JP4682995B2 - Plasma ignition device and manufacturing method thereof - Google Patents

Plasma ignition device and manufacturing method thereof Download PDF

Info

Publication number
JP4682995B2
JP4682995B2 JP2007055043A JP2007055043A JP4682995B2 JP 4682995 B2 JP4682995 B2 JP 4682995B2 JP 2007055043 A JP2007055043 A JP 2007055043A JP 2007055043 A JP2007055043 A JP 2007055043A JP 4682995 B2 JP4682995 B2 JP 4682995B2
Authority
JP
Japan
Prior art keywords
layer
boiling point
thermal conductivity
plasma
ignition device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007055043A
Other languages
Japanese (ja)
Other versions
JP2008218249A (en
Inventor
秀幸 加藤
融 吉永
谷  泰臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007055043A priority Critical patent/JP4682995B2/en
Priority to DE102008000530A priority patent/DE102008000530B4/en
Publication of JP2008218249A publication Critical patent/JP2008218249A/en
Application granted granted Critical
Publication of JP4682995B2 publication Critical patent/JP4682995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Description

本発明は、内燃機関の点火に用いられるプラズマ点火装置の電極消耗対策に関するものである。   The present invention relates to measures against electrode consumption of a plasma ignition device used for ignition of an internal combustion engine.

自動車エンジン等の内燃機関において、図6(a)に示すようなプラズマ式点火装置1hでは、プラズマ式点火プラグ10hの中心電極110hと接地電極131hとの間に放電用電源20hから高電圧を印加するとともに、中心電極と設置電極との間に形成された放電空間140h内で放電が開始する瞬間に、プラズマ発生用電源30hから大電流を供給して、放電空間140h内の気体を高温高圧のプラズマ状態にして、放電空間140hの先端から噴射して点火をおこなうことができる。
プラズマ式点火装置1hは、指向性に富み、かつ容積的に大きな範囲で数千から数万Kの極めて高い温度域を発生させることができるので、直噴エンジンの燃焼において希薄な混合気を燃焼させるため、点火プラグの付近に濃い混合気が集まるようにして燃焼を容易にする成層燃焼への応用が期待されている。
In an internal combustion engine such as an automobile engine, in the plasma ignition device 1h as shown in FIG. 6A, a high voltage is applied from the discharge power source 20h between the center electrode 110h and the ground electrode 131h of the plasma ignition plug 10h. In addition, at the moment when discharge starts in the discharge space 140h formed between the center electrode and the installation electrode, a large current is supplied from the plasma generating power source 30h, and the gas in the discharge space 140h is heated to high temperature and pressure. It can be made into a plasma state and can be ignited by being injected from the tip of the discharge space 140h.
The plasma ignition device 1h is rich in directivity and can generate an extremely high temperature range of several thousand to several tens of thousands K in a large volume range, so that a lean air-fuel mixture is burned in the combustion of a direct injection engine. Therefore, it is expected to be applied to stratified combustion that facilitates combustion by collecting a rich air-fuel mixture in the vicinity of the spark plug.

この様なプラズマ式点火装置として、特許文献1には、中心電極の汚染を防止すべく、中心電極と中心に該中心電極を保持し縦に伸びる挿入孔を設けた絶縁体と該絶縁体を覆い下端に挿入孔と連通する開口を設けた接地電極とによって構成し、上記挿入孔内に放電ギャップを形成した表面ギャップ型点火プラグが開示されている。
米国特許第3581141号明細書
As such a plasma ignition device, Patent Document 1 discloses that a center electrode and an insulator provided with an insertion hole extending vertically and holding the center electrode in the center are provided in order to prevent contamination of the center electrode. A surface gap type spark plug is disclosed which is constituted by a ground electrode provided with an opening communicating with the insertion hole at the lower end of the cover, and in which a discharge gap is formed in the insertion hole.
US Pat. No. 3,581,141

ところが、従来のプラズマ式点火装置1hにおいては、図6(b)に示すように、中心電極110hを陰極とし、接地電極131hを陽極としているので、中心電極110hの表面において質量の大きな陽イオン50の衝突により分解される陰極スパッタリングが発生しやすい。この陰極スパッタリングによって中心電極110hの表面は激しく浸食される。
中心電極110hの侵食に伴い中心電極110hと接地電極131hとの距離、即ち放電距離141hが次第に長くなり、放電距離141hに比例して放電電圧が次上昇し、やがて放電電圧が放電用電源20hの発生電圧以上となると放電できなくなり内燃機関の失火に至る虞がある。
However, in the conventional plasma ignition device 1h, as shown in FIG. 6 (b), the center electrode 110h is a cathode and the ground electrode 131h is an anode, so that a cation 50 having a large mass on the surface of the center electrode 110h. Cathodic sputtering that is decomposed by the collision of the metal is likely to occur. Due to this cathode sputtering, the surface of the center electrode 110h is severely eroded.
Along with the erosion of the center electrode 110h, the distance between the center electrode 110h and the ground electrode 131h, that is, the discharge distance 141h gradually increases, and the discharge voltage gradually increases in proportion to the discharge distance 141h. If the generated voltage is exceeded, discharge may not be possible and the internal combustion engine may misfire.

そこで、本願発明は、かかる実情に鑑み、プラズマ式点火装置において陰極スパッタリングによる陰極の消耗を抑制し、放電電圧の上昇が生じ難く、安定した点火を実現する耐久性に優れたプラズマ式点火装置を提供することを目的とするものである。   Therefore, in view of such circumstances, the present invention provides a plasma ignition device excellent in durability that suppresses the consumption of the cathode due to cathode sputtering in the plasma ignition device, hardly raises the discharge voltage, and realizes stable ignition. It is intended to provide.

請求項1の発明では、請求項1の発明では、中心電極と接地電極との間を絶縁する筒状の絶縁部材が配設して、上記絶縁部材内に放電空間を形成したプラズマ式点火プラグを具備し、上記中心電極と上記接地電極との間に印加された高電圧によって上記放電空間内の気体を高温高圧のプラズマ状態にして内燃機関内に噴射して点火を行うプラズマ式点火装置において、上記中心電極と上記接地電極とのいずれか一方の内、少なくとも陰極となる電極に該電極の上記放電空間に相対する表面を覆う耐浸食層を形成し、上記耐浸食層は、最表層から最内層に至る各層を構成する構成材の熱的性質が異なる層とし、これらの層を積層させた複数層で構成されると共に、上記最表層は、沸点が最も高い高沸点層とし、
上記最内層は、熱伝導率が最も高い高熱伝導率層とし、上記最表層と上記最内層との間の層は、上記最表層側から上記最内層側に向けて熱伝導率が高くなり、上記最内層側から上記最表層側に向けて沸点が高くなるように設ける。
According to a first aspect of the present invention, in the first aspect of the invention, a plasma ignition plug in which a cylindrical insulating member that insulates between the center electrode and the ground electrode is disposed to form a discharge space in the insulating member. A plasma ignition device that performs ignition by injecting gas in the discharge space into a high-temperature and high-pressure plasma state into an internal combustion engine by a high voltage applied between the center electrode and the ground electrode. An erosion-resistant layer is formed on at least one of the center electrode and the ground electrode that covers the surface of the electrode facing the discharge space, and the erosion-resistant layer is formed from the outermost layer. The layers constituting the layers leading to the innermost layer have different thermal properties and are composed of a plurality of layers in which these layers are laminated, and the outermost layer is a high boiling point layer having the highest boiling point,
The innermost layer is a high thermal conductivity layer having the highest thermal conductivity, and the layer between the outermost layer and the innermost layer has a higher thermal conductivity from the outermost layer side toward the innermost layer side, It is provided so that the boiling point becomes higher from the innermost layer side toward the outermost layer side.

上記放電空間内に高電圧が印可されると、放電空間内の気体がプラズマ状態となり、極めて高温で質量の大きい陽イオンが上記陰極となる電極の表面に衝突して、電極表面を浸食する陰極スパッタリングを起こす虞があるが、請求項1の発明によれば、電極表面に形成された耐浸食層の最表層は、高沸点層となっており、沸点が高く、プラズマ化した高温の気体が衝突しても蒸発し難い。
加えて、上記耐浸食層は、高沸点層と高熱伝導率層と組み合わせて層状に形成されているので、プラズマ化した気体の熱エネルギーを高沸点層から高熱伝導率層に速やかに逃し、高沸点層の温度を低下させることができるので、更に電極表面が蒸発し難くなり、陰極スパッタリングが抑制される。
従って、プラズマ式点火装置の耐久性を向上できる。
When a high voltage is applied in the discharge space, the gas in the discharge space becomes a plasma state, and a cation having a large mass at a very high temperature collides with the surface of the electrode serving as the cathode, thereby eroding the electrode surface. Although there is a possibility of causing sputtering, according to the invention of claim 1, the outermost layer of the erosion-resistant layer formed on the electrode surface is a high boiling point layer, has a high boiling point, and a high temperature gas converted into plasma It is hard to evaporate even if it collides.
In addition, since the erosion resistant layer is formed in a layered form in combination with the high boiling point layer and the high thermal conductivity layer, the thermal energy of the plasma gas is quickly released from the high boiling point layer to the high thermal conductivity layer, Since the temperature of the boiling point layer can be lowered, the electrode surface is further difficult to evaporate, and cathode sputtering is suppressed.
Therefore, the durability of the plasma ignition device can be improved.

請求項2の発明では、上記耐侵食層は、上記最表層から上記最内層にかけて、熱的性質が層状に徐々に変化して異なるように形成される傾斜材とする。   According to a second aspect of the present invention, the erosion resistant layer is an inclined material formed so that the thermal properties gradually change in layers from the outermost layer to the innermost layer.

請求項2の発明によれば、最表層は最も沸点が高くなり、最内層は最も熱伝導率が高くなるのに加え、最表層と最内層との熱的性質が徐々に変化する傾斜材としたので、材料特性の違いによる内部応力の発生を抑えることができ、耐久性に優れたプラズマ式点火装置が実現可能となる。   According to the invention of claim 2, the outermost layer has the highest boiling point, the innermost layer has the highest thermal conductivity, and the gradient material in which the thermal properties of the outermost layer and the innermost layer gradually change. Therefore, the generation of internal stress due to the difference in material characteristics can be suppressed, and a plasma ignition device having excellent durability can be realized.

請求項3の発明では、上記傾斜材は、高沸点材料と高熱伝導率材料とからなり、上記最表層側から上記最内層側に向けて上記高熱伝導率材料の配合比率を高くし、上記最内層側から上記最表層側に向けて上記高沸点材料の配合比率を高くなるように各層の配合比率を徐々に変化させた傾斜材とする。   In the invention of claim 3, the gradient material is composed of a high boiling point material and a high thermal conductivity material, and the blending ratio of the high thermal conductivity material is increased from the outermost layer side toward the innermost layer side, and The inclined material is formed by gradually changing the blending ratio of each layer so that the blending ratio of the high boiling point material increases from the inner layer side toward the outermost layer side.

請求項3の発明によれば、高沸点材料と高熱伝導率材料との配合比率を変化させることにより容易に熱的性質を徐々に変化させた傾斜材を容易に形成することが可能となり、完全一体となった耐浸食層を形成できる。
従って、耐浸食性に優れたプラズマ式点火装置を実現できる。
According to the invention of claim 3, it becomes possible to easily form an inclined material in which the thermal properties are gradually changed by changing the blending ratio of the high boiling point material and the high thermal conductivity material. An integrated corrosion resistant layer can be formed.
Therefore, it is possible to realize a plasma ignition device having excellent erosion resistance.

請求項4の発明では、上記高沸点材料は、沸点3500℃以上の金属または金属化合物の内、少なくとも1以上を含む高沸点材料とする。   In the invention of claim 4, the high boiling point material is a high boiling point material containing at least one or more of metals or metal compounds having a boiling point of 3500 ° C. or higher.

請求項4の発明によれば、高沸点層が蒸発し難く、陰極スパッタリングが抑制され、耐久性の高いプラズマ式点火装置が実現できる。   According to the invention of claim 4, a high-boiling layer hardly evaporates, cathode sputtering is suppressed, and a highly durable plasma ignition device can be realized.

請求項5の発明では、上記高熱伝導率材料は、熱伝導率100W/m・K以上の金属または金属化合物もしくは炭素繊維の内、少なくとも1以上を含む高熱伝導率材料とする。   According to a fifth aspect of the present invention, the high thermal conductivity material is a high thermal conductivity material containing at least one or more of metals, metal compounds, or carbon fibers having a thermal conductivity of 100 W / m · K or more.

請求項5の発明によれば、高融点層の温度を速やかに低下させ、更に陰極スパッタリングが抑制され、耐久性の高いプラズマ式点火装置が実現できる。   According to the invention of claim 5, the temperature of the high melting point layer can be quickly lowered, further, cathode sputtering is suppressed, and a highly durable plasma ignition device can be realized.

請求項6の発明では、請求項1ないし5のいずれか1項に記載のプラズマ式点火装置の製造方法において、上記陰極となる電極を形成する工程が、上記高沸点材料と上記高熱伝導率材料とが粉末状である材料を用い、上記最表層側から上記最内層側に向けて上記高熱伝導率材料の配合比率が高くなり、上記最内層側から上記最表層側に向けて上記高沸点材料の配合比率が高くなるように、各層の配合比率を徐々に変化させて成形型内に充填し、上記成形型によって圧縮して成形体を形成し、上記成形体を上記成形型によって更に圧縮するとともに、上記成形型を介して上記成形体内にパルス電流を印加して、上記成形体内に発生する熱エネルギーによって上記成形体を焼結して、上記陰極となる電極を上記耐浸食層とともに形成する工程を含む。   According to a sixth aspect of the present invention, in the method of manufacturing a plasma ignition device according to any one of the first to fifth aspects, the step of forming the electrode to be the cathode includes the high boiling point material and the high thermal conductivity material. And a high-boiling-point material from the innermost layer side toward the outermost layer side, the blending ratio of the high thermal conductivity material increases from the outermost layer side toward the innermost layer side. The composition ratio of each layer is gradually changed so as to increase the composition ratio, and the mixture is filled in the mold, and compressed by the mold to form a compact, and the compact is further compressed by the mold. At the same time, a pulse current is applied to the molded body through the molding die, and the molded body is sintered by the thermal energy generated in the molded body to form the electrode serving as the cathode together with the erosion resistant layer. Including process .

請求項5の発明によれば、高沸点材料と高熱伝導率材料とについて、金属または金属化合物もしくは炭素繊維材料のいずれかを問わず、両材料の配合比率を上記最表層側から上記最内層側に向けて上記高熱伝導率材料の配合比率が高くなり、上記最内層側から上記最表層側に向けて上記高沸点材料の配合比率が高くなるように傾斜配合して成形し、焼結することが容易となる。
従って、耐久性の高いプラズマ式点火装置が実現できる。
According to the invention of claim 5, for the high boiling point material and the high thermal conductivity material, regardless of whether it is a metal, a metal compound or a carbon fiber material, the blending ratio of both materials is changed from the outermost layer side to the innermost layer side. The composition ratio of the high heat conductivity material is increased toward the outermost layer, and the composition ratio of the high boiling point material is increased from the innermost layer side toward the outermost layer side. Becomes easy.
Therefore, a highly durable plasma ignition device can be realized.

以下に、本発明の第1実施形態について、図1を参照して説明する。
本実施形態におけるプラズマ式点火装置1は、放電用電源20とプラズマ発生用電源30とからなる高電圧電源とプラズマ式点火プラグ10とで構成されている。
プラズマ式点火プラグ10は、軸状の中心電極110と、上記中心電極110を絶縁保持する筒状の絶縁部材120と、絶縁部材120を覆う有底筒状で先端に接地電極131の形成された導電性のハウジング130とで構成されている。
接地電極131の放電空間140に対向する表面には、後述する高沸点層151、傾斜層152、高熱伝導率層153からなる耐浸食層150が形成されている。
Below, 1st Embodiment of this invention is described with reference to FIG.
The plasma ignition device 1 according to this embodiment includes a high-voltage power source including a discharge power source 20 and a plasma generation power source 30 and a plasma ignition plug 10.
The plasma-type spark plug 10 has an axial center electrode 110, a cylindrical insulating member 120 that insulates and holds the center electrode 110, and a bottomed cylindrical shape that covers the insulating member 120, and a ground electrode 131 is formed at the tip. And a conductive housing 130.
On the surface of the ground electrode 131 facing the discharge space 140, an erosion resistant layer 150 including a high boiling point layer 151, an inclined layer 152, and a high thermal conductivity layer 153, which will be described later, is formed.

絶縁部材120は耐熱性、機械的強度、高温における絶縁耐力、熱伝導率などに優れた高純度のアルミナ等からなり、先端側は中心電極110の先端面より下方に伸びる筒状の放電空間140を形成し、中腹には絶縁部材120とハウジング130との気密性を保持するパッキング部材を介してハウジング130に係止する中心電極係止部が形成され、基端側は中心電極120とハウジング130とを絶縁し、高電圧が上記電極以外に逃げるのを防止する絶縁部材頭部122が形成されている。   The insulating member 120 is made of high-purity alumina or the like excellent in heat resistance, mechanical strength, high-temperature dielectric strength, thermal conductivity, and the like, and a cylindrical discharge space 140 that extends downward from the tip surface of the center electrode 110 on the tip side. A center electrode locking portion that locks the housing 130 via a packing member that maintains the airtightness between the insulating member 120 and the housing 130 is formed in the middle, and the base electrode 120 and the housing 130 are disposed on the base end side. An insulating member head portion 122 is formed to prevent the high voltage from escaping other than the electrodes.

ハウジング130の先端は、絶縁部材120を覆い、先端が内側に向かって屈曲する環状の接地電極131が形成されている。
ハウジング130の中腹外周部には、図略の内燃機関内に接地電極131が露出するように内燃機関の壁面(エンジンブロック40)に固定するとともにハウジング130とエンジンブロック40とを電気的に接地状態とするためのハウジングネジ部133が形成され、基端側外周部にはネジ部133を締め付けるためのハウジング六角部134が形成されている。
A distal end of the housing 130 covers the insulating member 120, and an annular ground electrode 131 that is bent toward the inside is formed.
An inner periphery of the housing 130 is fixed to the wall surface (engine block 40) of the internal combustion engine so that the ground electrode 131 is exposed in the internal combustion engine (not shown), and the housing 130 and the engine block 40 are electrically grounded. A housing screw part 133 is formed, and a housing hexagonal part 134 for fastening the screw part 133 is formed on the outer peripheral part on the base end side.

接地電極131には、絶縁部材120の内径と連通し、放電空間140に対向する接地電極開口部132が形成されている。
更に、接地電極131には、放電空間140に対向する表面を覆うように耐浸食層150が形成されている。
耐侵食層150は、最表層から最内層にかけて、熱的性質が層状に徐々に変化して異なるように形成される傾斜材として形成されている。
具体的には、最表層に高沸点材料を用いて高沸点層151が形成され、その背面側に高沸点材料と高熱伝導材料との配合比率を徐々に変化させ傾斜配合された傾斜層152が形成され、さらにその背面には高熱伝導率材料を用いて高熱伝導率層153が形成され、耐侵食層150を構成している。
The ground electrode 131 is formed with a ground electrode opening 132 that communicates with the inner diameter of the insulating member 120 and faces the discharge space 140.
Furthermore, an erosion-resistant layer 150 is formed on the ground electrode 131 so as to cover the surface facing the discharge space 140.
The erosion-resistant layer 150 is formed as an inclined material formed so that the thermal properties gradually change in layers from the outermost layer to the innermost layer.
Specifically, a high-boiling layer 151 is formed using a high-boiling material as the outermost layer, and an inclined layer 152 is formed on the back side by gradually changing the blending ratio of the high-boiling material and the high thermal conductive material. Further, a high thermal conductivity layer 153 is formed on the back surface using a high thermal conductivity material to constitute an erosion resistant layer 150.

また、耐侵食層150は、高沸点の熱的性質を有する高沸点構成材と、高熱伝導率の熱的性質を有する高熱伝導率構成材とを、その各構成材の配合比率を各層にて異なるように組み合わせて積層形成しても良い。
更に、耐浸食層150は、最表層から最内層に向かう層ほどに、その層を構成する構成材の熱伝導率が高くなるように配合比率が調整され、かつ、最内層から最表層に向かう層ほどに、その層を構成する構成材の沸点が高くなるように配合比率を調整した傾斜材として設けても良い。
Further, the erosion resistant layer 150 is composed of a high boiling point constituent material having a high boiling point thermal property and a high thermal conductivity constituent member having a high thermal conductivity thermal property. The layers may be stacked in combination so as to be different.
Further, in the erosion resistant layer 150, the blending ratio is adjusted so that the thermal conductivity of the constituent material constituting the layer becomes higher toward the innermost layer from the outermost layer, and the innermost layer moves from the innermost layer to the innermost layer. You may provide as a gradient material which adjusted the mixture ratio so that the boiling point of the structural material which comprises the layer may become high as a layer.

高沸点材料には、沸点3500℃以上の金属または金属化合物の内、少なくとも1以上を含む高沸点材料が用いられる。
具体的には、金属として、Co等の貴金属材料、金属化合物として、TaC、HfC、TiC、TiN等の炭化物または窒化物、またはこれらを混合して合金化した材料を用いるのが好ましい。
高熱伝導率材料には、例えば熱伝導率100W/m・K以上の金属または金属化合物もしくは炭素繊維のいずれかを含む高熱伝導率材料が用いられる。
具体的には、金属として、Cu、Ag、Au等、金属化合物としては、SiC、WC等の金属炭化物、炭素繊維としてはカーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等を用いるのが好ましい。
特にCNT、CNF等の炭素繊維は1000W/m・Kから3000W/m・Kの極めて高い熱伝導率を有し、放熱性に極めて優れている。
As the high boiling point material, a high boiling point material containing at least one of metals or metal compounds having a boiling point of 3500 ° C. or higher is used.
Specifically, it is preferable to use a noble metal material such as Co as the metal, a carbide or nitride such as TaC, HfC, TiC, or TiN, or a material obtained by mixing and alloying them as the metal compound.
As the high thermal conductivity material, for example, a high thermal conductivity material containing either a metal having a thermal conductivity of 100 W / m · K or more, a metal compound, or carbon fiber is used.
Specifically, it is preferable to use Cu, Ag, Au or the like as the metal, metal carbides such as SiC or WC as the metal compound, and carbon nanotube (CNT), carbon nanofiber (CNF) or the like as the carbon fiber. .
In particular, carbon fibers such as CNT and CNF have an extremely high thermal conductivity of 1000 W / m · K to 3000 W / m · K, and are extremely excellent in heat dissipation.

中心電極110の先端側は例えばW、Ta、Mo、Hf、TaC、TiN等の高融点材料によって形成され、その内部には鉄鋼材料等の良電導性の金属材料からなる中心電極中軸111が形成されている。
中心電極110の基端側は絶縁部材120から露出し外部の上記放電用電源20と上記プラズマ発生用電源30とに接続される中心電極端子部112が形成されている。
The front end side of the center electrode 110 is formed of a high melting point material such as W, Ta, Mo, Hf, TaC, or TiN, and a center electrode central shaft 111 made of a highly conductive metal material such as a steel material is formed therein. Has been.
A central electrode terminal portion 112 that is exposed from the insulating member 120 and connected to the external discharge power supply 20 and the plasma generation power supply 30 is formed on the proximal end side of the central electrode 110.

本発明の第1の実施形態においては、図2(a)に示すように、放電用電源20とプラズマ発生用電源30の極性を、中心電極110側が陽極となり、接地電極131側が陰極となるように構成している。
放電用電源20は、第1バッテリ21、イグニッションキー22、点火コイル23、トランジスタからなるイグナイタ24、電子制御装置25によって構成され、整流素子26を介してプラズマ式点火プラグ10に接続されている。第1バッテリ21は陽極側が接地されている。
In the first embodiment of the present invention, as shown in FIG. 2A, the polarities of the discharge power supply 20 and the plasma generation power supply 30 are set so that the center electrode 110 side becomes an anode and the ground electrode 131 side becomes a cathode. It is configured.
The discharge power source 20 includes a first battery 21, an ignition key 22, an ignition coil 23, an igniter 24 including a transistor, and an electronic control device 25, and is connected to the plasma ignition plug 10 via a rectifying element 26. The first battery 21 is grounded on the anode side.

プラズマ発生用電源30は、第2バッテリ31、抵抗体32、プラズマ発生用コンデンサ33によって構成され、整流素子34を介してプラズマ式点火プラグ10に接続されている。第2バッテリ31は、陰極側が接地されている。   The plasma generating power source 30 includes a second battery 31, a resistor 32, and a plasma generating capacitor 33, and is connected to the plasma ignition plug 10 via a rectifying element 34. The second battery 31 is grounded on the cathode side.

イグニッションスイッチ22が投入され、ECU25からの点火信号により、第1バッテリ21から低電圧で負の一次電圧が点火コイル23の一次コイル231に印加され、イグナイタ24のスイッチングによって一次電圧が遮断されると、点火コイル23内の磁界が変化し、自己誘導作用により点火コイル23の二次コイル232に10〜30kVの正の二次電圧が誘起される。
一方、第2バッテリ31によりプラズマ発生用コンデンサ33が充電される。
When the ignition switch 22 is turned on and a negative primary voltage is applied from the first battery 21 to the primary coil 231 of the ignition coil 23 by the ignition signal from the ECU 25, and the primary voltage is cut off by switching of the igniter 24. The magnetic field in the ignition coil 23 changes, and a positive secondary voltage of 10 to 30 kV is induced in the secondary coil 232 of the ignition coil 23 by the self-induction action.
On the other hand, the plasma generating capacitor 33 is charged by the second battery 31.

印加された上記二次電圧が中心電極110と接地電極131との間の放電距離141に比例する放電電圧を超えると両電極間に放電が開始され、放電空間140内の気体が小領域でプラズマ状態となる。
この小領域のプラズマ状態の気体は、導電性を有し、プラズマ発生用コンデンサ33の両極間に蓄えられた電荷の放電を引き起こし、放電空間140内の気体の更なるプラズマ状態化を誘発、領域を拡大する。
この拡大されたプラズマ状態の気体は、高温・高圧となり、内燃機関の燃焼室内へ噴射される。
When the applied secondary voltage exceeds a discharge voltage proportional to the discharge distance 141 between the center electrode 110 and the ground electrode 131, a discharge is started between both electrodes, and the gas in the discharge space 140 is plasma in a small region. It becomes a state.
The gas in the plasma state in this small region has conductivity and causes the discharge of the electric charge stored between the two electrodes of the plasma generating capacitor 33, thereby inducing further plasma state of the gas in the discharge space 140. To enlarge.
This expanded plasma state gas becomes high temperature and high pressure and is injected into the combustion chamber of the internal combustion engine.

この時、図2(a)に示すように、放電空間140内の気体が高温・高圧のプラズマ状態となり、質量の大きい陽イオン50が接地電極131に設けられた開口部132の表面に衝突する。
しかしながら、放電空間140に対向する表面には、上述した高沸点層151、傾斜層152、高熱伝導率層153からなる耐浸食層150が形成されている。
従って、高温の陽イオン50が高沸点層151に衝突しても、高沸点層151の沸点が高いのに加えて、高熱伝導率層153に速やかに放熱して冷却されるので、陰極スパッタリングによる接地電極開口部132表面の浸食が抑制できる。
At this time, as shown in FIG. 2A, the gas in the discharge space 140 becomes a high-temperature and high-pressure plasma state, and the cation 50 having a large mass collides with the surface of the opening 132 provided in the ground electrode 131. .
However, the anti-erosion layer 150 including the high boiling point layer 151, the inclined layer 152, and the high thermal conductivity layer 153 described above is formed on the surface facing the discharge space 140.
Therefore, even when the high-temperature cation 50 collides with the high boiling point layer 151, in addition to the high boiling point layer 151 having a high boiling point, the high thermal conductivity layer 153 quickly dissipates heat and is cooled. Erosion on the surface of the ground electrode opening 132 can be suppressed.

一方、陽極となる中心電極110の表面には、陽イオン50は電気的に反発するため衝突せず、質量の軽い電子51のみが衝突するので、陰極スパッタリングによる直接的な浸食は起こらない。
また、中心電極110は、高融点材料を用いて形成されているので、プラズマ状態となった気体からの輻射熱による間接的な侵食からも保護される。
On the other hand, the cations 50 do not collide with the surface of the central electrode 110 serving as the anode because they are electrically repelled, and only the light electrons 51 collide, so that direct erosion due to cathode sputtering does not occur.
In addition, since the center electrode 110 is formed using a high melting point material, it is protected from indirect erosion due to radiant heat from a gas in a plasma state.

本実施形態において、耐浸食層150を高沸点層151と傾斜層152と高熱伝導率層153とを別々に形成して、これらを層状に重ねて形成しても良いが、粉末状の高沸点材料と粉末状の高熱伝導率材料とを用いてこれらの材料を最表層から最内層に向かう層ほどに、その層を構成する構成材の熱伝導率が高くなるように配合比率が調整され、かつ、最内層から最表層に向かう層ほどに、その層を構成する構成材の沸点が高くなるように配合比率が調整されて傾斜配合した傾斜材によって、高沸点層151と高熱伝導率層153とが連続的に変化する一体の電極として形成することができる。   In the present embodiment, the erosion resistant layer 150 may be formed by separately forming the high boiling point layer 151, the gradient layer 152, and the high thermal conductivity layer 153, and layering these layers. Using the material and powdery high thermal conductivity material, the blending ratio is adjusted so that the thermal conductivity of the constituent material constituting the layer becomes higher as the layer goes from the outermost layer to the innermost layer. In addition, the high boiling point layer 151 and the high thermal conductivity layer 153 are formed by the gradient material in which the blending ratio is adjusted so that the boiling point of the constituent material constituting the layer becomes higher toward the outermost layer from the innermost layer to the higher gradient layer. And can be formed as an integral electrode that continuously changes.

この時、図3(a)に示すように、放電空間に対向する最表層の高沸点材料の配合比率を最も高くし、最内層の向かうにつれて高沸点材料の配合比率が徐々に低くなり、高伝導率材料の配合比率が徐々に高くなるように傾斜配合してある。
また、必ずしも、高沸点層と高熱伝導率層との高沸点材料と高熱伝導率材料との配合比率は直線的に変化する必要はなく、図3(b)に示すように曲線的に配合比率が変化するように傾斜配合しても良い。
At this time, as shown in FIG. 3 (a), the blending ratio of the high boiling point material on the outermost layer facing the discharge space is set highest, and the blending ratio of the high boiling point material gradually decreases toward the innermost layer. The gradient blending is performed so that the blending ratio of the conductivity material is gradually increased.
In addition, the blending ratio of the high boiling point material and the high thermal conductivity layer of the high boiling point layer and the high thermal conductivity layer does not necessarily change linearly, as shown in FIG. Inclination may be blended so that changes.

図4に示すような、プラズマ焼結装置50を用いる事により、高沸点層151と傾斜層152と高熱伝導率層131bとの異なる特性をもつ層からなる耐浸食層150と接地電極131とが完全一体となった電極を容易に形成することができる。
以下に陰極となる接地電極131と耐侵食層150とを完全一体に形成する製造工程について詳述する。
接地電極131となる金属材料および耐侵食層150となる高沸点材料と高熱伝導率材料とが粉末上である材料を用い、接地電極131を覆うように高沸点層151、傾斜層152、高熱伝導層131cを形成すべく、耐侵食層150の最表層側から最内層側に向けて高熱伝導率材料の配合比率が高くなり、最内層側から最表層側に向けて高沸点材料の配合比率が高くなるように、各層の配合比率を徐々に変化させて、真空室58内に置かれた、上パンチ54aと下パンチ54bと成形ダイ56とコアピン55とで構成される成形型内に充填する。
By using the plasma sintering apparatus 50 as shown in FIG. 4, the erosion resistant layer 150 and the ground electrode 131 made of layers having different characteristics from the high boiling point layer 151, the gradient layer 152, and the high thermal conductivity layer 131 b are formed. A fully integrated electrode can be easily formed.
A manufacturing process for forming the ground electrode 131 serving as the cathode and the erosion-resistant layer 150 completely in the following will be described in detail.
The metal material used as the ground electrode 131 and the material having the high boiling point material and the high thermal conductivity material used as the erosion resistant layer 150 are powders, and the high boiling point layer 151, the inclined layer 152, and the high thermal conductivity are formed so as to cover the ground electrode 131. In order to form the layer 131c, the blending ratio of the high thermal conductivity material increases from the outermost layer side to the innermost layer side of the erosion resistant layer 150, and the blending ratio of the high boiling point material increases from the innermost layer side to the outermost layer side. The blending ratio of each layer is gradually changed so as to increase, and the molding die composed of the upper punch 54a, the lower punch 54b, the molding die 56, and the core pin 55 placed in the vacuum chamber 58 is filled. .

次いで、成形代56内に傾斜配合された材料を上パンチ54aと下パンチ54bとを介して加圧装置53によって加圧することにより成形体が得られる。
更に加圧装置53によって該成形体を加圧しつつ、温度監視装置57で温度を監視しながら、直流パルス電源51で発生した電気エネルギーを電極52a、52bを介して上記成形体に供給する。
これにより、上記成形体内に極めて高温の熱エネルギーが発生し、上記成形体の焼結がすすみ、耐浸食層150と接地電極131とが完全一体となった電極の焼結体が得られる。
この様にして形成された電極とハウジング130とをレーザ溶接等により一体とすることができる。
Next, the material blended in the molding allowance 56 is pressed by the pressurizing device 53 through the upper punch 54a and the lower punch 54b to obtain a molded body.
Further, while pressurizing the compact with the pressurizing device 53 and monitoring the temperature with the temperature monitoring device 57, the electric energy generated by the DC pulse power source 51 is supplied to the compact through the electrodes 52a and 52b.
As a result, extremely high-temperature heat energy is generated in the molded body, and the molded body is sintered. Thus, an electrode sintered body in which the erosion-resistant layer 150 and the ground electrode 131 are completely integrated is obtained.
The electrode thus formed and the housing 130 can be integrated by laser welding or the like.

本発明の第2の実施形態においては、図5(a)に示すように放電用電源20bとプラズマ発生用電源30bの極性を、中心電極110側を陰極にし、接地電極131側を陽極に構成する。
本実施形態においては、基本となる構成は第1の実施形態と同様であるので共通する部分については同じ符号を付して説明を省略する。
本実施形態では、図5(b)に示すように、中心電極110Bの放電空間140に対向する表面を覆うように耐浸食層150を形成する。
耐侵食層150は、最表層から最内層にかけて、熱的性質が層状に徐々に変化して異なるように形成される傾斜材として形成され、高沸点層151、傾斜層152、高熱伝導率層153からなる。
In the second embodiment of the present invention, as shown in FIG. 5A, the polarities of the discharge power supply 20b and the plasma generation power supply 30b are configured such that the center electrode 110 side is a cathode and the ground electrode 131 side is an anode. To do.
In the present embodiment, the basic configuration is the same as that of the first embodiment, so common portions are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, as shown in FIG. 5B, the erosion resistant layer 150 is formed so as to cover the surface of the center electrode 110B facing the discharge space 140.
The erosion resistant layer 150 is formed as a gradient material formed so that the thermal properties gradually change in layers from the outermost layer to the innermost layer, and the high boiling point layer 151, the gradient layer 152, and the high thermal conductivity layer 153 are formed. Consists of.

この様な構成とすることにより、耐浸食層150の表面に陽イオン50が衝突しても、最表層に高沸点層151が形成され、傾斜層152を介して、その背面側に高熱伝導率層153が形成されているので、高沸点層151が蒸発し難いのに加えて、陽イオン50の熱エネルギーを速やかに高熱伝導率層153へ放出し、高沸点層151の温度が速やかに低下する。
従って、本発明の第1の実施形態と同様陰極スパッタリングによる電極の消耗を抑えることができる。
なお、本実施形態において、耐侵食層150と中心電極150Bとを一体に形成するために、上述したプラズマ焼結装置50を用いた製造方法が適用できる。
この際、中心電極110Bは、柱状であるので、第1の実施形態における耐侵食層150に覆われた環状の接地電極131を形成する場合いに用いられるコアピン55は不要である。
With such a configuration, even when the cation 50 collides with the surface of the erosion resistant layer 150, the high boiling point layer 151 is formed on the outermost layer, and the high thermal conductivity is provided on the back side through the inclined layer 152. Since the layer 153 is formed, in addition to the high boiling point layer 151 being difficult to evaporate, the thermal energy of the cation 50 is quickly released to the high thermal conductivity layer 153, and the temperature of the high boiling point layer 151 quickly decreases. To do.
Accordingly, it is possible to suppress electrode consumption due to cathode sputtering as in the first embodiment of the present invention.
In this embodiment, in order to integrally form the erosion resistant layer 150 and the center electrode 150B, a manufacturing method using the above-described plasma sintering apparatus 50 can be applied.
At this time, since the center electrode 110B has a columnar shape, the core pin 55 used when forming the annular ground electrode 131 covered with the erosion-resistant layer 150 in the first embodiment is unnecessary.

当然のことながら、本発明は上記実施形態に限定するものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施形態においては、陰極となる電極のみに耐浸食層150を設けたが、耐浸食層150と同様な製造方法により、陽極を高融点層と高熱伝導率層とを層状に配して形成すれば、陽極の耐久性の向上を図ることができる。
従って、更にプラズマ式点火装置の耐久性の向上が期待できる。
As a matter of course, the present invention is not limited to the above embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above-described embodiment, the erosion-resistant layer 150 is provided only on the electrode serving as the cathode. However, the anode is formed by laminating the high melting point layer and the high thermal conductivity layer in the same manner by the same manufacturing method as the erosion-resistant layer 150. If formed, the durability of the anode can be improved.
Therefore, further improvement in the durability of the plasma ignition device can be expected.

また、上記実施形態においては、一つのプラズマ式点火プラグで構成されるプラズマ式点火装置について説明したが、本発明は、多数の点火プラグを含む多気筒エンジンにも適用し得るものである。   In the above-described embodiment, the plasma ignition device including one plasma ignition plug has been described. However, the present invention can also be applied to a multi-cylinder engine including a large number of ignition plugs.

本発明の第1実施形態におけるプラズマ式点火装置を示す構成図。The block diagram which shows the plasma type ignition device in 1st Embodiment of this invention. (a)は本発明の第1の実施形態における回路図、(b)は、本図における効果を示す要部断面図。(A) is a circuit diagram in a 1st embodiment of the present invention, and (b) is an important section sectional view showing an effect in this figure. 本発明に用いられる高沸点材料と高熱伝導率材料との配合比率を変化させた傾斜材の配合特性を示し、(a)は、直線的に変化する例を示し、(b)は曲線的に変化する例を示す。The compounding characteristic of the gradient material which changed the compounding ratio of the high boiling point material and high heat conductivity material used for this invention is shown, (a) shows the example which changes linearly, (b) shows curve An example of change is shown. 本発明の陰極となる電極と耐侵食層とを一体に形成する工程に用いられるプラズマ焼結装置の概要を示す構成図。The block diagram which shows the outline | summary of the plasma sintering apparatus used for the process of integrally forming the electrode used as the cathode of this invention, and an erosion-resistant layer. (a)は、本発明の第2の実施形態における回路図、(b)は、本図における効果を示す要部断面図。(A) is a circuit diagram in a 2nd embodiment of the present invention, and (b) is an important section sectional view showing the effect in this figure. (a)は、従来のプラズマ式点火装置を示す構成図、(b)は、本図における問題点を示す要部断面図。(A) is a block diagram which shows the conventional plasma type ignition device, (b) is principal part sectional drawing which shows the problem in this figure.

符号の説明Explanation of symbols

1 プラズマ式点火装置
10 プラズマ式点火プラグ
110 中心電極
120 絶縁部材
131 接地電極
132 接地電極開口部
140 放電空間
150 耐浸食層
151 高沸点層
152 傾斜層
153 高熱伝導率層
20 放電用電源
30 プラズマ発生用電源
40 エンジンブロック(内燃機関)
DESCRIPTION OF SYMBOLS 1 Plasma type ignition device 10 Plasma type spark plug 110 Center electrode 120 Insulating member 131 Ground electrode 132 Ground electrode opening 140 Discharge space 150 Corrosion resistant layer 151 High boiling point layer 152 Inclined layer 153 High thermal conductivity layer 20 Discharge power source 30 Plasma generation Power supply 40 Engine block (internal combustion engine)

Claims (6)

中心電極と接地電極との間を絶縁する筒状の絶縁部材が配設して、上記絶縁部材内に放電空間を形成したプラズマ式点火プラグを具備し、
上記中心電極と上記接地電極との間に印加された高電圧によって上記放電空間内の気体を高温高圧のプラズマ状態にして内燃機関内に噴射して点火を行うプラズマ式点火装置において、
上記中心電極と上記接地電極とのいずれか一方の内、少なくとも陰極となる電極に該電極の上記放電空間に相対する表面を覆う耐浸食層を形成し、
上記耐浸食層は、最表層から最内層に至る各層を構成する構成材の熱的性質が異なる層とし、これらの層を積層させた複数層で構成されると共に、
上記最表層は、沸点が最も高い高沸点層とし、
上記最内層は、熱伝導率が最も高い高熱伝導率層とし、
上記最表層と上記最内層との間の層は、上記最表層側から上記最内層側に向けて熱伝導率が高くなり、上記最内層側から上記最表層側に向けて沸点が高くなるように設けられることを特徴とするプラズマ式点火装置。
A cylindrical insulating member that insulates between the center electrode and the ground electrode is disposed, and includes a plasma ignition plug in which a discharge space is formed in the insulating member,
In a plasma ignition device that performs ignition by injecting a gas in the discharge space into a high-temperature and high-pressure plasma state into an internal combustion engine by a high voltage applied between the center electrode and the ground electrode,
An erosion-resistant layer is formed on at least one of the center electrode and the ground electrode, which covers the surface of the electrode facing the discharge space.
The erosion-resistant layer is a layer having different thermal properties of the constituent materials constituting each layer from the outermost layer to the innermost layer, and is composed of a plurality of layers in which these layers are laminated,
The outermost layer is a high boiling point layer having the highest boiling point,
The innermost layer is a high thermal conductivity layer with the highest thermal conductivity,
The layer between the outermost layer and the innermost layer has a higher thermal conductivity from the outermost layer side toward the innermost layer side, and has a higher boiling point from the innermost layer side toward the outermost layer side. A plasma ignition device characterized in that the plasma ignition device is provided.
上記耐侵食層は、上記最表層から上記最内層にかけて、熱的性質が層状に徐々に変化して異なるように形成される傾斜材としたことを特徴とする請求項1に記載のプラズマ式点火装置。   2. The plasma ignition according to claim 1, wherein the erosion-resistant layer is a gradient material formed such that thermal properties gradually change in layers from the outermost layer to the innermost layer. apparatus. 上記傾斜材は、高沸点材料と高熱伝導率材料とからなり、
上記最表層側から上記最内層側に向けて上記高熱伝導率材料の配合比率を高くし、上記最内層側から上記最表層側に向けて上記高沸点材料の配合比率を高くなるように各層の配合比率を徐々に変化させた傾斜材としたことを特徴とする請求項2に記載のプラズマ式点火装置。
The gradient material is composed of a high boiling point material and a high thermal conductivity material,
Increase the blending ratio of the high thermal conductivity material from the outermost layer side toward the innermost layer side, and increase the blending ratio of the high boiling point material from the innermost layer side toward the outermost layer side. 3. The plasma ignition device according to claim 2, wherein the gradient material is formed by gradually changing the blending ratio.
上記高沸点材料は、沸点3500℃以上の金属または金属化合物の内、少なくとも1以上を含む高沸点材料とすることを特徴とする請求項3に記載のプラズマ式点火装置。   4. The plasma ignition device according to claim 3, wherein the high boiling point material is a high boiling point material containing at least one of metals or metal compounds having a boiling point of 3500 ° C. or higher. 上記高熱伝導率材料は、熱伝導率100W/m・K以上の金属または金属化合物もしくは炭素繊維の内、少なくとも1以上を含む高熱伝導率材料とすることを特徴とする請求項3に記載のプラズマ式点火装置。   4. The plasma according to claim 3, wherein the high thermal conductivity material is a high thermal conductivity material containing at least one of a metal, a metal compound, or carbon fiber having a thermal conductivity of 100 W / m · K or more. Type ignition device. 請求項1ないし5のいずれか1項に記載のプラズマ式点火装置の製造方法において、
上記陰極となる電極を形成する工程が、
上記高沸点材料と上記高熱伝導率材料とが粉末状である材料を用い、
上記最表層側から上記最内層側に向けて上記高熱伝導率材料の配合比率が高くなり、上記最内層側から上記最表層側に向けて上記高沸点材料の配合比率が高くなるように、各層の配合比率を徐々に変化させて成形型内に充填し、
上記成形型によって圧縮して成形体を形成し、上記成形体を上記成形型によって更に圧縮するとともに、上記成形型を介して上記成形体内にパルス電流を印加して、上記成形体内に発生する熱エネルギーによって上記成形体を焼結して、
上記陰極となる電極を上記耐浸食層とともに形成する工程を含むことを特徴とするプラズマ式点火装置の製造方法。
In the manufacturing method of the plasma type ignition device according to any one of claims 1 to 5,
The step of forming the electrode to be the cathode comprises
Using a material in which the high boiling point material and the high thermal conductivity material are in powder form,
Each layer so that the blending ratio of the high thermal conductivity material increases from the outermost layer side toward the innermost layer side, and the blending ratio of the high boiling point material increases from the innermost layer side toward the outermost layer side. Fill the mold by gradually changing the blending ratio of
The molded body is compressed by the molding die, the molded body is further compressed by the molding die, and a pulse current is applied to the molded body through the molding die to generate heat generated in the molded body. Sinter the molded body with energy,
A method of manufacturing a plasma ignition device, comprising a step of forming an electrode to be the cathode together with the erosion resistant layer.
JP2007055043A 2007-03-06 2007-03-06 Plasma ignition device and manufacturing method thereof Expired - Fee Related JP4682995B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007055043A JP4682995B2 (en) 2007-03-06 2007-03-06 Plasma ignition device and manufacturing method thereof
DE102008000530A DE102008000530B4 (en) 2007-03-06 2008-03-05 Plasma ignition system and method of making this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055043A JP4682995B2 (en) 2007-03-06 2007-03-06 Plasma ignition device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008218249A JP2008218249A (en) 2008-09-18
JP4682995B2 true JP4682995B2 (en) 2011-05-11

Family

ID=39678125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055043A Expired - Fee Related JP4682995B2 (en) 2007-03-06 2007-03-06 Plasma ignition device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4682995B2 (en)
DE (1) DE102008000530B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144592A (en) * 2008-12-18 2010-07-01 Hitachi Automotive Systems Ltd Ignition control device, control method and ignition device for internal combustion engine
JP5310062B2 (en) * 2009-02-13 2013-10-09 トヨタ自動車株式会社 Plasma ignition device
DE102009059649B4 (en) * 2009-12-19 2011-11-24 Borgwarner Beru Systems Gmbh HF ignition device
EP2621036A4 (en) 2010-09-24 2014-12-10 Ngk Spark Plug Co Spark plug electrode, method for producing same, spark plug, and method for producing spark plug
CN103119811B (en) 2010-09-24 2014-09-10 日本特殊陶业株式会社 Spark plug electrode, method for producing same, spark plug, and method for producing spark plug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294257A (en) * 2005-04-05 2006-10-26 Denso Corp Ignition device for internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581141A (en) 1969-04-07 1971-05-25 Ethyl Corp Surface gap spark plug
BE870559A (en) * 1977-09-22 1979-01-15 Johnson Matthey Co Ltd ELECTRODES
US4388549A (en) * 1980-11-03 1983-06-14 Champion Spark Plug Company Plasma plug
JPS5920594A (en) * 1982-07-23 1984-02-02 Sanyo Electric Co Ltd Supercharger for rotary compressor
JPS6122588A (en) * 1984-07-09 1986-01-31 日本特殊陶業株式会社 Ignition plug
JPH01274374A (en) * 1988-04-25 1989-11-02 Ngk Spark Plug Co Ltd Drawing-in gap type ignitor plug
JPH044584A (en) * 1990-04-20 1992-01-09 Toyota Central Res & Dev Lab Inc Ignition plug
JPH0617102A (en) * 1992-06-30 1994-01-25 Isuzu Motors Ltd Caking method by sintering
JPH06128608A (en) * 1992-10-20 1994-05-10 Sumitomo Metal Ind Ltd Production of compositionally gradient material
JPH11297454A (en) * 1998-04-10 1999-10-29 Nippon Soken Inc Ignition plug, and spark ignition device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294257A (en) * 2005-04-05 2006-10-26 Denso Corp Ignition device for internal combustion engine

Also Published As

Publication number Publication date
JP2008218249A (en) 2008-09-18
DE102008000530A1 (en) 2008-09-11
DE102008000530B4 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5860478B2 (en) Corona ignition device, corona ignition system, and method of forming corona ignition device
US20080141967A1 (en) Plasma ignition device
JP5033872B2 (en) Method of forming a composite ignition device for an internal combustion engine
KR101848287B1 (en) Non-thermal plasma ignition arc suppression
JP5480294B2 (en) Igniter system for igniting fuel
JP4682995B2 (en) Plasma ignition device and manufacturing method thereof
KR101694685B1 (en) HF Ignition Device
KR101575381B1 (en) Plasma plug for an internal combustion engine
EP2507878A2 (en) Electrode material for a spark plug
JP2004152682A (en) Spark plug
US8471451B2 (en) Ruthenium-based electrode material for a spark plug
JP4424384B2 (en) Plasma ignition device
US8274204B2 (en) Spark plug with platinum-based electrode material
JP2008186743A (en) Plasma type ignition device
CN106911082A (en) Spark plug
JP2009146636A (en) Ignition device
CN101479900A (en) Composite spark plug
JP5217862B2 (en) Plasma ignition device
JP5580773B2 (en) Ignition device and ignition system
JPS6123636B2 (en)
JP5392490B2 (en) Spark plug
JP2010129367A (en) Plasma ignition device
JP2010061924A (en) Ignition device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4682995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees