JP4680534B2 - Welding method for cross-linked structure - Google Patents

Welding method for cross-linked structure Download PDF

Info

Publication number
JP4680534B2
JP4680534B2 JP2004165305A JP2004165305A JP4680534B2 JP 4680534 B2 JP4680534 B2 JP 4680534B2 JP 2004165305 A JP2004165305 A JP 2004165305A JP 2004165305 A JP2004165305 A JP 2004165305A JP 4680534 B2 JP4680534 B2 JP 4680534B2
Authority
JP
Japan
Prior art keywords
welding
welded portion
welded
slope
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165305A
Other languages
Japanese (ja)
Other versions
JP2005342759A (en
Inventor
康弘 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2004165305A priority Critical patent/JP4680534B2/en
Publication of JP2005342759A publication Critical patent/JP2005342759A/en
Application granted granted Critical
Publication of JP4680534B2 publication Critical patent/JP4680534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、金属構造体の隙間部に挿入された金属ピースを溶接する架橋構造体の溶接方法に関する。   The present invention relates to a method for welding a crosslinked structure in which a metal piece inserted into a gap portion of a metal structure is welded.

金属構造体の隙間部に金属ピースを溶接してなる架橋構造体は、従来種々のものが知られており、例えば、オープンデッキ型シリンダブロックのウォータジャケット上端部にブリッジ材(補強材)を溶接してなるクローズドデッキ型シリンダブロックがある。   Various types of bridging structures are known in which metal pieces are welded to gaps in metal structures. For example, a bridge material (reinforcing material) is welded to the upper end of a water jacket of an open deck cylinder block. There is a closed deck type cylinder block.

このクローズドデッキ型シリンダブロックの製造方法として、例えば、オープンデッキ型シリンダブロックのウォータジャケットの上端部に、ブリッジ材を挿入した後、トップデッキから所定寸法離れたウォータジャケットの両側壁とブリッジ材の両側壁との間隙の下部にろう材を挿入し、その後、ウォータジャケットの両側壁とブリッジ材の両側壁とをトップデッキ側からレーザ溶接することにより、ブリッジ材の下部側壁をろう付けにより接合し、上部側壁はレーザ溶接により接合してクローズドデッキ型シリンダブロックを製造するものが知られている(例えば、特許文献1参照)。   As a manufacturing method of this closed deck type cylinder block, for example, after inserting the bridge material into the upper end of the water jacket of the open deck type cylinder block, both side walls of the water jacket and the both sides of the bridge material separated from the top deck by a predetermined dimension. Insert the brazing material in the lower part of the gap with the wall, and then join the lower side wall of the bridge material by brazing by laser welding the both side walls of the water jacket and the both side walls of the bridge material from the top deck side, It is known that the upper side wall is joined by laser welding to produce a closed deck type cylinder block (see, for example, Patent Document 1).

特開平7−103064号公報JP-A-7-103064

ところで、上記特許文献1に記載のクローズドデッキ型シリンダブロックのような架橋構造体を製造するにあたって、例えば、図7に部分平面図を、図8に図7のIII−III線断面図をそれぞれ示すように、オープンデッキ型シリンダブロックを形成する金属構造体101のウォータジャケットとなる隙間部102の上端部に挿入したブリッジ材である金属ピース103を、隙間部102と金属ピース103との全ての境界部、即ち隙間部102に接する境界部104、105と、これら境界部104、105を連結する隙間部102に接しない境界部106とを溶接部107として、境界部104の隙間部102に接する端を溶接始点に、境界部105の隙間部102に接する端を溶接終点にして溶接すると、隙間部102に接する溶接始点或いは溶接終点において、溶接部107の溶融金属が隙間部102に流れ落ちることになる。   By the way, in manufacturing a bridge structure such as the closed deck type cylinder block described in Patent Document 1, for example, FIG. 7 shows a partial plan view, and FIG. 8 shows a cross-sectional view taken along line III-III in FIG. As described above, the metal piece 103 which is a bridge member inserted into the upper end portion of the gap portion 102 which becomes the water jacket of the metal structure 101 forming the open deck type cylinder block is connected to all the boundaries between the gap portion 102 and the metal piece 103. , That is, the boundary portions 104 and 105 that contact the gap portion 102 and the boundary portions 106 that do not contact the gap portion 102 that connects the boundary portions 104 and 105 are welded portions 107, and the end of the boundary portion 104 that contacts the gap portion 102 When welding with the end of the boundary 105 in contact with the gap 102 as the welding end, welding with the gap 102 At the starting point or welding end point, the molten metal of the weld 107 so that flows down into the gap portion 102.

このため、図9に隙間部102側から境界部105の溶接部107を見た部分拡大側面図を示すように、溶接始点或いは溶接終点において、溶接部107に切欠き状の凹部108が形成されて該部分に応力の集中を招くことが懸念される。   Therefore, as shown in a partial enlarged side view of the welded portion 107 of the boundary portion 105 from the gap 102 side in FIG. 9, a notch-shaped recess 108 is formed in the welded portion 107 at the welding start point or the welding end point. There is a concern that stress may be concentrated on the portion.

その対策として、図10に部分平面図を示すように、隙間部102に接する境界部104及び105は溶接部とせず、隙間部102に接しない境界部106のみを溶接部107として、境界部104側の端を溶接始点とし、境界部105側の端を溶接終点として溶接することが考えられる。   As a countermeasure, as shown in a partial plan view in FIG. 10, the boundary portions 104 and 105 in contact with the gap portion 102 are not welded portions, and only the boundary portion 106 not in contact with the gap portion 102 is used as the welded portion 107. It is conceivable to perform welding with the end on the side as the welding start point and the end on the boundary 105 side as the welding end point.

しかしながら、この溶接方法では、特にレーザ溶接のような高エネルギービームを用いて、深い溶接深さを得たり、微細な溶接加工を行ったりする場合には、ビームによって溶融された金属の流れがビームの移動に追従できないために、溶接終点部に穴状の凹部109が形成されてしまい、やはり応力の集中を招くことが懸念される。   However, in this welding method, particularly when a high-energy beam such as laser welding is used to obtain a deep welding depth or a fine welding process is performed, the flow of metal melted by the beam is reduced. Therefore, there is a concern that a hole-like recess 109 is formed at the end point of welding, which also causes stress concentration.

なお、図7、図8、及び図10は、隙間部102に関して、金属ピース103の図示右側の境界部は溶接済状態を示しており、左側の境界部は未溶接状態を示している。   7, 8, and 10, with respect to the gap portion 102, the right boundary portion of the metal piece 103 in the drawing shows a welded state, and the left boundary portion shows an unwelded state.

従って、かかる点に鑑みてなされた本発明の目的は、溶接部に応力集中を招く凹部を形成することなく、金属ピースを金属構造体に確実に溶接でき、充分な溶接強度が得られる架橋構造体の溶接方法を提供することにある。   Accordingly, an object of the present invention made in view of such a point is a cross-linked structure in which a metal piece can be reliably welded to a metal structure and a sufficient weld strength can be obtained without forming a recess that causes stress concentration in the weld. It is to provide a body welding method.

上記目的を達成する請求項1に記載の架橋構造体の溶接方法の発明は、金属構造体の隙間部に挿入された金属ピースを、上記金属構造体に溶接する架橋構造体の溶接方法において、上記金属構造体と上記金属ピースとの境界にあって、上記隙間部に接しない境界部を溶接部とし、該溶接部の長さ方向の両端以外を溶接始点及び溶接終点として、高エネルギービームにより、上記溶接始点から本溶接時よりも入力エネルギーが低い溶接条件で上記溶接部の全長を溶接するスロープイン溶接と、上記溶接部の全長を所定の入力エネルギーで溶接する本溶接と、本溶接時よりも入力エネルギーが低い溶接条件で上記溶接終点まで上記溶接部の全長を溶接するスロープアウト溶接とを順次行うことを特徴とする。 The invention of the method for welding a crosslinked structure according to claim 1, which achieves the above object, includes a welding method for a crosslinked structure in which a metal piece inserted in a gap portion of the metal structure is welded to the metal structure. A boundary between the metal structure and the metal piece that is not in contact with the gap is defined as a welded portion, and other than both ends in the length direction of the welded portion are defined as a welding start point and a welding end point. , Slope-in welding for welding the entire length of the welded portion under welding conditions with lower input energy than the main welding from the welding start point, main welding for welding the entire length of the welded portion with a predetermined input energy, and main welding And slope-out welding in which the entire length of the welded portion is welded to the welding end point under welding conditions with lower input energy.

請求項2に記載の発明は、請求項1の架橋構造体の溶接方法において、上記溶接始点及び上記溶接終点を上記溶接部の長さ方向中央部のほぼ同一点とし、上記スロープイン溶接では上記溶接始点から上記溶接部の長さ方向の一端まで溶接した後折り返して上記溶接部の長さ方向の他端まで溶接し、上記本溶接では上記他端から上記一端まで溶接し、上記スロープアウト溶接では上記一端から上記他端まで溶接した後折り返して上記溶接終点まで溶接することを特徴とする。   According to a second aspect of the present invention, there is provided the method for welding a crosslinked structure according to the first aspect, wherein the welding start point and the welding end point are substantially the same point in the central portion in the length direction of the welded portion. After welding from the welding start point to one end in the longitudinal direction of the welded portion, it is folded and welded to the other end in the lengthwise direction of the welded portion. In the main welding, welding is performed from the other end to the one end, and the slope-out welding is performed. Then, after welding from the said one end to the said other end, it is turned up and welded to the said welding end point.

請求項3に記載の発明は、請求項1または2の架橋構造体の溶接方法において、上記金属構造体はオープンデッキ型シリンダブロックであり、上記金属ピースは上記オープンデッキ型シリンダブロックのウォータジャケット上端部に圧入されたブリッジ材であることを特徴とする。   According to a third aspect of the present invention, in the method for welding a crosslinked structure according to the first or second aspect, the metal structure is an open deck type cylinder block, and the metal piece is an upper end of a water jacket of the open deck type cylinder block. It is a bridge material press-fitted into the part.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の架橋構造体の溶接方法において、上記高エネルギービームによる溶接は、電子ビームによる溶接であることを特徴とする。
According to a fourth aspect of the present invention, in the method for welding a crosslinked structure according to any one of the first to third aspects, the welding by the high energy beam is welding by an electron beam.

請求項1の発明によると、隙間部に接しない金属構造体と金属ピースとの境界部を溶接部とするので、隙間部への溶融金属の流れ落ちが生じることがなく、かつ溶接部の長さ方向の両端以外を溶接始点及び溶接終点として、高エネルギービームにより、本溶接の前後に本溶接よりも入力エネルギーが低い溶接条件でスロープイン溶接及びスロープアウト溶接を行うので、ビームによって溶融された金属の流れをビームの移動に確実に追従させることができる。従って、溶接部に応力集中を招くような凹部を形成することなく、金属ピースを金属構造体に確実に溶接でき、充分な溶接強度が得られる。   According to the first aspect of the present invention, since the boundary between the metal structure and the metal piece that is not in contact with the gap is the weld, the molten metal does not flow into the gap and the length of the weld Since the welding start point and welding end point other than both ends of the direction are used, the high-energy beam performs slope-in welding and slope-out welding under welding conditions with lower input energy than the main welding before and after the main welding. Can be made to follow the movement of the beam reliably. Therefore, the metal piece can be reliably welded to the metal structure without forming a concave portion that causes stress concentration in the welded portion, and sufficient welding strength can be obtained.

請求項2の発明によると、スロープイン溶接及びスロープアウト溶接により、溶接部を合計で片道3回溶接し、本溶接で溶接部を片道1回溶接するので、溶接部をその全長に亘って均一に溶接でき、溶接品質の向上が図れる。   According to the invention of claim 2, the welded portion is welded three times in one way in total by slope-in welding and slope-out welding, and the welded portion is welded once in one way by main welding, so the welded portion is uniform over the entire length. To improve the welding quality.

請求項3の発明によると、溶接部に応力集中を招くような凹部のない良好なクローズドデッキ型シリンダブロックを簡単に製造することができる。   According to the invention of claim 3, it is possible to easily manufacture a good closed deck type cylinder block having no recess that causes stress concentration in the welded portion.

請求項4の発明は、高エネルギービームによる溶接の具体例を示すもので、電子ビームによる溶接によって有効的に行うことができる。   The invention of claim 4 shows a specific example of welding with a high energy beam, and can be effectively performed by welding with an electron beam.

以下、本発明の実施の形態について、図1乃至図6を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 6.

(第1実施の形態)
図1乃至図3は第1実施の形態を説明するための図で、図1は架橋構造体の部分平面図、図2は図1のI−I線断面図、図3は溶接走査を説明するための図である。
(First embodiment)
FIGS. 1 to 3 are diagrams for explaining the first embodiment, FIG. 1 is a partial plan view of a bridging structure, FIG. 2 is a cross-sectional view taken along the line II of FIG. 1, and FIG. It is a figure for doing.

図1及び図2に示す架橋構造体1は、金属構造体2の隙間部3の上端部に、金属ピース4を挿入して溶接したもので、図1及び図2では、隙間部3に関して、金属ピース4の図示右側は溶接済状態を示しており、左側は未溶接状態を示している。   The bridging structure 1 shown in FIGS. 1 and 2 is obtained by inserting and welding a metal piece 4 to the upper end of the gap 3 of the metal structure 2. In FIGS. 1 and 2, The right side of the metal piece 4 in the drawing shows a welded state, and the left side shows an unwelded state.

金属構造体2には、隙間部3の上端部に、隙間部3の幅よりも大きい幅を有する金属ピース4の位置決め用溝5が形成されており、この位置決め用溝5に金属ピース4が挿入される。従って、金属ピース4が位置決め用溝5に挿入された状態では、隙間部3と金属ピース4との境界部として、隙間部3に関して金属ピース4の両側にそれぞれ、隙間部3に接する境界部11及び12と、これら境界部11と12に連結して隙間部3に接しない境界部13とが形成されることになる。   In the metal structure 2, a positioning groove 5 for the metal piece 4 having a width larger than the width of the gap portion 3 is formed at the upper end portion of the gap portion 3, and the metal piece 4 is formed in the positioning groove 5. Inserted. Therefore, in a state where the metal piece 4 is inserted into the positioning groove 5, as the boundary portion between the gap portion 3 and the metal piece 4, the boundary portion 11 in contact with the gap portion 3 on each side of the metal piece 4 with respect to the gap portion 3. And 12 and a boundary portion 13 that is connected to the boundary portions 11 and 12 and does not contact the gap portion 3 is formed.

本実施の形態では、金属ピース4の両側の隙間部3に接しない境界部13を、それぞれ溶接部15として、COレーザやYAGレーザ、電子ビーム等の高エネルギービームにより溶接し、隙間部3に接する境界部11及び12は溶接しない。このため、好ましくは、境界部11、12の幅寸法が出来る限り小さくなるように、金属ピース4を位置決め用溝5に圧入して、溶接部15の溶接時に溶融した金属が、境界部11及び12に流れ出ないようにする。 In the present embodiment, the boundary portions 13 that do not come into contact with the gap portions 3 on both sides of the metal piece 4 are welded by high energy beams such as a CO 2 laser, a YAG laser, and an electron beam as the weld portions 15, respectively. The boundary portions 11 and 12 in contact with are not welded. For this reason, preferably, the metal piece 4 is press-fitted into the positioning groove 5 so that the width dimension of the boundary portions 11 and 12 is as small as possible, and the molten metal at the time of welding of the welded portion 15 12 so that it does not flow out.

溶接部15は、その長さ方向中央部の同一点Sを溶接始点及び溶接終点として、先ず、溶接始点Sから本溶接よりも入力エネルギー(入熱量)が低い溶接条件で溶接部15の全長を溶接するスロープイン溶接を行い、次に、充分な溶け込み深さが得られる所定の入力エネルギーの溶接条件で溶接部15の全長を溶接する本溶接を行い、最後に、本溶接よりも入力エネルギーが低い溶接条件で溶接終点Sまで溶接部15の全長を溶接してビームを徐々に抜くスロープアウト溶接を行う。   The welded portion 15 has the same point S at the central portion in the length direction as a welding start point and a welding end point. First, the welding portion 15 has the entire length of the welded portion 15 under welding conditions in which input energy (heat input) is lower than that of the main welding. Slope-in welding to be welded is performed, then main welding is performed to weld the entire length of the welded portion 15 under a predetermined input energy welding condition that provides a sufficient penetration depth. Finally, the input energy is higher than that of the main welding. Slope out welding is performed in which the entire length of the welded portion 15 is welded to the welding end point S under low welding conditions and the beam is gradually extracted.

スロープイン溶接及びスロープアウト溶接における溶接条件は、金属構造体2及び金属ピース4の材質、接合する深さ寸法に応じて、溶接速度(走査速度)や溶接電流を制御して、溶接部15への入力エネルギーを本溶接時よりも低くする。   Welding conditions in slope-in welding and slope-out welding are controlled by controlling the welding speed (scanning speed) and welding current according to the material of the metal structure 2 and the metal piece 4 and the depth dimension to be joined. The input energy of is lower than that during main welding.

本実施の形態では、図3に示すように、最初のスロープイン溶接では、溶接始点Sから溶接部15の長さ方向の一端Saまで溶接走査(S1)した後、折り返して溶接部15の長さ方向の他端Sbまで溶接走査(S2)する。次の本溶接では、溶接部15の他端Sbから一端Saまで溶接走査(S3)する。その後のスロープアウト溶接では、溶接部15の一端Saから他端Sbまで溶接走査(S4)したら、折り返して溶接終点Sまで溶接走査(S5)する。   In the present embodiment, as shown in FIG. 3, in the first slope-in welding, the welding scan (S 1) is performed from the welding start point S to one end Sa in the length direction of the welded portion 15, and then folded to return the length of the welded portion 15. Welding scanning (S2) is performed up to the other end Sb in the vertical direction. In the next main welding, a welding scan (S3) is performed from the other end Sb of the welded portion 15 to the one end Sa. In the subsequent slope-out welding, when welding scanning (S4) is performed from one end Sa to the other end Sb of the welded portion 15, the welding is turned back and welding scanning is performed to the welding end point S (S5).

以上のように、本実施の形態によれば、隙間部3に接しない金属構造体2と金属ピース4との境界部13を溶接部15とし、その溶接部15の長さ方向中央部の同一点Sを溶接始点及び溶接終点として、本溶接の前後に本溶接よりも入力エネルギーが低い溶接条件でスロープイン溶接とスロープアウト溶接を行うようにしたので、ビームによって溶融された金属が隙間部3へ流れ落ちるのを確実に防止することができると共に、ビームによる溶融金属の流れをビームの移動に確実に追従させることができる。従って、溶接部15に応力集中を招く要因となる凹部を形成することなく、金属ピース4を金属構造体2に確実に溶接でき、充分な溶接強度を得ることができる。   As described above, according to the present embodiment, the boundary portion 13 between the metal structure 2 and the metal piece 4 that is not in contact with the gap portion 3 is used as the welded portion 15, and the center portion in the longitudinal direction of the welded portion 15 is the same. Since the point S is the welding start point and the welding end point, the slope-in welding and the slope-out welding are performed before and after the main welding under the welding conditions having lower input energy than the main welding. It is possible to reliably prevent the molten metal from flowing down to the flow, and to reliably follow the flow of the molten metal by the beam to the movement of the beam. Therefore, the metal piece 4 can be reliably welded to the metal structure 2 without forming a recess that causes stress concentration in the welded portion 15, and sufficient welding strength can be obtained.

しかも、図3に示したように、スロープイン溶接ではS1及びS2の溶接走査を行い、スロープアウト溶接ではS4及びS5の溶接走査を行うことで、溶接部15をSa端からSb端まで合計で片道3回溶接し、本溶接ではS3の溶接走査により溶接部15を片道1回溶接するので、溶接部15をその全長に亘って均一に溶接でき、溶接品質を向上することができる。   In addition, as shown in FIG. 3, in the slope-in welding, the welding scanning of S1 and S2 is performed, and in the slope-out welding, the welding scanning of S4 and S5 is performed, so that the welded portion 15 is totaled from the Sa end to the Sb end. One-way welding is performed three times, and in the main welding, the welded portion 15 is welded once in one way by the welding scan of S3. Therefore, the welded portion 15 can be uniformly welded over the entire length, and the welding quality can be improved.

(第2実施の形態)
図4乃至図6は、本発明の第2実施の形態を説明するクローズドデッキ型シリンダブロックの要部の構成を示すもので、図4はトップデッキ側から見た平面図、図5は図4のII−II線断面図、図6は図4のA部拡大図である。
(Second Embodiment)
4 to 6 show the structure of the main part of a closed deck type cylinder block for explaining the second embodiment of the present invention. FIG. 4 is a plan view seen from the top deck side, and FIG. II-II sectional view, FIG. 6 is the A section enlarged view of FIG.

この架橋構造体は、エンジンのクローズドデッキ型シリンダブロック21であり、金属構造体であるオープンデッキ型シリンダブロック22に形成された隙間部であるウォータジャケット23の上端部に、金属ピースであるブリッジ材24を圧入し、このブリッジ材24を電子ビームによりシリンダブロック22に溶接して製造されたものである。   This bridge structure is a closed deck type cylinder block 21 of an engine, and a bridge material which is a metal piece at the upper end of a water jacket 23 which is a gap formed in an open deck type cylinder block 22 which is a metal structure. 24 is press-fitted, and this bridge member 24 is welded to the cylinder block 22 by an electron beam.

なお、本実施の形態におけるクローズドデッキ型シリンダブロック21(オープンデッキ型シリンダブロック22)は、ADC12で形成されている。また、ブリッジ材24は、ADC12とほぼ同等の強度を有する固溶強化型合金であるA5056で形成され、その幅W及び長さLは12.3mm、溶け込み深さは9mmとなっている。   In addition, the closed deck type cylinder block 21 (open deck type cylinder block 22) in this Embodiment is formed with ADC12. The bridge member 24 is made of A5056, which is a solid solution strengthened alloy having substantially the same strength as the ADC 12, and its width W and length L are 12.3 mm and the penetration depth is 9 mm.

本実施の形態では、第1実施の形態と同様にして、ブリッジ材24をオープンデッキ型シリンダブロック22に溶接する。即ち、ブリッジ材24の両側のウォータジャケット23に接しないシリンダブロック22との境界部をそれぞれ溶接部25とし、各溶接部25の長さ方向中央部の同一点Sを溶接始点及び溶接終点として、図3に示したスロープイン溶接によるS1及びS2の溶接走査と、本溶接によるS3の溶接走査と、スロープアウト溶接によるS4及びS5の溶接走査とを順次に行って、ブリッジ材24をオープンデッキ型シリンダブロック22に溶接する。   In the present embodiment, the bridge member 24 is welded to the open deck cylinder block 22 in the same manner as in the first embodiment. That is, the boundary portion between the bridge member 24 and the cylinder block 22 that does not contact the water jacket 23 on each side is a welded portion 25, and the same point S at the center in the length direction of each welded portion 25 is a welding start point and a welding end point. S1 and S2 welding scans by slope-in welding shown in FIG. 3, S3 welding scanning by main welding, and S4 and S5 welding scans by slope-out welding are sequentially performed, and the bridge member 24 is an open deck type. Weld to cylinder block 22.

ここで、電子ビームによる溶接走査S1〜S5の溶接条件は、例えば下表のように設定する。   Here, the welding conditions of the welding scans S1 to S5 by the electron beam are set as shown in the table below, for example.

Figure 0004680534
Figure 0004680534

このように、スロープイン溶接およびスロープアウト溶接における走査速度を本溶接における走査速度よりも速くして、単位時間当たりの入熱量(入力エネルギー)を本溶接時の1/5とすることで、溶接部25に応力集中を招くような凹部などの欠陥や、ウォータジャケット23への溶融金属の流れ落ちによる凹部のない良好なクローズドデッキ型シリンダブロック21を簡単に製造することができる。   Thus, the scanning speed in slope-in welding and slope-out welding is made faster than the scanning speed in main welding, and the amount of heat input per unit time (input energy) is set to 1/5 of that in main welding. A good closed deck cylinder block 21 having no defects such as recesses that cause stress concentration in the portion 25 and no recesses due to the molten metal flowing down to the water jacket 23 can be easily manufactured.

なお、本発明は上記実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、溶接始点及び溶接終点は、溶接部の長さ方向中央部に限らず、溶接部の両端以外の任意の位置に設定することができると共に、それらの位置も同一位置に限らず、近接して設定することもできる。また、スロープイン溶接およびスロープアウト溶接における溶接条件は、本溶接における入力エネルギー以下の条件で、異ならせることもできる。また、第2実施の形態では、走査速度に代えて、或いは走査速度と共に溶接電流値を制御して、スロープイン溶接及びスロープアウト溶接における入力エネルギーを本溶接時よりも低くすることもできる。更に、本発明は、クローズドデッキ型シリンダブロックの製造時の溶接に限らず、架橋構造体の製造時の溶接に広く適用することができる。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of invention. For example, the welding start point and the welding end point are not limited to the central portion in the longitudinal direction of the welded portion, and can be set at arbitrary positions other than both ends of the welded portion. Can also be set. Moreover, the welding conditions in slope-in welding and slope-out welding can be made different under the conditions equal to or lower than the input energy in the main welding. In the second embodiment, the welding current value can be controlled instead of the scanning speed or together with the scanning speed so that the input energy in the slope-in welding and the slope-out welding can be made lower than that in the main welding. Furthermore, the present invention can be widely applied not only to welding at the time of manufacturing a closed deck cylinder block but also to welding at the time of manufacturing a bridge structure.

本発明の第1実施の形態を説明するための架橋構造体の部分平面図である。It is a fragmentary top view of the bridge | crosslinking structure for demonstrating 1st Embodiment of this invention. 図1のI−I線断面図である。It is the II sectional view taken on the line of FIG. 第1実施の形態における溶接走査を説明するための図である。It is a figure for demonstrating the welding scan in 1st Embodiment. 本発明の第2実施の形態を説明するクローズドデッキ型シリンダブロックの要部の構成を示すトップデッキ側から見た平面図である。It is the top view seen from the top deck side which shows the structure of the principal part of the closed deck type | mold cylinder block explaining 2nd Embodiment of this invention. 図4のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 図4のA部拡大図である。It is the A section enlarged view of FIG. 従来の溶接方法を説明するための架橋構造体の部分平面図である。It is a fragmentary top view of the bridge | crosslinking structure for demonstrating the conventional welding method. 図7のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図7の溶接方法による溶接部を隙間部側から見た部分拡大側面図である。It is the partial expanded side view which looked at the welding part by the welding method of FIG. 7 from the clearance gap side. 図7の溶接方法の改良案を説明するための架橋構造体の部分平面図である。It is a fragmentary top view of the bridge | crosslinking structure for demonstrating the improvement plan of the welding method of FIG.

符号の説明Explanation of symbols

1 架橋構造体
2 金属構造体
3 隙間部
4 金属ピース
5 位置決め用溝
11、12、13 境界部
15 溶接部
21 クローズドデッキ型シリンダブロック(架橋構造体)
22 オープンデッキ型シリンダブロック(金属構造体)
23 ウォータジャケット(隙間部)
24 ブリッジ材(金属ピース)
25 溶接部
S 溶接始点・溶接終点
Sa 一端
Sb 他端
S1〜S5 溶接走査
DESCRIPTION OF SYMBOLS 1 Bridge structure 2 Metal structure 3 Crevice part 4 Metal piece 5 Positioning groove 11, 12, 13 Boundary part 15 Welded part 21 Closed deck type cylinder block (bridge structure)
22 Open deck cylinder block (metal structure)
23 Water jacket (gap)
24 Bridge material (metal piece)
25 Welded part S Welding start point / Welding end point Sa One end Sb Other end S1 to S5 Welding scan

Claims (4)

金属構造体の隙間部に挿入された金属ピースを、上記金属構造体に溶接する架橋構造体の溶接方法において、
上記金属構造体と上記金属ピースとの境界にあって、上記隙間部に接しない境界部を溶接部とし、該溶接部の長さ方向の両端以外を溶接始点及び溶接終点として、高エネルギービームにより、上記溶接始点から本溶接時よりも入力エネルギーが低い溶接条件で上記溶接部の全長を溶接するスロープイン溶接と、
上記溶接部の全長を所定の入力エネルギーで溶接する本溶接と、
本溶接時よりも入力エネルギーが低い溶接条件で上記溶接終点まで上記溶接部の全長を溶接するスロープアウト溶接とを順次行うことを特徴とする架橋構造体の溶接方法。
In the welding method of the bridging structure in which the metal piece inserted in the gap portion of the metal structure is welded to the metal structure,
A boundary between the metal structure and the metal piece that is not in contact with the gap is defined as a welded portion, and other than both ends in the length direction of the welded portion are defined as a welding start point and a welding end point. , Slope-in welding that welds the entire length of the welded portion under welding conditions where the input energy is lower than that during main welding from the welding start point;
Main welding for welding the entire length of the weld with predetermined input energy;
A welding method for a bridged structure, comprising: sequentially performing slope-out welding for welding the entire length of the welded portion up to the welding end point under welding conditions having lower input energy than during main welding.
上記溶接始点及び上記溶接終点を上記溶接部の長さ方向中央部のほぼ同一点とし、上記スロープイン溶接では上記溶接始点から上記溶接部の長さ方向の一端まで溶接した後折り返して上記溶接部の長さ方向の他端まで溶接し、上記本溶接では上記他端から上記一端まで溶接し、上記スロープアウト溶接では上記一端から上記他端まで溶接した後折り返して上記溶接終点まで溶接することを特徴とする請求項1に記載の架橋構造体の溶接方法。   In the slope-in welding, the welding start point and the welding end point are set to substantially the same point in the longitudinal direction of the welded portion, and after welding from the welding start point to one end in the lengthwise direction of the welded portion, the welded portion is folded back. Welding to the other end in the longitudinal direction, welding in the main welding from the other end to the one end, and in the slope out welding, welding from the one end to the other end and then turning back to the welding end point. The method for welding a crosslinked structure according to claim 1. 上記金属構造体はオープンデッキ型シリンダブロックであり、上記金属ピースは上記オープンデッキ型シリンダブロックのウォータジャケット上端部に圧入されたブリッジ材であることを特徴とする請求項1または2に記載の架橋構造体の溶接方法。   The bridge according to claim 1 or 2, wherein the metal structure is an open deck cylinder block, and the metal piece is a bridge member press-fitted into an upper end of a water jacket of the open deck cylinder block. Welding method for structures. 上記高エネルギービームによる溶接は、電子ビームによる溶接であることを特徴とする請求項1〜3のいずれか1項に記載の架橋構造体の溶接方法。 The high-energy beam by welding, the welding method of the crosslinked structure according to claim 1, characterized in that the welding by electron beam.
JP2004165305A 2004-06-03 2004-06-03 Welding method for cross-linked structure Expired - Fee Related JP4680534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165305A JP4680534B2 (en) 2004-06-03 2004-06-03 Welding method for cross-linked structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165305A JP4680534B2 (en) 2004-06-03 2004-06-03 Welding method for cross-linked structure

Publications (2)

Publication Number Publication Date
JP2005342759A JP2005342759A (en) 2005-12-15
JP4680534B2 true JP4680534B2 (en) 2011-05-11

Family

ID=35495600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165305A Expired - Fee Related JP4680534B2 (en) 2004-06-03 2004-06-03 Welding method for cross-linked structure

Country Status (1)

Country Link
JP (1) JP4680534B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571589A (en) * 1980-06-05 1982-01-06 Nippon Kokan Kk <Nkk> Electron beam welding method
JPS571588A (en) * 1980-06-05 1982-01-06 Nippon Kokan Kk <Nkk> Electron beam welding method
US4804699A (en) * 1987-05-15 1989-02-14 Ici Americas Inc. Monomeric and oligomeric glutarate-based light stabilizers for plastics
JPS6478693A (en) * 1987-09-21 1989-03-24 Mazda Motor Manufacture of aluminum alloy cylinder block
JP2574499B2 (en) * 1990-03-02 1997-01-22 日産自動車株式会社 Welding type aluminum cylinder block for deck reinforcement
JPH04127979A (en) * 1990-09-19 1992-04-28 Mitsubishi Heavy Ind Ltd High energy beam circular welding method

Also Published As

Publication number Publication date
JP2005342759A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5333459B2 (en) Welded structure and welding method
JP4686289B2 (en) Friction stir welding method for hollow workpieces
JP2006224137A (en) Reinforced plate, and reinforced plate manufacturing method
CN101505902A (en) Rigidity reinforcement plate and method of producing rigidity reinforcement plate
CN109562490A (en) Mix welding point and forming method thereof
WO2008015728A1 (en) Corner joint structure for bridge pier and method of producing the same
JP2008043974A (en) Longitudinal seam welded joint of uoe steel pipe
JP2008272826A (en) Stiffened plate and process for producing the same
JP2008018458A (en) Stiffening plate, and method for manufacturing the same
JP2007229777A (en) Member welding method, welded body, and structure for railroad vehicle
JP4680534B2 (en) Welding method for cross-linked structure
KR20210023874A (en) Butt welding joint of steel and its manufacturing method
JP2007130683A (en) Method for welding body structure member of railroad vehicle, and joint structure used therefor
JP2008302415A (en) Braze joining method, and sintered component produced by being brazed
JP2007062538A (en) Welding structure of axle case for vehicle
JP5000982B2 (en) Laser welding method for differential thickness materials
JP4530154B2 (en) Corner joint structure of pier and corner joint construction method
JP2004308661A (en) Method for manufacturing piston for internal combustion engine and piston for internal combustion engine
CN108883504B (en) Method for producing a joint connection by welding and joint connection produced according to said method
RU2262425C1 (en) Titanium alloy electric arc welding method
JP6642925B2 (en) Welding method
JP6921932B2 (en) Welding method
JP2005120891A (en) Piston for internal combustion engine and its manufacturing method
JP2002331374A (en) Lap welding joint
JP4128022B2 (en) Groove butt welding method using insert member and insert member used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees