JP4683225B2 - Magnetic polymer particles for diagnostic agents and method for producing the same - Google Patents

Magnetic polymer particles for diagnostic agents and method for producing the same Download PDF

Info

Publication number
JP4683225B2
JP4683225B2 JP2006082615A JP2006082615A JP4683225B2 JP 4683225 B2 JP4683225 B2 JP 4683225B2 JP 2006082615 A JP2006082615 A JP 2006082615A JP 2006082615 A JP2006082615 A JP 2006082615A JP 4683225 B2 JP4683225 B2 JP 4683225B2
Authority
JP
Japan
Prior art keywords
magnetic
particles
polymer particles
magnetic polymer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082615A
Other languages
Japanese (ja)
Other versions
JP2007256151A (en
Inventor
功二 田守
勝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2006082615A priority Critical patent/JP4683225B2/en
Publication of JP2007256151A publication Critical patent/JP2007256151A/en
Application granted granted Critical
Publication of JP4683225B2 publication Critical patent/JP4683225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、磁気分離性に優れ、かつ、生体関連物質との結合量が多い診断薬用磁性ポリマー粒子およびその製造方法に関する。   The present invention relates to a magnetic polymer particle for a diagnostic agent that is excellent in magnetic separation and has a large amount of binding with a biological substance and a method for producing the same.

近年、磁性ポリマー粒子は、抗原と抗体との免疫反応ならびにDNA同士またはDNAとRNAとのハイブリダイゼーションにおいて優れた反応場を提供できることから、特に診断薬や医薬品研究用などへの応用が活発になっている(例えば、特開2004−205481号公報)。   In recent years, magnetic polymer particles can provide an excellent reaction field in the immune reaction between an antigen and an antibody and in the hybridization between DNAs or between DNA and RNA. (For example, JP 2004-205481 A).

磁性ポリマー粒子は一般に、粒径が小さいほど単位重量あたりの表面積が大きく、また、単位重量あたりの表面積が大きいほど、単位重量あたりの生体関連物質の結合量が多い。すなわち、磁性ポリマー粒子においては、通常、粒径が小さいほど単位重量あたりの生体関連物質の結合量が多くなる。   In general, the smaller the particle size, the larger the surface area per unit weight of the magnetic polymer particle, and the larger the surface area per unit weight, the greater the amount of binding of biological substances per unit weight. That is, in the magnetic polymer particles, generally, the smaller the particle size, the greater the amount of binding of biological substances per unit weight.

しかしながら、一般に、磁性ポリマー粒子は、粒径が小さくなるほど、磁気分離性が低下する。一方、磁気分離性を重視して、粒径の大きな磁性ポリマー粒子を使用した場合、粒径が大きいほど、単位重量あたりの生体関連物質の結合量は減少する。すなわち、優れた磁気分離性と、生体関連物質との高い結合能とを両立することが困難である。
特開2004−205481号公報
However, in general, as the particle size of the magnetic polymer particles decreases, the magnetic separation property decreases. On the other hand, when magnetic polymer particles having a large particle size are used with an emphasis on magnetic separation, the larger the particle size, the smaller the amount of binding of the biological substance per unit weight. That is, it is difficult to achieve both excellent magnetic separation properties and high binding ability with biological materials.
JP 2004-205481 A

本発明は、磁気分離性に優れ、かつ、生体関連物質との結合量が多い診断薬用磁性ポリマー粒子およびその製造方法を提供する。   The present invention provides a magnetic polymer particle for a diagnostic agent that is excellent in magnetic separation and has a large amount of binding with a biological substance and a method for producing the same.

本発明者らは、球状の磁性母粒子を熱的におよび/または機械的に変形させることにより、長径/短径=1.1〜2.0である磁性ポリマー粒子が得られ、この磁性ポリマー粒子が優れた磁気分離性および生体関連物質との高い結合能を有することを見出し、本発明に至った。   The inventors of the present invention obtained magnetic polymer particles having a major axis / minor axis = 1.1 to 2.0 by thermally and / or mechanically deforming the spherical magnetic mother particles. The present inventors have found that the particles have excellent magnetic separation properties and high binding ability with biological materials, and have reached the present invention.

本発明の第1の態様の診断薬用磁性ポリマー粒子は、長径/短径=1.1〜2.0である。   The magnetic polymer particles for diagnostic agents according to the first aspect of the present invention have a major axis / minor axis = 1.1 to 2.0.

本発明において、粒子の「長径」とは、粒子の中心を通る断面の径のうち最大の径をいい、粒子の「短径」とは、粒子の中心を通る断面の径のうち最小の径をいう。   In the present invention, the “major diameter” of a particle refers to the largest diameter of the cross section passing through the center of the particle, and the “minor diameter” of the particle refers to the smallest diameter of the cross section diameter passing through the center of the particle. Say.

前記診断薬用磁性ポリマー粒子において、磁性体微粒子を含むコアと、ポリマー部を含むシェルとを含むことができる。この場合、前記コアは、非磁性体核粒子と、該核粒子の表面に設けられた磁性体層とを含むことができる。さらにこの場合、核粒子の長径/短径が1.1〜2.0であることができる。   The diagnostic magnetic polymer particles may include a core including magnetic fine particles and a shell including a polymer portion. In this case, the core may include non-magnetic core particles and a magnetic layer provided on the surface of the core particles. Furthermore, in this case, the major axis / minor axis of the core particle can be 1.1 to 2.0.

本発明の第2の態様の診断薬用磁性ポリマー粒子の製造方法は、球状の磁性ポリマー粒子を熱的に変形させる工程を含む、上記磁性ポリマーの製造方法である。   The method for producing diagnostic magnetic polymer particles according to the second aspect of the present invention is the above magnetic polymer producing method including a step of thermally deforming spherical magnetic polymer particles.

本発明の第3の態様の診断薬用磁性ポリマー粒子の製造方法は、球状の磁性ポリマー粒子を機械的に変形させる工程を含む、上記磁性ポリマーの製造方法である。   A method for producing diagnostic magnetic polymer particles according to the third aspect of the present invention is the method for producing a magnetic polymer, comprising a step of mechanically deforming spherical magnetic polymer particles.

本発明の第4の態様の診断薬用磁性ポリマー粒子の製造方法は、
長径/短径が1.1〜2.0である核粒子の表面に磁性体層を形成する工程と、
前記磁性体層の外側にポリマー部を形成する工程と、
を含む。
A method for producing diagnostic magnetic polymer particles according to the fourth aspect of the present invention comprises:
Forming a magnetic layer on the surface of the core particle having a major axis / minor axis of 1.1 to 2.0;
Forming a polymer portion on the outside of the magnetic layer;
including.

前記診断薬用磁性ポリマー粒子の製造方法において、球状の非磁性体核粒子を熱的に変形させて、長径/短径が1.1〜2.0である核粒子を形成する工程をさらに含むことができる。   The method for producing diagnostic magnetic polymer particles further includes a step of thermally deforming spherical non-magnetic core particles to form core particles having a major axis / minor axis of 1.1 to 2.0. Can do.

前記診断薬用磁性ポリマー粒子の製造方法において、球状の非磁性体核粒子を機械的に変形させて、長径/短径が1.1〜2.0である核粒子を形成する工程をさらに含むことができる。   The method for producing magnetic polymer particles for diagnostic agents further includes the step of mechanically deforming spherical non-magnetic core particles to form core particles having a major axis / minor axis of 1.1 to 2.0. Can do.

前記診断薬用磁性ポリマー粒子によれば、高い生体関連物質結合能と優れた磁気分離性とを両立できる。したがって、前記診断薬用磁性ポリマー粒子は、例えば、生化学分野、塗料、紙、電子写真、化粧品、医薬品、農薬、食品、触媒などの広い分野で利用できる。前記診断薬用磁性ポリマー粒子は特に、高い生体関連物質結合能と優れた磁気分離性とを両立できるため、医療用診断薬用担体などの生化学用担体、自動測定器対応粒子として有用である。   According to the magnetic polymer particles for diagnostic agents, it is possible to achieve both a high biological substance binding ability and an excellent magnetic separation property. Therefore, the magnetic polymer particles for diagnostic agents can be used in a wide range of fields such as biochemistry, paints, paper, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, foods, and catalysts. The magnetic polymer particles for diagnostic agents are particularly useful as biochemical carriers such as medical diagnostic carriers and automatic measuring instrument compatible particles because they can achieve both high binding ability of biological substances and excellent magnetic separation properties.

また、前記診断薬用磁気ポリマー粒子の製造方法によれば、球状の磁性ポリマー粒子を熱的におよび/または機械的に変形させる工程を含むことにより、前記磁性ポリマー粒子を簡便にかつ効率良く製造することができる。   According to the method for producing diagnostic magnetic polymer particles, the magnetic polymer particles can be produced simply and efficiently by including a step of thermally and / or mechanically deforming the spherical magnetic polymer particles. be able to.

さらに、前記診断薬用磁気ポリマー粒子の製造方法によれば、長径/短径が1.1〜2.0である核粒子の表面に磁性体層を形成する工程と、前記磁性体層の外側にポリマー部を形成する工程とを含むことにより、前記診断薬用磁気ポリマー粒子の磁性ポリマー粒子を簡便にかつ効率良く製造することができる。   Further, according to the method for producing diagnostic magnetic polymer particles, a step of forming a magnetic layer on the surface of the core particles having a major axis / minor axis of 1.1 to 2.0, and on the outside of the magnetic layer Including the step of forming the polymer part, the magnetic polymer particles of the diagnostic magnetic polymer particles can be easily and efficiently produced.

1.磁性ポリマー粒子およびその製造方法
1.1.磁性ポリマー粒子
本発明の一実施形態に係る磁性ポリマー粒子は、長径/短径=1.1〜2.0である扁平な形状を有する。ここで、長径/短径が1.1未満であると、高い生体関連物質結合能と磁気分離性とを両立できず、一方、長径/短径が2.0を超えると、再分散性に劣る。
1. Magnetic polymer particles and production method thereof 1.1. Magnetic polymer particle The magnetic polymer particle which concerns on one Embodiment of this invention has a flat shape which is long diameter / short diameter = 1.1-2.0. Here, if the major axis / minor axis is less than 1.1, high biomaterial binding ability and magnetic separation cannot be achieved at the same time, while if the major axis / minor axis exceeds 2.0, redispersibility is achieved. Inferior.

本発明の一実施形態に係る磁性ポリマー粒子の長径および短径は、走査型電子顕微鏡(SEM)によって撮影された前記粒子の写真から測定することができる。この点は、後述する核粒子の長径および短径も同様である。例えば、後述する実施例においては、走査型電子顕微鏡(SEM)によって得られた300個の粒子の写真から粒子の長径および短径を測定し、300個の粒子における長径の数平均と短径の数平均とをそれぞれ求め、この長径の数平均と短径の数平均との比を長径/短径とする。   The major axis and minor axis of the magnetic polymer particles according to an embodiment of the present invention can be measured from a photograph of the particles taken with a scanning electron microscope (SEM). This also applies to the major axis and minor axis of the core particles described later. For example, in the examples described later, the major axis and minor axis of a particle are measured from a photograph of 300 particles obtained by a scanning electron microscope (SEM), and the number average and minor axis of the major axis in 300 particles are measured. The number average is obtained, and the ratio of the number average of the major axis to the number average of the minor axis is defined as the major axis / minor axis.

本発明の一実施形態に係る磁性ポリマー粒子において、長径/短径は、後述する熱処理温度や機械処理条件、使用するポリマーの種類、ならびに分子量によって調節することができる。   In the magnetic polymer particles according to one embodiment of the present invention, the major axis / minor axis can be adjusted by the heat treatment temperature and mechanical treatment conditions described later, the type of polymer used, and the molecular weight.

本発明の一実施形態に係る磁性ポリマー粒子の長径は、0.05〜10μmであることが好ましく、0.1〜5μmであることがより好ましい。前記粒径が0.05μm未満である場合、十分な磁気分離性が発現されず、当該粒子を分離するために相当に長い時間を要し、また、分離するために相当に大きい磁力が必要となるため場合がある。一方、前記粒径が10μmを超える場合、当該粒子が分散媒中で沈降しやすくなるため、生体関連物質と結合する際に分散媒を攪拌する操作が必要となり、また、粒子の重量に対する表面積の割合が小さくなるため、十分な量の生体関連物質と結合することが困難となる場合がある。   The major axis of the magnetic polymer particles according to one embodiment of the present invention is preferably 0.05 to 10 μm, and more preferably 0.1 to 5 μm. When the particle size is less than 0.05 μm, sufficient magnetic separation is not exhibited, it takes a considerably long time to separate the particles, and a considerably large magnetic force is necessary to separate them. There is a case to become. On the other hand, when the particle size exceeds 10 μm, the particles are likely to settle in the dispersion medium, so that an operation of stirring the dispersion medium is necessary when binding to the biological substance, and the surface area relative to the weight of the particles is large. Since the ratio is small, it may be difficult to bind to a sufficient amount of the biological substance.

本発明の一実施形態に係る磁性ポリマー粒子は好ましくは、磁性体微粒子(M)とポリマー部(P)とを含む。   The magnetic polymer particles according to an embodiment of the present invention preferably include magnetic fine particles (M) and a polymer portion (P).

磁性体微粒子(M)は、特に制限はないが、酸化鉄系の物質が代表的であり、MFe(M=Co、Ni、Mg、Cu、Li0.5Fe0.5等)で表現されるフェライト、Feで表現されるマグネタイト、あるいはγFeが挙げられる。特に、飽和磁化が高く、かつ残留磁化が低い磁気材料として、γFe、Feが好ましい。残留磁化が少ないため、磁気による分離精製の後の再分散性が良好である点から、磁性体微粒子(M)は、超常磁性磁気材料からなることが好ましく、例えば、粒径5〜20nm程度のフェライトおよび/またはマグネタイトの微粒子が好適に使用できる。 The magnetic fine particles (M) are not particularly limited, but iron oxide-based substances are typical, and MFe 2 O 4 (M = Co, Ni, Mg, Cu, Li 0.5 Fe 0.5, etc.) Or ferrite represented by Fe 3 O 4 , or γFe 2 O 3 . In particular, γFe 2 O 3 and Fe 3 O 4 are preferable as magnetic materials having high saturation magnetization and low residual magnetization. The magnetic fine particles (M) are preferably made of a superparamagnetic magnetic material from the viewpoint of good redispersibility after separation and purification by magnetism because there is little residual magnetization, for example, a particle diameter of about 5 to 20 nm. Ferrite and / or magnetite fine particles can be suitably used.

ポリマー部(P)は、例えば(メタ)アクリレート系ポリマー、スチレン系ポリマーなどのラジカル重合性ポリマーからなるのが好ましい。ポリマー部(P)が粒子の最表面を構成する場合、ポリマー部(P)は、生体関連物質と結合可能な官能基を有するポリマーであることが好ましく、例えば、ポリスチレンやポリシクロヘキシルメタクリレートなどの疎水性基を有するポリマー、または、カルボキシル基やトシル基などの表面官能基を有するポリマーからなることがより好ましい。   The polymer part (P) is preferably made of a radical polymerizable polymer such as a (meth) acrylate polymer or a styrene polymer. When the polymer part (P) constitutes the outermost surface of the particle, the polymer part (P) is preferably a polymer having a functional group capable of binding to a biological substance, for example, hydrophobic such as polystyrene or polycyclohexyl methacrylate. More preferably, the polymer comprises a polymer having a functional group or a polymer having a surface functional group such as a carboxyl group or a tosyl group.

このような、磁性体微粒子(M)とポリマー部(P)とを含む磁性ポリマー粒子の具体的な構造としては、例えば、ポリマー部(P)の連続相中に磁性体微粒子(M)が分散している粒子(構造I)、磁性体微粒子(M)の2次凝集体をコアとし、ポリマー部(P)をシェルとする粒子(構造II)、有機ポリマー等の非磁性体核粒子と、該核粒子の表面に設けられた磁性体微粒子(M)の2次凝集体層(磁性体層)とを有する母粒子をコアとし、該母粒子の外層であるポリマー部(P)をシェルとする粒子(構造III)等が挙げられる。これらの中では、構造IIまたはIIIの粒子(すなわち、磁性体微粒子を含むコアと、ポリマー部を含むシェルとを含む磁性ポリマー粒子)が好ましく、構造IIIの粒子がより好ましい。構造IIIの粒子において、核粒子の長径/短径は1.1〜2.0であるのが好ましい。構造IIIの粒子の具体的な重合方法については、例えば、特開2004−205481号公報等に開示されている通りである。   As a specific structure of such magnetic polymer particles including the magnetic particles (M) and the polymer part (P), for example, the magnetic particles (M) are dispersed in the continuous phase of the polymer part (P). Particles (structure I), particles having a secondary aggregate of magnetic fine particles (M) as a core and a polymer portion (P) as a shell (structure II), non-magnetic core particles such as organic polymers, A core particle having a secondary aggregate layer (magnetic layer) of magnetic fine particles (M) provided on the surface of the core particle is used as a core, and a polymer portion (P) which is an outer layer of the base particle is used as a shell. Particles (structure III) to be used. Among these, particles of structure II or III (that is, magnetic polymer particles including a core including magnetic fine particles and a shell including a polymer portion) are preferable, and particles of structure III are more preferable. In the particles of structure III, the major axis / minor axis of the core particle is preferably 1.1 to 2.0. A specific polymerization method for the particles of the structure III is as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-205481.

本発明の一実施形態に係る磁性ポリマー粒子は、分散媒に分散させて使用することができる。分散媒としては、例えば水系媒体が挙げられる。水系媒体は特に限定されないが、例えば、水、水系溶剤を含む水が挙げられる。水系溶剤としては、例えば、アルコール類(例えば、エタノール、アルキレングリコール、モノアルキルエーテルなど)が挙げられる。   The magnetic polymer particles according to an embodiment of the present invention can be used by being dispersed in a dispersion medium. Examples of the dispersion medium include an aqueous medium. The aqueous medium is not particularly limited, and examples thereof include water and water containing an aqueous solvent. Examples of the aqueous solvent include alcohols (for example, ethanol, alkylene glycol, monoalkyl ether, etc.).

1.2.磁性ポリマー粒子の製造方法
本発明の一実施形態に係る磁性ポリマー粒子の製造方法としては、例えば、(i)扁平磁性体の水分散体中でモノマーを重合する方法、(ii)球状磁性ポリマー粒子を熱的に変形させる方法、(iii)球状磁性ポリマー粒子を機械的に変形させる方法、(iv)扁平非磁性体核粒子と、該核粒子の表面に設けられた磁性体微粒子(M)の2次凝集体層(磁性体層)とを有する母粒子をコアとして、該母粒子の外側にポリマー部(P)のシェルを形成する方法などが挙げられる。
1.2. Method for Producing Magnetic Polymer Particles Examples of a method for producing magnetic polymer particles according to an embodiment of the present invention include (i) a method of polymerizing monomers in an aqueous dispersion of flat magnetic material, and (ii) spherical magnetic polymer particles. (Iii) a method of mechanically deforming spherical magnetic polymer particles, (iv) a flat non-magnetic core particle, and magnetic fine particles (M) provided on the surface of the core particle Examples thereof include a method in which a mother particle having a secondary aggregate layer (magnetic material layer) is used as a core and a shell of a polymer portion (P) is formed outside the mother particle.

上記(i)の方法における扁平磁性体としては、例えば、針状マグヘマタイト、板状バリウムフェライトなどを使用することができる。ここで、扁平磁性体は、長径/短径が1.1〜2.0であることが好ましい。扁平磁性体の水分散体は、扁平磁性体を分散剤水溶液に分散させることにより得ることができる。モノマーの重合によって、扁平磁性体からなるコアと、ポリマー部(P)からなるシェルとを形成することができる。モノマーとしては、例えばラジカル重合性モノマーが好ましい。   As the flat magnetic material in the method (i), for example, acicular maghematite, plate-like barium ferrite, or the like can be used. Here, the flat magnetic body preferably has a major axis / minor axis of 1.1 to 2.0. The aqueous dispersion of the flat magnetic material can be obtained by dispersing the flat magnetic material in a dispersant aqueous solution. By polymerization of the monomer, a core made of a flat magnetic material and a shell made of a polymer part (P) can be formed. As the monomer, for example, a radical polymerizable monomer is preferable.

上記(ii)および(iii)の方法で用いる球状磁性ポリマー粒子のポリマー部(P)としては、例えば(メタ)アクリレートポリマー、スチレンポリマーなどの熱可塑性樹脂が好適に使用できる。また、粒子間の融着を防止するために、架橋した熱可塑性樹脂がポリマー部(P)としてさらに好適に使用できる。   As the polymer part (P) of the spherical magnetic polymer particles used in the above methods (ii) and (iii), for example, thermoplastic resins such as (meth) acrylate polymers and styrene polymers can be suitably used. In order to prevent fusion between particles, a crosslinked thermoplastic resin can be more suitably used as the polymer part (P).

上記(ii)球状磁性ポリマー粒子を熱的に変形させる方法としては、例えば、重力場で粉体の球状磁性ポリマー粒子を加熱することにより、該粒子の熱塑性によって該粒子を変形させる方法が挙げられる。   Examples of the method of thermally deforming the spherical magnetic polymer particles (ii) include a method of deforming the particles by the thermoplasticity of the particles by heating the spherical magnetic polymer particles in a gravitational field. .

上記(iii)球状磁性ポリマー粒子を機械的に変形させる方法としては、例えば、球状磁性ポリマー粒子に対して物理的に強い力を外部から加えて変形させる方法が挙げられる。物理的に強い力を負荷する方法としては、例えば、乳鉢、自動乳鉢、ボールミル、ブレード加圧式粉体圧縮法、メカノフュージョン法のようなメカノケミカル効果を利用するもの、あるいは、ジェットミル、ハイブリダイザー等の高速気流中衝撃法を利用するものが挙げられる。球状磁性ポリマー粒子を効率よく変形させるには、加える力が強いことが望ましく、球状磁性ポリマー粒子を強い力で変形させる方法としては、より具体的には、攪拌翼付き容器中で、攪拌翼の周速度が好ましくは15m/秒以上、より好ましくは30m/秒以上、さらに好ましくは40〜150m/秒にて球状磁性ポリマー粒子を変形させることが挙げられる。撹拌翼の周速度が15m/秒より低いと、粒子が変形しないことがある。なお、撹拌翼の周速度の上限については、特に制限はないが、使用する装置、エネルギー効率等の点から自ずと決定される。   Examples of the method of (iii) deforming the spherical magnetic polymer particles mechanically include a method of deforming the spherical magnetic polymer particles by applying a physically strong force from the outside. As a method of applying a physically strong force, for example, a mortar, an automatic mortar, a ball mill, a method using a mechanochemical effect such as a blade pressure type powder compression method, a mechanofusion method, a jet mill, a hybridizer The thing using the impact method in high-speed air currents, such as, is mentioned. In order to efficiently deform the spherical magnetic polymer particles, it is desirable that the force applied is strong. As a method for deforming the spherical magnetic polymer particles with a strong force, more specifically, in a vessel equipped with a stirring blade, The spherical magnetic polymer particles may be deformed at a peripheral speed of preferably 15 m / second or more, more preferably 30 m / second or more, and still more preferably 40 to 150 m / second. When the peripheral speed of the stirring blade is lower than 15 m / sec, the particles may not be deformed. In addition, although there is no restriction | limiting in particular about the upper limit of the peripheral speed of a stirring blade, It determines automatically from points, such as an apparatus to be used and energy efficiency.

上記(iv)の方法で使用する扁平非磁性体核粒子としては、例えば、公知の棒状、板状粒子を使用することができ、例えば、棒状の微結晶セルロースコロイド粒子、お椀状の架橋スチレン系粒子などが挙げられる。あるいは、上記(iv)の方法で使用する扁平非磁性体核粒子として、球状の非磁性体核粒子を変形させることにより得られた扁平非磁性体核粒子を用いてもよい。より具体的には、扁平非磁性体核粒子は、球状の核粒子を熱的におよび/または機械的に変形させて、長径/短径が1.1〜2.0になるように形成されたものであってもよい。この場合、扁平非磁性体核粒子の表面に磁性体層を形成してコア(母粒子)を形成した後、該コアの外側にポリマー部(P)を形成することにより、長径/短径が1.1〜2.0である磁性ポリマー粒子を形成するのが好ましい。   As the flat non-magnetic core particles used in the above method (iv), for example, known rod-like and plate-like particles can be used. For example, rod-like microcrystalline cellulose colloidal particles, bowl-shaped crosslinked styrene type And particles. Alternatively, the flat nonmagnetic core particles obtained by deforming the spherical nonmagnetic core particles may be used as the flat nonmagnetic core particles used in the method (iv). More specifically, the flat non-magnetic core particles are formed such that the major axis / minor axis becomes 1.1 to 2.0 by deforming spherical core particles thermally and / or mechanically. It may be. In this case, after forming the magnetic layer on the surface of the flat non-magnetic core particle to form the core (mother particle), the polymer part (P) is formed outside the core, whereby the major axis / minor axis can be reduced. Preferably, magnetic polymer particles of 1.1 to 2.0 are formed.

本発明の一実施形態に係る磁性ポリマー粒子の製造方法は、(ii)球状磁性ポリマー粒子を熱的に変形させる工程、および(iii)球状磁性ポリマー粒子を機械的に変形させる工程の一方または両方を含むことがより好ましい。   One or both of (ii) the step of thermally deforming the spherical magnetic polymer particles and (iii) the step of mechanically deforming the spherical magnetic polymer particles, according to one embodiment of the present invention. It is more preferable to contain.

1.3.用途
本発明の一実施形態に係る磁性ポリマー粒子は、例えば、生化学分野、塗料、紙、電子写真、化粧品、医薬品、農薬、食品、触媒など広い分野で利用できる。
1.3. Applications The magnetic polymer particles according to an embodiment of the present invention can be used in a wide range of fields such as biochemistry, paints, paper, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, foods, and catalysts.

本発明の一実施形態に係る磁性ポリマー粒子は、特に、診断薬用担体、細菌分離用担体、細胞分離用担体、核酸分離精製用担体、タンパク質分離精製用担体、固定化酵素用担体、ドラッグデリバリー等の用途に有用である。より具体的には、前記磁性ポリマー粒子にタンパク質等の抗原あるいは抗体を結合して、測定対象である抗体あるいは抗原との抗原抗体反応に基づく受身凝集反応による溶液の濁度変化を利用した定量・定性検出用途,前記磁性ポリマー粒子に抗体を結合して、抗原(生物(例えば、ウイルス、細菌、細胞など)、生体関連物質(例えば、ホルモンなど)、化学物質(例えば、ダイオキシン類など))を前記抗体に結合させて回収・濃縮する用途,前記磁性ポリマー粒子にDNAなどの核酸アナログを結合して、ハイブリダイゼーションを利用して該核酸アナログに核酸を結合させて回収・検出したり、核酸に結合するタンパク質や色素等の化学物質を前記核酸アナログに結合させて回収・検出したりする用途,前記磁性ポリマー粒子にアビジン類(またはビオチン類)を結合し、前記アビジン類(またはビオチン類)にビオチン類(あるいはアビジン類)を有する分子を結合させて回収して検出する用途,前記磁性ポリマー粒子に抗体または抗原を結合し、比色法や化学発光を利用した酵素免疫測定法用の担体として前記磁性ポリマー粒子を使用する用途などが挙げられる。   The magnetic polymer particles according to an embodiment of the present invention include, in particular, a diagnostic drug carrier, a bacteria separation carrier, a cell separation carrier, a nucleic acid separation purification carrier, a protein separation purification carrier, an immobilized enzyme carrier, a drug delivery, and the like. It is useful for applications. More specifically, the antigens or antibodies such as proteins are bound to the magnetic polymer particles, and quantification using the turbidity change of the solution due to passive agglutination reaction based on the antigen-antibody reaction with the target antibody or antigen. For qualitative detection, an antibody is bound to the magnetic polymer particles, and antigens (organisms (for example, viruses, bacteria, cells, etc.), biological substances (for example, hormones), chemical substances (for example, dioxins)) Use for collecting and concentrating by binding to the antibody, binding a nucleic acid analog such as DNA to the magnetic polymer particle, binding the nucleic acid to the nucleic acid analog using hybridization, and collecting and detecting the nucleic acid. Use for binding and collecting chemical substances such as proteins and dyes that bind to the nucleic acid analog, For binding and collecting biotins (or biotins) with molecules containing biotins (or avidins), and collecting and detecting antibodies or antigens on the magnetic polymer particles Examples thereof include use of the magnetic polymer particles as a carrier for binding and enzyme immunoassay utilizing colorimetry or chemiluminescence.

また、本発明の一実施形態に係る磁性ポリマー粒子を用いて、96穴プレート等の担体を、磁性を利用した自動分析機に置き換えて使用できる。例えば、アンチプラスミン検査用抗アンチプラスミン抗体、Dダイマー検査用抗Dダイマー抗体、FDP検査用抗FDP抗体、tPA検査用抗tPA抗体、TAT検査用抗トロンビン=アンチトロンビン複合体抗体、FPA検査用抗FPA抗体等の凝固線溶関連検査用抗原または抗体;BFP検査用抗BFP抗体、CEA検査用抗CEA抗体、AFP検査用抗AFP抗体、フェリチン検査用抗フェリチン抗体、CA19−9検査用抗CA19−9抗体等の腫瘍関連検査用抗原または抗体;アポリポタンパク検査用抗アポリポタンパク抗体、β2−ミクロブロブリン検査用抗β2−ミクロブロブリン抗体、α1−ミクログロブリン検査用抗α1ッミクログロブリン抗体、免疫グロブリン検査用抗免疫グロブリン抗体、CRP検査用抗CRP抗体等の血清蛋白関連検査用抗原または抗体;HCG検査用抗HCG抗体等の内分泌機能検査用抗原または抗体;HBs抗原検査用抗HBs抗体、HBs抗体検査用HBs抗原、HCV抗体検査用HCV抗原、HIV−1抗体用HIV−1抗原、HIV−2抗体検査用HIV−2抗原、HTLV−1検査用HTLV−1抗原、マイコプラズマ症検査用マイコプラズマ抗原、トキソプラズマ検査用トキソプラズマ抗原、ASO検査用ストレプトリジンO抗原等の感染症関連検査用抗原または抗体;抗DNA抗体検査用DNA抗原、RF検査用熱変成ヒトIgG等自己免疫関連検査用抗原または抗体;ジゴキシン検査用抗ジゴキシン抗体、リドカイン検査用抗リドカイン抗体等の薬物分析用抗原または抗体等を挙げることができるが、これらに限定されるものではない。抗体としては、ポリクローナル抗体またはモノクローナル抗体のどちらを用いてもかまわない。   Further, using the magnetic polymer particles according to one embodiment of the present invention, a carrier such as a 96-well plate can be replaced with an automatic analyzer using magnetism. For example, anti-plasmin antibody for antiplasmin test, anti-D dimer antibody for D-dimer test, anti-FDP antibody for FDP test, anti-tPA antibody for tPA test, anti-thrombin = antithrombin complex antibody for TAT test, anti-antithrombin complex antibody for FPA test Coagulation / fibrinolysis-related antigen or antibody for FPA antibody, etc .; BFP anti-BFP antibody, CEA anti-CEA antibody, AFP anti-AFP antibody, ferritin anti-ferritin antibody, CA19-9 anti-CA19- Anti-apolipoprotein antibody for testing apolipoprotein, anti-apolipoprotein antibody for testing β2-microblobrin, anti-α1-microglobulin antibody for testing α1-microglobulin, immunity Anti-immunoglobulin antibody for globulin testing, anti-CRP antibody for CRP testing, etc. Antigen or antibody for serum protein-related test; antigen or antibody for endocrine function test such as anti-HCG antibody for HCG test; anti-HBs antibody for HBs antigen test, HBs antigen for HBs antibody test, HCV antigen for HCV antibody test, HIV-1 HIV-1 antigen for antibody, HIV-2 antigen for HIV-2 antibody test, HTLV-1 antigen for HTLV-1 test, mycoplasma antigen for mycoplasmosis test, toxoplasma test for toxoplasma test, streptolysin O antigen for ASO test, etc. Antigens or antibodies for infectious disease-related tests; DNA antigens for testing anti-DNA antibodies, antigens or antibodies for autoimmunity-related tests such as heat-modified human IgG for RF tests; drugs such as anti-digoxin antibodies for testing digoxin, anti-lidocaine antibodies for testing lidocaine Examples include, but are not limited to, antigens for analysis or antibodies. It is not a thing. As the antibody, either a polyclonal antibody or a monoclonal antibody may be used.

本発明の一実施形態に係る磁性ポリマー粒子において、検査対象となる物質は、免疫検査用試薬および被検査試料に含まれる生体関連物質、化学物質、ならびに生物である。本発明において、「生体関連物質」とは、生体に関わるすべての物質をいう。生体関連物質としては、例えば、生体に含まれる物質、生体に含まれる物質から誘導された物質、生体内で利用可能な物質が挙げられる。   In the magnetic polymer particles according to one embodiment of the present invention, the substances to be tested are biological substances, chemical substances, and organisms contained in the immunological test reagent and the sample to be tested. In the present invention, “biologically related substance” refers to all substances related to a living body. Examples of the biological substance include substances contained in the living body, substances derived from the substance contained in the living body, and substances that can be used in the living body.

検査対象となる生体関連物質は特に限定されないが、例えば、タンパク質(例えば、酵素、抗体、アプタマー、受容体等)、ペプチド(例えばグルタチオン等)、核酸(例えば、DNAやRNA等)、糖質、脂質、およびその他の細胞または物質(例えば、血小板、赤血球、白血球等の各種血球細胞を含む各種血液由来物質、ホルモン(例えば、黄体形成ホルモン、甲状腺刺激ホルモン等)、ウイルス・細菌・真菌・原虫・寄生虫などの構成要素であるタンパク質や核酸が挙げられる。タンパク質としては、より具体的には、生体由来のタンパク質、前立腺特異マーカー、膀胱ガンマーカー等のガンのマーカーとなるタンパク質が挙げられる。   The biological substance to be examined is not particularly limited. For example, proteins (eg, enzymes, antibodies, aptamers, receptors, etc.), peptides (eg, glutathione), nucleic acids (eg, DNA or RNA), carbohydrates, Lipids and other cells or substances (for example, various blood-derived substances including various blood cells such as platelets, red blood cells, white blood cells, hormones (for example, luteinizing hormone, thyroid stimulating hormone, etc.), viruses, bacteria, fungi, protozoa, Examples include proteins and nucleic acids that are constituent elements of parasites, etc. More specifically, examples of proteins include proteins that are cancer markers such as biologically derived proteins, prostate-specific markers, and bladder cancer markers.

検査対象となる化学物質は特に限定されないが、例えば、ダイオキシン類等の環境汚染物質、医薬品(例えば、抗生物質、抗がん剤、抗てんかん剤等)があげられる。   The chemical substance to be inspected is not particularly limited, and examples thereof include environmental pollutants such as dioxins and pharmaceuticals (for example, antibiotics, anticancer agents, antiepileptic agents, etc.).

検査対象となる生物は特に限定されないが、例えば、各種ガン細胞、各種浮遊細胞、ウイルス(例えば、B型肝炎ウイルス、C型肝炎ウイルス、単純ヘルペスウイルス、HIVウイルス、風疹ウイルス、インフルエンザウイルス等)、細菌(例えば、淋菌、MRSA、大腸菌等)、真菌(例えば、カンジダ、白癬菌、クリプトコックス、アルペルギルス等)、原虫・寄生虫(例えば、トキソプラズマ、マラリア等)等が挙げられる。   The organism to be examined is not particularly limited. For example, various cancer cells, various floating cells, viruses (for example, hepatitis B virus, hepatitis C virus, herpes simplex virus, HIV virus, rubella virus, influenza virus, etc.), Examples include bacteria (for example, Neisseria gonorrhoeae, MRSA, E. coli, etc.), fungi (for example, Candida, ringworm, Cryptocox, alpergillus, etc.), protozoa and parasites (for example, Toxoplasma, malaria, etc.) and the like.

上述したように、本発明の一実施形態に係る磁性ポリマー粒子は、生体関連物質結合用粒子として用いることができる。この場合、例えば、本発明の一実施形態に係る磁性ポリマー粒子に、生体関連物質を結合させるための物質を固体化させてもよい。例えば、かかる生体関連物質としては、ビオチン類が挙げられ、生体関連物質を結合させるための物質としては、アビジン類が挙げられる。このような生体関連物質結合用粒子(ビオチン類結合用粒子)の製造方法としては、例えば、アビジン類にビオチン類を結合させる公知の方法を適用して、本発明の一実施形態に係る磁性ポリマー粒子にアビジン類を結合させる方法が挙げられる。   As described above, the magnetic polymer particles according to an embodiment of the present invention can be used as bio-related substance binding particles. In this case, for example, a substance for binding a biological substance may be solidified on the magnetic polymer particles according to the embodiment of the present invention. For example, biotins are exemplified as such biological substances, and avidins are exemplified as substances for binding biological substances. As a method for producing such bio-related substance binding particles (biotin binding particles), for example, a known method for binding biotins to avidins is applied, and the magnetic polymer according to one embodiment of the present invention is applied. A method of binding avidin to the particles can be mentioned.

例えば、リン酸緩衝液または1M塩化ナトリウム含有リン酸緩衝液中において、前記ビオチン類結合用粒子と、ビオチン類によって修飾されたタンパク質またはオリゴヌクレオチド(ビオチン類結合プローブ)とを室温で10分間〜1時間混合した後、固液分離操作によって未反応のタンパク質またはオリゴヌクレオチドを除去することにより、タンパク質またはオリゴヌクレオチドが固定化されたプローブ結合粒子を調製することができる。なお、この方法によって、前記ビオチン類結合用粒子の表面に固定化されたアビジン類に、ビオチン類を結合させることができる点は言うまでもない。   For example, in a phosphate buffer or a phosphate buffer containing 1M sodium chloride, the biotins binding particles and a protein or oligonucleotide modified with biotins (biotins binding probe) are allowed to stand for 10 minutes to 1 at room temperature. After mixing for a period of time, unreacted protein or oligonucleotide is removed by a solid-liquid separation operation, whereby probe-bound particles on which the protein or oligonucleotide is immobilized can be prepared. Needless to say, biotins can be bound to avidins immobilized on the surface of the particles for binding biotins by this method.

ここで、ビオチン類としては、例えば、ビオチン−ε−N−リンジン、ビオシチンヒドラジド、2−イミノビオチン、ビオチニル−ε−N−アミノカプロン酸−N−ヒドロキシスクシンイミドエステルのアミノまたはスルヒドリル誘導体、スルホスクシンイミドイミノジオチン、ビオチンブロモアセチルヒドラジド、p−ジアゾベンゾイルビオチン、3−(N−マレインイミドピロピオニル)ビオチンなどのビオチン誘導体を用いることができる。   Here, as biotins, for example, biotin-ε-N-lindine, biocytin hydrazide, 2-iminobiotin, biotinyl-ε-N-aminocaproic acid-N-hydroxysuccinimide ester, amino or sulfhydryl derivatives, sulfosuccinimide imino Biotin derivatives such as diotine, biotin bromoacetyl hydrazide, p-diazobenzoylbiotin, and 3- (N-maleimidopyropionyl) biotin can be used.

ビオチン類によってタンパク質またはオリゴヌクレオチドを修飾する方法としては、例えば、(i)ビオチン類とN−ヒドロキシイミド類とのエステル(例えば、ビオチン−N−ヒドロキシスクシンイミド)をタンパク質分子のアミノ基に反応させることにより、ビオチン類によってタンパク質を修飾する方法、(ii)オリゴヌクレオチドの5’末端に、フタルイミドトリエチレングリコールを結合した後、これを水酸化アンモニウムによって加水分解することにより第一級アミノ基を形成し、このアミノ基に例えばビオチン−N−ヒドロキシスクシンイミドを結合することにより、ビオチン類によってオリゴヌクレオチドの5’末端を修飾する方法などを挙げることができるが、これらに限定されるものではなく、公知の種々の方法を利用することができ、適宜の方法により、ビオチン類によってオリゴヌクレオチドの3’末端を修飾することもできる。   Examples of a method for modifying a protein or oligonucleotide with biotins include, for example, (i) reacting an ester of biotins with N-hydroxyimides (for example, biotin-N-hydroxysuccinimide) with an amino group of a protein molecule. (Ii) After binding phthalimidotriethylene glycol to the 5 ′ end of the oligonucleotide, it is hydrolyzed with ammonium hydroxide to form a primary amino group. Examples of the method include, for example, a method of modifying the 5 ′ end of an oligonucleotide with biotins by binding biotin-N-hydroxysuccinimide to the amino group. Use various methods It is possible to, by an appropriate method, it is also possible to modify the 3 'end of the oligonucleotide by biotin.

本発明の一実施形態の磁性ポリマー粒子は、粒子を用いたバイオチップ、例えば、特開2005−148048号公報で開示されたバイオチップなどにも好適に使用することができる。   The magnetic polymer particles of one embodiment of the present invention can be suitably used for biochips using the particles, for example, biochips disclosed in JP-A-2005-148048.

なお、本発明の一実施形態に係る磁性ポリマー粒子の用途は生化学用担体用途に限定されるわけではなく、例えば、上述した各分野で使用可能である。   In addition, the use of the magnetic polymer particles according to an embodiment of the present invention is not limited to the use as a biochemical carrier, and can be used in, for example, the above-described fields.

2.実施例
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって制限されるものではない。
2. Examples Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

2.1.評価方法
後述する実施例および比較例で得られた扁平磁性ポリマー粒子の評価は、以下の方法により行なった。また、扁平磁性ポリマー粒子の粒径は、特に説明がない限り以下の方法により測定された。
2.1. Evaluation Method The flat magnetic polymer particles obtained in Examples and Comparative Examples described later were evaluated by the following methods. Further, the particle diameter of the flat magnetic polymer particles was measured by the following method unless otherwise specified.

2.1.1.ビオチン結合量の評価
生体関連物質としてビオチンを用い、各実施例および比較例で得られた扁平磁性ポリマー粒子のビオチン結合量の評価を行なった。
2.1.1. Evaluation of Biotin Binding Amount Using biotin as a biological substance, the biotin binding amount of the flat magnetic polymer particles obtained in each Example and Comparative Example was evaluated.

各実施例および比較例で得られたビオチン結合用粒子2mgを水1.0mlに分散させた後、8000pmolのビオチン(蛍光標識化ビオチン(Lucifer yellow cadaverine biotin-X, dipotassium salt))を加えて37℃で15分間転倒混和を行った。次に、磁気分離により前記粒子を分離し、上清の蛍光強度を蛍光分光光度計(PF−777,JASCO社)で測定することにより、未反応の蛍光標識化ビオチンの量を算出した。さらに、未反応の蛍光標識化ビオチンの量と、結合前の蛍光標識化ビオチン溶液の量(4000pmol)との差を求め、この差を粒子の質量で除することにより、粒子1mgあたりのビオチン結合量(pmol/mg)を求めた。   After 2 mg of biotin-binding particles obtained in each Example and Comparative Example were dispersed in 1.0 ml of water, 8000 pmol of biotin (Lucifer yellow cadaverine biotin-X, dipotassium salt) was added and added 37 Invert mixing was carried out at 15 ° C. for 15 minutes. Next, the particles were separated by magnetic separation, and the fluorescence intensity of the supernatant was measured with a fluorescence spectrophotometer (PF-777, JASCO) to calculate the amount of unreacted fluorescently labeled biotin. Furthermore, the difference between the amount of unreacted fluorescently labeled biotin and the amount of fluorescently labeled biotin solution before binding (4000 pmol) is obtained, and this difference is divided by the mass of the particle, thereby binding biotin per mg of particle. The amount (pmol / mg) was determined.

すなわち、各実施例または比較例で得られた扁平磁性ポリマー粒子のビオチン結合量は、以下の式(1)より算出された。
ビオチン結合量(pmol/mg)=
{(結合前の蛍光標識化ビオチンの量(pmol))−(結合後の未反応蛍光標識化ビオチンの量(pmol))}/(扁平磁性ポリマー粒子の質量(mg))
・・・・・(1)
That is, the biotin binding amount of the flat magnetic polymer particles obtained in each example or comparative example was calculated from the following formula (1).
Biotin binding amount (pmol / mg) =
{(Amount of fluorescently labeled biotin before binding (pmol)) − (Amount of unreacted fluorescently labeled biotin after binding (pmol))} / (Mass of flat magnetic polymer particles (mg))
(1)

2.1.2.磁気分離時間の評価
各実施例および比較例で得られた扁平磁性ポリマー粒子を水で希釈して、磁性粒子を0.01重量%含む試験液を調製した。この試験液をよく分散させて光路長1cmの角型光学セルに入れ、分光光度計(日本分光(株)製,V−550型)にセットし、このセルホルダー横に表面磁力密度2900ガウスのネオジム磁石を置いた時刻(t)を0として、550nmにおける吸光度が初期値(t=0における吸光度)の90%に減衰するまでの時間を測定し、この時間を磁気分離時間とした。
2.1.2. Evaluation of magnetic separation time The flat magnetic polymer particles obtained in each Example and Comparative Example were diluted with water to prepare a test solution containing 0.01% by weight of magnetic particles. This test solution is well dispersed and placed in a square optical cell having an optical path length of 1 cm, set in a spectrophotometer (manufactured by JASCO Corporation, model V-550), and a surface magnetic density of 2900 gauss is placed beside this cell holder. The time (t) at which the neodymium magnet was placed was set to 0, the time until the absorbance at 550 nm was attenuated to 90% of the initial value (absorbance at t = 0) was measured, and this time was defined as the magnetic separation time.

2.1.3.扁平磁性ポリマー粒子の長径/短径の評価
扁平磁性ポリマー粒子のSEM観察を行ない、倍率5,000倍の写真を用いて300個の粒子の長径および短径を計測し、長径の数平均および短径の数平均をそれぞれ求め、得られた長径の数平均および短径の数平均の値から、長径/短径の値を求めた。
2.1.3. Evaluation of long diameter / short diameter of flat magnetic polymer particles SEM observation of flat magnetic polymer particles was performed, and the long diameter and short diameter of 300 particles were measured using a photograph at a magnification of 5,000 times. The number average of the diameters was determined, and the value of the major axis / minor axis was determined from the obtained average values of the major axis and the minor axis.

2.2.実施例1
2.2.1.熱的に変形させる工程を用いた扁平磁性母粒子の作製
特開平07−238105号公報記載の重合方法を参考にして、スチレン/ジビニルベンゼン=99/1共重合体(平均粒径1.5μm)を重合し、遠心分離により3回水洗した。この含水スラリー100gを100℃の乾燥機で24時間乾燥して、熱により変形した扁平ポリマー核粒子の粉体を得た。このポリマー核粒子の長径/短径の数平均は、1.2であった。
2.2. Example 1
2.2.1. Preparation of flat magnetic mother particles using a step of thermally deforming styrene / divinylbenzene = 99/1 copolymer (average particle size 1.5 μm) with reference to the polymerization method described in JP-A-07-238105 Was polymerized and washed with water three times by centrifugation. 100 g of this hydrous slurry was dried with a dryer at 100 ° C. for 24 hours to obtain a powder of flat polymer core particles deformed by heat. The number average of the major axis / minor axis of the polymer core particles was 1.2.

平均粒径が10nmの磁性体微粒子の分散体である油性磁性流体(商品名:「EXPシリーズ」,(株)フェローテック製)にアセトンを加えて磁性体微粒子を析出沈殿させた後、これを分別して乾燥することにより、疎水化処理された表面を有するフェライト系の磁性体微粒子粉体を得た。   After adding acetone to an oily magnetic fluid (trade name: “EXP series”, manufactured by Ferrotec Co., Ltd.) that is a dispersion of magnetic fine particles having an average particle diameter of 10 nm, the magnetic fine particles are precipitated and precipitated. By separating and drying, a ferrite-based magnetic fine particle powder having a hydrophobized surface was obtained.

上記扁平ポリマー核粒子の粉体15gと、上記疎水化処理された磁性体微粒子粉体15gとをミキサーでよく混合し、この混合物をハイブリダイゼーションシステムNHS−O型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)、80℃で5分間処理して、30gの扁平磁性母粒子を得た。   The above-mentioned flat polymer core particle powder 15 g and the above-mentioned hydrophobized magnetic fine particle powder 15 g are thoroughly mixed with a mixer, and this mixture is mixed with a hybridization system NHS-O type (manufactured by Nara Machinery Co., Ltd.). Was used and treated at 80 ° C. for 5 minutes at a peripheral speed of a blade (stirring blade) of 100 m / second (16200 rpm) to obtain 30 g of flat magnetic mother particles.

2.2.2.扁平磁性ポリマー粒子の作製
ドデシルベンゼンスルホン酸ナトリウム0.5重量%およびノニオン性乳化剤(商品名:「エマルゲン150」,花王(株)製)0.5重量%を含む水溶液(以下「分散剤水溶液(D)」という)750gを1Lセパラブルフラスコに投入し、次に、上記扁平磁性母粒子30gを投入し、ホモジナイザーで分散した後、60℃に加熱した。次いで、別の容器に計量した分散剤水溶液(D)50gに、メタクリル酸シクロヘキシル30g、メタクリル酸7.5g、およびターシャリーブチルペルオキシ2−エチルヘキサネート(日本油脂社製;パーブチルO)1.5gを入れて分散させたプレエマルジョンを、60℃にコントロールした前記1Lセパラブルフラスコに2時間かけて滴下した。滴下後、この液を80℃に昇温させて2時間反応させた。
2.2.2. Preparation of flat magnetic polymer particles An aqueous solution containing 0.5% by weight of sodium dodecylbenzenesulfonate and 0.5% by weight of a nonionic emulsifier (trade name: “Emulgen 150”, manufactured by Kao Corporation) (hereinafter referred to as “dispersant aqueous solution ( D) ") was charged into a 1 L separable flask, and then 30 g of the flat magnetic mother particles were charged, dispersed with a homogenizer, and heated to 60 ° C. Next, 50 g of the aqueous dispersant solution (D) weighed in another container, 30 g of cyclohexyl methacrylate, 7.5 g of methacrylic acid, and 1.5 g of tertiary butyl peroxy 2-ethylhexanate (manufactured by NOF Corporation; Perbutyl O) The pre-emulsion dispersed by adding was added dropwise to the 1 L separable flask controlled at 60 ° C. over 2 hours. After dripping, this liquid was heated up to 80 degreeC and made to react for 2 hours.

得られた磁性粒子の水分散体を磁気精製および重力沈降精製してから、固形分濃度を1%に調製することにより、扁平磁性ポリマー粒子の水分散体を得た。長径/短径の値および磁気分離時間の測定結果を表1に示す。   The obtained aqueous dispersion of magnetic particles was subjected to magnetic purification and gravity sedimentation purification, and then the solid content concentration was adjusted to 1% to obtain an aqueous dispersion of flat magnetic polymer particles. Table 1 shows the measurement results of the major axis / minor axis value and magnetic separation time.

2.2.3.ビオチン結合用粒子の作製
前記固形分濃度1%の扁平磁性ポリマー粒子の水分散体1mLを磁気分離し、0.1mM MES緩衝液(pH6.0)1mLに置換した。1−エチル−3−ジメチルアミノプロピルカルボジイミド塩酸塩(同仁化学社製)1mgを溶解した0.1mM MES緩衝液(pH6.0)0.1mLを添加し、さらに、ストレプトアビジン(シグマ社製)0.4mgを溶解した0.1mM MES緩衝液(pH6.0)0.1mLを添加し、室温で8時間回転攪拌することより、粒子の表面にストレプトアビジンを固定化させた。次いで、これを磁気分離処理した後、固形物に、0.1%牛血清アルブミンを含むリン酸塩緩衝液(PBS,0.1%BSA/PBS,pH=7.2)を添加して磁気分離処理する操作を3回繰り返すことにより、未反応のストレプトアビジンを除去した。こうして得られたビオチン結合用粒子を、0.1%牛血清アルブミンを含むリン酸塩緩衝液(PBS,0.1%BSA/PBS,pH=7.2)に分散させることにより、固形分濃度1%の分散液を調製し、ビオチン結合量を評価した。結果を表1に示す。
2.2.3. Preparation of Biotin-Binding Particles 1 mL of an aqueous dispersion of flat magnetic polymer particles having a solid content concentration of 1% was magnetically separated and replaced with 1 mL of 0.1 mM MES buffer (pH 6.0). 0.1 mL of 0.1 mM MES buffer solution (pH 6.0) in which 1 mg of 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride (manufactured by Dojin Chemical) was dissolved was added, and streptavidin (manufactured by Sigma) 0 Streptavidin was immobilized on the surface of the particles by adding 0.1 mL of 0.1 mM MES buffer solution (pH 6.0) in which 4 mg was dissolved and rotating and stirring at room temperature for 8 hours. Then, after magnetic separation treatment, a phosphate buffer solution (PBS, 0.1% BSA / PBS, pH = 7.2) containing 0.1% bovine serum albumin was added to the solid matter to magnetically Unreacted streptavidin was removed by repeating the separation treatment three times. The biotin-binding particles thus obtained were dispersed in a phosphate buffer solution (PBS, 0.1% BSA / PBS, pH = 7.2) containing 0.1% bovine serum albumin to obtain a solid content concentration. A 1% dispersion was prepared and the amount of biotin bound was evaluated. The results are shown in Table 1.

2.3.実施例2
2.3.1.熱的および機械的に変形させる工程による扁平磁性母粒子の作製
特開平07−238105号公報記載の重合方法を参考にして、スチレン/ジビニルベンゼン/n−ブチルアクリレート=85/4/11共重合体(平均粒径1.5μm)を重合し、遠心分離により3回水洗した。この含水スラリー100gを60℃の乾燥機で24時間乾燥させて、扁平ポリマー核粒子の粉体を得た。この扁平ポリマー核粒子の長径/短径の数平均は1.1であった。
2.3. Example 2
2.3.1. Preparation of flat magnetic mother particles by a process of thermal and mechanical deformation With reference to the polymerization method described in JP-A-07-238105, styrene / divinylbenzene / n-butyl acrylate = 85/4/11 copolymer (Average particle size 1.5 μm) was polymerized and washed with water three times by centrifugation. 100 g of this hydrous slurry was dried with a dryer at 60 ° C. for 24 hours to obtain flat polymer core particle powder. The number average of major axis / minor axis of the flat polymer core particles was 1.1.

次いで、平均粒径が10nmの磁性体微粒子の分散体である油性磁性流体(商品名:「EXPシリーズ」,(株)フェローテック製)にアセトンを加えて粒子を析出沈殿させた後、これを乾燥することにより、疎水化処理された表面を有するフェライト系の磁性体微粒子粉体を得た。   Next, acetone was added to an oily magnetic fluid (trade name: “EXP series”, manufactured by Ferrotec Co., Ltd.), which is a dispersion of magnetic fine particles having an average particle diameter of 10 nm, to precipitate and precipitate the particles. By drying, a ferrite-based magnetic fine particle powder having a hydrophobized surface was obtained.

上記扁平ポリマー核粒子の粉体15gと、上記疎水化処理された磁性体微粒子粉体15gとをミキサーでよく混合し、この混合物をハイブリダイゼーションシステムNHS−O型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)、120℃で5分間処理して、30gの扁平磁性母粒子を得た。   The above-mentioned flat polymer core particle powder 15 g and the above-mentioned hydrophobized magnetic fine particle powder 15 g are thoroughly mixed with a mixer, and this mixture is mixed with a hybridization system NHS-O type (manufactured by Nara Machinery Co., Ltd.). Was used and treated at 120 ° C. for 5 minutes at a peripheral speed of a blade (stirring blade) of 100 m / second (16200 rpm) to obtain 30 g of flat magnetic mother particles.

2.3.2.扁平磁性ポリマー粒子の作製
前記2.2.2と同様の方法で扁平磁性ポリマー粒子の水分散体を得た。長径/短径の値および磁気分離時間の測定結果を表1に示す。
2.3.2. Preparation of flat magnetic polymer particles An aqueous dispersion of flat magnetic polymer particles was obtained in the same manner as in 2.2.2 above. Table 1 shows the measurement results of the major axis / minor axis value and magnetic separation time.

2.3.3.ビオチン結合用粒子の作製
前記2.2.3と同様の方法でビオチン結合用粒子の分散液を調製し、ビオチン結合量を評価した。結果を表1に示す。
2.3.3. Preparation of biotin-binding particles Dispersions of biotin-binding particles were prepared in the same manner as in 2.2.3, and the amount of biotin binding was evaluated. The results are shown in Table 1.

2.4.比較例1
2.4.1.球状磁性核粒子の作製
特開平07−238105号公報記載の重合方法を参考にして、スチレン/ジビニルベンゼン=80/20共重合体(平均粒径1.7μm)を重合し、遠心分離により3回水洗した。この含水スラリー100gを60℃の乾燥機で24時間乾燥させて、ポリマー核粒子の粉体を得た。このポリマー核粒子の長径/短径の数平均は、1.0であった。
2.4. Comparative Example 1
2.4.1. Preparation of Spherical Magnetic Core Particles Styrene / divinylbenzene = 80/20 copolymer (average particle size 1.7 μm) was polymerized with reference to the polymerization method described in JP-A-07-238105 and centrifuged three times. Washed with water. 100 g of this hydrous slurry was dried with a dryer at 60 ° C. for 24 hours to obtain polymer core particle powder. The number average of major axis / minor axis of the polymer core particles was 1.0.

次に、平均粒径が10nmの磁性体微粒子の分散体である油性磁性流体(商品名:「EXPシリーズ」,(株)フェローテック製)にアセトンを加えて粒子を析出沈殿させた後、これを乾燥することにより、疎水化処理された表面を有するフェライト系の磁性体微粒子粉体を得た。   Next, after adding acetone to oily magnetic fluid (trade name: “EXP series”, manufactured by Ferrotec Co., Ltd.) which is a dispersion of magnetic fine particles having an average particle diameter of 10 nm, the particles are precipitated and precipitated. Was dried to obtain a ferrite-based magnetic fine particle powder having a hydrophobized surface.

次いで、上記ポリマー核粒子の粉体15gと、上記磁性体微粒子粉体15gとをミキサーでよく混合し、この混合物をハイブリダイゼーションシステムNHS−O型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)にて80℃で5分間処理して、磁性母粒子を30g得た。   Next, 15 g of the polymer core particle powder and 15 g of the magnetic fine particle powder are mixed well with a mixer, and this mixture is used with a hybridization system NHS-O type (manufactured by Nara Machinery Co., Ltd.). Then, treatment was performed at 80 ° C. for 5 minutes at a peripheral speed of a blade (stirring blade) of 100 m / second (16200 rpm) to obtain 30 g of magnetic mother particles.

2.4.2.磁性ポリマー粒子の作製
前記2.2.2と同様の方法で磁性ポリマー粒子の水分散体を得た。長径/短径の値および磁気分離時間の測定結果を表1に示す。
2.4.2. Preparation of magnetic polymer particles An aqueous dispersion of magnetic polymer particles was obtained in the same manner as in 2.2.2 above. Table 1 shows the measurement results of the major axis / minor axis value and magnetic separation time.

2.4.3.ビオチン結合用粒子の作製
前記2.2.3と同様の方法でビオチン結合用粒子の分散液を調製し、ビオチン結合量を評価した。結果を表1に示す。
2.4.3. Preparation of biotin-binding particles Dispersions of biotin-binding particles were prepared in the same manner as in 2.2.3, and the amount of biotin binding was evaluated. The results are shown in Table 1.

Figure 0004683225
Figure 0004683225

表1の結果から、実施例1,2で得られた磁性ポリマー粒子によれば、長径/短径=1.1〜2.0であることにより、生体関連物質(ビオチン)との結合量が多く、かつ、磁気分離性に優れていた。これに対して、比較例1で得られた磁性ポリマー粒子は、長径/短径が1.1未満であることにより、磁気分離性および生体関連物質の結合量がいずれも、実施例1,2で得られた磁性ポリマー粒子よりも劣っていた。   From the results of Table 1, according to the magnetic polymer particles obtained in Examples 1 and 2, the long diameter / short diameter = 1.1 to 2.0, so that the binding amount with the biological substance (biotin) is Many and excellent in magnetic separation. In contrast, since the magnetic polymer particles obtained in Comparative Example 1 have a major axis / minor axis of less than 1.1, both the magnetic separability and the binding amount of the biological substance were found in Examples 1 and 2. It was inferior to the magnetic polymer particles obtained in 1.

Claims (10)

長径/短径=1.1〜2.0の診断薬用磁性ポリマー粒子。   Magnetic polymer particles for diagnostic agents having a major axis / minor axis = 1.1 to 2.0. 長径/短径=1.1〜1.3である、請求項1に記載の診断薬用磁性ポリマー粒子。The magnetic polymer particles for diagnostic agents according to claim 1, wherein the major axis / minor axis is 1.1 to 1.3. 請求項1または2において、
磁性体微粒子を含むコアと、ポリマー部を含むシェルとを含む、診断薬用磁性ポリマー粒子。
In claim 1 or 2 ,
Magnetic polymer particles for diagnostic agents, comprising a core containing magnetic fine particles and a shell containing a polymer portion.
請求項において、
前記コアは、非磁性体核粒子と、該核粒子の表面に設けられた磁性体層とを含む、診断薬用磁性ポリマー粒子。
In claim 3 ,
The said core is a magnetic polymer particle for diagnostic agents containing the nonmagnetic core particle and the magnetic body layer provided in the surface of this core particle.
請求項において、
前記核粒子の長径/短径が1.1〜2.0である、診断薬用磁性ポリマー粒子。
In claim 4 ,
Magnetic polymer particles for diagnostic agents, wherein the core particles have a major axis / minor axis of 1.1 to 2.0.
球状の磁性ポリマー粒子を熱的に変形させる工程を含む、請求項1または2に記載の診断薬用磁性ポリマー粒子の製造方法。 The manufacturing method of the magnetic polymer particle for diagnostic agents of Claim 1 or 2 including the process of thermally deforming a spherical magnetic polymer particle. 球状の磁性ポリマー粒子を機械的に変形させる工程を含む、請求項1または2に記載の診断薬用磁性ポリマー粒子の製造方法。 The method for producing magnetic polymer particles for diagnostic agents according to claim 1 or 2 , comprising a step of mechanically deforming the spherical magnetic polymer particles. 長径/短径が1.1〜2.0である核粒子の表面に磁性体層を形成する工程と、
前記磁性体層の外側にポリマー部を形成する工程と、
を含む、診断薬用磁性ポリマー粒子の製造方法。
Forming a magnetic layer on the surface of the core particle having a major axis / minor axis of 1.1 to 2.0;
Forming a polymer portion on the outside of the magnetic layer;
A method for producing magnetic polymer particles for diagnostic agents, comprising:
請求項において、
球状の非磁性体核粒子を熱的に変形させて、長径/短径が1.1〜2.0である核粒子を形成する工程をさらに含む、診断薬用磁性ポリマー粒子の製造方法。
In claim 8 ,
A method for producing magnetic polymer particles for diagnostic agents, further comprising the step of thermally deforming spherical non-magnetic core particles to form core particles having a major axis / minor axis of 1.1 to 2.0.
請求項8または9において、
球状の非磁性体核粒子を機械的に変形させて、長径/短径が1.1〜2.0である核粒子を形成する工程をさらに含む、診断薬用磁性ポリマー粒子の製造方法。
In claim 8 or 9 ,
A method for producing magnetic polymer particles for diagnostic agents, further comprising a step of mechanically deforming spherical non-magnetic core particles to form core particles having a major axis / minor axis of 1.1 to 2.0.
JP2006082615A 2006-03-24 2006-03-24 Magnetic polymer particles for diagnostic agents and method for producing the same Active JP4683225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082615A JP4683225B2 (en) 2006-03-24 2006-03-24 Magnetic polymer particles for diagnostic agents and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082615A JP4683225B2 (en) 2006-03-24 2006-03-24 Magnetic polymer particles for diagnostic agents and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007256151A JP2007256151A (en) 2007-10-04
JP4683225B2 true JP4683225B2 (en) 2011-05-18

Family

ID=38630538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082615A Active JP4683225B2 (en) 2006-03-24 2006-03-24 Magnetic polymer particles for diagnostic agents and method for producing the same

Country Status (1)

Country Link
JP (1) JP4683225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657592B2 (en) * 2015-05-07 2020-03-04 Tdk株式会社 Magnetic composite particles
WO2016181877A1 (en) * 2015-05-08 2016-11-17 日清紡ホールディングス株式会社 Flat elliptical polymer particles, and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205481A (en) * 2002-03-25 2004-07-22 Jsr Corp Method for manufacturing particle for diagnostic product
JP2004317421A (en) * 2003-04-18 2004-11-11 Nisshinbo Ind Inc Element to which biologically active substance is fixed
JP2005134351A (en) * 2003-10-31 2005-05-26 Wako Pure Chem Ind Ltd Immunological measuring method using magnetic substance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341920B2 (en) * 1993-01-06 2002-11-05 日立金属株式会社 Flat particle powder and method for producing the same
JPH10188362A (en) * 1996-12-18 1998-07-21 Tokin Corp Information recording card and its use method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205481A (en) * 2002-03-25 2004-07-22 Jsr Corp Method for manufacturing particle for diagnostic product
JP2004317421A (en) * 2003-04-18 2004-11-11 Nisshinbo Ind Inc Element to which biologically active substance is fixed
JP2005134351A (en) * 2003-10-31 2005-05-26 Wako Pure Chem Ind Ltd Immunological measuring method using magnetic substance

Also Published As

Publication number Publication date
JP2007256151A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4716034B2 (en) Magnetic particles and method for producing the same
US7732051B2 (en) Polymer-coated magnetic particles comprising a 2,3-hydroxypropyl group, and probe-bonded particles
US8703289B2 (en) Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
US20090099342A1 (en) Process for Preparing Composite Particles, Composite Particles Obtained, and Their Use in a Diagnostic Test
US7981512B2 (en) Organic polymer-magnetic particles and process for producing same
JP5003867B2 (en) Magnetic particle, method for producing the same, and probe-coupled particle
WO2017204209A1 (en) Composite particles, coated particles, method for producing composite particles, ligand-containing solid phase carrier, and method for detecting or separating target substance in sample
JP4935973B2 (en) Organic polymer particles and method for producing the same
JP2010260877A (en) Organic polymer particle and probe-bonded particle
JP4683225B2 (en) Magnetic polymer particles for diagnostic agents and method for producing the same
JP4984025B2 (en) Organic polymer particle, method for producing the same, and probe binding particle
JP2019082356A (en) Magnetic particle and detection/separation method
JP4911280B2 (en) Organic polymer particles and method for producing the same
JP2018146535A (en) Method of manufacturing probe binding carrier, method of detecting or isolating target substance, probe binding carrier, and protein or nucleic acid stabilizer
Audonnet et al. Polymeric coatings on micro-and nanometric particles for bioapplications
JP2007262114A (en) Magnetic particle, method for producing the same and magnetic particle dispersion
JP2005069926A (en) Magnetic particle for immunological inspection
JP6289705B1 (en) Method for producing probe binding carrier, probe binding carrier and method for detecting or separating target substance
JP4803366B2 (en) ORGANIC POLYMER PARTICLE AND METHOD FOR PRODUCING THE SAME, ORGANIC POLYMER PARTICLE FOR PROBE CONNECTION AND MANUFACTURING METHOD THEREOF
JP2008191128A (en) Magnetic particle and probe-bound particle
JP2007262113A (en) Carboxy group-containing particle and method for producing the same
JP5494987B2 (en) Organic polymer particles and method for producing the same
JP2006265286A (en) Polymer-coated magnetic particle, its manufacturing process, carrier for use in biochemistry and biotin capture particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250