JP4683840B2 - 電圧閾値切除方法及び装置 - Google Patents

電圧閾値切除方法及び装置 Download PDF

Info

Publication number
JP4683840B2
JP4683840B2 JP2003524459A JP2003524459A JP4683840B2 JP 4683840 B2 JP4683840 B2 JP 4683840B2 JP 2003524459 A JP2003524459 A JP 2003524459A JP 2003524459 A JP2003524459 A JP 2003524459A JP 4683840 B2 JP4683840 B2 JP 4683840B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
ablation
gas
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003524459A
Other languages
English (en)
Other versions
JP2005501597A5 (ja
JP2005501597A (ja
Inventor
トラッカイ,サバ
ストラル,ブルーノ
Original Assignee
トラッカイ,サバ
ストラル,ブルーノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トラッカイ,サバ, ストラル,ブルーノ filed Critical トラッカイ,サバ
Publication of JP2005501597A publication Critical patent/JP2005501597A/ja
Publication of JP2005501597A5 publication Critical patent/JP2005501597A5/ja
Application granted granted Critical
Publication of JP4683840B2 publication Critical patent/JP4683840B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • A61B2018/00583Coblation, i.e. ablation using a cold plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1213Generators therefor creating an arc
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Description

本発明は、電気外科の分野、詳しくは、ラジオ周波数エネルギを使用して体組織を切除、焼灼および/又は凝固させるための方法に関する。
ラジオ周波数切除は、組織にラジオ周波数電流を通過させることによって体組織を破壊する方法である。いくつかのRF切除処置は、体組織に対する高電流及び低電圧の印加に依存し、これによって、その組織の抵抗加熱が生じ、これが最終的に組織を破壊する。
これらの技術には、組織において発生された熱が深く浸透可能で、その切除深さを予測、制御することを困難にするという欠点がある。従って、この処置は、組織の細かい層のみを切除したり、或いは、抵抗加熱によって、重要な組織および/又は器官に対する好ましくない副次的な損傷が起こる可能性のある、心臓、又は脊髄の近傍等の体領域における使用には不利である。
従って、高電圧と低電流を使用することによって、体組織に印加される電流量を最小化し、そのような敏感な領域を切除することが望まれている。
本発明は、電気外科システムを使用して組織を治療する方法と装置に関する。前記システムは、RF発生装置と、このRF発生装置に電気接続されるとともに治療される標的組織と接触する状態に配置される治療用電極と、前記RF発生装置と前記標的組織との間に配置されたスパーク・ギャップスイッチとを有する電気外科システムである。前記スパーク・ギャップは、閾値電圧を有し、当該スパーク・ギャップを介した電圧が前記閾値電圧に達するまでは、前記RF発生装置から前記組織への電流の導通を妨げるように構成されている。
本発明の方法は、前記RF発生装置を使用して前記スパーク・ギャップスイッチを介して電圧を印加する工程を有し、前記スパーク・ギャップスイッチは、前記スパーク・ギャップを介した電圧が前記閾値電圧に達した時に、前記RF発生装置から前記標的組織への電流を導通させる。
本発明の原理を利用した電圧閾値切除法を実施するのに有用な切除システムの複数の実施例が図面に示されている。一般に、これらのシステムの各々は、そのスイッチング手段を介した電圧が所定の閾値電位に達するまでは、体組織に電流が流れることを防止するスイッチング手段を利用する。高閾値電圧に達するまで組織に電流が流れることを防止することによって、本発明は、大量の電流が組織に供給される場合に発生しうる副次的な組織損傷を最小限にする。前記スイッチング手段は、閾値電圧にまで昇圧されることによって、一旦、プラズマに変換された後に初めて、中間電極からの切除エネルギを切除用電極に導通させる、封入又は循環アルゴン又はその他の流体/気体を含む、様々な形態とすることができるが、これに限定されない。
本明細書に記載される実施例は、RF発生装置によって印加される電圧電位が閾値電圧に達するまでは、組織に対するエネルギの導通を阻止するためのスパーク・ギャップスイッチを利用する。前記装置の好適な形態において、前記スパーク・ギャップスイッチは、スパーク・ギャップを介して、通常は、中間電極から切除用電極へ、切除エネルギを導通させる流体/気体を含む。この目的のために利用される前記流体/気体は、それが閾値電圧まで昇圧されたことによって導電性プラズマに変換されるまでは、導通しないものである。前記流体/気体の閾値電圧は、流体/気体圧、前記スパーク・ギャップを介する距離(例えば、このスパーク・ギャップの片側の電極とスパーク・ギャップの反対側の電極との間)を含む様々な条件、及び、前記気体/流体を使用する場合の前記流体/気体がスパーク・ギャップ内を流れる流量に応じて異なる。これら実施例のいくつかにおいて理解されるように、いくつかの実施例では、前記閾値電圧は、これらの条件の一部又は全部を変化させることによって、調節可能である。
本発明の原理を利用した切除装置10の第1実施例が図1−2に図示されている。この装置10は、ガラス、セラミック、酸化ケイ素、PTFE又はその他の高融点を有する材料等の絶縁材から形成されるハウジング12を有する。このハウジング12の遠端部13には、密封タンク20が設けられている。そして密封タンク20内に内部電極22が配設されている。この電極22は、ハウジング本体を貫通して延出する導線24に電気接続されている。導線24は、Valley Lab社製のModel Force 2 RF Generator等の医療切除用に使用される従来式のRF発生装置であるRF発生装置28に接続されている。前記ハウジング12の外側面には戻り電極30が配設され、これは、RF発生装置28にも電気接続されている。
前記ハウジング12の遠端部には複数の切除用電極32a−cが配置されている。これらの切除用電極32a−cは、高温に晒された時に良好に作動する、タングステン又はその他の導電性材料から形成することができる。別実施例において、1つの切除用電極32のみ、又は、別の電極構成を設けることもできる。
図5A−5Dは、図1の実施例の使用法を図示している。図5Aを参照すると、使用前、前記タンク20は、流体又は気体で充填される。好ましくは、前記電極の腐食を防止するために、アルゴンガス、又はそれに類似のネオン、キセノン、又はヘリウムなどの不活性ガスが利用される。但し、前記電極及びその他の部材が腐食に対して適切に保護される限り、その他の流体/気体も利用することが可能であろう。便宜上、そのような流体/気体を利用する実施例は、アルゴンが前記好適ガスとして使用されるものとして説明する。
尚、図5A−5Dの方法は、前記タンク20内に封入気体を充填して実施されることが最も好ましいが、これに代えて、前記ハウジングの本体内のルーメン系を使用して循環ガス流を使用することも可能であると銘記される。循環気体流を利用するシステムは、図15A−16Bを参照して説明される。
前記装置10の遠端部を、切除されるべき体組織に当接させ、電極32a,32bの一部がその組織に接触するようにする。大抵の場合、他方の電極32cは、体液B内に配置される。前記RF発生装置28を電源投入して電極22と電極32a−32c間の電圧電位を次第に上げる。
前記内部電極22と切除用電極32a−cとの間の電圧電位にも拘わらず、最初は、これらの間で電流の導通はない。これは、アルゴンガスは、それが気相状態にある間は電流を流さないからである。導通するためには、アルゴンガスに高電圧を付与し、アルゴンをイオン化するスパークを生じさせ、それを導電性プラズマ相にしなければならない。本明細書において後ほど、これらの電圧は、「開始電圧」とも称されるが、その理由は、これらが導通が開始される電圧であるからである。
アルゴンが即座に導通し始める閾値電圧は、アルゴンの圧力と、電極22及び表面電極32a−32cの間の距離とに依存する。
前記タンク20内のアルゴンガスの初期圧をP1とする。もしも、この圧力P1において、アルゴンガス内においてプラズマ発生するために電圧V1が必要であるとすると、プラズマを発生させ、それによって、電極22から切除用電極32a−32cへの電流の導通を開始させるためにV>V1の電圧を電極22に印加しなければならない。
従って、電極22と切除用電極32a−32cとの間の電圧電位が電圧Vに達するまでは電極32a−32c(そして組織への)導通は起こらない。前記RF発生装置がその出力電圧を前記電極閾値へと昇圧している間は、組織へは電流は流れないので、電極32a−32cと体組織との抵抗加熱は最小となる。このように、この方法は、前記切除用電極32a,32bの過熱を防止し、それによって、組織がこれらの電極に固着することを防止するためのアルゴンの閾値電圧(即ち、プラズマが発生する電圧)に依存する。
前記RF発生装置によって電極22に印加される前記電圧は、切除処置全体を通じて、+Vと−Vとの間を反復する。しかしながら、処置が進むにつれて、前記タンク内の温度が上昇し、これによってアルゴンの圧力も同様に上昇する。ガス圧が上昇するにつれて、プラズマを発生させるのに必要な電圧も上昇する。最終的に、温度、そして圧力の上昇によって、プラズマを発生させるのに必要な電圧閾値はVを超える。この状態が起こると、アルゴンの温度と圧力が、プラズマ発生に必要な電圧がV又はそれ以下になる点へと減少するまで、前記切除用電極への電流の流れが止まる。従って、初期ガス圧P1と前記電圧Vとは、電極温度が、組織が電極に固着する点に達しつつある時に、前記電流の流れが止まるように選択される。
組織に対して印加される電位に対する最低電圧限度を利用することの効果が、図3と図4Aのグラフに示されている。図3は、RF発生装置電圧出力VRFの時間変化を図示し、図4Aは、内部電極22と体組織との間の切除用電圧Vを図示している。ここに見られるように、Vは、RF発生装置電圧出力VRFが装置の電圧閾値Vに達するまでは0Vに留まり、この時点から、Vは前記閾値電圧レベルへと即座に上昇する。切除用電圧Vは、前記RF発生装置出力が0Vに到達するまでは、このRF発生装置出力とほぼ同等状態に留まる。Vは、前記RF発生装置出力の負の半サイクルが低下する(−V)までは0Vに留まり、この時点から、電極22と組織との間の電位は、即座に(−V)へと低下し、サイクルはこのように続く。前記RF発生装置出力が前記電圧閾値に近づいている時間中には組織への導通はないので、前記RF発生装置出力の低電圧(及び高電流)相中には組織に対する導通はほとんど無い。これによって、そうでなければ抵抗加熱によって生じることになる副次的な組織損傷が最小限となる。
組織に対して低電圧/高電流が印加されることを防止し、それによって副次的組織損傷をなくすための追加的手段として、波形のサイン曲線の後縁を除去することが更に望ましい。以下、図14A−18を参照して追加の特徴構成について説明する。これらの追加特徴構成によって、この後縁をクリッピングして、それによって、図4Bに示されている電極/組織界面で測定される波形に近似したものを生成することができる。
前記電極32a−32cと組織との間には更に別の現象が発生し、これは、固着を避けるべく電極を十分低温に維持することに更に役立つ。この現象は、図5A〜5Dを参照して最もよく説明される。前述したように、大半の場合、前記電極の一部、例えば、電極32cは、体液と接触されるのに対して、他の電極(例えば、32a−b)は、組織と接触される。体液Fのインピーダンスは組織Tのインピーダンスに対して低いので、電流は、先ず、プラズマを介して電極32cへ、そして体液中に流れ、その後は、組織Tに接触している電極32a,32bへ流れず、戻り電極30へ流れる。
電極32cの抵抗加熱によって体液Fの温度が上昇する。最終的に、この体液Fは、沸騰状態に達し、電極32cに抵抗があるガス/スチーム気泡Gが形成される。このスチーム気泡Gによって、電極22と体液Fとの間の距離は、図5Bに図示されているように、距離D1から距離D2へと増加する。アルゴンが導電性プラズマを維持する電圧は、部分的には、電極22と体液Fとの間の距離に依存する。もしも、電極22と体液Fとの間の電位が、気泡Gが膨張した後においてもアルゴン中にプラズマを維持するのに十分なものであれば、エネルギは、アルゴンを通して電極32cへと流れ続け、気泡Gを通って電極32cと体液Fとの間にスパークが発生する。
体液Fの加熱が続くことによってガス/スチーム気泡Gは更に膨張する。最終的に、気泡Gのサイズは、電極22と体液Fとの間の距離を、それらの間の電位が、プラズマを維持し、気泡Gを通したスパークの発生が継続するために不十分なものとなる状態にまで増加する。これによって、電極22と32cとの間のプラズマが無くなり、スパーク発生が停止し、電流は電極32a,32bへ向けられそこから体組織T内へと流れ、切除が行われる。図5Cを参照。電極32a,32bの回りの領域に、ガス/スチーム絶縁層Lが形成される。この時点までに、電極32cの回りのガス/スチーム気泡Gは既に消散しているかもしれず、前記層Lの高い抵抗によって、電流は、電極32a,32bを通らず、電極32cを介して再度体液B内に向けられる。このプロセスは、切除処置中に何度も繰返されるかもしれない。
切除装置110の第2実施例が図6Aと6Bに図示されている。この第2実施例は、前記第1実施例に関して記載した方法と同様に作用するが、これは、アルゴンの閾値電圧を予め選択することを可能にする構造的特徴を有する。ある種の体組織は、切除を達成するためにより高い電圧を必要とする。この実施例によれば、使用者は、所望の切除用電圧を選択して、その予め選択された電圧に達するまでは、システムに電流の導通を阻止させることができる。従って、所望の切除電圧に達するまでは組織に対して電流は流れず、電圧の上昇中に於ける組織の不必要な抵抗加熱がない。
前述したように、アルゴンの電圧閾値は、タンク120内のアルゴンの圧力と、スパーク・ギャップの距離d、即ち、電極122と切除用電極132a−cとの間の距離とによって変化する。この第2実施例は、アルゴンの電圧閾値を、標的組織のための所望の切除電圧に等しくなるように予め選択することを可能にするべく、前記アルゴン圧および/又は前記距離dを変化させることを可能にする。換言すると、もしも200Vの治療用電圧が望ましいのであれば、使用者は、この第2実施例を、電圧がアルゴン用の閾値電圧となるように構成することができる。50V〜10,000V、最も好ましくは200V〜500Vの範囲の治療用電圧を利用することができる。
図6Aを参照すると、装置110は、ガラス、セラミック、酸化ケイ素、PTFE又はその他の高融点を有する材料等の絶縁材から形成されるハウジング112を有する。このハウジングの遠端部には、アルゴンガスを収納したタンク120が配設されている。該ハウジング112内にはプランジャ121が配設され、これは壁123を有する。このプランジャは、前記壁を、位置121Aと121Bとの間で遠近移動させるように移動可能であり、タンク120の容積を変化させることができる。前記プランジャ壁123は、アルゴンガスの漏出を防止するべく前記ハウジング112の内壁に対してシール可能である。
前記プランジャ壁123に形成された開口部(図示せず)を長手ロッド126が貫通延出し、これは、前記壁123に固定されて、これらロッドと壁とが1つの部材として移動可能に構成されている。前記ロッド126は、装置110の近端部まで延出し、これによって、使用中において前記プランジャ121を移動させるために使用されるハンドルとして作用することができる。
前記タンク120内には内部電極122が配置され、これは、ロッド126の遠端部に取り付けられ、これにより、前記プランジャ121を移動させると、電極122のこれに対応した移動が起こるように構成されている。電極122は、ロッド126を貫通して延出するとともにRF発生装置128に電気接続された導線124に電気接続されている。ロッド126は、好ましくは、導線124のための絶縁体として作用するので、これは、絶縁材から形成されるべきである。
前記ハウジング112の外側面には戻り電極130が配設され、これも、RF発生装置128に電気接続されている。前記ハウジング112の遠端部には複数の切除用電極132a,132b等が配設されている。
図6A−6Bの実施例の作動は、図5A−5Bを参照して記載したものと類似しており、その説明の大半は繰り返さない。その作動の相違点は、前記第2実施例の使用法は、プランジャ壁123と電極122とを、アルゴンガスの所望の電圧閾値を提供する位置へと移動させるべくロッド126を遠近移動させる準備工程を含むことにある。前記プランジャを遠位方向(電極132a−cに向けて)に移動させることによって、前記タンクの容積が減少し、これに応じて、このタンク内のアルゴンの圧力が増加する、あるいはこれらの逆も真である。アルゴンの圧力が増加すると、電圧閾値が上昇する、これに対して、アルゴン圧が低下すると電圧閾値が低下する。
前記プランジャ126を移動させることは、又、電極122と電極132a−cとの間の距離dをも増加/減少させる。この距離dが増加すると電圧閾値が増加し、その逆も真である。
前記ロッド126には、好ましくは、前記プランジャの各位置を使用して設定される電圧閾値を示す目盛がついている。これによって、使用者は、ロッド126を、切除されるべき組織に対して印加される所望の電圧に対応する閾値電圧が提供される位置へと、アルゴン圧を増加させ、距離dは減少させるように内側へ、又は、アルゴン圧を減少させ、距離dは増加させるように外側へ移動させることができる。アルゴンは、前記閾値電圧に達するまではプラズマへスパークされないので、予め選択された閾値電圧に達するまでは、電極132a,132b等へ電流は流れない。従って、電圧の上昇中に於ける組織の不必要な抵抗加熱はない。
或いは、図6Aの実施例を、前記プランジャ121とロッド126とを互いに独立的に移動可能として、これによって、アルゴン圧と前記距離dとを互いに独立的に調節可能とするように構成することも可能である。これにより、もしも電圧閾値を高めることが望まれる場合には、プランジャ壁123を遠位側に移動させてアルゴン圧を増大させるか、若しくは、ロッド126を近位側に移動させて電極122と132a−cとの間の分離距離を増加させることができる。同様に、電圧閾値の低下は、プランジャ壁123を近位側に移動してアルゴン圧を低下させるか、若しくは、ロッド126を遠位側に移動して前記分離距離dを減少させることによって達成することができる。もしも図6Aの実施例に対してそのような改変を行う場合には、プランジャ121に別のアクチュエータを取り付けて使用者が前記壁123を移動させることを可能にし、プランジャ126は、それが貫通延出する前記壁123に形成された前記開口部に対して摺動自在とされる。
図6A及び6Bの実施例の使用中、温度の上昇に拘わらず一定のアルゴン圧を維持することが望ましいかもしれない。図5A−5Dの方法に関して説明したように、温度と圧力との最終的な増加によって、アルゴンを発生させるのに必要な電圧は、前記RF発生装置によって印加される電圧以上に増加し、これによって、電極の導通が停止する。図6Aの実施例において、アルゴンの圧力は、アルゴンの温度が上昇するにつれてプランジャ121を次第に引くことによって、温度上昇にも拘わらず維持することができる。アルゴン圧を維持することによって、アルゴンの閾値電圧も維持され、従って、アルゴンのプラズマは、電極132a,132b等に対して電流を導通させ続ける。同様に、アルゴンの温度上昇に拘わらず一定の電圧閾値を維持するべく、使用中に、電極122の位置を変化させることも可能である。
図7A及び7Bは、図6A及び6Bの装置に類似の、切除装置210の別実施例を図示している。この実施例において、アルゴンは、壁217によってタンク220内に封入される。タンク220の容積を変化させるためにプランジャ(図6Aのプランジャ121等)を利用する代わりに、この図7A−7Bの実施例は、ハウジング212の側壁に形成されるベローズ221と、内部電極222を通って延出するとともにハウジング212の遠端部に固定された引きワイヤ226(これは、導線224の他の絶縁体として二重になり得る)とを利用する。前記引きワイヤ226を引くとベローズが図7Aに図示されているように収縮位置へと収縮し、タンク220内のアルゴンの圧力を増大させる。前記引きワイヤ226を押すと、ベローズは図7Bに図示されているように膨張し、これによって、アルゴンの圧力を低下させる。これらの引きワイヤとベローズは、閾値電圧を予め選択するために利用することができる。なぜなら、(所与の温度で)アルゴン圧を増大させるとアルゴンの閾値電圧が増加し、その逆も真であるからである。閾値電圧が予め選択されると、その後の動作は前述した実施例と類似している。尚、この第3実施例においては、電極222と切除用電極232a−cとの間の距離は一定に維持される。但し、使用者がこの距離を調節可能にして、装置の電圧閾値の調節のための追加の機構を提供するように装置を改造することは可能である。
図7Aの実施例の追加的利点は、タンク内のアルゴン圧の上昇に応答してベローズ221を膨張可能にするように前記装置を構成することが可能であることである。これによって、アルゴン圧が維持され、従って、タンク220内の温度上昇にも拘わらずアルゴンの閾値電圧はほぼ一定のレベルに維持される。従って、アルゴンの閾値電圧がRF発生装置によって印加される電圧を超えるのにより長い時間がかかることから、アルゴンプラズマは電極132a,132b等に対して電流を導通させ続け、切除を続けることができる。
図7の実施例のような容積拡張型実施例は、容積は拡張するが、この容積の拡張中においても、前記内部電極と切除用電極との間の間隔は一定に維持されるように構成することができる。これによって、システムは、圧力増加に応答して容積を増加させることが可能であるが、より長時間の間、内部電極と切除用電極との間の導通を許容する。
図8A〜13Bは、同様にアルゴンを利用するものではあるが、アルゴンのために一定のタンク容積を維持する一連の実施例を図示している。これらの実施例のそれぞれにおいて、内部電極の電圧がアルゴンガスの閾値電圧に達すると、アルゴンタンク内の内部電極から外部の切除用電極へと電流が流れる。
図8Aと8Bを参照すると、切除装置の第4実施例は、導電部材314とその上の絶縁材とから形成されたハウジング312を利用する。前記ハウジング312は、前記絶縁材が除去されてその下の導電部材314を露出させている露出領域332を有する。ハウジング212内の密封タンク320にはアルゴンガスが収納され、該タンク内にはRF電極部材322が配設されている。戻り電極(図示せず)は、患者に取り付けられる。この第4実施例は図5A−5Dを参照して記載した様式で作動するが、その違いは、電流が、装置自身に取り付けられた戻り電極ではなく、患者の体に取り付けられた戻り電極を介してRF発生装置に還流することにある。
図9A及び9Bに図示の第5実施例は、その構造及び作動において前記第4実施例に類似している。導電部材414が絶縁ハウジング412の下方に配置され、このハウジングに形成された開口部によって前記導電部材414の電極領域432が露出されている。この第5実施例と前記第4実施例との相違は、それが、絶縁ハウジング412上に形成された戻り電極430を有する二極式装置として構成されていることにある。戻り電極430は、RF発生装置に接続され、下方の導電材を露出させるべく、ハウジング412が切除されているのと同じ領域で切除されている。
アルゴンガスタンク420内に内部電極422が配設されている。
使用中において、電極領域432は、切除される体組織と接触される。RF発生装置を電源投入し、電極422の電圧を切除用電極領域432に対して相対的に上昇させ始める。前の実施例と同様に、電極422が、タンク420内のアルゴンがスパークしてプラズマを形成する電圧閾値に達して初めて、電極422から電極領域432への切除用エネルギの導通が開始される。電流は、切除中の組織を通過し装置外部の戻り電極430へと流れる。
図10に図示される第6実施例は、その構造と作動とにおいて前記第5実施例に類似し、従って、導電部材514と、この導電部材512上に設けられ導電部材の領域532を露出させる開口部を有する絶縁ハウジング512とを有する。前記ハウジング512上には戻り電極530が形成され、一定量のアルゴンを収納したタンク520内に、内部電極522が配置されている。この第6実施例の前記第5実施例との違いは、前記導電部材514の露出領域532が、図示されているようにハウジング512から突出していることにある。これは、これによって、露出領域532と標的体組織との間の接触が改善される点で有利である。
第7実施例が図11A〜11Cに図示されている。前記第6実施例と同様に、この実施例は、導電部材614上に形成された絶縁ハウジング612と、前記導電部材614の隆起(elevated)電極領域632を露出させるために前記絶縁ハウジング612に形成された開口部とを有する。前記ハウジング612上には戻り電極630が形成されている。一定量のアルゴンを収納したタンク620内に内部電極622が配置されている。
この第7実施例と前記第6実施例との違いは、前記絶縁ハウジング614と、前記導電部材614の隆起領域632との間に環状ギャップ633が形成されていることにある。この環状ギャップ633は、吸引源および/又は灌注供給源(irrigation supply)に流体接続されている。使用中、電極領域632と接地電極630との間の環状領域に組織を引き入れることによって、切除副産物(例えば、組織やその他の残滓)を除去、および/又は、電極接触を改善するために、前記ギャップ633を介して吸引力を付与することができる。使用中に装置からの切除副産物を洗い流し、切除チップと体組織とを冷却するために、ギャップ633を介して灌注気体または流体を導入することができる。システムを洗い流すために、切除治療中に、周期的に導電性又は非導電性の流体を利用することができる。
環状ギャップ633はまた、アルゴンガスを電極632と接触させるように供給するためにも使用することができる。電極領域632の電圧がギャップ633を介して供給されるアルゴンの閾値に達すると、その結果発生するアルゴンプラズマによって、電極領域632から接地電極630へ導通され、それによって、これら電極632、630間に側方向のスパーキングが起こる。この結果発生するスパークは、周囲の体組織を切断する「電気やすり(electrical file)」を形成する。
切除装置の第8実施例が図12Aと12Bとに図示されている。この装置710は、図9Aと9Bの第5実施例の装置と多くの点において類似している。具体的には、この装置710は、絶縁ハウジング712の下方に配置された導電部材714と、前記ハウジングに形成されてこの導電部材714の電極領域732を露出させる開口部とを有する。前記絶縁ハウジング712上には戻り電極730が形成され。一定の容積を有するアルゴンガスタンク720内に内部電極722が配設されている。
この第8実施例は、更に、一対のテレスコピック筒状ジャケット740,742を有する。内側のジャケット740は、下方絶縁表面744と、第2の戻り電極として作用する上方の導電表面746とを有する。内側ジャケット740は、近位側位置740Aと遠位側位置740Bとの間で長手方向にスライド可能である。
外側ジャケット742は、絶縁材から形成され、位置742Aと遠位側位置742Bとの間で長手方向にスライド可能である。
内側ジャケット740の下方に第1環状ギャップ748が形成され、内側ジャケットと外側ジャケット740,742間に第2環状ギャップ750が形成されている。これらのギャップは、切除副産物を除去するために、切除部位に吸引力又は灌注物を供給するために使用することができる。
この第8実施例は様々な方法で使用することができる。その第1の例として、両ジャケット740,742を、遠位側に移動させて、先端電極アセンブリの全部ではなくその一部(即ち、導電性領域732が位置する領域)を露出させることができる。これによって使用者は、体内の切除されるべき領域をカバーするのに必要な導電領域732を十分なだけ露出させることが可能となる。
第2に、切除部位において出血が発生した場合、組織を凝固させ、それによって出血を止めるべく、戻り電極として作用する戻り電極表面746と共に、戻り電極表面730を大表面積凝固用電極として利用することができる。外側ジャケット742を、近位側又は遠位側に移動して、電極746の表面積を増減することができる。それを近位側に移動させることは、戻り電極746に於けるエネルギ密度を減少させ、これによって、戻り電極746における熱治療作用を増大させることなく、凝固を行うためのパワーを増大させることを可能にする作用がある。
或いは、凝固が必要な場合、電極730を、患者と接触状態に配置された戻りパッチとの協働で、表面凝固のために利用することができる。
図13A−13Bは、本発明の原理を利用した切除装置の第9実施例を図示している。この第9実施例は、固定容量のアルゴンガスタンク820を備える絶縁ハウジング812を有する。このハウジング812の壁には、タンク832内のアルゴンに対して露出され、かつ、体組織と接触する装置の外部に対して露出した状態で複数の切除用電極832が埋設されている。ハウジング812上には戻り電極830が形成されているが、これは、それを通って電極832が延出する開口部を有する。戻り電極830とハウジング812との間には環状ギャップ833が形成されている。前の実施例と同様、前記ギャップ833を介して吸引力および/又は灌注物を供給することができる。更に、この環状ギャップ833を介して、アルゴンガスを導入し、電極832と体組織とに接触させてアルゴンガスによる切除を行うことを可能にすることができる。
タンク820内に内部電極822が配置されている。この電極822は、非対称形状で、円の円弧を形成する湾曲表面822aと、前記円の半径を形成する一対の直線状表面822bとを有する。この形状の結果、前記電極820の湾曲表面は、常に、前記直線状表面よりも電極832に近い。勿論、この作用を奏するその他の形状も利用可能である。
電極822は、長手軸心回りを回転可能で、又、図13A及び13Bにおいて矢印で示されているように、長手方向にも移動可能である。これらの回転及び長手方向移動は、同時、又は別々に行うことができる。これによって使用者は、電極832のうちの選択されたグループの近傍に前記表面822aを選択的に位置決めすることが可能である。例えば、図13A及び13Bを参照すると、電極822が図示の位置にある時、湾曲表面822aは、電極832aの近くにあるのに対して、電極822のどの部分も、他のグループの電極832b−dの近くにはない。
前述したように、内部電極822と切除用電極832との間の導通を起こすために必要な電圧閾値は、両電極間の距離の減少に伴って減少する。従って、電極822と表面822aの近傍の切除用電極(例えば、電極832a)との間の閾値電圧は、電極822と、離間した切除用電極(例えば、電極832b−d)との間の閾値電圧よりも低くなる。前記電極822の寸法と、この電極822に印加される電圧は、表面822aと、それに近い電極との間にのみプラズマが発生可能となるように設定される。従って、例えば、表面822aが、図面に示されているように電極832aに近い時には、電極822aと832aとの間の電圧閾値は、電極822に印加される電圧によって、電極832aに対するプラズマの導通が起こるのに十分に低いものとなる。しかし、電極822と他の電極832b−dとの間の閾値は、電極822に印加される電圧以上に留まり、従って、それらの電極に対する導通は起こらない。
従って、この実施例により、使用者は、電極表面822aを、切除することが望まれる領域と接触する電極の近傍に位置決めすることによって組織の領域を選択的に切除することが可能となる。
図14Aは、電圧閾値原理を利用した切除装置の第10実施例を図示している。この第10実施例は、アルゴンを収納した封止遠端を有するハウジング912を有する。このハウジング912の外側に切除用電極932a−cが配置されている。前記封止遠端部には内部電極22が配設されている。前記内部電極922と前記電極932a−cとの間に、導電性グリッド933が配置されている。
電極922が作動されると、電極922と、電極932a−cと接触している体組織/流体との間の電位が、アルゴンガスが導電性プラズマを形成する開始閾値電圧に達するまでは、電極922から電極932a−cへ導通は起こらない。正確な開始閾値電圧は、アルゴン圧と、その流量(それが装置内を循環する場合)と、電極922および切除用電極932a−cに接触している組織/体液の間の距離とに依存する。
前記RF発生装置の電圧出力は、正弦曲線状に時間変化するので、RF発生装置出力サイクルに沿って、RF発生装置電圧が前記電圧閾値以下に低下する位相が存在する。しかしながら、一旦プラズマが発生すると、アルゴン内の励起されたプラズマイオンの存在によって、たとえ、電極992と体液/組織との間の電位が前記開始閾値電圧以下に低下した後においても導通は維持される。言い換えると、開始閾値電圧以下であるが、プラズマ導通を維持する、閾値維持電圧が存在する。
図14Aの実施例において、前記グリッド933は、前記対応するプラズマ発生閾値が、切除装置が使用される用途用に適切な切除電圧となる距離だけ、前記電極932a−cから離間している。更に、前記電極922は、一旦プラズマが発生したら、グリッド932を作動停止し、電極922が、プラズマのための維持電力に等しい又はそれ以上の電位を維持し続けるように、配置されている。従って、使用中において、グリッド933と電極922との両方が、最初、プラズマ形成のために、作動される。そして、グリッド933と体組織/流体間の電位が、前記閾値電圧に達してプラズマが発生すると、グリッド933は作動停止される。この時点においてプラズマ内にイオンが存在しているので、電極922によって提供される前記維持閾値電圧において導通は継続する。
アルゴン中のイオン化気体分子の、内部電極に印加される電位が開始閾値電圧以下に低下した後でも導通を維持する能力は、望ましくないこともありうる。前述したように、電圧閾値切除の重要な側面は、それによって高電圧/低電流切除が可能となることにある。本明細書に記載の実施例を使用して、用途に望ましいと考えられる電圧が、前記閾値電圧として選択される。RF発生装置によって供給される電圧が閾値電圧以下である時には、切除用電極は導通することが妨げられるので、0Vから電圧閾値への上昇時間中には切除用電極への導通はない。これにより、RF発生装置電圧が閾値電圧に向けて上昇中の期間における組織の抵抗加熱はない。
理想的な状況においては、RF発生装置電圧が閾値を下回る時間は導通は停止するであろう。しかしながら、アルゴンタンク内にはイオン化気体が残っているので、閾値電圧以下の電圧でも導通は継続される可能性がある。図4Aを参照すると、これによって、RF発生装置によって発生する正弦波形の後縁部に近似する切除用電圧波形の傾斜後縁が形成される(図3)。組織に対するこの低電圧導通によって、高電圧切除が望ましい時にのみ、組織の抵抗加熱が起こる。
図14Aのグリッド式実施例は、組織加熱から生じる副次的損傷を最小化するべく、継続される導通の作用を相殺するために使用することができる。このグリッド式実施例の使用中において、前記切除用電圧波形の後縁は、RF発生装置がそのピーク電圧に達した後に、グリッド電極933の極性を逆転することによって直線化(矯正)される。これにより、アルゴン内に逆電界が生じ、これが、アルゴンガス中のイオンのプラズマ流を妨げ、それによって導通を大幅に減少させる。これは、切除用電位波形の後縁の傾きを急峻にし、0Vへ向けてのより急速な立下りを作り出し、その結果、それは、図4Bに図示されている波形に近似したものとなる。
図15A及び15Bは、本発明の原理を利用した第11実施例を図示している。前記第10実施例と同様、この第11実施例は、切除用波形の後縁を急峻化し、それによって、電圧が閾値電圧以下である時間における導通を最小化する機構を利用するという点で有利である。第11実施例において、これは、イオン化ガス分子の一部を切除用電極から連続的にフラッシング(flush)するべく、装置を通してアルゴンガスを循環させることによって達成される。
第11実施例は、切除用電極1032を備えたハウジング1012を含む。このハウジング1012内には内部電極1022が配置され、これは、好ましくは、最遠位側領域を除いて全部に渡って形成された絶縁部1033を備える導電性ハイポチューブ(hypotube)から形成される。このハイポチューブには流体ルーメン1035が形成され、これは、それを通してアルゴンがハウジング1012の遠位側領域へ流入する導管を提供する。アルゴン流は、図15A中矢印によって示されているように、ハウジング1012の前記ルーメンを介してハウジングから流出する。アルゴンはポンプ1031によってハウジングを通して流される。
尚、同じ条件下で使用される場合、ガスの種類によって閾値電圧は異なったものとなることが銘記されなければならない。従って、本発明の使用中において、使用者は、所望の閾値電圧を有するスパーク・ギャップスイッチ用のガスを選択することができる。システムには、単数種類のガス(例えば、アルゴン)を流してもよいし、或いは、システムの循環用として、図15Cに図示されているように、ミキサーポンプ1031によって複数のガスを混合してもよい。ガスを混合することは、それによって、所望の治療用電圧に対応する閾値電圧を有するガス混合物を作り出すことが可能である点で望ましい。循環ガスを利用する全てのシステムにおいて、システムから出るガスは、それを通してリサイクル、および/又は、それがスパーク・ギャップスイッチを通過した後に、システムから排出することができる。
図16A−16Dは、装置を通じてアルゴンガスを循環させることの作用を略示している。循環は、好ましくは、約0.1リットル/分〜0.8リットル/分の流量で行われる。
図16Aを参照すると、RF発生装置の最初の起動中に、内部電極1022と切除用電極1032との間の電位は、アルゴンプラズマを発生させるのに不十分である。従って、アルゴン分子はイオン化されず、負荷Lでの測定電圧は0Vである。この時間、電極1022から電極1032への導通はない。
図16Bは、内部電極1022から体液/組織を介して戻り電極1030への測定される負荷電圧を図示している。RF発生装置電圧出力がアルゴンの電圧閾値Vに達すると、アルゴン分子はイオン化されてプラズマを形成する。イオン化分子流が電極1022から電極1032へと流れ、電流が電極1032から組織へと導通される。アルゴンが流れているので、イオン化分子の一部は運び去られる。それにもかかわらず、高電圧のために、この時点においてイオン化分子の数は増加し、さらわれるものを補って余りあり、その結果、装置内のプラズマは増大する。
RF発生装置電圧がVよりも低下した後、イオン発生は停止する。アルゴンの循環に伴ってアルゴンプール内のイオン化分子は流れ去り、イオンのうちのその他のものは消滅する。従って、プラズマは崩壊し始め、切除用電極に対する導通は減少し、最終的に停止する。その後、RF発生装置電圧が、その正弦周期の負の位相中に(−V)に近づく時にこの前記プロセスが繰り返される。
アルゴンを循環させることによって、電極1022と電極1032との間の空間に留まるイオン化分子の数は最小化される。もしも、装置のこの領域に多量のイオン化分子が存在すれば、それらの存在によって、周期全体を通して導通が起こって、組織/流体負荷Lでの電圧が最終的にRF発生装置の正弦出力に類似したものとなるであろう。そして、低電圧におけるこの連続的導通によって組織の副次的加熱が生じるであろう。
当然、イオン化分子が運び去られる速度は、アルゴンの流量の増加に従って増加する。この理由により、高アルゴン流量では低アルゴン流量においてよりも、切除用波形の後縁がより矯正されることになる。図17はこれをグラフで示している。上側の波形は、RF発生装置出力電圧を示している。中央の波形は、アルゴンガスがゆっくりと循環される装置の場合の、負荷を介して(即ち、外部電極1032から体組織/流体を介して戻り電極1030への)測定される電圧出力である。下側の波形は、アルゴンガスが高速で循環される装置の場合の、負荷を介して測定される電圧出力である。これら図17のグラフから、アルゴンが比較的低流量で循環される場合は、切除用波形の傾斜後縁が残るのに対して、比較的高い流量が使用される場合には、後縁はより急峻に立ち下がることが明らかである。この急峻な後縁が、低電圧位相中の最小化電流導通に対応する。波形の後縁の矯正の最大の利点が達成される流量が好ましい。尚、あまりにも高い流量は、出力が閾値電圧にある時の周期の位相中においてあまりにも多量のイオン化分子を流し去ることによって導通の妨げになりうることが銘記されなければならない。最適な流量は、前記スパーク・ギャップ距離や電極配置等の装置の他の物理的特徴に応じて異なる。
又、内部電極1022と外部電極1032との間の距離も、切除用電位波形の後縁に影響を及ぼすものであることが銘記されなければならない。図18のグラフにおいて、RF発生装置出力が上側のグラフに図示されている。VPRFGは、RF発生装置からのピーク電圧出力を表し、VT1は、両電極1022,1032間に大きな分離距離(例えば、約1mm)を有する装置の電圧閾値を表し、VT2は、両電極1022,1032が、約0.1mmの距離だけ、互いに接近して配置されている装置の電圧閾値を表している。前に説明したように、両電極間により大きな分離距離を有する装置ほど、電圧閾値は高くなる。これは、プラズマ導通が起こる前に、両電極1022,1032間に、電子を剥ぎ取られる必要があるアルゴン分子が多量に存在することによる。反対に、両電極1022、1032間の分離距離が小さい場合は、それらの間のアルゴン分子の量は少なくなり、従って、プラズマ導通を作り出すためにそれらの分子をイオン化するために必要なエネルギは少なくなる。
RF発生装置出力が閾値電圧を下回ると、分子はイオン化を始める。例えば、小さい電極分離距離の構成の場合のように、最初からイオン化される分子が少ない場合は、負荷電圧は分子の脱イオン化に対してより敏感に影響され、従って、周期のこの位相中に、出力波形の後縁はより急峻に立ち下がる。
低電圧閾値が望ましい用途のためには、装置を、小さい電極間隔(例えば、0.001−5mm、最も好ましくは0.05−0.5mm)でアルゴン循環が無いように構成することができる。前述したように、そうすることによって、共に望ましい特性である、急峻な立ち上がりと、急峻な立下りとを有する負荷出力波形を作りだすことができる。もしもより高い電圧閾値が必要な場合には、近接した電極間隔を有する装置中にアルゴンを循環させることによって、アルゴンの圧力を増加させることによって電圧閾値は増加される。そうすることによって、RF発生装置電圧が閾値電圧以上である周期の位相中においてより高密度の荷電イオンが発生することになるが、高流量によって多くのイオンが迅速に運び去られ、それによって、RF発生装置電圧が閾値未満である周期の位相中において出力波形は急峻に立下がる。
本発明の原理を利用した第12実施例が図19に略示されている。この第12実施例は、スパーク・ギャップ間隔(即ち、内部電極と患者に接触している電極との間の有効間隔)を選択可能とすることによって、閾値電圧の調節を可能にする。これは、複数の内部電極1122a,1122b,1122cを備えるガス充填スパーク・ギャップスイッチを利用する。各内部電極は、それぞれ、異なった距離D1,D2,D3だけ、患者接触電極1132から離間している。調節スイッチ1025は、処置中において使用者がこれらの内部電極1122a,1122b,1122cの内から選択することを可能にする。スパーク・ギャップスイッチの閾値電圧は内部電極と接触電極との間の距離に応じて異なるので、使用者は、スパーク・ギャップスイッチを所望の閾値電圧を有するように設定する内部電極を選択することになる。もしも高い閾値電圧が使用されるのであれば、電極1022aが利用され、その大きなスパーク・ギャップ間隔D1によって高い閾値電圧が得られる。反対に、もしも低い閾値電圧が必要であれば、使用者は、スパーク・ギャップ間隔の小さい電極1022cを選択することになる。
以上、電圧閾値切除システムとそれらを利用した方法の複数の実施例について記載した。これらの実施例は例示的なものに過ぎず、本発明の範囲を限定するものでないことが理解される。本発明の範囲から逸脱することなく、これらの実施例を改変することが可能であり、上記実施例のいくつかとの関連において記載された特徴構成は、これらの実施例のその他において記載された特徴構成と組み合わせることができる。本発明の範囲は、開示した実施例の詳細によってではなく、貼付の請求範囲の文言によって解釈されるべきものであることが意図される。
図1は、本発明の原理を利用した切除装置の第1実施例の側方断面図である。 図2は、図1の装置の遠端部を示す端面図である。 図3は、RF発生装置出力からの電圧出力の時間変化を示すグラフである。 図4Aは、本明細書に記載される電圧閾値切除技術を利用する切除装置からの体組織負荷を介した電圧電位のグラフである。 図4Bは、本明細書に記載の電圧閾値切除技術と、更に、波形の後縁の傾きを減少させるための本明細書に記載の技術とを利用した切除装置からの体組織負荷を介した電圧電位のグラフである。 図5Aは、図1の切除装置の連続側方断面図であって、組織を切除するための前記装置の使用を略示している。 図5Bは、図1の切除装置の連続側方断面図であって、組織を切除するための前記装置の使用を略示している。 図5Cは、図1の切除装置の連続側方断面図であって、組織を切除するための前記装置の使用を略示している。 図5Dは、図1の切除装置の連続側方断面図であって、組織を切除するための前記装置の使用を略示している。 図6Aは、本発明の原理を利用した切除装置の第2実施例の側方断面図である。 図6Bは、図6Aの装置の遠端部を示す端面図である。 本発明の原理を利用した切除装置の第3実施例の側方断面図であって、図7Aでは、前記装置が収縮位置にある状態が図示されている。 本発明の原理を利用した切除装置の第3実施例の側方断面図であって、図7Bでは、前記装置が拡張位置にある状態が図示されている。 図8Aは、本発明の原理を利用した切除装置の第4実施例の斜視図である。 図8Bは、図8Aの切除装置の側方断面図である。 図9Aは、本発明の原理を利用した切除装置の第5実施例の斜視図である。 図9Bは、図9Aの切除装置の側方断面図である。 図10は、本発明の原理を利用した切除装置の第6実施例の側方断面図である。 図11Aは、本発明の原理を利用した切除装置の第7実施例の斜視図ある。 図11Bは、図11Aの切除装置の側方断面図ある。 図11Cは、図11Aの切除装置の端面断面図ある。 図12Aは、本発明の原理を利用した切除装置の第8実施例の斜視図ある。 図12Bは、図12Aの切除装置の側方断面図ある。 図13Aは、本発明の原理を利用した切除装置の第9実施例の側方断面図ある。 図13Bは、図13Aの切除装置の、図13A中の13B−13Bで示す平面に沿った端面断面図ある。 図14Aは、本発明の原理を利用した切除装置の第10実施例の側方断面図ある。 図14Bは、図14Aの実施例に利用されるグリッドの前方端面図ある。 図15Aは、第11実施例の側方断面図ある。 図15Bは、図15A中の15B−15Bで示す平面に沿った前記第11実施例の端面断面図ある。 図15Cは、タンクに使用されるガスの混合物が、閾値電圧を変化させるべく調節することが可能な、前記第11実施例の変形例の略図ある。 図16Aは、前記第11実施例の使用を示す連続図ある。 図16Bは、前記第11実施例の使用を示す連続図ある。 図16Cは、前記第11実施例の使用を示す連続図ある。 図16Dは、前記第11実施例の使用を示す連続図ある。 図17は、体組織/流体負荷での切除装置出力に対するアルゴン流の影響をグラフによって示す連続プロットある。 図18は、体組織/流体負荷での切除装置出力に対する電極間隔の影響をグラフによって示す連続プロットある。 図19は、閾値電圧を予め選択するべくスパーク・ギャップ間隔を選択することが可能な、本発明の原理を利用したシステムの第12実施例の略図である。

Claims (10)

  1. 急峻な立ち上がりと急峻な立下りとを有する出力波形からなる出力を発生するRF発生装置と使用され、標的組織を治療するための電気外科システムであって、
    絶縁材から形成されるハウジングの遠端部に設けられ、ガスが充填される密封タンクと、
    前記密封タンク内に配設され、前記ハウジング内を貫通して延出する導線を介して前記RF発生装置に接続される内部電極と、
    前記遠端部に備えられ、標的組織に接触する切除用電極と、
    前記ガスがプラズマ化する閾値電圧に達した時に、前記内部電極と前記切除用電極とを導通させて前記切除用電極に通電する電圧閾値スイッチと、
    を備える電気外科システム。
  2. 前記電圧閾値スイッチが、前記出力の周期に応じて制御される請求項1に記載の電気外科システム。
  3. 前記絶縁材が、セラミック、ガラス、PFTE、ポリイミドのうちの少なくとも一つを含む材料からなる請求項1に記載の電気外科システム。
  4. 前記ハウジング内に前記内部電極に沿って設けられ、当該内部電極と前記切除用電極との間に少なくとも1種類のガスを導入する導入路を有する請求項1に記載の電気外科システム。
  5. 前記電圧閾値スイッチは、前記内部電極と、前記切除用電極と、前記内部電極と前記切除用電極との間に形成されるガスリザーバと、からなるスパーク・ギャップスイッチである請求項1に記載の電気外科システム。
  6. 前記ガスリザーバ内のイオン化ガス分子の排出に応じて、前記切除用電極への通電が停止される請求項5に記載の電気外科システム。
  7. 前記RF発生装置の出力に基づいて、前記ガスリザーバ内の電界が周期的に変化させられる請求項5に記載の電気外科システム。
  8. 前記出力の立下り時に、前記電圧閾値スイッチに流れる電流を決定する電流導通手段を有する請求項1に記載の電気外科システム。
  9. 前記電流導通手段は、前記中間電極と前記切除用電極との間に設けられ、前記ガスリザーバ内の電界を正弦周期で周期的に変化させる請求項8に記載の電気外科システム。
  10. 前記電流導通手段は、前記ガスリザーバ内のイオン化ガス分子が連続して排出すると共に、前記ガスリザーバに接続されたガス源から前記ガスを供給する請求項9に記載の電気外科システム。
JP2003524459A 2000-08-01 2001-08-14 電圧閾値切除方法及び装置 Expired - Fee Related JP4683840B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/631,040 US6413256B1 (en) 2000-08-01 2000-08-01 Voltage threshold ablation method and apparatus
PCT/US2001/025409 WO2003020145A1 (en) 2000-08-01 2001-08-14 Voltage threshold ablation method and apparatus

Publications (3)

Publication Number Publication Date
JP2005501597A JP2005501597A (ja) 2005-01-20
JP2005501597A5 JP2005501597A5 (ja) 2008-09-25
JP4683840B2 true JP4683840B2 (ja) 2011-05-18

Family

ID=26680554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003524459A Expired - Fee Related JP4683840B2 (ja) 2000-08-01 2001-08-14 電圧閾値切除方法及び装置

Country Status (4)

Country Link
US (2) US6413256B1 (ja)
EP (1) EP1416869B1 (ja)
JP (1) JP4683840B2 (ja)
WO (1) WO2003020145A1 (ja)

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US6616660B1 (en) * 1999-10-05 2003-09-09 Sherwood Services Ag Multi-port side-fire coagulator
US7744595B2 (en) * 2000-08-01 2010-06-29 Arqos Surgical, Inc. Voltage threshold ablation apparatus
US6726678B1 (en) * 2001-02-22 2004-04-27 Isurgical, Llc Implantable reservoir and system for delivery of a therapeutic agent
US7931649B2 (en) * 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
JP2006525096A (ja) 2003-05-01 2006-11-09 シャーウッド・サービシーズ・アクチェンゲゼルシャフト 電気手術用発生器システムのプログラム及び制御を行う方法及びシステム
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7628788B2 (en) * 2005-12-30 2009-12-08 Biosense Webster, Inc. Ablation catheter with improved tip cooling
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
EP3210557B1 (en) 2006-01-24 2018-10-17 Covidien AG System for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US7691102B2 (en) * 2006-03-03 2010-04-06 Covidien Ag Manifold for gas enhanced surgical instruments
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
ES2291112B1 (es) * 2006-03-03 2008-12-16 Corporacion Sanitaria Parc Tauli Instrumento quirurgico para cirugia endoscopica.
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
EP2099375B1 (en) 2007-01-02 2014-09-24 AquaBeam LLC Minimally invasive devices for the treatment of prostate diseases
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8998892B2 (en) 2007-12-21 2015-04-07 Atricure, Inc. Ablation device with cooled electrodes and methods of use
US8353907B2 (en) 2007-12-21 2013-01-15 Atricure, Inc. Ablation device with internally cooled electrodes
JP5506702B2 (ja) 2008-03-06 2014-05-28 アクアビーム エルエルシー 流体流れ内を伝達される光学エネルギーによる組織切除および焼灼
US8197475B2 (en) * 2008-03-17 2012-06-12 Medtronic Vascular, Inc. Method and structure for ameliorating side-effects of performing in situ fenestration using a plasma RF catheter
WO2009137609A2 (en) * 2008-05-06 2009-11-12 Cellutions, Inc. Apparatus and systems for treating a human tissue condition
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US8540708B2 (en) 2008-10-21 2013-09-24 Hermes Innovations Llc Endometrial ablation method
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
US8500732B2 (en) 2008-10-21 2013-08-06 Hermes Innovations Llc Endometrial ablation devices and systems
US8372068B2 (en) * 2008-10-21 2013-02-12 Hermes Innovations, LLC Tissue ablation systems
US8162932B2 (en) * 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US9848904B2 (en) 2009-03-06 2017-12-26 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US8764740B2 (en) * 2009-03-23 2014-07-01 Boston Scientific Scimed, Inc. Systems apparatus and methods for distributing coolant within a cryo-ablation device
EP3991783A1 (en) * 2009-04-16 2022-05-04 Inovio Pharmaceuticals, Inc. Contactless electropermeabilization electrode and method
CN102711640B (zh) * 2009-10-26 2015-04-08 爱马仕创新有限公司 子宫内膜消融设备和系统
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
GB2477351B (en) * 2010-02-01 2015-11-04 Gyrus Medical Ltd Electrosurgical instrument
US8636730B2 (en) 2010-07-12 2014-01-28 Covidien Lp Polarity control of electrosurgical generator
US9510897B2 (en) 2010-11-05 2016-12-06 Hermes Innovations Llc RF-electrode surface and method of fabrication
GB2487199A (en) * 2011-01-11 2012-07-18 Creo Medical Ltd Electrosurgical device with fluid conduit
US8323280B2 (en) 2011-03-21 2012-12-04 Arqos Surgical, Inc. Medical ablation system and method of use
US9204918B2 (en) 2011-09-28 2015-12-08 RELIGN Corporation Medical ablation system and method of use
US9247983B2 (en) 2011-11-14 2016-02-02 Arqos Surgical, Inc. Medical instrument and method of use
JP6080872B2 (ja) 2012-02-29 2017-02-15 プロセプト バイオロボティクス コーポレイション 自動化された画像誘導組織切除および治療
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US8888788B2 (en) 2012-08-06 2014-11-18 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
CN105431096B (zh) 2013-02-14 2018-07-31 普罗赛普特生物机器人公司 液体消融液体束眼外科手术的方法和装置
US9901394B2 (en) 2013-04-04 2018-02-27 Hermes Innovations Llc Medical ablation system and method of making
US10004556B2 (en) 2013-05-10 2018-06-26 Corinth MedTech, Inc. Tissue resecting devices and methods
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
CN109965976B (zh) 2013-09-06 2022-05-31 普罗赛普特生物机器人公司 利用致脱脉冲的用于消融组织的装置
WO2015038947A1 (en) * 2013-09-13 2015-03-19 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
BR112016031037B1 (pt) 2014-06-30 2023-02-07 Procept Biorobotics Corporation Aparelho para ablação de tecido vascular
CN104161584B (zh) * 2014-08-05 2017-08-08 中国人民解放军总医院 新型的低温等离子手术装置
BR112017004431B1 (pt) 2014-09-05 2022-11-01 Procept Biorobotics Corporation Aparelho para tratar um paciente
WO2016056311A1 (ja) * 2014-10-09 2016-04-14 オリンパス株式会社 外科用処置具及び外科用処置システム
US10492856B2 (en) 2015-01-26 2019-12-03 Hermes Innovations Llc Surgical fluid management system and method of use
WO2016171963A1 (en) 2015-04-21 2016-10-27 Orczy-Timko Benedek Arthroscopic devices and methods
WO2016175980A1 (en) 2015-04-29 2016-11-03 Csaba Truckai Medical ablation device and method of use
US9603656B1 (en) 2015-10-23 2017-03-28 RELIGN Corporation Arthroscopic devices and methods
US9585675B1 (en) 2015-10-23 2017-03-07 RELIGN Corporation Arthroscopic devices and methods
WO2017087195A1 (en) 2015-11-18 2017-05-26 Shockwave Medical, Inc. Shock wave electrodes
US10052149B2 (en) 2016-01-20 2018-08-21 RELIGN Corporation Arthroscopic devices and methods
WO2017133024A1 (zh) * 2016-02-02 2017-08-10 四川大学华西医院 一种套筒加载型多缝隙电磁止血针
US10022140B2 (en) 2016-02-04 2018-07-17 RELIGN Corporation Arthroscopic devices and methods
US11207119B2 (en) 2016-03-11 2021-12-28 RELIGN Corporation Arthroscopic devices and methods
US11172953B2 (en) 2016-04-11 2021-11-16 RELIGN Corporation Arthroscopic devices and methods
US10595889B2 (en) 2016-04-11 2020-03-24 RELIGN Corporation Arthroscopic devices and methods
EP3445258A4 (en) 2016-04-22 2019-12-04 Relign Corporation ARTHROSCOPIC DEVICES AND METHOD
WO2018005382A1 (en) 2016-07-01 2018-01-04 Aaron Germain Arthroscopic devices and methods
WO2018067496A1 (en) 2016-10-04 2018-04-12 Avent, Inc. Cooled rf probes
US11426231B2 (en) 2017-01-11 2022-08-30 RELIGN Corporation Arthroscopic devices and methods
US11065023B2 (en) 2017-03-17 2021-07-20 RELIGN Corporation Arthroscopic devices and methods
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
EP3675707A4 (en) 2017-08-28 2021-06-02 Relign Corporation ARTHROSCOPY DEVICES AND METHODS
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
WO2019133542A1 (en) 2017-12-27 2019-07-04 Aaron Germain Arthroscopic devices and methods
US11504152B2 (en) 2018-06-11 2022-11-22 RELIGN Corporation Arthroscopic devices and methods
US20200022749A1 (en) 2018-06-12 2020-01-23 RELIGN Corporation Arthroscopic devices and methods
JP7280897B2 (ja) 2018-06-21 2023-05-24 ショックウェーブ メディカル, インコーポレイテッド 身体管腔内の閉塞を治療するためのシステム
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
WO2021061523A1 (en) 2019-09-24 2021-04-01 Shockwave Medical, Inc. System for treating thrombus in body lumens
US11992232B2 (en) 2020-10-27 2024-05-28 Shockwave Medical, Inc. System for treating thrombus in body lumens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669907A (en) * 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US5849010A (en) * 1994-10-31 1998-12-15 Helmut Wurzer Electrosurgical apparatus and method for its operation
EP1034747A1 (en) * 1999-03-05 2000-09-13 Gyrus Medical Limited Electrosurgery system and instrument
WO2000062685A1 (en) * 1999-04-16 2000-10-26 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060088A (en) 1976-01-16 1977-11-29 Valleylab, Inc. Electrosurgical method and apparatus for establishing an electrical discharge in an inert gas flow
US4781175A (en) 1986-04-08 1988-11-01 C. R. Bard, Inc. Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation
US5256138A (en) * 1990-10-04 1993-10-26 The Birtcher Corporation Electrosurgical handpiece incorporating blade and conductive gas functionality
US5207675A (en) 1991-07-15 1993-05-04 Jerome Canady Surgical coagulation device
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
US6235020B1 (en) 1993-05-10 2001-05-22 Arthrocare Corporation Power supply and methods for fluid delivery in electrosurgery
DE59409469D1 (de) 1994-03-23 2000-09-07 Erbe Elektromedizin Multifunktionales Instrument für die Ultraschall-Chirurgie
KR980700819A (ko) 1994-12-30 1998-04-30 난바 기쿠지로 의료용 응고장치(Medical coagulation apparatus)
DE69736467T2 (de) * 1996-11-27 2007-03-15 Cook Vascular Tm Incorporated Hochfrequenz-gespeiste dilatorhülse
US6039736A (en) 1998-09-29 2000-03-21 Sherwood Services Ag Side-Fire coagulator
GB9905210D0 (en) * 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgical system
US6837884B2 (en) 2001-06-18 2005-01-04 Arthrocare Corporation Electrosurgical apparatus having compound return electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849010A (en) * 1994-10-31 1998-12-15 Helmut Wurzer Electrosurgical apparatus and method for its operation
US5669907A (en) * 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
EP1034747A1 (en) * 1999-03-05 2000-09-13 Gyrus Medical Limited Electrosurgery system and instrument
WO2000062685A1 (en) * 1999-04-16 2000-10-26 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum

Also Published As

Publication number Publication date
US20040010249A1 (en) 2004-01-15
US6413256B1 (en) 2002-07-02
WO2003020145A1 (en) 2003-03-13
EP1416869A1 (en) 2004-05-12
EP1416869A4 (en) 2009-12-02
EP1416869B1 (en) 2012-02-29
JP2005501597A (ja) 2005-01-20
US6821275B2 (en) 2004-11-23

Similar Documents

Publication Publication Date Title
JP4683840B2 (ja) 電圧閾値切除方法及び装置
US8333763B2 (en) Voltage threshold ablation apparatus
US8221404B2 (en) Electrosurgical ablation apparatus and method
US20050075630A1 (en) Voltage threshold ablation apparatus
US20090270849A1 (en) Electrosurgical Device and Method
US20220304739A1 (en) Electrosurgical system with suction control apparatus, system and method
US7563261B2 (en) Electrosurgical device with floating-potential electrodes
EP0886493B1 (en) A dermatological treatment probe
US7566333B2 (en) Electrosurgical device with floating-potential electrode and methods of using the same
CN110603000B (zh) 电外科系统和方法
US6277114B1 (en) Electrode assembly for an electrosurical instrument
US6024733A (en) System and method for epidermal tissue ablation
EP1374789A2 (en) Treatment of an intervertebral disc with an annulus fibrosus
US20030225404A1 (en) Low power electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees