続すればよい。このように結線数を少なくできるので、誤接続の危険性が低減されるとともに、作業時間の短縮が図られる。なお、この場合の交流電路に使用される単独計器としては、上記の単独計器の他に単相2線式の単独電力量計を3個使用することもできる。   In addition, in the case of a three-phase four-wire AC circuit, it is composed of three voltage lines and one neutral line, and normally, CTs are individually installed on the three voltage lines. In this case, a conductor having one end connected to the voltage line is connected to the power supply side of each CT secondary current line installed in each of the three voltage lines, and each CT current line and the reference phase ( By introducing a conductor having one end connected to the neutral wire) into a single meter, it is possible to measure the amount of power in the AC circuit. The single instrument used in this case is provided with a 10-wire terminal, but in the present invention, 7 wires may be connected. Since the number of connections can be reduced in this way, the risk of erroneous connection is reduced and the working time is shortened. In addition, as a single meter used for the alternating current circuit in this case, three single-phase two-wire single watt-hour meters can be used in addition to the above single meter.

図3は、本発明の電力量計量装置に使用される貫通形変流器を側面から見た部分縦断面図である。この図では、説明を簡略化するため、CT50内部は必要な構成のみ模式的に図示し、絶縁材料や支持材料などの構成部材については省略している。CT50は、図3に示すように、筐体51内に環状磁心52とこれに巻回された2次巻線53とを収納している。2次巻線53の両端の出力線531,532は、それぞれ筐体51の外面に設けられた出力端子54および55に接続されている。この出力端子54、55には、電流回線(電源側)531および電流回線(負荷側)532の一端がそれぞれ接続され、これらの他端が不図示の単独電力量計の所定の端子に接続される。   FIG. 3 is a partial longitudinal sectional view of a through-type current transformer used in the power metering device of the present invention as seen from the side. In this figure, in order to simplify the description, only the necessary configuration inside the CT 50 is schematically illustrated, and constituent members such as an insulating material and a supporting material are omitted. As shown in FIG. 3, the CT 50 houses an annular magnetic core 52 and a secondary winding 53 wound around the casing 51 in a casing 51. Output lines 531 and 532 at both ends of the secondary winding 53 are respectively connected to output terminals 54 and 55 provided on the outer surface of the casing 51. One end of a current line (power supply side) 531 and a current line (load side) 532 is connected to each of the output terminals 54 and 55, and the other end thereof is connected to a predetermined terminal of a single watt hour meter (not shown). The

環状磁心52の略中心に設けられた貫通孔521には、その略中心に1次導体片としての被覆硬銅線60が貫通した状態で該貫通孔521を両端からふさぐカバー62、62によって固定されており、該被覆硬銅線60の両端にはそれぞれ接続端子61、61が固定されており、これらの端子には不図示の電源側および負荷側の配電線と接続される。この被覆硬銅線60は、ブスバーなどの導電性金具であってもよい。被覆硬銅線60と電源側の出力線531との間は、導体70によって電気的に接続されている。導体70の被覆硬銅線60と電源側の出力線531との接続は、従来公知の方法で行うことができる。なお、図3では、変流器として貫通形を図示するが、巻線形であってもよい。また、同図では、筺体51内に導体70を収納しているが、端子61と出力端子54との間を導体70によって電気的に接続してもよいことはすでに述べたとおりである。   The through hole 521 provided at the approximate center of the annular magnetic core 52 is fixed by covers 62 and 62 that close the through hole 521 from both ends in a state where the coated hard copper wire 60 as the primary conductor piece passes through the approximate center. Connection terminals 61 and 61 are fixed to both ends of the coated hard copper wire 60, respectively, and these terminals are connected to a distribution line on the power supply side and load side (not shown). The coated hard copper wire 60 may be a conductive metal fitting such as a bus bar. The coated hard copper wire 60 and the output line 531 on the power source side are electrically connected by a conductor 70. The connection between the coated hard copper wire 60 of the conductor 70 and the output line 531 on the power source side can be performed by a conventionally known method. In addition, in FIG. 3, although the penetration type is illustrated as a current transformer, a winding type may be sufficient. In the figure, the conductor 70 is housed in the housing 51. However, as described above, the terminal 61 and the output terminal 54 may be electrically connected by the conductor 70.

被覆硬銅線60に通電することで、環状磁心52が励磁され、相互誘導作用により被覆硬銅線60を流れる負荷電流に比例して小勢力に変成された2次電流が2次巻線53に流れる。この2次電流は、出力端子を経て電流回線531により不図示の単独計器に送られ、不図示の単独計器の電流回路を経て電流回線532によって帰還する。この場合に、被覆硬銅線60と電源側の電流回線531とが導体70により接続されているので、被覆硬銅線60と交流電路中の不図示の基準相との間の線間電圧に相当する電圧が電源側の電流回線531に印加されることになる。このように電流回線531に電圧を印加してもCTの絶縁耐力上問題はなく、電流回線531に電圧を印加することで、単独計器による電力量の計量が可能となる。また、上記CTは、導体によってあらかじめ1次導体片などと電流回線とを接続しておくことができるので、電流回線と基準相に接続された導体とを電力量計に接続するだけで電力量の計量が可能となるだけでなく、電力量計とCTなどの計器用変性器との間を予め接続しておくこともできるので、誤結線の問題を確実に解消できるとともに作業時間の短縮が図られる。   By energizing the coated hard copper wire 60, the annular magnetic core 52 is excited, and a secondary current transformed into a small force in proportion to the load current flowing through the coated hard copper wire 60 by the mutual induction action is generated in the secondary winding 53. Flowing into. This secondary current is sent to a single meter (not shown) through a current line 531 through an output terminal, and is fed back by a current line 532 through a current circuit of a single meter (not shown). In this case, since the coated hard copper wire 60 and the current line 531 on the power source side are connected by the conductor 70, the line voltage between the coated hard copper wire 60 and a reference phase (not shown) in the AC circuit is reduced. A corresponding voltage is applied to the current line 531 on the power supply side. Thus, even if a voltage is applied to the current line 531, there is no problem in terms of the dielectric strength of CT, and by applying a voltage to the current line 531, the amount of power can be measured by a single meter. Further, since the CT can connect the primary conductor piece and the current line in advance by a conductor, the amount of electric power can be obtained by simply connecting the current line and the conductor connected to the reference phase to the watt hour meter. In addition to being able to measure the power, it is also possible to connect the watt hour meter and a denaturing instrument for measuring instruments such as CT in advance, so that the problem of misconnection can be solved reliably and the working time can be shortened. Figured.

以上のように、本発明の電力量計量方法および電力量計量装置器具を使用することで、交流電路の定格電圧、負荷電流にかかわらず、また単相、多相を問わず、各種電気方式の交流電路を構成する線数(相導体数)に適合する従来の単独計器を用いて電力量の計量が可能である。したがって、従来のように、計器用変成器と組み合わせて使用される専用の電力量計を必要とせず、単独計器の汎用性を向上させることができる。また、本発明の電力量計量装置で使用される計器用変成器は、CTについてはその2次電流が5A、VTについてはその2次電圧が110VとなるようにそれぞれCT比やVT比が設定されるのが通常であるため、本発明によれば、高圧の交流電路や低圧の大電流が流れる交流電路であっても、従来の低圧小電流用の単独計器をこれらに共通して使用できる利点がある。その結果、供給メーカーも従来のように多種の電力量計本体を在庫する必要がなく、在庫管理が容易となるだけでなく、製造コストを大幅に削減することができる。   As described above, by using the power metering method and power meter device of the present invention, regardless of the rated voltage and load current of the AC circuit, regardless of single-phase or multi-phase, various electrical systems can be used. It is possible to measure the amount of power using a conventional single meter adapted to the number of lines (number of phase conductors) constituting the AC circuit. Therefore, unlike the prior art, a dedicated watt-hour meter used in combination with a meter transformer is not required, and the versatility of a single meter can be improved. Also, the instrument transformer used in the electric energy meter of the present invention sets the CT ratio and VT ratio so that the secondary current is 5A for CT and the secondary voltage is 110V for VT. In general, according to the present invention, a conventional single instrument for low voltage and small current can be used in common for a high voltage AC circuit or a low voltage large current AC circuit. There are advantages. As a result, it is not necessary for the supplier to stock various watt-hour meter bodies as in the prior art, which not only facilitates inventory management but also significantly reduces manufacturing costs.

また、本発明によれば、上記のとおり電力量計への結線数を低減することができることから、電力量計の設置、交換工事において結果として誤結線による計量値異常の問題も生じず、作業時間の短縮も図られる。 Further, according to the present invention, since the number of connections to the watt hour meter can be reduced as described above, there is no problem of an abnormal measurement value due to incorrect connection in the installation and replacement work of the watt hour meter. Time can also be shortened.

本発明の電力量計量方法および電力量計量装置器具は、一般家庭や工場にいたる種々の交流電路に適用できる。単独計器の計量精度は著しく向上してきていることから、計量法に基づく検定に合格することで、本発明の電力量計量装置が電力取引に用いられる可能性がある。   The electric energy metering method and the electric energy meter device according to the present invention can be applied to various AC electric circuits leading to general households and factories. Since the metering accuracy of a single meter has been remarkably improved, the power metering device of the present invention may be used for power trading by passing the test based on the metering method.

本発明の電力量計量装置の1つの実施形態の結線図である。It is a connection diagram of one embodiment of the electric energy metering device of the present invention. 本発明の電力量計量装置の別の実施形態の結線図である。It is a connection diagram of another embodiment of the electric energy metering device of the present invention. 本発明の電力量計量装置と組み合わせて使用される変流器の側面の部分縦断面図である。It is a partial longitudinal cross-sectional view of the side surface of the current transformer used in combination with the electric energy metering device of the present invention.

符号の説明Explanation of symbols

P1,P2、P3 交流電路(P2は基準相)
10 単独電力量計
11、13 CT
15、16、17、18 電流回線
21、22 導体
30 VCT
31、32 CT
33 VT
41、43 導体
51 CT筐体
52 環状磁
521 貫通孔
53 2次巻線




P1, P2, P3 AC circuit (P2 is the reference phase)
10 Single energy meter 11, 13 CT
15, 16, 17, 18 Current line 21, 22 Conductor 30 VCT
31, 32 CT
33 VT
41, 43 Conductor 51 CT housing 52 Ring magnet 521 Through hole 53 Secondary winding




Claims (11)

交流電路の所定の基準相を含む各相の相導体にそれぞれ導体の一端を接続するとともに、2次側に電流回線を備えた変流器を前記基準相を除く残りの相に個別に設置し、前記変流器を設けた相に接続した導体の他端を当該変流器の電流回線の電源側にそれぞれ接続した後、前記電流回線のそれぞれを前記基準相に一端を接続した導体とともに単独電力量計に導入することを特徴とする電力量計量方法。   One end of each conductor is connected to the phase conductor of each phase including a predetermined reference phase of the AC circuit, and a current transformer having a current line on the secondary side is individually installed in the remaining phases excluding the reference phase. The other ends of the conductors connected to the phase provided with the current transformer are respectively connected to the power supply side of the current line of the current transformer, and then each of the current lines is alone with the conductor connected to the reference phase at one end. An electric energy metering method characterized by being introduced into an electric energy meter. 前記交流電路は3線以上からなる請求項1に記載の電力量計量方法。The electric power metering method according to claim 1, wherein the AC electric circuit includes three or more wires. 交流電路の所定の基準相を含む各相の相導体にそれぞれ接続した導体の途中に、前記各相間の線間電圧を変成して出力可能な計器用変圧器を設置するとともに、前記基準相を除く残りの相に2次側に電流回線を備えた変流器を個別に設置し、当該計器用変圧器2次側の前記変流器を設けた相のそれぞれから引き出される導体の他端を当該変流器の電流回線の電源側に接続した後に、前記電流回線のそれぞれを前記基準相に一端を接続した導体とともに単独電力量計に導入することを特徴とする電力量計量方法。  In the middle of the conductors connected to the phase conductors of each phase including the predetermined reference phase of the AC circuit, an instrument transformer capable of transforming and outputting the line voltage between the phases is installed, and the reference phase is Separately install a current transformer with a current line on the secondary side in the remaining phase, and connect the other end of the conductor drawn from each of the phases with the current transformer on the secondary side of the instrument transformer. After connecting to the power supply side of the current line of the said current transformer, each of the said current line is introduce | transduced into the independent watt-hour meter with the conductor which connected the end to the said reference phase. 前記計器用変圧器は、前記変流器とともに同一の器体内に収納されたものである請求項3に記載の電力量計量方法。 The potential transformer is a power amount measuring method according to claim 3 wherein those housed in the same vessel body with current transformers. 前記交流電路は3線以上からなる請求項3または4に記載の電力量計量方法。 The method of measuring electric energy according to claim 3 or 4 , wherein the AC electric circuit comprises three or more wires. 交流電路の所定の基準相を含む各相の相導体にそれぞれ一端が接続された導体と、前記基準相を除く残りの相に個別に設置され、2次側に電流回線を備えた変流器と、単独電力量計本体とから構成され、前記変流器設置相のそれぞれに接続された導体の他端は当該変流器の電流回線の電源側に接続されており、前記電流回線のそれぞれは前記基準相に一端が接続された導体とともに単独電力量計に導入されるようにしたことを特徴とする電力量計量装置。   A current transformer having one end connected to a phase conductor of each phase including a predetermined reference phase of an AC circuit, and a current line on the secondary side separately installed on the remaining phases excluding the reference phase And the other end of the conductor connected to each of the current transformer installation phases is connected to the power supply side of the current line of the current transformer, and each of the current lines Is introduced into a single watt hour meter together with a conductor having one end connected to the reference phase. 前記各変流器設置相の導体は、当該変流器内において、当該各相の相導体に一端が接続され、前記変流器の電流回線の電源側に他端が接続されてなる請求項6に記載の電力量計量装置。The conductor of each current transformer installation phase has one end connected to the phase conductor of each phase in the current transformer and the other end connected to the power supply side of the current line of the current transformer. The electric energy metering device according to 6. 前記交流電路は3線以上からなる請求項6または7に記載の電力量計量装置。The electric energy meter according to claim 6 or 7, wherein the AC electric circuit is composed of three or more wires. 交流電路の所定の基準相を含む各相の相導体にそれぞれ一端が接続された導体と、A conductor having one end connected to a phase conductor of each phase including a predetermined reference phase of the AC circuit;
当該各導体の他端がそれぞれ1次側に接続され、前記各相間の線間電圧を変成して2次側に一端が接続された各導体と通じて出力可能な計器用変圧器と、A transformer for an instrument that is connected to the primary side at the other end of each of the conductors, transforms a line voltage between the phases, and can output through the conductors connected at one end to the secondary side;
前記基準相を除く残りの各相に個別に設置され、2次側に電流回線を備えた変流器と、A current transformer installed separately for each of the remaining phases except the reference phase and having a current line on the secondary side;
単独電力量計本体とから構成され、It consists of a single watt hour meter body,
前記計器用変圧器2次側において前記変流器が設置された各相の導体の他端は当該変流器の電流回線の電源側に接続されており、前記電流回線のそれぞれは前記計器用変圧器2次側の基準相に相当する導体とともに単独電力量計に導入されるようにしたことを特徴とする電力量計量装置。The other end of each phase conductor on which the current transformer is installed on the secondary side of the instrument transformer is connected to the power supply side of the current line of the current transformer, and each of the current lines is for the instrument. An electric energy meter characterized by being introduced into a single watt hour meter together with a conductor corresponding to a reference phase on the secondary side of a transformer.
前記計器用変圧器は、前記変流器とともに同一の器体内に収納されたものである請求項に記載の電力量計量装置。 The instrument transformer is the one in which are accommodated in the same vessel body with current transformer electric energy metering device according to claim 9. 前記交流電路は3線以上からなる請求項9または10に記載の電力量計量装置The AC circuit is electric energy metering device according to claim 9 or 10 composed of three or more lines.
JP2005186007A 2005-06-27 2005-06-27 Electric energy metering method and electric energy metering device Expired - Fee Related JP4684022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186007A JP4684022B2 (en) 2005-06-27 2005-06-27 Electric energy metering method and electric energy metering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186007A JP4684022B2 (en) 2005-06-27 2005-06-27 Electric energy metering method and electric energy metering device

Publications (2)

Publication Number Publication Date
JP2007003431A JP2007003431A (en) 2007-01-11
JP4684022B2 true JP4684022B2 (en) 2011-05-18

Family

ID=37689203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186007A Expired - Fee Related JP4684022B2 (en) 2005-06-27 2005-06-27 Electric energy metering method and electric energy metering device

Country Status (1)

Country Link
JP (1) JP4684022B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074958A (en) * 1998-08-31 2000-03-14 Matsushita Electric Ind Co Ltd Multiple-circuit-type wattmeter and multiple-circuit- type watthour meter
JP2003014783A (en) * 2002-04-25 2003-01-15 Matsushita Electric Ind Co Ltd Metering device
JP2004226094A (en) * 2003-01-20 2004-08-12 Tokyo Electric Power Co Inc:The Electronic type watt-hour meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074958A (en) * 1998-08-31 2000-03-14 Matsushita Electric Ind Co Ltd Multiple-circuit-type wattmeter and multiple-circuit- type watthour meter
JP2003014783A (en) * 2002-04-25 2003-01-15 Matsushita Electric Ind Co Ltd Metering device
JP2004226094A (en) * 2003-01-20 2004-08-12 Tokyo Electric Power Co Inc:The Electronic type watt-hour meter

Also Published As

Publication number Publication date
JP2007003431A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
EP1939634B1 (en) Current sensing apparatus
US9529024B2 (en) Alternating current power measuring apparatus
EP2402769A1 (en) Combined detection device for electrical variables
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
AU2013254917B2 (en) Method and system for determining the primary voltage of a transformer, and transformer substation including such a determinaton system
JP2011200024A (en) Leakage detector of low voltage power distribution system
JP5268969B2 (en) Digital test plug and power / phase measurement method using the same
JPWO2009090889A1 (en) Three-phase four-wire power distribution system and method of arranging balancer in the system
CN102455395A (en) Method for testing high-voltage power supply and power distribution system loop
JP4684022B2 (en) Electric energy metering method and electric energy metering device
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
JP4500130B2 (en) Method and apparatus for checking wiring connection of outlet with ground electrode
JP2010091581A (en) Device for measuring leakage current state of low-voltage electrical facility
KR102344297B1 (en) Metering system using three-phase three-wire system for neutral grounding customer
KR100704489B1 (en) The measuring system for electric power and the method of the measuring
Neamt et al. Considerations about fault loop impedance measurement in TN low-voltage network
JP2000074958A (en) Multiple-circuit-type wattmeter and multiple-circuit- type watthour meter
JP2008253138A (en) Switchgear connecting circuit and switchgear using it
KR20090009059A (en) Test terminal board for watt-hour meter
JP4954121B2 (en) Bushing current transformer
US1615688A (en) Metering system
RU2713880C1 (en) Device for protection against breaks of secondary circuits of current transformers
JP2010151488A (en) Device and system for detecting ground fault
JP2000331856A (en) Transformer for instrument
Kuznetsov et al. The Analysis of Possibility of Applying Current Transformers of Zero Sequence of Different Manufacturers Fordesigning Damaged Feeder Identification Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees