JP4683351B2 - Electrical resistance welding method for shaft-like parts - Google Patents

Electrical resistance welding method for shaft-like parts Download PDF

Info

Publication number
JP4683351B2
JP4683351B2 JP2010128313A JP2010128313A JP4683351B2 JP 4683351 B2 JP4683351 B2 JP 4683351B2 JP 2010128313 A JP2010128313 A JP 2010128313A JP 2010128313 A JP2010128313 A JP 2010128313A JP 4683351 B2 JP4683351 B2 JP 4683351B2
Authority
JP
Japan
Prior art keywords
welding
melting
shaft
steel plate
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010128313A
Other languages
Japanese (ja)
Other versions
JP2011051013A (en
Inventor
好高 青山
省司 青山
Original Assignee
好高 青山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 好高 青山 filed Critical 好高 青山
Priority to JP2010128313A priority Critical patent/JP4683351B2/en
Publication of JP2011051013A publication Critical patent/JP2011051013A/en
Application granted granted Critical
Publication of JP4683351B2 publication Critical patent/JP4683351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

この発明は、鋼板部品の片面側だけにプロジェクションボルトのような軸状部品の溶着用突起を加圧し、その状態で溶接電流を通電する軸状部品の電気抵抗溶接方法に関している。以下の説明において、プロジェクションボルトを単にボルトと表現する場合もある。  The present invention relates to an electric resistance welding method for a shaft-shaped component in which a welding projection of a shaft-shaped component such as a projection bolt is pressed only on one side of a steel plate component and a welding current is supplied in that state. In the following description, the projection bolt may be simply expressed as a bolt.

特許第4032313号公報記載の軸状部品であるプロジェクションボルトは、図9に示した形状である。すなわち、同図(B)に示すように、符号1はプロジェクションボルト全体を示し、雄ねじが形成された軸部2と、この軸部2と一体的に形成され軸部2の直径よりも大径とされた円形の拡径部3と、前記軸部2とは反対側の拡径部3の中央に形成された円形の溶着用突起4が配置されている。前記拡径部3は、いわゆるフランジであり、ボルト1は、鉄製である。  The projection bolt, which is a shaft-like component described in Japanese Patent No. 4032313, has the shape shown in FIG. That is, as shown in FIG. 1B, reference numeral 1 denotes the entire projection bolt, and a shaft portion 2 on which a male screw is formed, and a diameter integrally formed with the shaft portion 2 and larger than the diameter of the shaft portion 2. The circular enlarged diameter portion 3 and the circular welding protrusion 4 formed at the center of the enlarged diameter portion 3 on the side opposite to the shaft portion 2 are arranged. The said enlarged diameter part 3 is what is called a flange, and the volt | bolt 1 is iron.

このボルト1の軸部2を可動電極5の受入孔6に保持し、ボルト1の溶着用突起4を固定電極7上に載置されている鋼板部品8に押し付け、その状態で溶接電流を通電し、溶着用突起4が鋼板部品8に溶着される。符号11は、溶着部を示している。そして、ここに示されている溶着用突起4は、同図(B)に示すように、わずかに傾斜したテーパ面9を有する扁平な形状とされている。  The shaft portion 2 of the bolt 1 is held in the receiving hole 6 of the movable electrode 5, the welding protrusion 4 of the bolt 1 is pressed against the steel plate part 8 placed on the fixed electrode 7, and a welding current is passed in that state. Then, the welding projection 4 is welded to the steel plate part 8. The code | symbol 11 has shown the welding part. And the welding protrusion 4 shown here is made into the flat shape which has the taper surface 9 which inclined slightly, as shown to the same figure (B).

なお、可動電極5はエアシリンダ等の進退駆動手段(図示していない)で進退するもので、その端面の中央部に前記受入孔6が可動電極5の中心線上に設けてある。そして、受入孔6の奥にボルト1を保持する永久磁石10が配置してある。  The movable electrode 5 is advanced and retracted by an advancing / retreating drive means (not shown) such as an air cylinder, and the receiving hole 6 is provided on the center line of the movable electrode 5 at the center of the end face. And the permanent magnet 10 which hold | maintains the volt | bolt 1 in the back of the receiving hole 6 is arrange | positioned.

また、特開2008−44003号公報記載の溶接方法では、プロジェクションボルト1が図9(B)に示されたものから変形され、パイプ材のような円形断面部材が電気抵抗溶接の対象とされている。ここではパイプ材に適合させるために、前記拡径部3と溶着用突起4の両側が切断されて小判型になっている。このような形状のプロジェクションボルト1が図10に示した要領で溶接される。前記小判型の長手方向はパイプ材の軸線方向と同方向とされている。パイプ材41がVブロック型の固定電極42に支持され、パイプ材41の直径方向からボルト1を保持した可動電極5が進出してきて、溶着用突起4がパイプ材41の円筒面に加圧され、溶接電流が通電されて溶接が完了する。Further, in the welding method described in Japanese Patent Application Laid-Open No. 2008-44003, the projection bolt 1 is deformed from the one shown in FIG. 9B, and a circular cross-section member such as a pipe material is subjected to electric resistance welding. Yes. Here, in order to adapt to the pipe material, both sides of the enlarged diameter portion 3 and the welding projection 4 are cut into an oval shape. The projection bolt 1 having such a shape is welded in the manner shown in FIG. The longitudinal direction of the oval shape is the same as the axial direction of the pipe material. The pipe material 41 is supported by the V-block type fixed electrode 42, the movable electrode 5 holding the bolt 1 advances from the diameter direction of the pipe material 41, and the welding projection 4 is pressed against the cylindrical surface of the pipe material 41. The welding current is energized to complete the welding.

特許第4032313号公報Japanese Patent No. 4032313 特開2008−44003号公報JP 2008-44003 A

図9に示した特許文献1のような溶接においては、拡径部3と溶着用突起4および鋼板部品8の3者が、両電極5、7間で挟み付けられて加圧され、その後、溶接電流が通電される。このような溶接動作がなされるので、溶着用突起4は所定の加圧力で鋼板部品8に押し付けられ、このときには鋼板部品8は変形することなく固定電極7上に静止している。したがって、溶接電流の電流値と通電時間を所定値に設定することにより、適正な溶着部11の形状が確保でき、十分な溶接強度となる。  In welding like patent document 1 shown in FIG. 9, the three members of the enlarged diameter part 3, the welding protrusion 4 and the steel plate part 8 are sandwiched between the electrodes 5 and 7 and pressed, A welding current is applied. Since such a welding operation is performed, the welding projection 4 is pressed against the steel plate part 8 with a predetermined pressure, and at this time, the steel plate part 8 is stationary on the fixed electrode 7 without being deformed. Therefore, by setting the current value of the welding current and the energization time to a predetermined value, an appropriate shape of the welded portion 11 can be secured, and sufficient welding strength is obtained.

このように所定の直径寸法や厚さの溶融部11が得られるのは、両電極5、7間で拡径部3と鋼板部品8が挟み付けられた状態になっているので、溶融熱が放熱されにくくなっており、そのために溶着部11の溶融範囲が直径方向や厚さ方向にわたって適正なものとなるのである。  In this way, the melted part 11 having a predetermined diameter and thickness is obtained because the enlarged diameter part 3 and the steel plate part 8 are sandwiched between the electrodes 5 and 7. It is difficult to dissipate heat, and therefore, the melting range of the welded portion 11 becomes appropriate over the diameter direction and the thickness direction.

しかしながら、溶着用突起4が押し付けられる表面とは反対側の鋼板部品8の裏面に、固定電極7のような放熱防止機能を有する部材が接触した状態で存在しない場合、つまり溶着用突起4が鋼板部品8の表面にだけ加圧されて、その反対側の裏面は開放空間に露出しているような場合には、通電による発生熱が鋼板部品8の裏面から大量に開放空間へ放熱されるので、溶着用突起4と鋼板部品8との溶融状態を所定通りに確保することが困難となり、適正な溶着部11が得られないという問題がある。  However, when a member having a heat dissipation prevention function such as the fixed electrode 7 does not exist on the back surface of the steel plate component 8 on the side opposite to the surface against which the welding projection 4 is pressed, that is, the welding projection 4 is a steel plate. When pressure is applied only to the surface of the component 8 and the back surface on the opposite side is exposed to the open space, a large amount of heat generated by energization is dissipated from the back surface of the steel plate component 8 to the open space. There is a problem that it becomes difficult to ensure the melted state of the welding protrusion 4 and the steel plate part 8 as prescribed, and an appropriate welded portion 11 cannot be obtained.

一方、図10に示した特許文献2のような溶接においては、ボルト1の溶着用突起4がパイプ材41の円筒面に加圧されて溶接電流が通電されると、溶着用突起4の中央部とパイプ材41の板材が溶融を開始し、この溶融が進行するのに連れて板材が軟化して溶着用突起4が板材をパイプ材41の中心側へ押し込んだ状態になる。このような板材の塑性変形で板材はパイプ材41の中心側へ膨出する。この膨出部は符号43で示されている。つまり、円筒形の板材の外側から加圧するので、板材自体の剛性が高いために板材の加熱軟化によって上記の押し込みが開始されるのである。このようにして、加圧された板材は高温軟化によって座屈したような状態で内側へへこまされて塑性変形が形成されるのである。ここでの溶着部にも先のものと同じ符号11が記載してある。  On the other hand, in welding as in Patent Document 2 shown in FIG. 10, when the welding projection 4 of the bolt 1 is pressed against the cylindrical surface of the pipe material 41 and a welding current is applied, the center of the welding projection 4 is obtained. As the melting progresses, the plate material softens and the welding projection 4 pushes the plate material toward the center of the pipe material 41. Due to the plastic deformation of the plate material, the plate material bulges toward the center side of the pipe material 41. This bulge is indicated by reference numeral 43. That is, since pressurization is performed from the outside of the cylindrical plate material, the plate material itself has high rigidity, so that the above-described pushing is started by heat softening of the plate material. In this way, the pressed plate material is dented inward in a state of being buckled by high-temperature softening, and plastic deformation is formed. Here, the same reference numeral 11 as the previous one is also written in the welded portion.

上述のようなパイプ材41に対する加圧であると、剛性の高い円筒面を加圧するものであるから、加圧力を著しく高い値にする必要があり、しかも上記押し込み量(へこみ量)を均一に維持することが困難となる。  When the pressure is applied to the pipe material 41 as described above, the cylindrical surface having high rigidity is pressed. Therefore, it is necessary to make the pressing force extremely high, and the pushing amount (dent amount) is made uniform. It becomes difficult to maintain.

本発明は、上記の問題点を解決するために提供されたもので、溶着用突起に蓄熱機能を持たせるとともに、鋼板部品に付与される弾性変形を利用して溶着用突起と鋼板部品の双方に十分な金属溶融量を確保し、健全な溶着部を形成する軸状部品の電気抵抗溶接方法の提供を目的とする。  The present invention is provided in order to solve the above-described problems. Both the welding projection and the steel plate component are provided by using the elastic deformation imparted to the steel plate component while giving the welding projection a heat storage function. An object of the present invention is to provide an electric resistance welding method for a shaft-shaped part that secures a sufficient amount of metal melting and forms a sound weld.

請求項1記載の発明は、軸部と、この軸部と一体的に形成され軸部の直径よりも大径とされた円形の拡径部と、前記軸部とは反対側の拡径部中央に配置されているとともに溶接電流の通電にともなって溶融および半溶融による蓄熱機能を果たす円形の溶着用突起を備えた軸状部品を準備し、前記軸状部品の軸部を加圧電極に設けた受入孔に挿入して軸状部品を加圧電極に保持し、片面側に軸状部品が溶接され、その反対側の他面側が支持部材で支持された状態で開放空間に露出している平板状の鋼板部品に対して、前記加圧電極を進出させて鋼板部品の片面側だけに前記溶着用突起を加圧して鋼板部品を加圧電極の進出方向側に鋼板部品の板材が撓んだ状態の弾性変形を行わせ、その後、溶接電流を通電し、この通電によって生じる溶着用突起における溶融および半溶融の蓄熱熱量が、前記他面側から開放空間への放熱量を上回るように、溶接電流の通電発熱量や溶着用突起の体積が設定されており、前記他面側から開放空間への放熱は、溶着用突起における溶融部の溶融面積に対応する他面側の表面の面積範囲から行われ、前記拡径部の厚さに対する軸状部品の軸線方向で見た溶着用突起の高さの比は、溶着用突起における溶融部や半溶融部の体積が確保できる1.3から溶着用突起における溶融部や半溶融部の体積が過剰とならない3.0の範囲に設定された溶着用突起における蓄熱機能を果たし得る値とされ、溶着用突起における溶融および半溶融と同時に鋼板部品の前記弾性変形による弾性復元力を反力的に溶融部および半溶融部に向けて作用させながら、溶融部の固体化所要時間を長期化して溶融部の鋼板部品の厚さ方向および面方向への拡大を促進し、その後、溶融部が固体化して加圧電極を後退させて弾性変形をしていた鋼板部品を復元することを特徴とする軸状部品の電気抵抗溶接方法である。The invention according to claim 1 includes a shaft portion, a circular enlarged portion formed integrally with the shaft portion and having a diameter larger than the diameter of the shaft portion, and a diameter-enlarged portion opposite to the shaft portion. A shaft-shaped part provided with a circular welding protrusion that is arranged in the center and performs a heat storage function by melting and semi-melting with energization of a welding current is prepared, and the shaft part of the shaft-shaped part is used as a pressure electrode. The shaft-shaped part is held in the pressure electrode by being inserted into the provided receiving hole, the shaft-shaped part is welded on one side, and the other side on the opposite side is supported by the support member and exposed to the open space. The plate electrode of the steel plate part is bent in the advance direction side of the pressurizing electrode by pushing the welding protrusion on only one side of the steel plate part and pushing the welding protrusion on the flat plate steel plate part. Then, the welding current is applied and a welding current is applied. Thermal storage heat of molten and semi-molten at the said other side so as to exceed the heat radiation amount to the open space, electric heating amount and volume of the fusion bonding projection welding current is set, released from the other side The heat dissipation to the space is performed from the surface area range of the other surface side corresponding to the melted area of the melted portion in the welding projection, and the welding projection as seen in the axial direction of the shaft-shaped component with respect to the thickness of the enlarged diameter portion The ratio of the height is set in a range from 1.3 in which the volume of the melted part and the semi-molten part in the welding protrusion can be secured to 3.0 in which the volume of the melted part and the semi-molten part in the welding protrusion is not excessive. It is a value that can fulfill the heat storage function in the welding projection, and the elastic restoring force due to the elastic deformation of the steel plate part acts against the melting portion and the semi-melting portion at the same time as melting and semi-melting in the welding projection. While melting the solidified part Prolongs the time required and promotes the expansion of the steel plate part in the thickness direction and the surface direction of the molten part, and then restores the steel plate part that was elastically deformed by solidification of the molten part and retraction of the pressure electrode An electric resistance welding method for a shaft-shaped part characterized in that:

前記加圧電極の進出により溶着用突起が鋼板部品に加圧されると、加圧電極とは反対側の鋼板部品の表面が開放空間に露出しているので、平板状の鋼板部品はその板材が撓んだ状態で加圧電極の進出方向に弾性変形をする。この状態で溶接電流が通電されると、最初に溶着用突起の先端側が溶融状態になり、通電時間の経過とともに溶融域が拡大してゆく。これに同期して鋼板部品の表面部分も溶融状態になる。そのときには、溶着用突起の溶融部分の拡径部側が徐々に半溶融状態になって、軟化層が形成される。さらに、この軟化層が徐々に変化して固体部分となる。上記のような溶融状態や半溶融状態によって、溶着用突起における蓄熱機能が果たされる。  When the welding protrusion is pressed onto the steel plate component by the advancement of the pressurizing electrode, the surface of the steel plate component opposite to the pressurizing electrode is exposed to the open space, so the flat steel plate component is the plate material Is deformed elastically in the advancing direction of the pressure electrode in a state where is bent. When a welding current is applied in this state, the tip end side of the welding projection first enters a molten state, and the melting region expands as the energization time elapses. Synchronously with this, the surface portion of the steel plate part is also in a molten state. At that time, the diameter-expanded portion side of the melted portion of the welding protrusion gradually becomes a semi-molten state, and a softened layer is formed. Further, the softened layer gradually changes to become a solid part. The heat storage function in the welding protrusion is performed by the molten state or the semi-molten state as described above.

このように溶着用突起の溶融状態および半溶融状態により、溶接電流の通電中あるいは通電直後において、溶着用突起に蓄熱された状態が形成される。このような蓄熱状態において鋼板部品は前述の弾性変形にともなう弾性復元力が溶融部や半溶融部に反力的に作用しているので、溶融部が鋼板部品の厚さ方向や面方向に拡大することが促進される。この溶融部に対してはそれに隣接している半溶融部からの熱補充がなされるので、溶融部の固体化所要時間が長くなり、それによって溶融部が溶着用突起および鋼板部品の両方に拡大し、十分な溶接強度が得られる溶着部形状が形成される。  As described above, the melted state and the semi-molten state of the welding protrusion form a state in which heat is stored in the welding protrusion during or immediately after energization of the welding current. In such a heat storage state, the elastic restoring force accompanying the elastic deformation described above acts on the molten part and the semi-molten part in the steel plate part, so the molten part expands in the thickness direction and surface direction of the steel plate part. To be promoted. Since this molten part is replenished with heat from the semi-molten part adjacent to it, the time required for solidification of the molten part becomes longer, thereby expanding the molten part to both the welding protrusion and the steel plate part. As a result, a welded part shape that provides sufficient welding strength is formed.

前記鋼板部品は平板状であるから、その板材自体が撓みやすくなり、前記弾性変形が確実に形成されて弾性的反力が確保でき、溶融部や半溶融部に対する弾性加圧力が十分に作用し、適正な溶着部形状が形成される。  Since the steel plate component is flat, the plate itself is easily bent, the elastic deformation is reliably formed and an elastic reaction force can be ensured, and the elastic pressure force on the melting part and the semi-melting part is sufficiently applied. An appropriate welded portion shape is formed.

前記溶着用突起の蓄熱による溶融部への熱量供給が、鋼板部品の他面側から開放空間への放熱量を上回るように、溶接電流の通電発熱量や溶着用突起の体積が設定されている。こうすることによって、上述のように溶融部の固体化所要時間を長引かせ、溶融部が溶着用突起および鋼板部品の両方に拡大するのである。  The amount of heat generated by the welding current and the volume of the welding projection are set so that the amount of heat supplied to the melted portion by heat storage of the welding projection exceeds the amount of heat released from the other surface side of the steel plate part to the open space. . By doing so, the time required for solidification of the melted part is prolonged as described above, and the melted part expands to both the welding protrusion and the steel plate part.

また、溶融部が固体化してから加圧電極を後退させると、弾性変形をしていた鋼板部品の板材が復元して、所定の鋼板部品の形状に復帰することができて、正常な形状の鋼板部品が確保される。  In addition, when the pressure electrode is retracted after the melted portion is solidified, the plate material of the steel plate component that has been elastically deformed can be restored and returned to the shape of the predetermined steel plate component. Steel plate parts are secured.

請求項2記載の発明は、前記平板状の鋼板部品は、わずかに湾曲した実質的に平板と見なされる板材を含んでいる請求項1記載の軸状部品の電気抵抗溶接方法である。  The invention according to claim 2 is the electric resistance welding method for a shaft-like part according to claim 1, wherein the flat plate-like steel plate part includes a plate material which is regarded as a substantially flat plate which is slightly curved.

例えば、自動車のルーフパネルのような鋼板部品であると、湾曲半径が3000mmのようなほぼ平板に近い形状とされている場合がある。このような形状においては、実質的に平板と見なされる板材が溶接の相手方部材となる。上述の溶着過程は、このような曲率の小さな鋼板部品に対しても、期待どおりに実行することができる。なお、前記軸状部品をルーフパネルに直接電気抵抗溶接をすると、表面に微小な凹凸が形成されて外観品質を低下させるので、実際には、ルーフパネルに沿って配置されたわずかな湾曲形状のリーンフォースメント(補強部材)に対して、軸状部品が片側から電気抵抗溶接で溶接される。  For example, in the case of a steel plate part such as a roof panel of an automobile, the shape may be almost a flat plate having a curvature radius of 3000 mm. In such a shape, a plate material that is substantially regarded as a flat plate is a counterpart member for welding. The above-described welding process can be performed as expected even for such a steel plate part having a small curvature. Note that when the shaft-shaped part is directly resistance-welded to the roof panel, minute irregularities are formed on the surface and the appearance quality is deteriorated. Therefore, actually, the slightly curved shape arranged along the roof panel is reduced. A shaft-like component is welded to a reinforcement (reinforcing member) from one side by electric resistance welding.

記拡径部の厚さに対する軸状部品の軸線方向で見た溶着用突起の高さは、溶着用突起における溶融および半溶融による蓄熱機能を果たし得る値に設定されている。 The height of the welding projection viewed in the axial direction of the shaft-like part with respect to thickness before Symbol enlarged section that is set to a value that can play a heat storage function by melting and half-melted in the fusion bonding projection.

このような溶着用突起の高さ寸法を設定することにより、十分な蓄熱機能が発揮される。  By setting the height dimension of such a welding protrusion, a sufficient heat storage function is exhibited.

記拡径部の厚さに対する軸状部品の軸線方向で見た溶着用突起の高さの比は、1.3〜3.0である。 The ratio of the height of the welding projection viewed in the axial direction of the shaft-like part with respect to thickness before Symbol enlarged portion, Ru der 1.3 to 3.0.

このような溶着用突起の高さ寸法を上記の比のように設定することにより、十分な蓄熱機能が発揮される。  A sufficient heat storage function is exhibited by setting the height dimension of such a welding projection as in the above ratio.

本願発明は、上述のような軸状部品の電気抵抗溶接方法の発明であるが、以下に記載する実施例から明らかなように、初期溶融部や溶着用突起の各部寸法状態等を特定した「電気抵抗溶接用軸状部品またはプロジェクションボルト」という部品形状の発明として存在させることができる。  The present invention is an invention of an electrical resistance welding method for a shaft-shaped component as described above, but as is clear from the examples described below, the initial melted part and the dimensions and the like of each part of the welding projection were specified. It can exist as an invention of a part shape of “electrical resistance welding shaft-like part or projection bolt”.

ボルトの形状や寸法を示す側面図である。It is a side view which shows the shape and dimension of a volt | bolt. 溶接される状態を示す側面図と斜視図である。It is the side view and perspective view which show the state welded. 溶着過程を示す断面図である。It is sectional drawing which shows a welding process. 溶着完了状態を示す断面図である。It is sectional drawing which shows a welding completion state. 溶着用突起部分の部位区分を示す断面図である。It is sectional drawing which shows the site | part division of the welding projection part. 溶着時の溶融、半溶融状態を示す断面図である。It is sectional drawing which shows the fusion | melting at the time of welding, and a semi-molten state. 他の鋼板部品への溶接を示す断面図である。It is sectional drawing which shows the welding to another steel plate component. 傾いた溶接状態の側面図である。It is a side view of the inclined welding state. 従来技術を示す断面図と側面図である。It is sectional drawing and a side view which show a prior art. さらに他の従来技術を示す断面図である。It is sectional drawing which shows other prior art.

つぎに、本発明の軸状部品の電気抵抗溶接方法を実施するための形態を説明する。  Next, an embodiment for carrying out the electric resistance welding method for a shaft-shaped part of the present invention will be described.

図1〜図8は、実施例1を示す。  1 to 8 show a first embodiment.

軸状部品としては種々なものがあるが、本実施例における軸状部品はプロジェクションボルトである。  There are various types of shaft-shaped components, but the shaft-shaped components in this embodiment are projection bolts.

最初に、プロジェクションボルトについて説明する。  First, the projection bolt will be described.

本実施例で溶接される鉄製のボルト12は、雄ねじが形成された軸部13と、この軸部13と一体的に形成され軸部13の直径よりも大径とされた円形のフランジ状の拡径部14と、前記軸部13とは反対側の拡径部14の中央に配置されている円形の溶着用突起15から構成されたものである。そして、溶着用突起15は、溶接電流の通電にともなって溶融および半溶融による蓄熱機能を果たすものとされている。溶着用突起15の端面に、外周側が低くなる小さな傾斜角θのテーパ部16を有する初期溶融部17が形成されている。テーパ部16の中心部に頂部18が形成されている。  The iron bolt 12 to be welded in this embodiment includes a shaft portion 13 on which a male screw is formed, and a circular flange-like shape that is formed integrally with the shaft portion 13 and has a diameter larger than the diameter of the shaft portion 13. The enlarged diameter portion 14 and the circular welding protrusion 15 disposed at the center of the enlarged diameter portion 14 on the opposite side to the shaft portion 13 are configured. And the welding protrusion 15 shall fulfill | perform the heat storage function by fusion | melting and semi-melting with energization of welding current. On the end face of the welding protrusion 15, an initial melting portion 17 having a taper portion 16 with a small inclination angle θ that becomes lower on the outer peripheral side is formed. A top portion 18 is formed at the center of the tapered portion 16.

ボルト12の各部の寸法はつぎのとおりである。軸部13の直径D1は9mm、拡径部14の直径D2は13.5mm、溶着用突起15の直径D3は11mm、拡径部14の厚さT1は1.1mm、初期溶融部17を含む溶着用突起15の全高さH1は2.5mm、初期溶融部17の高さH2は0.5mm、溶着用突起15の初期溶融部17を除いた部分の高さH3は2mm、テーパ部16の傾斜角θは10度である。  The dimensions of each part of the bolt 12 are as follows. The diameter D1 of the shaft portion 13 is 9 mm, the diameter D2 of the enlarged diameter portion 14 is 13.5 mm, the diameter D3 of the welding projection 15 is 11 mm, the thickness T1 of the enlarged diameter portion 14 is 1.1 mm, and the initial melting portion 17 is included. The total height H1 of the welding projection 15 is 2.5 mm, the height H2 of the initial melting portion 17 is 0.5 mm, the height H3 of the portion excluding the initial melting portion 17 of the welding projection 15 is 2 mm, and the taper portion 16 The inclination angle θ is 10 degrees.

なお、前記頂部18は、機械加工による尖った形状や、金型成型によるわずかな丸味を持った形状等に仕上げられており、通電初期の電流密度は両者ともほぼ同じである。この点は、図5(B)に示すように、わずかな直径の円形の平面部21の場合も同様である。  The top portion 18 is finished to have a sharp shape by machining, a slightly rounded shape by die molding, or the like, and the current density at the initial energization is almost the same. This also applies to the case of a circular flat surface portion 21 having a slight diameter, as shown in FIG.

つぎに、ボルトの電気抵抗溶接状態を説明する。  Next, the electric resistance welding state of the bolt will be described.

図2(A)に示すように、エアシリンダ等(図示していない)の進退駆動手段によって動作する加圧電極19に、ボルト12の軸部13が挿入される受入孔20が設けられている。この受入孔20は、加圧電極19の軸線と同軸の状態で端面側からあけられている。軸部13が受入孔20に挿入されると、拡径部14が加圧電極19の端面に密着する。この密着を維持してボルト12が落下しないようにするために、受入孔20の奥に永久磁石22が固定してある。  As shown in FIG. 2 (A), a receiving hole 20 into which the shaft portion 13 of the bolt 12 is inserted is provided in the pressure electrode 19 that is operated by advancing / retreating drive means such as an air cylinder (not shown). . The receiving hole 20 is opened from the end face side in a state of being coaxial with the axis of the pressure electrode 19. When the shaft portion 13 is inserted into the receiving hole 20, the enlarged diameter portion 14 comes into close contact with the end face of the pressure electrode 19. In order to maintain this close contact and prevent the bolt 12 from falling, a permanent magnet 22 is fixed to the back of the receiving hole 20.

平板状の鋼板部品23が支持部材である支持治具24で支持され、この支持治具24は加圧電極19の軸線から離れた箇所に配置してある。鋼板部品23の表面である片面側25にボルト12が溶接され、鋼板部品23の裏面である他面側26には何も接触するものはなく、開放空間27に露出している。符号28は変圧器であり、加圧電極19と鋼板部品23に結線してある。ここで使用されている鋼板部品23の板厚T2は、1mmである。  A flat steel plate component 23 is supported by a support jig 24 that is a support member, and the support jig 24 is disposed at a location away from the axis of the pressurizing electrode 19. The bolt 12 is welded to one side 25 which is the surface of the steel plate part 23, and there is nothing in contact with the other side 26 which is the back side of the steel plate part 23, and it is exposed to the open space 27. Reference numeral 28 denotes a transformer, which is connected to the pressure electrode 19 and the steel plate part 23. The plate thickness T2 of the steel plate component 23 used here is 1 mm.

図2(B)は、鋼板部品23を平面的に見た図である。4個の支持治具24によって鋼板部品23が支持され、支持治具24は丁度正方形の角部分に配置してある。加圧電極19に支持されたボルト12の中心部分、つまりテーパ部16の頂部18が4個の支持治具24の中央部を加圧するように、加圧電極19と支持治具24の相対位置が設定されている。このように各支持治具24から最も離れた箇所を頂部18が加圧することによって、鋼板部品23が加圧電極19の進出方向側に弾性変形をする。この弾性変形によって、鋼板部品23の板材自体が湾曲状に撓んだ状態となる。  FIG. 2B is a plan view of the steel plate part 23. The steel plate part 23 is supported by the four support jigs 24, and the support jigs 24 are arranged just at the corners of the square. The relative positions of the pressure electrode 19 and the support jig 24 so that the central portion of the bolt 12 supported by the pressure electrode 19, that is, the top portion 18 of the taper portion 16 presses the center portion of the four support jigs 24. Is set. Thus, when the top part 18 pressurizes the place furthest from each support jig 24, the steel plate component 23 is elastically deformed in the advance direction side of the pressurizing electrode 19. Due to this elastic deformation, the plate material itself of the steel plate component 23 is bent into a curved shape.

頂部18の位置を、符号18aや18bに示す位置に換えて溶接することも可能である。この場合は、支持治具24に近いので弾性変形の量は、中央部の場合に比して少なくなる。  It is also possible to perform welding by changing the position of the top 18 to the position indicated by reference numerals 18a and 18b. In this case, since it is close to the support jig 24, the amount of elastic deformation is smaller than in the case of the central portion.

図2(A)および(B)の鋼板部品23は、鋼板部品23の板材が水平面のように完全な平面を呈する平板であるが、自動車のルーフパネルのように例えば湾曲半径が3000mmといったあたかも平板に近い鋼板部品23に対してボルト1を溶接する場合がある。この事例が図2(D)とそのE−E断面図である(E)図に示されている。ルーフパネル44は裏返した状態で支持治具24に支持されており、同図の下側が車体の上方であり、上側が車体の室内側である。また、図2(D)は自動車の前後方向に直交する面で切断した状態の断面図であり、板材は太線で示され板厚の図示は省略されている。ルーフパネル44は、湾曲半径が著しく大きくて、外観的には完全な平板状になっている。湾曲半径としては、例えば、3000mm〜4000mmである。  2 (A) and 2 (B) is a flat plate in which the plate material of the steel plate component 23 has a completely flat surface such as a horizontal surface, but is as if it has a curved radius of, for example, 3000 mm, like a roof panel of an automobile. The bolt 1 may be welded to the steel plate part 23 close to. This case is shown in FIG. 2 (D) and FIG. 2 (E), which is an EE cross-sectional view thereof. The roof panel 44 is supported by the support jig 24 in an inverted state, with the lower side in the figure being the upper side of the vehicle body and the upper side being the indoor side of the vehicle body. FIG. 2D is a cross-sectional view taken along a plane orthogonal to the front-rear direction of the automobile. The plate material is indicated by a thick line, and the thickness of the plate is not shown. The roof panel 44 has a remarkably large radius of curvature and has a completely flat plate appearance. The curvature radius is, for example, 3000 mm to 4000 mm.

このようなルーフパネル44は外板であるからボルト1を直接溶接すると、外表面に凹凸が発生するので、通常はその内側に配置したリーンフォースメント(補強部材)45にボルト溶接がなされる。このリーンフォースメント45には、ルーフパネル44と同じ湾曲形状が付与してあり、ルーフパネル44の内側に沿った状態で配置されている。リーンフォースメント45の端部がルーフパネル44にスポット溶接で結合されている。符号Sはこのスポット溶接部を示している。ルーフパネル44とリーンフォースメント45の間に構造用接着剤46が充填されていて、走行中にルーフパネル44が膜振動をすることが防止されている。  Since such a roof panel 44 is an outer plate, when the bolts 1 are directly welded, irregularities are generated on the outer surface, and therefore, bolt welding is usually performed on a reinforcement (reinforcing member) 45 disposed on the inside. The lean reinforcement 45 has the same curved shape as that of the roof panel 44 and is arranged along the inside of the roof panel 44. The end portion of the reinforcement 45 is joined to the roof panel 44 by spot welding. Reference numeral S indicates this spot weld. A structural adhesive 46 is filled between the roof panel 44 and the reinforcement 45 to prevent the roof panel 44 from vibrating membrane during traveling.

図2(E)に見られるルーフパネル44およびリーンフォースメント45は、同図の紙面に垂直な方向に延びており、その方向にわずかな湾曲を呈している。  The roof panel 44 and the reinforcement 45 seen in FIG. 2 (E) extend in a direction perpendicular to the paper surface of FIG. 2 and have a slight curvature in that direction.

図2(A)や(B)に示した鋼板部品23に換えて、同図(C)に示す鋼板製の閉断面構造物29にボルト12を溶接するようにしてもよい。この閉断面構造物29は、平板30にハット型断面の屈曲部材31をスポット溶接したもので、閉断面構造物29の内部空間が前述の開放空間27になっている。ボルト12が加圧される箇所は、平板状の板材とされている。このような閉断面構造物29は、自動車ボディの床板の骨格部材や、ピラー等において一般的に採用されている。  Instead of the steel plate component 23 shown in FIGS. 2A and 2B, the bolt 12 may be welded to a steel plate closed cross-section structure 29 shown in FIG. The closed cross-section structure 29 is obtained by spot welding a bending member 31 having a hat-shaped cross section to a flat plate 30, and the internal space of the closed cross-section structure 29 is the above-described open space 27. A location where the bolt 12 is pressed is a flat plate material. Such a closed cross-section structure 29 is generally employed in a frame member of a floor plate of an automobile body, a pillar, or the like.

図2(A)に示す状態での各種溶接条件は、つぎのとおりである。加圧電極19の加圧力は15Kgf、溶接電流の電流値は8000アンペア、通電時間は3サイクル(1サイクルは1/60秒)である。  Various welding conditions in the state shown in FIG. 2 (A) are as follows. The pressurizing force of the pressure electrode 19 is 15 kgf, the current value of the welding current is 8000 amperes, and the energization time is 3 cycles (1 cycle is 1/60 second).

つぎに、溶着過程を説明する。  Next, the welding process will be described.

図3(A)〜(D)と図4は、溶着用突起15と鋼板部品23に生じる溶着の変化過程を示している。図3(A)は、加圧電極(図3では図示を省略してある)19が進出してきて、溶着用突起15の頂部18が鋼板部品23の片面側25に接触した状態を示している。同図(B)に示すように、さらに加圧電極19が進出して、所定の加圧力となった箇所で加圧電極19の進出が停止する。この状態では、鋼板部品23が加圧電極19の加圧力により、加圧電極19の加圧方向に板材が撓み込んだ状態の弾性変形をしている。この状態で溶接電流の通電が開始されると、最初に頂部18の箇所から溶着用突起15と鋼板部品23にわずかな溶融が開始される。溶融部すなわち溶着部は、符号32で示してある。  3 (A) to 3 (D) and FIG. 4 show a changing process of welding that occurs in the welding protrusion 15 and the steel plate part 23. FIG. 3 (A) shows a state in which the pressure electrode 19 (not shown in FIG. 3) has advanced and the top 18 of the welding projection 15 is in contact with one side 25 of the steel plate part 23. . As shown in FIG. 5B, the pressurization electrode 19 further advances, and the advancement of the pressurization electrode 19 stops at a place where a predetermined pressure is applied. In this state, the steel plate part 23 is elastically deformed in a state where the plate material is bent in the pressurizing direction of the pressurizing electrode 19 by the pressurizing force of the pressurizing electrode 19. When energization of the welding current is started in this state, a slight melting of the welding projection 15 and the steel plate part 23 is first started from the top 18. The melted or welded part is indicated by reference numeral 32.

同図(C)に示すように、鋼板部品23は弾性変形をしているので、その弾性反力が弾性復元力として作用している。矢線33は、この弾性復元力を示している。この状態でさらに通電が継続されると、溶融部32が初期溶融部17のほぼ全域に拡がる。弾性復元力33が作用しているので、溶融部32の拡大が促進されている。  As shown in FIG. 3C, the steel plate part 23 is elastically deformed, and thus the elastic reaction force acts as an elastic restoring force. An arrow line 33 indicates this elastic restoring force. When energization is further continued in this state, the melting part 32 spreads over almost the entire area of the initial melting part 17. Since the elastic restoring force 33 is acting, expansion of the melting part 32 is promoted.

ついで通電が打ち切られるか、またはわずかに通電が継続された後に打ち切られると、同図(D)に示すように、弾性復元力33の作用とともに後述の蓄熱機能によって溶融部32は同図(C)よりも拡大して、溶着が終了する。  Next, when the energization is interrupted, or when the energization is interrupted after the energization is slightly continued, as shown in FIG. 4D, the melted portion 32 is moved into the same figure (C ) And the welding is finished.

図4に示すように、冷却後、溶着部32が固体化して加圧電極19が後退すると、弾性変形をしていた鋼板部品23は平坦な状態に復元する。すなわち、前述の完全な平板状にもどる。この実施例では、図4の溶接完了の状態において、拡径部14と片面側25との間に空隙35が形成されている。  As shown in FIG. 4, after cooling, when the welding portion 32 is solidified and the pressure electrode 19 is retracted, the steel plate part 23 that has been elastically deformed is restored to a flat state. That is, it returns to the above-mentioned complete flat plate shape. In this embodiment, a gap 35 is formed between the enlarged diameter portion 14 and the single-sided side 25 in the state of completion of welding in FIG.

図5は、理解しやすくするために、各部分の領域を区分けして示した断面図である。  FIG. 5 is a cross-sectional view showing the regions of the respective parts for easy understanding.

つぎに、蓄熱機能について説明する。  Next, the heat storage function will be described.

前述のように、溶着用突起15の先端側すなわち初期溶融部17が溶融状態になり、これに同期して鋼板部品23の片面側25も溶融状態になる。そのときには、溶着用突起15の溶融部32の拡径部14側が徐々に半溶融状態になって、軟化層が形成される。さらに、この軟化層が徐々に変化して固体部分となる。上記のような溶融状態や半溶融状態によって、溶着用突起15における蓄熱機能が果たされる。  As described above, the front end side of the welding projection 15, that is, the initial melting portion 17 is in a molten state, and in synchronization with this, the one side 25 of the steel plate part 23 is also in a molten state. In that case, the diameter-expanded part 14 side of the fusion | melting part 32 of the welding protrusion 15 will be in a semi-molten state gradually, and a softening layer is formed. Further, the softened layer gradually changes to become a solid part. The heat storage function in the welding protrusion 15 is achieved by the molten state or the semi-molten state as described above.

このように溶着用突起15の溶融状態および半溶融状態により、溶接電流の通電中あるいは通電直後において、溶着用突起15に蓄熱された状態が形成される。このような蓄熱状態において鋼板部品23は前述の弾性変形にともなう弾性復元力33が溶融部32や半溶融部36に反力的に作用しているので、溶融部32が鋼板部品の厚さ方向や面方向に拡大することが促進される。この溶融部32に対してはそれに隣接している半溶融部36からの熱補充がなされるので、溶融部32の固体化所要時間が長くなり、それによって溶融部32が溶着用突起15および鋼板部品23の両方に拡大し、十分な溶接強度が得られる溶着部形状が形成される。  As described above, the melted state and the semi-molten state of the welding projection 15 form a state in which heat is stored in the welding projection 15 during energization of the welding current or immediately after energization. In such a heat storage state, the steel plate part 23 has the elastic restoring force 33 accompanying the elastic deformation described above acting on the melting part 32 and the semi-melting part 36 in a reaction force, so that the melting part 32 is in the thickness direction of the steel sheet part. And expansion in the surface direction is promoted. Since the melted portion 32 is replenished with heat from the semi-molten portion 36 adjacent to the melted portion 32, the time required for solidification of the melted portion 32 is lengthened. A welded part shape is formed that expands to both parts 23 and provides sufficient welding strength.

溶着用突起15の蓄熱による溶融部32への熱量供給が、鋼板部品23の他面側26から開放空間27への放熱量を上回るように、溶接電流の通電発熱量の制御や溶着用突起15の体積が設定されている。こうすることによって、上述のように溶融部32の固体化所要時間を長引かせ、溶融部32が溶着用突起15および鋼板部品23の両方に拡大するのである。  Control of the heat generation amount of the welding current and the welding protrusion 15 so that the heat supply to the melting part 32 due to heat storage of the welding protrusion 15 exceeds the heat radiation amount from the other surface side 26 of the steel plate part 23 to the open space 27. The volume is set. By doing so, the time required for solidification of the melting part 32 is prolonged as described above, and the melting part 32 expands to both the welding protrusion 15 and the steel plate part 23.

図6は、図3(C)に示した段階を拡大した断面図である。この段階においては、黒く塗りつぶした溶融部32が初期溶融部17と鋼板部品23の双方にわたって形成され、それに隣接して拡径部14側に向かって徐々に半溶融部36が形成される。このようにして溶融部32と半溶融部36が形成されることにより、溶着用突起15に蓄熱機能が付与される。この半溶融部36は、図6に梨地にハッチングが施された流動部36Aと、梨地だけが施された軟化部36Bに、境界線は表れないが、層別された状態で存在している。  FIG. 6 is an enlarged cross-sectional view of the stage shown in FIG. At this stage, the melted portion 32 painted black is formed over both the initial melted portion 17 and the steel plate part 23, and a semi-molten portion 36 is gradually formed adjacent to the enlarged portion 14 toward the enlarged diameter portion 14 side. By forming the melted part 32 and the semi-molten part 36 in this way, a heat storage function is imparted to the welding protrusion 15. The semi-molten portion 36 is present in a layered state, although no boundary line appears in the fluidized portion 36A in FIG. 6 where the satin is hatched and the softened portion 36B where only the satin is applied. .

鋼板部品23の弾性復元力33の作用により、流動部36Aは溶融部32に同化する。この同化時には軟化部36Bは冷却にともなう硬化によって流動することが不可能となり、熱量供給の機能にとどまる。上述のようにして、溶融部32自体と、半溶融部36からの熱量補充によって、溶着用突起15に蓄熱機能が果たされ、溶融部32はさらに鋼板部品23の厚さ方向に拡大する。この拡大領域37が2点鎖線38で示してある。2点鎖線図示の領域まで溶融が促進されることにより、鋼板部品23の厚さ方向の溶着部寸法が大きくなるので、溶着強度を高めることができるのである。  The fluidized part 36 </ b> A is assimilated to the molten part 32 by the action of the elastic restoring force 33 of the steel plate part 23. At the time of assimilation, the softening part 36B cannot flow due to hardening accompanying cooling, and remains a function of supplying heat. As described above, a heat storage function is performed on the welding protrusion 15 by replenishing heat from the melting part 32 itself and the semi-melting part 36, and the melting part 32 further expands in the thickness direction of the steel plate part 23. This enlarged region 37 is indicated by a two-dot chain line 38. By promoting the melting up to the region indicated by the two-dot chain line, the welded portion dimension in the thickness direction of the steel plate part 23 is increased, so that the welding strength can be increased.

上述のような溶融部32自体と、半溶融部36からの熱量補充にあたって、鋼板部品23に弾性復元刀33が作用しているので、流動性や変形性のある溶着用突起15や鋼板部品23の金属部分が、拡大領域37まで拡大される。換言すると、熱量補充がなされるので、溶融部32の固体化所要時間が長引いて、溶融部32から2点鎖線38の方へ溶融領域が拡大して行くのである。  Since the elastic restoring sword 33 is acting on the steel plate part 23 in replenishing the heat quantity from the melting part 32 itself and the semi-melting part 36 as described above, the welding protrusion 15 and the steel plate part 23 having fluidity and deformability. This metal part is enlarged to the enlarged region 37. In other words, since the amount of heat is replenished, the time required for solidification of the melting part 32 is prolonged, and the melting region expands from the melting part 32 toward the two-dot chain line 38.

上述の過程を経て溶接されたボルト12の溶接強度を測定した。測定は鋼板部品23を治具で固定し、ボルト12の軸部13を軸線方向に牽引することによって行われた。その結果、軸部13の牽引力が253Kgfに達した時点で、鋼板部品23の板部分が溶着部32とともに円形に破断し、鋼板部品23から引きちぎれて分離した。つまり、溶融部32と鋼板部品23とが一体になって円形の破断が形成され、鋼板部品23に穴があいた状態になった。あるいは、ハンマーでボルト12を曲げ方向に叩いた結果、ボルト12は鋼板部品23に対して45度ほど傾き、溶融部32と鋼板部品23が一体になったまま鋼板部品23の半円形の部分が破断した。このように溶接強度が十分に確保できるので、例えば、自動車のダッシュパネルにエアコンディショナーの熱交換器を、本件ボルト12で取り付けることが高い信頼性のもとで実現することが確認された。  The welding strength of the bolt 12 welded through the above process was measured. The measurement was performed by fixing the steel plate part 23 with a jig and pulling the shaft portion 13 of the bolt 12 in the axial direction. As a result, when the traction force of the shaft portion 13 reached 253 kgf, the plate portion of the steel plate component 23 was broken into a circle together with the welded portion 32 and was torn off from the steel plate component 23 and separated. That is, the fusion | melting part 32 and the steel plate component 23 were united, the circular fracture | rupture was formed, and the steel plate component 23 was in the state with the hole. Alternatively, as a result of hitting the bolt 12 with a hammer in the bending direction, the bolt 12 is inclined by about 45 degrees with respect to the steel plate part 23, and the semicircular portion of the steel plate part 23 remains with the molten portion 32 and the steel plate part 23 being integrated. It broke. Since sufficient welding strength can be ensured in this way, it has been confirmed that, for example, mounting the heat exchanger of the air conditioner to the dash panel of the automobile with the bolts 12 can be realized with high reliability.

つぎに、ボルト各部の寸法状態を説明する。  Next, the dimensional state of each part of the bolt will be described.

溶着用突起15の高さや直径等は蓄熱機能を発揮する上で適正な範囲が設定される。  An appropriate range is set for the height, diameter, and the like of the welding protrusion 15 in order to exhibit the heat storage function.

実施例における前記拡径部14の厚さT1に対するボルト12の軸線方向で見た溶着用突起15の高さH1の比は、2.3である。この比は、1.3〜3.0とするのが望ましい。この比が1.3未満であると、溶着用突起15の高さが低すぎて溶融部32や半溶融部36の体積が十分に確保できないので、熱量補充に不足を来すおそれがある。また、この比が3.0を超えると、溶着用突起15の高さが高すぎて溶融部32や半溶融部36の体積が過剰となり、蓄熱のためには通電時間を異常に長くする必要があり、経済的に不利である。また、溶融部32や半溶融部36の体積が過剰になると、溶着用突起15の軸線方向の変形量が過大となるので、鋼板部品23の表面から軸部13の先端までの距離が不均一になり、部品精度の面で好ましくない。  In the embodiment, the ratio of the height H1 of the welding projection 15 as viewed in the axial direction of the bolt 12 to the thickness T1 of the enlarged diameter portion 14 is 2.3. This ratio is desirably 1.3 to 3.0. If the ratio is less than 1.3, the height of the welding protrusion 15 is too low to sufficiently secure the volume of the melted part 32 or the semi-molten part 36, and there is a risk of insufficient heat supplementation. Moreover, when this ratio exceeds 3.0, the height of the welding protrusion 15 is too high, and the volume of the fusion | melting part 32 and the semi-molten part 36 becomes excessive, and it is necessary to make energization time unusually long for thermal storage. Is economically disadvantageous. Further, when the volume of the melted part 32 or the semi-molten part 36 becomes excessive, the amount of deformation in the axial direction of the welding projection 15 becomes excessive, and therefore the distance from the surface of the steel plate part 23 to the tip of the shaft part 13 is uneven. This is not preferable in terms of component accuracy.

実施例における前記傾斜角θは、10度である。傾斜角θは、7度〜15度とするのが望ましい。この角度が7度未満であると、初期溶融部17の形状が扁平すぎて頂部18の電流密度を高めることが困難となり、確実な初期溶融の開始が得られないこととなる。この角度が15度を超えると頂部18の電流密度は高くなるが、初期溶融部17の形状が分厚くなりすぎて、初期溶融部17の体積が過大になり、溶融が円滑に進行しなくなるという問題がある。  In the embodiment, the inclination angle θ is 10 degrees. The inclination angle θ is desirably 7 degrees to 15 degrees. If this angle is less than 7 degrees, the shape of the initial melted portion 17 is too flat, and it becomes difficult to increase the current density of the top portion 18, and reliable start of initial melting cannot be obtained. If this angle exceeds 15 degrees, the current density of the top portion 18 increases, but the shape of the initial melted portion 17 becomes too thick, the volume of the initial melted portion 17 becomes excessive, and melting does not proceed smoothly. There is.

実施例における前記軸部13の直径D1に対する溶着用突起15の直径D3の比は、1.2である。この比は、1.0〜1.6とするのが望ましい。この比が1.0未満であると、蓄熱機能に必要な溶着用突起15の体積が十分に確保できない状態となる。さらに、この比が1.0末満であると、体積が不足して溶着用突起15が早期の内に溶融するので、拡径部14だけが環状になって溶着用突起15から分離するという不具合が発生する。この比が1.6を超えると、溶着用突起15の直径が過大になって溶融部32や半溶融部36の容積が過剰となり、蓄熱のためには通電時間を異常に長くする必要があり、経済的に不利である。また、溶融部32や半溶融部36の容積が過剰になると、溶着用突起15の軸線方向の変形量が過大となるので、鋼板部品23の表面から軸部13の先端までの距離が不均一になり、部品精度の面で好ましくない。  In the embodiment, the ratio of the diameter D3 of the welding protrusion 15 to the diameter D1 of the shaft portion 13 is 1.2. This ratio is desirably 1.0 to 1.6. When this ratio is less than 1.0, a sufficient volume of the welding protrusion 15 necessary for the heat storage function cannot be secured. Furthermore, if this ratio is less than 1.0, the volume is insufficient and the welding protrusion 15 is melted in the early stage, so that only the diameter-expanded portion 14 becomes annular and separates from the welding protrusion 15. A malfunction occurs. When this ratio exceeds 1.6, the diameter of the welding protrusion 15 becomes excessive, the volume of the melting part 32 and the semi-melting part 36 becomes excessive, and it is necessary to abnormally lengthen the energization time for heat storage. , Economically disadvantageous. Further, if the volume of the melted part 32 or the semi-molten part 36 becomes excessive, the amount of deformation in the axial direction of the welding projection 15 becomes excessive, so that the distance from the surface of the steel plate part 23 to the tip of the shaft part 13 is uneven. This is not preferable in terms of component accuracy.

つぎに、他の変形例を説明する。  Next, another modification will be described.

図7に記載されている事例は、鋼板部品23の下側に鋼板製の骨材39を配置したものである。この事例では、開放空間27が骨材39の下側に存在することとなる。このように鋼板部品23と骨材39が重ねられている場合には、開放空間27への放熱性が低下するので、溶着用突起15における蓄熱熱量を通電時間の短縮等で加減することとなる。  In the example shown in FIG. 7, a steel plate aggregate 39 is arranged below the steel plate part 23. In this case, the open space 27 exists below the aggregate 39. Thus, when the steel plate part 23 and the aggregate 39 are piled up, since the heat dissipation to the open space 27 is reduced, the amount of heat stored in the welding projection 15 is increased or decreased by shortening the energization time or the like. .

図8に記載されている事例は、何等かの原因でボルト12が傾いて鋼板部品23に押し付けられた場合、溶着用突起15の角部が片面側25に当たり、拡径部14の外周端縁部は片面側25に接触しないものである。このように溶着用突起15の高さが大きく設定されていることにより、ボルト12が傾いていても拡径部14の端縁部に通電されることが回避できるという効果がある。  In the case described in FIG. 8, when the bolt 12 is inclined and pressed against the steel plate part 23 for any reason, the corner of the welding protrusion 15 hits one side 25 and the outer peripheral edge of the enlarged diameter portion 14. The part is not in contact with the single side 25. Since the height of the welding protrusion 15 is set to be large in this way, there is an effect that it is possible to avoid energizing the end edge portion of the enlarged diameter portion 14 even if the bolt 12 is inclined.

以上に説明した実施例1の作用効果は、つぎのとおりである。  The operational effects of the first embodiment described above are as follows.

前記加圧電極19の進出により溶着用突起15が鋼板部品23に加圧されると、加圧電極19とは反対側の鋼板部品23の表面が開放空間27に露出しているので、平板状の鋼板部品23はその板材が撓んだ状態で加圧電極19の進出方向に弾性変形をする。この状態で溶接電流が通電されると、最初に溶着用突起15の先端側が溶融状態になり、通電時間の経過とともに溶融域が拡大してゆく。これに同期して鋼板部品23の表面部分も溶融状態になる。そのときには、溶着用突起15の溶融部分の拡径部14側が徐々に半溶融状態になって、軟化層が形成される。さらに、この軟化層が徐々に変化して固体部分となる。上記のような溶融状態や半溶融状態によって、溶着用突起15における蓄熱機能が果たされる。  When the welding protrusion 15 is pressed against the steel plate part 23 by the advancement of the pressurizing electrode 19, the surface of the steel plate part 23 opposite to the pressurizing electrode 19 is exposed to the open space 27. The steel plate part 23 is elastically deformed in the advancing direction of the pressure electrode 19 in a state where the plate material is bent. When a welding current is applied in this state, the tip end side of the welding projection 15 is first in a molten state, and the melting region expands as the energization time elapses. In synchronization with this, the surface portion of the steel plate part 23 is also in a molten state. At that time, the diameter-expanded portion 14 side of the melted portion of the welding protrusion 15 gradually becomes a semi-molten state, and a softened layer is formed. Further, the softened layer gradually changes to become a solid part. The heat storage function in the welding protrusion 15 is achieved by the molten state or the semi-molten state as described above.

このように溶着用突起15の溶融状態および半溶融状態により、溶接電流の通電中あるいは通電直後において、溶着用突起15に蓄熱された状態が形成される。このような蓄熱状態において鋼板部品23は前述の弾性変形にともなう弾性復元力が溶融部32や半溶融部36に反力的に作用しているので、溶融部32が鋼板部品23の厚さ方向や面方向に拡大することが促進される。この溶融部32に対してはそれに隣接している半溶融部36からの熱補充がなされるので、溶融部32の固体化所要時間が長くなり、それによって溶融部32が溶着用突起15および鋼板部品23の両方に拡大し、十分な溶接強度が得られる溶着部形状が形成される。  As described above, the melted state and the semi-molten state of the welding projection 15 form a state in which heat is stored in the welding projection 15 during energization of the welding current or immediately after energization. In such a heat storage state, in the steel plate part 23, the elastic restoring force accompanying the elastic deformation described above is acting on the melting part 32 and the semi-melting part 36 in a reaction force, so that the melting part 32 is in the thickness direction of the steel plate part 23. And expansion in the surface direction is promoted. Since the melted portion 32 is replenished with heat from the semi-molten portion 36 adjacent to the melted portion 32, the time required for solidification of the melted portion 32 is lengthened. A welded part shape is formed that expands to both parts 23 and provides sufficient welding strength.

前記鋼板部品23は平板状であるから、その板材自体が撓みやすくなり、前記弾性変形が確実に形成されて弾性的反力が確保でき、溶融部32や半溶融部36に対する弾性加圧力が十分に作用し、適正な溶着部形状が形成される。  Since the steel plate component 23 has a flat plate shape, the plate material itself is easily bent, the elastic deformation is surely formed and an elastic reaction force can be secured, and the elastic pressure force on the melting portion 32 and the semi-melting portion 36 is sufficient. And an appropriate welded part shape is formed.

前記溶着用突起15の蓄熱による溶融部32への熱量供給が、鋼板部品23の他面側26から開放空間27への放熱量を上回るように、溶接電流の通電発熱量や溶着用突起の体積が設定されている。こうすることによって、上述のように溶融部32の固体化所要時間を長引かせ、溶融部32が溶着用突起15および鋼板部品23の両方に拡大するのである。  The amount of heat generated by the welding current and the volume of the welding protrusion are set so that the heat supply to the melting part 32 due to the heat storage of the welding protrusion 15 exceeds the heat radiation from the other surface side 26 of the steel plate part 23 to the open space 27. Is set. By doing so, the time required for solidification of the melting part 32 is prolonged as described above, and the melting part 32 expands to both the welding protrusion 15 and the steel plate part 23.

また、溶融部32が固体化してから加圧電極を後退させると、弾性変形をしていた鋼板部品23の板材が完全な平板状に復元して、所定の鋼板部品23の形状に復帰することができて、正常な形状の鋼板部品23が確保される。  Further, when the pressure electrode is retracted after the melting part 32 is solidified, the plate material of the steel plate component 23 that has been elastically deformed is restored to a complete flat plate shape and returns to the shape of the predetermined steel plate component 23. Thus, the steel plate part 23 having a normal shape is secured.

前記平板状の鋼板部品23は、わずかに湾曲した実質的に平板と見なされる板材を含んでいる。  The plate-like steel plate component 23 includes a plate material that is slightly curved and is regarded as a substantially flat plate.

例えば、自動車のルーフパネルのような鋼板部品23であると、湾曲半径が3000mmのようなほぼ平板に近い形状とされている場合がある。このような形状においては、実質的に平板と見なされる板材が溶接の相手方部材となる。上述の溶着過程は、このような曲率の小さな鋼板部品23に対しても、期待どおりに実行することができる。なお、前記ボルト12をルーフパネル44に直接電気抵抗溶接をすると、表面に微小な凹凸が形成されて外観品質を低下させるので、実際には、ルーフパネル44に沿って配置されたわずかな湾曲形状のリーンフォースメント(補強部材)45に対して、ボルト12が片側から電気抵抗溶接で溶接される。  For example, in the case of a steel plate part 23 such as a roof panel of an automobile, the shape may be almost a flat plate having a curvature radius of 3000 mm. In such a shape, a plate material that is substantially regarded as a flat plate is a counterpart member for welding. The above-described welding process can be performed as expected even for such a steel plate part 23 having a small curvature. In addition, if the bolt 12 is directly resistance-welded to the roof panel 44, minute irregularities are formed on the surface and the appearance quality is deteriorated. Therefore, actually, a slight curved shape arranged along the roof panel 44 is used. The bolt 12 is welded from one side to the reinforcement (reinforcing member) 45 by electric resistance welding.

前記拡径部14の厚さに対するボルト12の軸線方向で見た溶着用突起15の高さは、溶着用突起15における溶融および半溶融による蓄熱機能を果たし得る値に設定されている。  The height of the welding projection 15 as viewed in the axial direction of the bolt 12 with respect to the thickness of the diameter-expanded portion 14 is set to a value that can perform a heat storage function by melting and semi-melting in the welding projection 15.

このような溶着用突起15の高さ寸法を設定することにより、十分な蓄熱機能が発揮される。  By setting the height dimension of the welding protrusion 15 as described above, a sufficient heat storage function is exhibited.

前記拡径部14の厚さに対するプロジェクションボルト12の軸線方向で見た溶着用突起15の高さの比は、1.3〜3.0である。  The ratio of the height of the welding protrusion 15 viewed in the axial direction of the projection bolt 12 to the thickness of the enlarged diameter portion 14 is 1.3 to 3.0.

このような溶着用突起の高さ寸法を上記の比のように設定することにより、十分な蓄熱機能が発揮される。  A sufficient heat storage function is exhibited by setting the height dimension of such a welding projection as in the above ratio.

上述のように、本発明の軸状部品の電気抵抗溶接方法によれば、溶着用突起に蓄熱機能を持たせるとともに、鋼板部品に付与される弾性変形を利用して溶着用突起と鋼板部品の双方に十分な金属溶融量を確保し、健全な溶着部を形成するものであるから、自動車の車体にプロジェクションボルトを溶接する工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。  As described above, according to the electrical resistance welding method for a shaft-shaped part of the present invention, the welding protrusion is provided with a heat storage function, and the welding protrusion and the steel sheet part are made of elastic deformation imparted to the steel sheet part. It can secure a sufficient amount of metal melting on both sides to form a sound weld, so it can be used in a wide range of industrial fields such as the process of welding projection bolts to the body of automobiles and the sheet metal welding process of home appliances. .

12 プロジェクションボルト、軸状部品
13 軸部
14 拡径部
15 溶着用突起
16 テーパ部
17 初期溶融部
18 頂部
19 加圧電極
20 受入孔
23 鋼板部品
25 片面側
26 他面側
27 開放空間
32 溶融部、溶着部
33 弾性復元力
36 半溶融部
36A 流動部
36B 軟化部
37 拡大領域
44 ルーフパネル
45 リーンフォースメント
DESCRIPTION OF SYMBOLS 12 Projection bolt, shaft-shaped component 13 Shaft part 14 Expanded part 15 Welding protrusion 16 Tapered part 17 Initial melting part 18 Top part 19 Pressurizing electrode 20 Receiving hole 23 Steel plate part 25 One side 26 Other side 27 Open space 32 Melting part , Welded portion 33 elastic restoring force 36 semi-melted portion 36A fluidized portion 36B softened portion 37 enlarged region 44 roof panel 45 lean reinforcement

Claims (2)

軸部と、この軸部と一体的に形成され軸部の直径よりも大径とされた円形の拡径部と、前記軸部とは反対側の拡径部中央に配置されているとともに溶接電流の通電にともなって溶融および半溶融による蓄熱機能を果たす円形の溶着用突起を備えた軸状部品を準備し、
前記軸状部品の軸部を加圧電極に設けた受入孔に挿入して軸状部品を加圧電極に保持し、
片面側に軸状部品が溶接され、その反対側の他面側が支持部材で支持された状態で開放空間に露出している平板状の鋼板部品に対して、前記加圧電極を進出させて鋼板部品の片面側だけに前記溶着用突起を加圧して鋼板部品を加圧電極の進出方向側に鋼板部品の板材が撓んだ状態の弾性変形を行わせ、
その後、溶接電流を通電し、
この通電によって生じる溶着用突起における溶融および半溶融の蓄熱熱量が、前記他面側から開放空間への放熱量を上回るように、溶接電流の通電発熱量や溶着用突起の体積が設定されており、
前記他面側から開放空間への放熱は、溶着用突起における溶融部の溶融面積に対応する他面側の表面の面積範囲から行われ、
前記拡径部の厚さに対する軸状部品の軸線方向で見た溶着用突起の高さの比は、溶着用突起における溶融部や半溶融部の体積が確保できる1.3から溶着用突起における溶融部や半溶融部の体積が過剰とならない3.0の範囲に設定された溶着用突起における蓄熱機能を果たし得る値とされ、
溶着用突起における溶融および半溶融と同時に鋼板部品の前記弾性変形による弾性復元力を反力的に溶融部および半溶融部に向けて作用させながら、溶融部の固体化所要時間を長期化して溶融部の鋼板部品の厚さ方向および面方向への拡大を促進し、
その後、溶融部が固体化して加圧電極を後退させて弾性変形をしていた鋼板部品を復元することを特徴とする軸状部品の電気抵抗溶接方法。
A shaft portion, a circular enlarged diameter portion integrally formed with the shaft portion and having a diameter larger than the diameter of the shaft portion, and a center of the enlarged diameter portion opposite to the shaft portion and welding Prepare a shaft-shaped part with a circular welding projection that performs heat storage function by melting and semi-melting with current application,
The shaft part of the shaft-shaped part is inserted into a receiving hole provided in the pressure electrode to hold the shaft-shaped part on the pressure electrode,
A plate-shaped steel plate component exposed on an open space with a shaft-shaped component welded to one side and the other side opposite to the other side is supported by a support member. Pressing the welding protrusion only on one side of the component to cause the steel plate component to undergo elastic deformation in a state where the plate material of the steel plate component is bent to the advance direction side of the pressure electrode,
Then energize the welding current,
The energization heat generation amount of welding current and the volume of the welding projection are set so that the heat storage heat amount of melting and semi-melting in the welding projection caused by this energization exceeds the heat radiation amount from the other surface side to the open space. ,
The heat dissipation from the other surface side to the open space is performed from the area range of the surface on the other surface side corresponding to the melting area of the melting portion in the welding projection,
The ratio of the height of the welding protrusion as seen in the axial direction of the shaft-shaped part to the thickness of the diameter-expanded part is 1.3 in the welding protrusion from 1.3 that can secure the volume of the molten part and the semi-molten part in the welding protrusion. It is a value that can fulfill the heat storage function in the welding protrusion set in the range of 3.0 so that the volume of the melted part and the semi-molten part is not excessive,
At the same time as melting and semi-melting at the welding protrusion, the elastic restoring force due to the elastic deformation of the steel plate parts is reacted toward the molten and semi-molten parts, and the solidification time of the molten part is lengthened and melted. Promote the expansion of steel sheet parts in the thickness direction and surface direction,
Thereafter, the steel part that has been elastically deformed by solidifying the melted part and retreating the pressure electrode is restored, and an electric resistance welding method for a shaft-like part.
前記平板状の鋼板部品は、わずかに湾曲した実質的に平板と見なされる板材を含んでいる請求項1記載の軸状部品の電気抵抗溶接方法。  The electric resistance welding method for a shaft-shaped part according to claim 1, wherein the plate-shaped steel sheet part includes a plate material that is slightly curved and is substantially regarded as a flat plate.
JP2010128313A 2009-08-05 2010-05-17 Electrical resistance welding method for shaft-like parts Active JP4683351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128313A JP4683351B2 (en) 2009-08-05 2010-05-17 Electrical resistance welding method for shaft-like parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009197336 2009-08-05
JP2010128313A JP4683351B2 (en) 2009-08-05 2010-05-17 Electrical resistance welding method for shaft-like parts

Publications (2)

Publication Number Publication Date
JP2011051013A JP2011051013A (en) 2011-03-17
JP4683351B2 true JP4683351B2 (en) 2011-05-18

Family

ID=43940593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128313A Active JP4683351B2 (en) 2009-08-05 2010-05-17 Electrical resistance welding method for shaft-like parts

Country Status (1)

Country Link
JP (1) JP4683351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339122A (en) * 2013-07-02 2016-02-17 青山省司 Projection bolt welding method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532466B1 (en) * 2013-08-01 2014-06-25 省司 青山 Projection bolt welding method to thin steel plate
JP5477605B1 (en) * 2013-07-02 2014-04-23 省司 青山 Projection bolt welding method
JP7160864B2 (en) * 2020-07-15 2022-10-25 フタバ産業株式会社 Resistance spot welding method and resistance spot welding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2272041B (en) * 1992-10-28 1995-10-25 Unidrive Pty Ltd Propeller shafts
JPH10328843A (en) * 1997-06-04 1998-12-15 Yashima:Kk Stud implanting gun
JP4314622B2 (en) * 2006-07-18 2009-08-19 好高 青山 Shaft-like parts for electric resistance welding and their welding methods
JP4547681B2 (en) * 2006-08-16 2010-09-22 好高 青山 Method of welding projection bolt to hollow pipe material
JP4521639B2 (en) * 2006-08-21 2010-08-11 好高 青山 Projection bolt for circular section member and its welding method
JP2008272821A (en) * 2007-05-01 2008-11-13 Yoshitaka Aoyama Welding apparatus
JP5207107B2 (en) * 2007-06-07 2013-06-12 好高 青山 Hollow steel plate parts welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339122A (en) * 2013-07-02 2016-02-17 青山省司 Projection bolt welding method
CN105339122B (en) * 2013-07-02 2018-02-23 青山省司 Protrude the welding method of bolt

Also Published As

Publication number Publication date
JP2011051013A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
US8276954B2 (en) Bumper system
JP4683351B2 (en) Electrical resistance welding method for shaft-like parts
JP5218553B2 (en) Mounting structure of mounting member in door impact beam
US7690552B2 (en) Joining method and structure of metal members
JP2007245198A (en) Material joining method
US9738327B2 (en) Connecting member of structure
JP5261984B2 (en) Resistance spot welding method
CN105935858A (en) Method for producing a composite component
JP4413677B2 (en) Point joining method for dissimilar metal parts
JP3921611B2 (en) Welding method for shaft-like parts to multiple steel sheets
JP2008215367A (en) Joint structure of vehicle body plate material for vehicle
JP2009226446A (en) Spot welding method of dissimilar plates
JP2009190051A (en) Joining method of different kind of metal sheet
JP2008221321A (en) Method of friction spot welding
JP4755887B2 (en) Material joining method
JP3939323B2 (en) Connection structure
JP2007276295A (en) Method for manufacturing laminated sheet member, and laminated sheet member
JP4638215B2 (en) Metal plate joint structure
JP5278105B2 (en) Subframe support structure for automobile
JP2008284987A (en) Welding materials such as reinforcement member
JP4764015B2 (en) Manufacturing method of bonded metal plate
KR20180096583A (en) Structured beam of hardened UHSS with stiffener and method of manufacturing the same
JP5853413B2 (en) Dash panel structure and manufacturing method thereof
JP4453506B2 (en) Friction spot welding method
JP2003275883A (en) Method of butt joining plate material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200218

Year of fee payment: 9

R150 Certificate of patent or registration of utility model

Ref document number: 4683351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250