JP4680103B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4680103B2
JP4680103B2 JP2006072580A JP2006072580A JP4680103B2 JP 4680103 B2 JP4680103 B2 JP 4680103B2 JP 2006072580 A JP2006072580 A JP 2006072580A JP 2006072580 A JP2006072580 A JP 2006072580A JP 4680103 B2 JP4680103 B2 JP 4680103B2
Authority
JP
Japan
Prior art keywords
exhaust
filter
exhaust gas
housing
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006072580A
Other languages
Japanese (ja)
Other versions
JP2007247549A (en
Inventor
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006072580A priority Critical patent/JP4680103B2/en
Publication of JP2007247549A publication Critical patent/JP2007247549A/en
Application granted granted Critical
Publication of JP4680103B2 publication Critical patent/JP4680103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、排気中のパティキュレート(PM)を捕集するパティキュレートフィルタを備えた排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus provided with a particulate filter that collects particulates (PM) in exhaust gas.

一般に、内燃機関からの排気は浄化手段としての触媒内に導入され、浄化後に大気中に放出される。
また、触媒は筐体内に配置されており、この筐体は、排気を触媒にて効果的に処理すべく種々の形状をなして形成されている。例えば、筐体を扁平形状に形成させる如くである(特許文献1参照)。また、この筐体内には複数のリブが凸設されており、排気の流量分布の均一化が図られている。
特開昭55−117018号公報
In general, exhaust gas from an internal combustion engine is introduced into a catalyst as a purification means, and is released into the atmosphere after purification.
Further, the catalyst is disposed in a casing, and the casing is formed in various shapes so as to effectively treat the exhaust gas with the catalyst. For example, the housing is formed in a flat shape (see Patent Document 1). In addition, a plurality of ribs are provided in the housing so as to make the flow rate distribution of the exhaust gas uniform.
JP-A-55-117018

ところで、近年、複数の触媒を箱型の筐体内に収容した排気浄化装置が知られている。具体的には、この筐体の内部を少なくとも上下2段に区画し、上段側及び下段側に触媒をそれぞれ配置する。箱型の筐体はその加工が容易であり、また、省スペース化が可能となって車両への搭載性も向上する。
しかしながら、上下方向に触媒を配置させた場合には、排気を折り返す必要がある点に留意しなければならない。排気を折り返させる通路にはデッドボリュームが多く存在し、排気の滞留が生ずるからである。そして、排気の圧力損失や下段側の触媒への排気導入が困難になるとの問題がある。より詳しくは、排気の圧力損失は内燃機関の性能に多大な影響を与えるし、また、ディーゼル機関の如く排気中に含まれるPMの浄化が要求される場合には、このPMがパティキュレートフィルタ(DPF)の入口側に堆積し、DPFの強制再生時に着火することが懸念され、いずれも排気浄化装置の信頼性低下を招くからである。
By the way, in recent years, an exhaust emission control device in which a plurality of catalysts are housed in a box-shaped housing is known. Specifically, the interior of the housing is divided into at least two upper and lower stages, and the catalyst is arranged on each of the upper and lower stages. The box-shaped housing can be easily processed, and space saving can be achieved, so that mounting on a vehicle is improved.
However, it should be noted that when the catalyst is arranged in the vertical direction, the exhaust must be folded back. This is because there is a lot of dead volume in the passage for turning the exhaust gas, and the exhaust gas stays. And there is a problem that exhaust pressure loss and introduction of exhaust into the lower catalyst become difficult. More specifically, the pressure loss of the exhaust gas greatly affects the performance of the internal combustion engine, and when purification of PM contained in the exhaust gas is required like a diesel engine, this PM is a particulate filter ( This is because there is a concern that it accumulates on the inlet side of the DPF) and ignites at the time of forced regeneration of the DPF, both of which lead to a decrease in the reliability of the exhaust purification device.

本発明は、このような課題に鑑みてなされたもので、箱型の筐体を有する装置の信頼性向上を図る内燃機関の排気浄化装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that improves the reliability of an apparatus having a box-shaped housing.

上記の目的を達成すべく、請求項1記載の内燃機関の排気浄化装置は、内燃機関からの排気が導入される箱型の筐体と、筐体の前側面、左側面及び右側面のそれぞれに固定支持され、排気対峙面には当接しないように形成されて、筐体の内部を上下に区画する内壁と、筐体内にそれぞれ収容され、内壁の上側に配置される上段側浄化手段及び内壁の下側に配置される下段側浄化手段と、筐体内に形成され、上段側浄化手段と下段側浄化手段とを接続し、上段側浄化手段からの排気流れを下段側浄化手段に向けて折り返させる通路と、筐体の内面に形成され、通路内のデッドボリュームを低減させて排気流れに対する抵抗を削減する流路抵抗削減手段とを具備することを特徴としている。 In order to achieve the above object, an exhaust emission control device for an internal combustion engine according to claim 1 includes a box-shaped housing into which exhaust from the internal combustion engine is introduced, and a front side surface, a left side surface, and a right side surface of the housing. And an inner wall that vertically divides the interior of the housing, and an upper stage purification unit that is housed in the housing and disposed on the upper side of the inner wall, A lower-stage purification means disposed on the lower side of the inner wall, and formed in the housing, connects the upper-stage purification means and the lower-stage purification means, and directs the exhaust flow from the upper-stage purification means to the lower-stage purification means. It is characterized by comprising a path to be folded back and a flow path resistance reducing means which is formed on the inner surface of the housing and reduces the dead volume in the path to reduce the resistance to the exhaust flow.

また、請求項2記載の発明では、上段側浄化手段は、排気中のNOを酸化させてNOを生成する前段酸化触媒及び排気中のパティキュレートを捕捉するパティキュレートフィルタを有し、下段側浄化手段は、NHを還元剤として用いて排気中のNOxを浄化する選択還元型NOx触媒及び余剰NHを酸化させてNを生成する後段酸化触媒を有しており、通路は、フィルタからの排気流れをNOx触媒に向けて折り返していることを特徴としている。 Further, in the invention according to claim 2, the upper stage purification means has a pre-stage oxidation catalyst that oxidizes NO in the exhaust gas to generate NO 2 and a particulate filter that captures particulates in the exhaust gas. The purifying means includes a selective reduction type NOx catalyst that purifies NOx in the exhaust gas using NH 3 as a reducing agent, and a rear-stage oxidation catalyst that oxidizes surplus NH 3 to generate N 2. It is characterized in that the exhaust flow from is turned back toward the NOx catalyst.

更に、請求項3記載の発明では、流路抵抗削減手段は、フィルタの出口側に向けて凹部をなし、筐体内の上面とフィルタ内の排気流れ方向を法線とする後側面とが交差する位置のデッドボリュームを低減する上側曲面部と、NOx触媒の入口側に向けて凹部をなし、筐体内の下面と後側面とが交差する位置のデッドボリュームを低減する下側曲面部とを含むことを特徴としている。   Further, in the invention according to claim 3, the flow path resistance reducing means has a recess toward the outlet side of the filter, and the upper surface in the housing intersects the rear side surface normal to the exhaust flow direction in the filter. An upper curved surface portion that reduces the dead volume of the position, and a lower curved surface portion that forms a recess toward the inlet side of the NOx catalyst and reduces the dead volume at a position where the lower surface and the rear side surface of the housing intersect. It is characterized by.

更にまた、請求項4記載の発明では、上段側浄化手段は、排気中のNOを酸化させてNOを生成する酸化触媒を有し、下段側浄化手段は、排気中のパティキュレートを捕捉するパティキュレートフィルタを有しており、通路は、酸化触媒からの排気流れをフィルタに向けて折り返していることを特徴としている。
また、請求項5記載の発明では、流路抵抗削減手段は、フィルタの入口側に向けて凹部をなし、筐体内の下面とフィルタ内の排気流れ方向を法線とする後側面とが交差する位置のデッドボリュームを低減する下側曲面部と、下側曲面部に連なってフィルタに向けて延設され、フィルタの入口側の形状に収束した形状をなす延長部とを含むことを特徴としている。
Furthermore, in the invention according to claim 4, the upper stage purification unit has an oxidation catalyst that oxidizes NO in the exhaust to generate NO 2 , and the lower stage purification unit captures the particulates in the exhaust. It has a particulate filter, and the passage is characterized in that the exhaust flow from the oxidation catalyst is turned back toward the filter.
In the invention according to claim 5, the flow path resistance reducing means forms a recess toward the inlet side of the filter, and the lower surface in the housing intersects the rear side surface normal to the exhaust flow direction in the filter. It includes a lower curved surface portion that reduces the dead volume of the position, and an extension portion that extends toward the filter in a manner linked to the lower curved surface portion and converges to the shape on the inlet side of the filter. .

従って、請求項1記載の本発明の内燃機関の排気浄化装置によれば、内壁を介してその内部が上下に区画された箱型の筐体において、上段側浄化手段からの排気流れを下段側浄化手段に向けて折り返させる通路が形成され、この筐体の内面には、当該通路内のデッドボリュームを低減させて排気流れに対する抵抗を削減する流路抵抗削減手段が形成されている。よって、通路内では排気の滞留が回避され、上段側浄化手段からの排気はスムーズに流れて下段側浄化手段に導入可能となる。この結果、排気浄化装置の信頼性向上に寄与する。   Therefore, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, in the box-shaped housing whose interior is vertically divided through the inner wall, the exhaust flow from the upper side purification means is reduced to the lower side. A passage that is folded back toward the purification means is formed, and a flow path resistance reduction means that reduces dead volume in the passage and reduces resistance to the exhaust flow is formed on the inner surface of the housing. Therefore, the accumulation of exhaust gas is avoided in the passage, and the exhaust gas from the upper stage purification unit flows smoothly and can be introduced into the lower stage purification unit. As a result, it contributes to improving the reliability of the exhaust emission control device.

また、請求項2記載の発明によれば、パティキュレートフィルタからの排気が選択還元型NOx触媒の入口側にて滞留せずにスムーズに流れることから、排気の圧力損失が低減され、内燃機関の燃費向上や出力低下の防止等が図られる。
更に、請求項3記載の発明によれば、フィルタの出口側からの排気流れは、上側曲面部の形状に沿って下方向に向きを変え、次いで、下側曲面部の形状に沿って横方向に向きを変えてNOx触媒の入口側に達する。つまり、筐体内にて排気流れの剥離する箇所が排除されているので、排気の圧力損失がより一層確実に低減される。
According to the second aspect of the present invention, the exhaust gas from the particulate filter flows smoothly without staying at the inlet side of the selective reduction type NOx catalyst, so that the pressure loss of the exhaust gas is reduced and the internal combustion engine Improvement of fuel consumption, prevention of output reduction, etc. are achieved.
Further, according to the invention described in claim 3, the exhaust flow from the outlet side of the filter changes its direction downward along the shape of the upper curved surface portion, and then laterally along the shape of the lower curved surface portion. The direction is changed to reach the inlet side of the NOx catalyst. That is, since the location where the exhaust flow is separated in the casing is eliminated, the pressure loss of the exhaust can be more reliably reduced.

更にまた、請求項4記載の発明によれば、酸化触媒からの排気がパティキュレートフィルタの入口側にて滞留しないので、この入口側のパティキュレートの堆積が回避される。この結果、強制再生時におけるパティキュレートへの着火防止が図られる。また、排気の圧力損失も低減可能となる。
また、請求項5記載の発明によれば、酸化触媒からの排気流れはパティキュレートを含んでおり、下側曲面部の形状に沿って横方向に向きを変える。そして、下側曲面部に連なる延長部がフィルタの入口側の形状に収束した形状をなして形成されていることから、パティキュレートは通路内に堆積せず、フィルタの入口側に集められてフィルタ内に導入される。よって、このフィルタの入口側におけるパティキュレートの堆積がより一層確実に回避される。
Furthermore, according to the fourth aspect of the present invention, exhaust gas from the oxidation catalyst does not stay on the inlet side of the particulate filter, so that accumulation of particulates on the inlet side is avoided. As a result, ignition of the particulates during forced regeneration can be prevented. In addition, the pressure loss of the exhaust can be reduced.
According to the fifth aspect of the present invention, the exhaust flow from the oxidation catalyst contains particulates and changes its direction in the lateral direction along the shape of the lower curved surface portion. And since the extension part connected to the lower curved surface part is formed so as to converge to the shape of the inlet side of the filter, the particulates are not accumulated in the passage, but are collected on the inlet side of the filter and collected. Introduced in. Therefore, the accumulation of particulates on the inlet side of the filter is more reliably avoided.

以下、図面により本発明の実施形態について説明する。本実施形態に係る内燃機関の排気浄化装置は、図1に示されたトラック2に搭載されている。
同図に示されるように、当該トラック2にはキャブ4が備えられ、このキャブ4の下側には、はしご型のフレーム6が後方に向けて延設されている。これらキャブ4とフレーム6との間にはディーゼルエンジン(図示しない)が配設されており、このエンジンの後側、詳しくはキャブ4の後面側であってフレーム6の右側部分の適宜位置には排気浄化装置8が配設されている。なお、このフレーム6の左側部分の適宜位置には燃料タンク10やユリア水タンク12が配設される。そして、上記排気浄化装置8にはエンジンからの排気が導入され、この導入された排気を浄化して外部に放出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. An exhaust gas purification apparatus for an internal combustion engine according to this embodiment is mounted on a truck 2 shown in FIG.
As shown in the figure, the truck 2 is provided with a cab 4, and a ladder-type frame 6 extends rearward under the cab 4. A diesel engine (not shown) is disposed between the cab 4 and the frame 6. The diesel engine (not shown) is disposed on the rear side of the engine, specifically on the rear surface side of the cab 4 and at an appropriate position on the right side portion of the frame 6. An exhaust purification device 8 is provided. A fuel tank 10 and a urea water tank 12 are disposed at appropriate positions on the left side of the frame 6. Then, exhaust gas from the engine is introduced into the exhaust gas purification device 8, and the introduced exhaust gas is purified and released to the outside.

当該排気浄化装置8は、図2に示されるように、略直方体に形成された箱型の筐体16を備えており、この筐体16の前側面17には配管14が連結され、配管14は上記エンジンに接続されている。また、前側面17の各辺には車両後方に向けて周壁上面(上面)18、周壁下面(下面)19、左側面20及び右側面21がそれぞれ配設されており、この右側面21の適宜位置には開口23が形成され(図3)、この開口23がテールパイプ(図示しない)に連結されている。更に、周壁上面18の適宜位置には、還元剤の一例としてのユリア水(尿素水)を添加するインジェクタ38が配設されている。本実施形態のインジェクタ38はユリア水タンク12に接続され、ユリア水の噴射口は周壁上面18の内側近傍に開口されている。また、これら周壁上面18、周壁下面19、左側面20及び右側面21は、前側面17とは反対側の位置にて排気対峙面(後側面)22に当接され、この排気対峙面22は前側面17に対峙して配置されている。   As shown in FIG. 2, the exhaust purification device 8 includes a box-shaped housing 16 formed in a substantially rectangular parallelepiped, and a pipe 14 is connected to the front side surface 17 of the housing 16. Is connected to the engine. A peripheral wall upper surface (upper surface) 18, a peripheral wall lower surface (lower surface) 19, a left side surface 20, and a right side surface 21 are disposed on each side of the front side surface 17 toward the rear of the vehicle. An opening 23 is formed at the position (FIG. 3), and this opening 23 is connected to a tail pipe (not shown). Further, an injector 38 for adding urea water (urea water) as an example of a reducing agent is disposed at an appropriate position on the peripheral wall upper surface 18. The injector 38 of this embodiment is connected to the urea water tank 12, and the urea water injection port is opened near the inside of the peripheral wall upper surface 18. Further, the peripheral wall upper surface 18, the peripheral wall lower surface 19, the left side surface 20 and the right side surface 21 are in contact with an exhaust facing surface (rear side surface) 22 at a position opposite to the front side surface 17. It is arranged to face the front side surface 17.

また、この図3に示されるように、第1実施例の筐体16には、その内部を上下2段に区画する内壁24が配設されており、内壁24は、前側面17、左側面20及び右側面21にそれぞれ固定支持される長さであるのに対し、排気対峙面22には当接しない長さに形成されている。そして、この内壁24と周壁上面18との間には上段側浄化手段が収容され、内壁24と周壁下面19との間には下段側浄化手段が収容されている。このように、上述した周壁上面18、周壁下面19、左側面20及び右側面21は各浄化手段内の排気流れ方向に沿う位置に配置されるのに対し、前側面17及び排気対峙面22はこの排気流れ方向を法線とする位置に配置されている。   As shown in FIG. 3, the housing 16 of the first embodiment is provided with an inner wall 24 that divides the interior into two upper and lower stages. The inner wall 24 includes a front side surface 17 and a left side surface. The length is fixedly supported on the right side surface 20 and the right side surface 21, but the length is not in contact with the exhaust facing surface 22. An upper stage purification unit is accommodated between the inner wall 24 and the peripheral wall upper surface 18, and a lower stage purification unit is accommodated between the inner wall 24 and the peripheral wall lower surface 19. As described above, the peripheral wall upper surface 18, the peripheral wall lower surface 19, the left side surface 20, and the right side surface 21 are arranged at positions along the exhaust flow direction in each purifying means, whereas the front side surface 17 and the exhaust facing surface 22 are It arrange | positions in the position which makes this exhaust flow direction a normal line.

具体的には、当該実施例における上段側浄化手段は、前段酸化触媒32及びDPF(ディーゼルパティキュレートフィルタ)34であり、エンジンからの排気の流れ方向でみてこの順に介挿されている(図3(a))。
前段酸化触媒32では、排気中のNOを酸化させてNOを生成しており、このNOを酸化剤としてDPF34に供給している。DPF34は、排気の上流側と下流側とを連通させる複数個の通路が並設されているとともに、各通路の上流側の開口部分と下流側の開口部分とが交互に閉鎖されている。そして、このDPF34では、排気中のパティキュレート(PM)を捕集する一方、この捕集したPMを前段酸化触媒32から供給されたNOとの反応によって燃焼する。
Specifically, the upper stage purification means in the embodiment is a front stage oxidation catalyst 32 and a DPF (diesel particulate filter) 34, which are inserted in this order as seen in the flow direction of the exhaust gas from the engine (FIG. 3). (A)).
In pre-stage oxidation catalyst 32 and the NO in the exhaust is oxidized and generates NO 2, and supplies the DPF34 the NO 2 as oxidizing agent. The DPF 34 is provided with a plurality of passages that connect the upstream side and the downstream side of the exhaust gas in parallel, and the upstream opening portions and the downstream opening portions of the passages are alternately closed. The DPF 34 collects particulates (PM) in the exhaust gas, and combusts the collected PM by reaction with NO 2 supplied from the pre-stage oxidation catalyst 32.

一方、当該実施例における下段側浄化手段は、SCR触媒(選択還元型NOx触媒)48及び後段酸化触媒50であり、排気の流れ方向でみてこの順に介挿されている(図3(a))。
SCR触媒48は、インジェクタ38から添加されたNHを吸着させ、このNHを還元剤として排気中のNOxを浄化する。後段酸化触媒50では、SCR触媒48においてNHが余剰になった場合にはこれを酸化させてNを生成し、更に、DPF34においてPMの燃焼に伴ってCOが生じた場合にはこれを酸化させてCOを生成する。
On the other hand, the lower-stage purification means in the present embodiment is an SCR catalyst (selective reduction type NOx catalyst) 48 and a rear-stage oxidation catalyst 50, which are inserted in this order in the exhaust flow direction (FIG. 3A). .
The SCR catalyst 48 adsorbs NH 3 added from the injector 38 and purifies NOx in the exhaust gas using the NH 3 as a reducing agent. In the post-stage oxidation catalyst 50, when the NH 3 becomes excessive in the SCR catalyst 48, it is oxidized to generate N 2 , and further, in the case where CO is generated due to PM combustion in the DPF 34, this is oxidized. It is oxidized to produce the CO 2.

ここで、DPF34の出口側とSCR触媒48の入口側とは、折り返し通路(通路)36にて接続されている。つまり、折り返し通路36では、DPF34から車両後方に向かう排気流れを車両前方に向けて折り返し、SCR触媒48に向かわせているが、筐体16内には、周壁上面18と排気対峙面22とが交差する位置にて上側の流れ剥離部(デッドボリューム)26が存在し、また、周壁下面19と排気対峙面22とが交差する位置にも下側の流れ剥離部(デッドボリューム)28が存在することになり、このままでは、これら流れ剥離部26,28にてうず流が生じ、流れ剥離部26,28におけるPMの燃焼後の排気流速が小さくなって淀んでしまう。   Here, the outlet side of the DPF 34 and the inlet side of the SCR catalyst 48 are connected by a return passage (passage) 36. That is, in the turn-back passage 36, the exhaust flow from the DPF 34 toward the rear of the vehicle is turned back toward the front of the vehicle and directed toward the SCR catalyst 48. An upper flow separation portion (dead volume) 26 exists at the intersecting position, and a lower flow separation portion (dead volume) 28 also exists at a position where the peripheral wall lower surface 19 and the exhaust facing surface 22 intersect. In this state, vortex flows are generated in the flow separation portions 26 and 28, and the exhaust flow velocity after combustion of PM in the flow separation portions 26 and 28 becomes small and stagnates.

そこで、当該実施例では、折り返し通路36内の複数の流れ剥離部26,28をなくして排気流れに対する抵抗を削減する流路抵抗削減手段が設けられている。
より詳しくは、本実施例の流路抵抗削減手段は、図3に示される如く、まず、流れ剥離部26に対しては上側曲面部40が設けられている。この上側曲面部40は四つ割り円筒状の薄板にて形成され、DPF34の出口側に向けて凹部をなし、その曲率中心がDPF34の出口側近傍に存在して構成されている。また、この上側曲面部40は周壁上面18及び排気対峙面22の幅と略同等に形成されており、これら周壁上面18及び排気対峙面22にそれぞれ溶接固定されている。
Therefore, in this embodiment, there is provided a flow path resistance reducing means that eliminates the plurality of flow separation portions 26 and 28 in the return passage 36 and reduces the resistance to the exhaust flow.
More specifically, as shown in FIG. 3, the flow path resistance reducing means of the present embodiment is first provided with an upper curved surface portion 40 for the flow separation portion 26. The upper curved surface portion 40 is formed of a quadrilateral cylindrical thin plate, has a recess toward the outlet side of the DPF 34, and has a center of curvature in the vicinity of the outlet side of the DPF 34. Further, the upper curved surface portion 40 is formed substantially equal to the width of the peripheral wall upper surface 18 and the exhaust facing surface 22, and is fixed to the peripheral wall upper surface 18 and the exhaust facing surface 22 by welding.

次に、流れ剥離部28に対しては下側曲面部42が設けられている。この下側曲面部42もまた四つ割り円筒状の薄板にて形成され、SCR触媒48の入口側に向けて凹部をなし、その曲率中心がSCR触媒48の入口側近傍に存在して構成されている。この下側曲面部42は周壁下面19及び排気対峙面22の幅と略同等に形成されており、これら周壁下面19及び排気対峙面22にそれぞれ溶接固定されている。   Next, a lower curved surface portion 42 is provided for the flow separation portion 28. The lower curved surface portion 42 is also formed of a quadrangular cylindrical thin plate, has a concave portion toward the inlet side of the SCR catalyst 48, and has a center of curvature in the vicinity of the inlet side of the SCR catalyst 48. ing. The lower curved surface portion 42 is formed substantially equal to the width of the peripheral wall lower surface 19 and the exhaust facing surface 22, and is fixed to the peripheral wall lower surface 19 and the exhaust facing surface 22 by welding.

このように、第1実施例によれば、内壁24を介してその内部が上下に区画された箱型の筐体16において、DPF34からの排気流れをSCR触媒48に向けて折り返させる折り返し通路36が形成され、この筐体16の内面には、折り返し通路36内の流れ剥離部26,28をなくして排気流れに対する抵抗を削減する上側曲面部40及び下側曲面部42が形成されている。よって、折り返し通路36内では排気の滞留が回避され、DPF34からの排気はスムーズに流れてSCR触媒48に導入可能となる。この結果、排気の圧力損失が低減され、内燃機関の燃費向上や出力低下の防止等が図られて排気浄化装置の信頼性向上に寄与する。   As described above, according to the first embodiment, in the box-shaped housing 16 whose interior is vertically divided through the inner wall 24, the return passage 36 for returning the exhaust flow from the DPF 34 toward the SCR catalyst 48. An upper curved surface portion 40 and a lower curved surface portion 42 are formed on the inner surface of the casing 16 so as to eliminate the flow separation portions 26 and 28 in the folded passage 36 and reduce the resistance to the exhaust flow. Therefore, the exhaust gas is prevented from staying in the return passage 36, and the exhaust gas from the DPF 34 flows smoothly and can be introduced into the SCR catalyst 48. As a result, the pressure loss of the exhaust gas is reduced, and the fuel efficiency of the internal combustion engine is improved and the output is prevented from decreasing. This contributes to improving the reliability of the exhaust gas purification apparatus.

また、上述した4つの浄化手段32,34,48,50を上下に区画した箱型の筐体16内に収容しているので、車両への搭載性が向上するし、筐体16内の保温性が良好となって各浄化手段の活性も促進される。
更に、DPF34の出口側からの排気流れは、上側曲面部40の形状に沿って下方向に向きを変え、次いで、下側曲面部42の形状に沿って横方向に向きを変えてSCR触媒48の入口側に達する。つまり、折り返し通路36内の上側及び下側の各位置にて排気流れの剥離する箇所が排除されているので、排気の圧力損失がより一層確実に低減される。
Moreover, since the four purification means 32, 34, 48, and 50 described above are accommodated in a box-shaped casing 16 that is vertically divided, the mounting property on the vehicle is improved, and the heat insulation in the casing 16 is maintained. The property is improved and the activity of each purification means is promoted.
Further, the exhaust flow from the outlet side of the DPF 34 changes its direction downward along the shape of the upper curved surface portion 40, and then changes its direction horizontally along the shape of the lower curved surface portion 42, so that the SCR catalyst 48. Reach the entrance side. In other words, the exhaust flow separation point is eliminated at each of the upper and lower positions in the return passage 36, so that the exhaust pressure loss can be more reliably reduced.

本発明は上述した第1実施例に制約されるものではなく、種々の変形が可能であり、図4を参照して第2実施例の排気浄化装置について以下に説明する。なお、この第2実施例を説明するあたり、第1実施例と同様な部材及び部位には同一の参照符号を付し、その説明を省略する。
まず、当該実施例における上段側浄化手段は酸化触媒32、下段側浄化手段はDPF34であり、酸化触媒32の出口側とDPF34の入口側とは、折り返し通路36にて接続されている。つまり、本実施例では、PMを含む排気が折り返し通路36内を通過することから、下側の流れ剥離部28が周壁下面19と排気対峙面22とが交差する位置に存在し、このままでは、流れ剥離部28にてうず流が生じ、流れ剥離部28における排気流速が小さくなって排気中のPMが流れ剥離部28に堆積してしまう。
The present invention is not limited to the above-described first embodiment, and various modifications are possible. The exhaust purification device of the second embodiment will be described below with reference to FIG. In the description of the second embodiment, members and parts similar to those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
First, the upper stage purification means in this embodiment is the oxidation catalyst 32, and the lower stage purification means is the DPF 34, and the outlet side of the oxidation catalyst 32 and the inlet side of the DPF 34 are connected by a turn-back passage 36. That is, in the present embodiment, since the exhaust gas containing PM passes through the return passage 36, the lower flow separation portion 28 exists at a position where the peripheral wall lower surface 19 and the exhaust gas confronting surface 22 intersect. A vortex flow is generated in the flow separation unit 28, and the exhaust flow velocity in the flow separation unit 28 decreases, and PM in the exhaust gas accumulates on the flow separation unit 28.

そこで、当該実施例では、この流れ剥離部28をなくすべく流路抵抗削減手段が設けられている。具体的には、当該流路抵抗削減手段は下側曲面部44及び延長部46から構成されており、前者の下側曲面部44は裁頭された球状の薄板にて形成され、DPF34の入口側に向けて凹部をなし、その曲率中心がDPF34の入口側のやや上方近傍に存在して構成されている。この下側曲面部44は排気対峙面22に溶接固定されている。   Therefore, in this embodiment, a flow path resistance reducing means is provided to eliminate the flow separation portion 28. Specifically, the flow path resistance reducing means is composed of a lower curved surface portion 44 and an extension portion 46, and the former lower curved surface portion 44 is formed of a truncated spherical thin plate and is an inlet of the DPF 34. A concave portion is formed toward the side, and the center of curvature is configured to exist slightly above the entrance side of the DPF 34. The lower curved surface portion 44 is fixed to the exhaust facing surface 22 by welding.

一方、後者の延長部46はこの下側曲面部44に一体的に連なり、DPF34の入口側に向けて延設されており、その先端部分がDPF34の入口側形状(例えば円形)に収束する形状に構成されている。
なお、図4中における参照符号30は軽油添加インジェクタ30であり、DPF34の強制再生時に軽油(HC)を排気に向けて噴射し、DPF34の温度を昇温させる。但し、この構成に限定されるものではなく、例えば、ポスト噴射、すなわち、主噴射に続く膨張行程にて追加燃料を噴射して筐体16内にHCを供給しても良い。
On the other hand, the latter extension portion 46 is integrally connected to the lower curved surface portion 44, extends toward the inlet side of the DPF 34, and has a shape in which the tip portion converges to the inlet side shape (for example, a circle) of the DPF 34. It is configured.
In FIG. 4, reference numeral 30 denotes a light oil addition injector 30, which injects light oil (HC) toward the exhaust during forced regeneration of the DPF 34 and raises the temperature of the DPF 34. However, the present invention is not limited to this configuration. For example, additional fuel may be injected in the expansion stroke following the post injection, that is, the main injection, and HC may be supplied into the casing 16.

このように、第2実施例によれば、内壁24を介してその内部が上下に区画された箱型の筐体16において、酸化触媒32からの排気流れをDPF34に向けて折り返させる折り返し通路36が形成され、この筐体16の内面には、折り返し通路36内の流れ剥離部28をなくして排気流れに対する抵抗を削減する下側曲面部44及び延長部46が形成されている。よって、折り返し通路36内では、酸化触媒32からの排気がDPF34の入口側にて滞留せず、この入口側のPMの堆積が回避される。この結果、強制再生時におけるPMへの着火防止が図られて排気浄化装置の耐久性及び信頼性の向上に寄与する。   As described above, according to the second embodiment, in the box-shaped housing 16 whose interior is vertically divided through the inner wall 24, the return passage 36 for returning the exhaust flow from the oxidation catalyst 32 toward the DPF 34. A lower curved surface portion 44 and an extension portion 46 are formed on the inner surface of the housing 16 to eliminate the flow separation portion 28 in the folded passage 36 and reduce the resistance to the exhaust flow. Therefore, in the return passage 36, the exhaust from the oxidation catalyst 32 does not stay on the inlet side of the DPF 34, and accumulation of PM on the inlet side is avoided. As a result, PM is prevented from being ignited during forced regeneration, which contributes to improving the durability and reliability of the exhaust emission control device.

また、排気の圧力損失も低減可能となるし、これら2つの浄化手段32,34を上下に区画した筐体16内に収容しているので、車両への搭載性が向上するし、筐体16内の保温性が良好となって各浄化手段の活性も促進される。
更に、酸化触媒32からの排気流れは下側曲面部44の形状に沿って横方向に向きを変える。そして、下側曲面部44に連なる延長部46がDPF34の入口側の形状に収束した形状をなして形成されているので、比重の大きなPMが流れ剥離部28に堆積せず、DPF34の入口側に効率良く集積されてDPF34内に導入される。
Further, the pressure loss of the exhaust gas can be reduced, and since these two purifying means 32 and 34 are accommodated in the casing 16 that is partitioned vertically, the mounting property to the vehicle is improved, and the casing 16 is improved. The heat retaining property is improved, and the activity of each purifying means is also promoted.
Further, the exhaust flow from the oxidation catalyst 32 changes its direction in the lateral direction along the shape of the lower curved surface portion 44. Since the extended portion 46 connected to the lower curved surface portion 44 is formed so as to converge to the shape of the inlet side of the DPF 34, PM having a large specific gravity does not accumulate on the flow separation portion 28, and the inlet side of the DPF 34 Are efficiently integrated and introduced into the DPF 34.

以上で本発明の一実施形態についての説明を終えるが、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施例では上下2段の筐体について説明されているが、折り返し通路を有する箱型の筐体であれば、上下3段以上に区画された筐体であっても良い。また、第2実施例においても第1実施例の上側曲面部40を設けても良く、この場合には、排気の圧力損失の低減により一層寄与するとの効果を奏する。
This is the end of the description of the embodiment of the present invention, but various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the upper and lower two-stage casings are described. However, as long as the box-shaped casing has a folding path, the upper and lower three-stage casings may be used. Also in the second embodiment, the upper curved surface portion 40 of the first embodiment may be provided. In this case, the effect of further contributing to the reduction of the exhaust pressure loss is achieved.

更に、上記実施例では筐体とは別個の流路抵抗削減手段を筐体の内側に設けた例が示されているが、筐体自体の形状を変更して折り返し通路内のデッドボリュームを低減させても良い。
ところで、上記実施形態ではディーゼルエンジンに適用された排気浄化装置について説明されているが、当該エンジンに限定されるものではなく、本発明は、DPFを備えた総てのエンジンに適用可能である。
Furthermore, in the above embodiment, an example in which the flow resistance reducing means separate from the housing is provided inside the housing is shown, but the dead volume in the folding path is reduced by changing the shape of the housing itself. You may let them.
By the way, in the said embodiment, although the exhaust gas purification apparatus applied to the diesel engine is demonstrated, it is not limited to the said engine, This invention is applicable to all the engines provided with DPF.

本発明の第1実施例に係る内燃機関の排気浄化装置を搭載した車両の概略図である。1 is a schematic view of a vehicle equipped with an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention. 図1の排気浄化装置の外観斜視図である。It is an external appearance perspective view of the exhaust gas purification apparatus of FIG. (a)は図2のIII−III線に沿う矢視断面図であり、(b)は(a)のB−B線に沿う矢視断面図である。(A) is an arrow directional cross-sectional view which follows the III-III line of FIG. 2, (b) is an arrow directional cross-sectional view which follows the BB line of (a). (a)は第2実施例における排気浄化装置の断面図であり、(b)は(a)のB−B線に沿う矢視断面図である。(A) is sectional drawing of the exhaust gas purification apparatus in 2nd Example, (b) is arrow sectional drawing which follows the BB line of (a).

符号の説明Explanation of symbols

8 排気浄化装置
16 筐体
18 周壁上面(上面)
19 周壁下面(下面)
22 排気対峙面(後側面)
24 内壁
26 上側の流れ剥離部(デッドボリューム)
28 下側の流れ剥離部(デッドボリューム)
32 前段酸化触媒(上段側浄化手段)
34 DPF(上段側、或いは下段側浄化手段)
36 折り返し通路(通路)
40 上側曲面部(流路抵抗削減手段)
42 下側曲面部(流路抵抗削減手段)
44 下側曲面部(流路抵抗削減手段)
46 延長部(流路抵抗削減手段)
48 SCR触媒(下段側浄化手段)
50 後段酸化触媒(下段側浄化手段)
8 Exhaust gas purification device 16 Housing 18 Upper surface of peripheral wall (upper surface)
19 Lower surface of peripheral wall (lower surface)
22 Exhaust opposite side (rear side)
24 inner wall 26 upper flow separation part (dead volume)
28 Lower flow separation (dead volume)
32 Pre-stage oxidation catalyst (upper side purification means)
34 DPF (upper side or lower side purification means)
36 Folding passage (passage)
40 Upper curved surface (channel resistance reduction means)
42 Lower curved surface (channel resistance reduction means)
44 Lower curved surface (channel resistance reduction means)
46 Extension (channel resistance reduction means)
48 SCR catalyst (lower purification means)
50 Second-stage oxidation catalyst (lower-stage purification means)

Claims (5)

内燃機関からの排気が導入される箱型の筐体と、
該筐体の前側面、左側面及び右側面のそれぞれに固定支持され、排気対峙面には当接しないように形成されて、該筐体の内部を上下に区画する内壁と、
前記筐体内にそれぞれ収容され、前記内壁の上側に配置される上段側浄化手段及び前記内壁の下側に配置される下段側浄化手段と、
前記筐体内に形成され、前記上段側浄化手段と前記下段側浄化手段とを接続し、前記上段側浄化手段からの排気流れを前記下段側浄化手段に向けて折り返させる通路と、
前記筐体の内面に形成され、前記通路内のデッドボリュームを低減させて前記排気流れに対する抵抗を削減する流路抵抗削減手段と
を具備することを特徴とする内燃機関の排気浄化装置。
A box-shaped housing into which exhaust from the internal combustion engine is introduced;
An inner wall that is fixedly supported on each of the front side surface, the left side surface, and the right side surface of the housing and is formed so as not to contact the exhaust-facing surface, and divides the interior of the housing vertically.
An upper stage purification unit disposed in the casing and disposed on the upper side of the inner wall; and a lower stage side purification unit disposed on the lower side of the inner wall;
A passage formed in the housing, connecting the upper-stage purification means and the lower-stage purification means, and returning an exhaust flow from the upper-stage purification means toward the lower-stage purification means;
An exhaust gas purification apparatus for an internal combustion engine, comprising: flow path resistance reduction means formed on an inner surface of the casing to reduce dead volume in the passage and thereby reduce resistance to the exhaust flow.
前記上段側浄化手段は、排気中のNOを酸化させてNOを生成する前段酸化触媒及び排気中のパティキュレートを捕捉するパティキュレートフィルタを有し、前記下段側浄化手段は、NHを還元剤として用いて排気中のNOxを浄化する選択還元型NOx触媒及び余剰NHを酸化させてNを生成する後段酸化触媒を有しており、
前記通路は、前記フィルタからの排気流れを前記NOx触媒に向けて折り返していることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The upper stage purification unit includes a pre-stage oxidation catalyst that oxidizes NO in the exhaust to generate NO 2 and a particulate filter that captures particulates in the exhaust, and the lower stage purification unit reduces NH 3 A selective reduction type NOx catalyst that purifies NOx in the exhaust gas as an agent and a post-stage oxidation catalyst that oxidizes surplus NH 3 to generate N 2 ;
2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the passage turns an exhaust flow from the filter toward the NOx catalyst.
前記流路抵抗削減手段は、前記フィルタの出口側に向けて凹部をなし、前記筐体内の上面と前記フィルタ内の排気流れ方向を法線とする後側面とが交差する位置のデッドボリュームを低減する上側曲面部と、前記NOx触媒の入口側に向けて凹部をなし、前記筐体内の下面と前記後側面とが交差する位置のデッドボリュームを低減する下側曲面部と
を有することを特徴とする請求項2に記載の内燃機関の排気浄化装置。
The flow path resistance reducing means forms a recess toward the outlet side of the filter, and reduces the dead volume at the position where the upper surface in the housing and the rear side surface normal to the exhaust flow direction in the filter intersect. An upper curved surface portion that forms a recess toward the inlet side of the NOx catalyst, and a lower curved surface portion that reduces a dead volume at a position where the lower surface in the housing and the rear side surface intersect with each other. The exhaust emission control device for an internal combustion engine according to claim 2.
前記上段側浄化手段は、排気中のNOを酸化させてNOを生成する酸化触媒を有し、前記下段側浄化手段は、排気中のパティキュレートを捕捉するパティキュレートフィルタを有しており、
前記通路は、前記酸化触媒からの排気流れを前記フィルタに向けて折り返していることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The upper stage purification means has an oxidation catalyst that oxidizes NO in the exhaust to generate NO 2, and the lower stage purification means has a particulate filter that captures particulates in the exhaust,
2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the passage turns an exhaust flow from the oxidation catalyst toward the filter.
前記流路抵抗削減手段は、前記フィルタの入口側に向けて凹部をなし、前記筐体内の下面と前記フィルタ内の排気流れ方向を法線とする後側面とが交差する位置のデッドボリュームを低減する下側曲面部と、該下側曲面部に連なって前記フィルタに向けて延設され、該フィルタの入口側の形状に収束した形状をなす延長部と
を含むことを特徴とする請求項4に記載の内燃機関の排気浄化装置。
The flow path resistance reducing means forms a recess toward the inlet side of the filter, and reduces the dead volume at the position where the lower surface in the housing intersects the rear side surface normal to the exhaust flow direction in the filter. 5. A lower curved surface portion, and an extension portion that extends toward the filter and is connected to the lower curved surface portion, and has a shape converged to the shape on the inlet side of the filter. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1.
JP2006072580A 2006-03-16 2006-03-16 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4680103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072580A JP4680103B2 (en) 2006-03-16 2006-03-16 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072580A JP4680103B2 (en) 2006-03-16 2006-03-16 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007247549A JP2007247549A (en) 2007-09-27
JP4680103B2 true JP4680103B2 (en) 2011-05-11

Family

ID=38592103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072580A Expired - Fee Related JP4680103B2 (en) 2006-03-16 2006-03-16 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4680103B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252066B2 (en) * 2013-09-20 2017-12-27 マツダ株式会社 Engine exhaust system
JP2015183633A (en) * 2014-03-25 2015-10-22 日本碍子株式会社 Emission control system
DE102021121289A1 (en) 2021-08-17 2023-02-23 Purem GmbH Exhaust system for an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550022U (en) * 1991-12-10 1993-07-02 バブコック日立株式会社 Catalytic reactor
JP2000130156A (en) * 1998-10-21 2000-05-09 Alternative Fuel Systems Inc Reversible flow catalyst converter for internal combustion engine
JP2002276334A (en) * 2001-03-22 2002-09-25 Nissan Diesel Motor Co Ltd Muffler
JP2005155404A (en) * 2003-11-25 2005-06-16 Komatsu Ltd Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550022U (en) * 1991-12-10 1993-07-02 バブコック日立株式会社 Catalytic reactor
JP2000130156A (en) * 1998-10-21 2000-05-09 Alternative Fuel Systems Inc Reversible flow catalyst converter for internal combustion engine
JP2002276334A (en) * 2001-03-22 2002-09-25 Nissan Diesel Motor Co Ltd Muffler
JP2005155404A (en) * 2003-11-25 2005-06-16 Komatsu Ltd Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007247549A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US8080208B2 (en) Exhaust gas purification device
JP4462556B2 (en) Exhaust gas purification device for internal combustion engine
JP4286888B2 (en) Exhaust purification equipment
JP5602495B2 (en) Exhaust gas purification device
JP4286887B2 (en) Exhaust purification equipment
JP6009260B2 (en) Exhaust purification device
JP4881213B2 (en) Exhaust purification device
US20100132333A1 (en) Exhaust emission control device
JP2009091982A (en) Exhaust emission control device
US20130232953A1 (en) Exhaust-gas aftertreatment system and method for exhaust-gas aftertreatment
JP4651560B2 (en) Exhaust gas purification device for internal combustion engine
JP2013142363A (en) Exhaust emission control device of diesel engine
CN101205822A (en) Exhaust system of four-stroke engine
JP5057944B2 (en) Exhaust aftertreatment device
JP2018044528A (en) Engine exhaust emission control device
JP4680103B2 (en) Exhaust gas purification device for internal combustion engine
JP2006266192A (en) Exhaust emission control device for engine
JP2007132202A (en) Exhaust gas temperature rise device
JP2009091983A (en) Exhaust emission control device
JP2008274850A (en) Exhaust emission control device
JP5084655B2 (en) Exhaust purification device
JP2009097435A (en) Exhaust emission control device
JP2009013862A (en) Exhaust emission control device of internal combustion engine
JP2008127997A (en) Exhaust emission control device of internal combustion engine
JP6805948B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4680103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees