JP4679910B2 - Determinant analysis method of contract price in power trading market and computer program for analysis - Google Patents
Determinant analysis method of contract price in power trading market and computer program for analysis Download PDFInfo
- Publication number
- JP4679910B2 JP4679910B2 JP2005008421A JP2005008421A JP4679910B2 JP 4679910 B2 JP4679910 B2 JP 4679910B2 JP 2005008421 A JP2005008421 A JP 2005008421A JP 2005008421 A JP2005008421 A JP 2005008421A JP 4679910 B2 JP4679910 B2 JP 4679910B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- price
- contract
- bid
- constraint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004458 analytical method Methods 0.000 title claims description 45
- 238000004590 computer program Methods 0.000 title claims description 15
- 230000005611 electricity Effects 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 22
- 230000035945 sensitivity Effects 0.000 claims description 22
- 230000014509 gene expression Effects 0.000 claims description 20
- 238000010248 power generation Methods 0.000 claims description 17
- 230000009977 dual effect Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 49
- 238000000034 method Methods 0.000 description 25
- 238000012886 linear function Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 238000000556 factor analysis Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- GOLXNESZZPUPJE-UHFFFAOYSA-N spiromesifen Chemical group CC1=CC(C)=CC(C)=C1C(C(O1)=O)=C(OC(=O)CC(C)(C)C)C11CCCC1 GOLXNESZZPUPJE-UHFFFAOYSA-N 0.000 description 2
- 108010046685 Rho Factor Proteins 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
本発明は電力系統における電力取引市場の分析に関し、より詳細には、電力系統の電力取引市場における約定価格の決定要因分析方法及び約定価格の決定要因を分析するためのコンピュータプログラムに関する。 The present invention relates to an analysis of a power trading market in a power system, and more particularly to a method for analyzing a determinant of a contract price in a power transaction market of a power system and a computer program for analyzing a determinant of a contract price.
近年、欧米を中心とする世界各国において、電力市場の自由化が進められており、その一環として、電力取引市場が創設されている。代表的な例として、北欧のノールド・プール(Nord Pool)、米国のPJMISOやNYISOのエネルギー市場、ドイツのEEXといった電力取引市場が挙げられる。日本では、電力取引制度の導入に備え、2005年4月に卸電力取引所が開設される予定となっている。これらの電力取引市場における取引方法(約定方法)として、基本的にシングルプライスオークション方式(single price auction)が採用されている。 In recent years, the electric power market has been liberalized in countries around the world, mainly in the United States and Europe, and as part of this, an electric power trading market has been established. Typical examples include Nord Europe's Nord Pool, US PJMISO and NYISO energy markets, and German EEX power trading markets. In Japan, a wholesale power exchange is scheduled to open in April 2005 in preparation for the introduction of a power trading system. As a trading method (contract method) in these electric power trading markets, a single price auction method is basically adopted.
図1は、電力取引制度が導入された場合の電力系統の構成を示す模式図である。図1に示したように、電力系統1は、電力取引市場に参加する者の発電機SG12(SGは発電機SG1、SG2、…、SGNGの集合を意味する)と負荷SD13(SDは負荷SD1、SD2、…、SDNDの集合を意味する)、及び電力取引市場に参加しない者の発電機G14(Gは発電機G1、G2、…、GNgの集合を意味する)と負荷D15(Dは負荷D1、D2、…、DNdの集合を意味する)から構成される。電力取引市場に参加しない者の発電機G14は固定価格で電力系統1へ電力を提供し、電力取引市場に参加しない者の負荷D15は固定価格で電力系統1から電力を消費する。一方、電力取引市場に参加する者(発電機SG12、負荷SD13)は、電力取引所を介して入札により電力の売買価格を決定する。但し、取引が成立しなかった者の負荷(SD13中の負荷)は、発電機G14から電力を買うこともできる。
FIG. 1 is a schematic diagram showing a configuration of an electric power system when an electric power trading system is introduced. As shown in FIG. 1, the
一般的に、電力取引市場をスポット市場、電力を市場へ販売する参加者(例えば、発電機SG12)を売り手(スポット供給者)、市場から電力を購入する参加者(例えば、負荷SD13)を買い手(スポット需要者)、スポット市場で決定した取引量を約定量、スポット市場で決済された価格(MCP)を約定価格と称する。また、電力取引市場に参加しない電力供給者(G14)を非スポット供給者、電力需要者(D15)を非スポット需要者と称する。 Generally, the power trading market is the spot market, the participants selling the power to the market (for example, the generator SG12) as the seller (spot supplier), and the participants purchasing the power from the market (for example, the load SD13) as the buyer (Spot consumer), the transaction amount determined in the spot market is referred to as a fixed amount, and the price (MCP) settled in the spot market is referred to as a contract price. Further, a power supplier (G14) who does not participate in the power trading market is referred to as a non-spot supplier, and a power consumer (D15) is referred to as a non-spot consumer.
シングルプライスオークション方式で取引を行う場合、まず、各売り手(SG12)と買い手(SD13)は各自の入札データ(即ち、入札価格と入札量)を電力取引所へ提出する。すべての入札データが積み上げられ、図2aに示した市場供給曲線と図2bに示した市場需要曲線が作成される。前記市場供給曲線と前記市場需要曲線との交点での価格(約定価格)と量(約定量)(図2c)がオークションの取引結果となる。即ち、シングルプライスオークションは、価格優先の原則に従い、入札価格の低い売り手と入札価格の高い買い手から先に約定を決定し、需給が均衡する一点の入札価格を市場全体の約定価格として決済する。その結果、電力需要家余剰と電力供給家余剰の合計である社会余剰が最大化される効率的な資源配分を実現させることができる。 When performing a transaction by the single price auction method, first, each seller (SG12) and buyer (SD13) submit their bid data (that is, bid price and bid amount) to the power exchange. All bid data is stacked to create the market supply curve shown in FIG. 2a and the market demand curve shown in FIG. 2b. The price (contract price) and quantity (approx. Quantified) (FIG. 2c) at the intersection of the market supply curve and the market demand curve are the transaction results of the auction. That is, in the single price auction, in accordance with the principle of price priority, a contract is determined in advance from a seller with a low bid price and a buyer with a high bid price, and a single bid price with a balance between supply and demand is settled as the contract price of the entire market. As a result, it is possible to realize efficient resource allocation that maximizes the social surplus, which is the sum of the power consumer surplus and the power supplier surplus.
しかしながら、電力系統におけるエリア間の流通電力の量が連系設備(エリア間の送電線)による託送可能量を超過する場合では、託送可能量を制約条件(エリア間の流通電力の量が託送可能量と等しくなる)としてエリアごとに再度約定処理を行い、電力系統を複数に区分してオークションを行う市場分断方式を採用するしかない。市場分断方式採用の結果として、混雑連系線の送り側エリアの約定価格が安くなり、混雑連系線の受け側エリアの約定価格が高くなる。その他に、実際の電力系統では、送電能力による混雑の他、電圧と無効電力等の制約による混雑も起こり得る。そのため、前記約定価格と約定量で決められた売り手の発電機と買い手の負荷を含んだ電力系統の構成が、電力系統運用の安定性と信頼性等の制約条件を満たしていない場合、入札者が新たな条件を追加した上再度オークションを実施し、全ての制約条件を満たすまでこのような調整過程が繰り返し行われることになる。 However, when the amount of distributed power between areas in the power system exceeds the amount that can be transferred by the interconnection facility (transmission line between areas), the amount of power that can be transferred is a constraint (the amount of distributed power between areas can be transferred) It is only possible to adopt a market division method in which the contract processing is performed again for each area and the power system is divided into a plurality of auctions. As a result of adopting the market division method, the contract price in the sending area of the congested interconnection line is reduced and the contract price in the receiving area of the congested interconnection line is increased. In addition, in an actual power system, congestion due to restrictions such as voltage and reactive power may occur in addition to congestion due to power transmission capacity. Therefore, if the configuration of the power system including the generator and the buyer's load determined by the contract price and the contract amount does not satisfy the constraints such as stability and reliability of power system operation, The new auction is added and the auction is executed again, and such an adjustment process is repeated until all the constraint conditions are satisfied.
これに対して、上記したシングルプライスオークション方式が採用される場合、電力系統の運用に関する主な要因(有効電力と無効電力のバランス、電圧制限、送電能力)を制約条件とし、電力需要者余剰と電力供給者余剰の合計である社会余剰が最大化となるように、約定価格と約定量を計算する方法が提案されている。次に、該計算方法について説明する。 On the other hand, when the single price auction method described above is adopted, the main factors related to the operation of the power system (balance between active power and reactive power, voltage limit, power transmission capacity) are the limiting conditions, A method has been proposed for calculating the contract price and contract quantity so that the social surplus, which is the sum of the power supplier surpluses, is maximized. Next, the calculation method will be described.
まず、シングルプライスオークションのシミュレーションモデルを説明する。
式(1)中F(X)は電力需要者余剰と全ての電力供給者余剰を含む社会余剰を示す目標関数であり、式(2)中G’(X)は電力系統における等式制約条件(即ち、潮流方程式)であり、式(3)中H(X)は電力系統における不等式制約条件(即ち、有効・無効電力上下限、電圧上下限、潮流上下限等)であり、式(4)中K(X)はスポット市場バランス(送電損失を含む自由化発電と需要の需給バランス)等式制約条件であり、Xは母線電圧を示す独立変数であり、全てのPgi、PGi、PDiはXの関数となる。 In equation (1), F (X) is a goal function indicating the surplus of power consumers and all surplus of power suppliers, and G '(X) in equation (2) is an equation constraint in the power system. (That is, power flow equation), and H (X) in equation (3) is an inequality constraint condition in power system (that is, active / reactive power upper / lower limit, voltage upper / lower limit, power flow upper / lower limit, etc.). ) Medium K (X) is the spot market balance (liberalized power generation including transmission loss and demand-supply balance) equality constraint condition, X is an independent variable indicating bus voltage, and all P gi, P Gi , P Di is a function of X.
式(1)〜(4)は、等式制約条件G’(X)とK(X)、不等式制約条件H(X)を満たした上で、目標関数F(X)を最大化する最適解Xを解く問題(一般的に、シングルプライスオークション問題と称する)を表している。 Equations (1) to (4) are the optimal solutions that maximize the objective function F (X) after satisfying the equality constraints G '(X) and K (X) and the inequality constraint H (X). It represents the problem of solving X (generally referred to as a single price auction problem).
式(1)において、非スポット市場の負荷の消費電力の量とその電気料金は事前に与えられるため、πdiとPdiは定数となり、最適解Xに影響を与えない。ωi(Pgi)が発電機の増分燃料費関数であり、Pgiの1次関数で表すことができる。φi(PGi)とθi(PDi)はそれぞれ図3aと図3bに示した線形関数または区分線形関数とする。図3aに示した入札関数(供給曲線)は、売り手iがφi(PGi)以上の価格で最大PGiまでの電力を売ることを示し、図3bに示した入札関数(需要曲線)は、買い手iがθi(PDi)以下の価格で最大PDiまでの電力を買うことを示す。なお、約定時(最適解となる時)の電力量における入札価格を限界入札価格と呼ぶ。 In equation (1), the amount of power consumed by the load in the non-spot market and its electricity rate are given in advance, so π di and P di are constants and do not affect the optimal solution X. ω i (P gi ) is an incremental fuel cost function of the generator and can be expressed by a linear function of P gi . φ i (P Gi ) and θ i (P Di ) are the linear functions or piecewise linear functions shown in FIGS. 3a and 3b, respectively. The bid function (supply curve) shown in FIG. 3a shows that seller i sells power up to the maximum P Gi at a price of φ i (P Gi ) or more, and the bid function (demand curve) shown in FIG. , Indicates that buyer i buys power up to P Di at a price less than θ i (P Di ). The bid price for the amount of electric power at the time of contract (when the optimum solution is reached) is called the limit bid price.
式(1)を解いて、最適解Xを求めることにより(即ち、SPAモデルによるシングルプライスオークションにより)、各売り手、各買い手の約定量PGi(X)、 PDi(X)と非スポットの発電機出力Pgi(X)が得られる。さらに、各売り手、各買い手の約定量PGi(X)、 PDi(X)をそれぞれ入札関数φi(PGi)、θi(PDi)に代入すれば、各売り手の限界入札価格(πGi)と各買い手の限界入札価格(πDi)が計算される(φi(PGi)、θi(PDi)は与えられたものであるため)。 By solving Equation (1) and finding the optimal solution X (ie, by a single price auction using the SPA model), each seller, each buyer's approximately fixed amount P Gi (X), P Di (X) and non-spot A generator output P gi (X) is obtained. Furthermore, if each seller and each buyer's approximately fixed amounts P Gi (X) and P Di (X) are substituted into the bid functions φ i (P Gi ) and θ i (P Di ), respectively, the marginal bid price of each seller ( π Gi ) and the limit bid price (π Di ) of each buyer is calculated (since φ i (P Gi ) and θ i (P Di ) are given).
図3cに示したように供給曲線(図3a)と需要曲線(図3b)が交差すれば、約定価格π は各売り手の限界入札価格(πGi)中一番高い限界入札価格(πGmax)又は各買い手の限界入札価格(πDi)中一番安い限界入札価格(πDmin)により決定される(即ち、π =πGmax=πDmin)ため、約定価格はシングルプライス(一価格)となる。 If the supply curve (FIG. 3a) and the demand curve (FIG. 3b) intersect as shown in FIG. Is determined by the highest limit bid price (π Gmax ) of each seller's limit bid price (π Gi ) or the lowest limit bid price (π Dmin ) of each buyer's limit bid price (π Di ) (ie, , Π = Π Gmax = π Dmin ), the contract price is a single price.
しかしながら、供給曲線(図3a)と需要曲線(図3b)の交点が複数存在する場合(即ち、πGmax ≠πDmin)、約定価格πを下記の式(9)〜(11)により計算する必要がある。 However, when there are a plurality of intersections between the supply curve (FIG. 3a) and the demand curve (FIG. 3b) (ie, π Gmax ≠ π Dmin ), the contract price π needs to be calculated by the following equations (9) to (11) There is.
また、市場を複数に分離させる場合(市場分断の場合)では、分離された市場k毎に、売り最高約定価格πGmax,k(πGmax,k=max{πGi,k =φi(PGi,k): i,k= 1,…, NG,k, PG,k≠0})と買い最低約定価格πDmin,k(πDmin,k= min{πDi,k =θi(PDi,k): i,k= 1,…, ND,k, PDi,k≠0 })を決定し、それぞれの約定価格(πk)を上記したように決定する。 In the case of dividing the market into a plurality of cases (in the case of market division), the maximum selling price π Gmax, k (π Gmax, k = max {π Gi, k = φ i (P Gi, k ): i , k = 1,…, N G, k , P G, k ≠ 0}) and buy minimum execution price π Dmin, k (π Dmin, k = min {π Di, k = θ i (P Di, k ): i , k = 1,..., N D, k , P Di, k ≠ 0}) and the respective contract prices (π k ) are determined as described above.
従って、上記したシングルプライスオークションのシミュレーションモデルを用いて、電力系統の運用に関する主な要因を制約条件とし、社会余剰が最大となる約定価格と約定量を計算することができるが、計算された約定価格(π又はπk)の値はどの要素から構成されているか、また、各売り手・買い手の入札データおよび各電力系統の制約が該約定価格の値にどの程度の影響を与えているかについて評価できない。 Therefore, using the simulation model of the single price auction described above, it is possible to calculate the contract price and contract quantity that maximize the social surplus, with the main factors related to the operation of the power system as the constraint condition. Evaluate what element the value of price (π or π k ) is composed of, and how much the bid data of each seller / buyer and the constraints of each power system affect the value of the contract price Can not.
しかしながら、電力系統の連系線運用および混雑管理を効率化するため、又は、スポット市場における入札データを評価可能にするため、約定価格に関する詳細な情報の解明が求められている。 However, in order to improve the efficiency of interconnection operation and congestion management of the power system, or to make it possible to evaluate bid data in the spot market, it is required to clarify detailed information regarding the contract price.
これまで、電力系統における電気料金の導出と評価に関して、数多くの解析方法が提案されてきた。これらの方法は、基本的にラグランジュ乗数をシャドウプライス(shadow price)として各種費用と制約条件の等価価値を評価する方法と、母線におけるノーダルプライス(Nodal Price)の分解方法に分類できる。ラグランジュ乗数をシャドウプライスとして各種費用と制約条件の等価価値を評価する場合、直接約定価格を評価できないといった課題があった。 So far, many analysis methods have been proposed for the derivation and evaluation of electricity charges in power systems. These methods can basically be classified into a method for evaluating the equivalent value of various costs and constraints using a Lagrange multiplier as a shadow price, and a method for decomposing a nodal price at the bus. When evaluating the equivalent value of various costs and constraints using the Lagrange multiplier as a shadow price, there was a problem that the contract price could not be evaluated directly.
一方、ノーダルプライスの分解方法において、各電源及び制約条件がノーダルプライスに与える影響を定量的に評価することを実現させたノーダルプライスの分解方法は下記の特許文献1に開示されている。該分解方法は、電力系統の各要因をノーダルプライスに直接関連付け、各ノーダルプライスを詳細構成要素に分解する。分解されたノーダルプライスの各項は、ヒューリスティックなものではなく、母線のノーダルプライスにおけるそれぞれの要因による影響の度合いであるため、分解によって得られたノーダルプライスにおける詳細情報が電源と送電線網運用、混雑管理の効率化、及び発送電設備の投資評価に利用される。
On the other hand, in the nodal price decomposition method, a nodal price decomposition method that realizes quantitatively evaluating the influence of each power source and the constraint condition on the nodal price is disclosed in
しかしながら、特許文献1に開示されているノーダルプライスの分解方法には、電力取引制度が導入された場合の電力系統の構成が考慮されていないため、電力取引が行われた場合、入札情報を含んだ電力系統の各要因による判定価格への影響を直接評価することができないといった課題があった。
本発明は上記課題に鑑みなされたものであって、電力取引市場における約定価格を決定する要因を解明し、約定価格の詳細構成要素を導出することにより、入札情報、電圧制約等を含んだ電力系統の様々な要因の約定価格への影響を定量的に評価することを可能にすることを目的としている。 The present invention has been made in view of the above problems, and elucidates the factors that determine the contract price in the power trading market, and derives detailed components of the contract price, thereby providing power including bid information, voltage constraints, etc. The purpose is to make it possible to quantitatively evaluate the influence of various factors of the system on the contract price.
上記目的を達成するために本発明に係る電力取引市場における約定価格の決定要因分析方法(1)は、電力取引市場で入札により決済された約定価格で電力を販売する売り手の発電機と、前記約定価格で電力を購入する買い手の負荷と、固定電気料金で電力を提供する非スポット市場の発電機と、前記固定電気料金で電力を消費する非スポット市場の負荷とを含んで構成される電力系統の電力取引市場における約定価格の決定要因分析方法において、前記電力系統における潮流方程式及び送電損失を含む自由化発電と需要の需給バランス関係式を含んで構成された等式制約条件と、有効・無効電力上下限、電圧上下限及び潮流上下限を含んで構成された不等式制約条件とを満たした上で、全ての電力需要者余剰と全ての電力供給者余剰とを含む社会余剰を示す目標関数の値を最大化するシングルプライスオークションの最適解及びその双対解を求め、前記最適解及び前記売り手と前記買い手のそれぞれの入札関数に基づいて、約定価格決定母線を検索し、前記等式制約条件及び前記不等式制約条件を、前記約定価格にその価値が陽に評価される有価制約条件と、前記約定価格にその価値が陽に評価されない無価制約条件とに分け、前記有価制約条件、前記無価制約条件、前記最適解及び前記双対解に基づいて、前記約定価格決定母線における電圧感度を計算することにより、前記約定価格を、前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とから構成される線形多項式に分解して、前記各項の値を計算することを特徴としている。 In order to achieve the above object, a determinant analysis method (1) of a contract price in a power trading market according to the present invention includes a generator of a seller selling power at a contract price settled by a bid in the power trading market, Electricity comprising a load of a buyer who purchases power at a contract price, a non-spot market generator that provides power at a fixed electricity rate, and a non-spot market load that consumes electricity at the fixed electricity rate In the determinant analysis method of the contract price in the power trading market of the grid, an equality constraint condition including the power flow equation in the power grid and the relation between the liberalized power generation including transmission loss and the supply-demand balance relation of demand, Include inequality constraints including reactive power upper and lower limits, voltage upper and lower limits, and power flow upper and lower limits, and include all power consumer surpluses and all power supplier surpluses. A single price auction optimal solution that maximizes the value of the target function indicating social surplus and its dual solution are obtained, and a contract pricing bus is searched based on the optimal solution and the bid function of each of the seller and the buyer. The equality constraint condition and the inequality constraint condition are divided into a value constraint condition whose value is positively evaluated for the contract price and a non-value constraint condition whose value is not explicitly evaluated for the contract price, By calculating the voltage sensitivity at the contract pricing bus based on the value constraint, the valueless constraint, the optimal solution and the dual solution, the contract price is related to the non-spot market load consumption cost. A term relating to power generation costs of the non-spot market generator, a term relating to the bid function of the buyer, a term relating to the bid function of the seller, The value of each term is calculated by decomposing into a linear polynomial composed of a term relating to the equivalent value of the security constraint condition, a term relating to the upper limit constraint on the bid amount, and a term relating to the lower limit constraint on the bid amount. It is said.
上記電力取引市場における約定価格の決定要因分析方法(1)によれば、電力取引市場で入札により決済された約定価格で電力を販売する売り手の発電機と、前記約定価格で電力を購入する買い手の負荷と、固定電気料金で電力を提供する非スポット市場の発電機と、前記固定電気料金で電力を消費する非スポット市場の負荷とを含んで構成される電力系統の電力取引市場における約定価格の決定要因分析方法において、前記電力系統における潮流方程式及び送電損失を含む自由化発電と需要の需給バランス関係式を含んで構成された等式制約条件と、有効・無効電力上下限、電圧上下限及び潮流上下限を含んで構成された不等式制約条件とを満たした上で、全ての電力需要者余剰と全ての電力供給者余剰とを含む社会余剰を示す目標関数の値を最大化するシングルプライスオークションの最適解及びその双対解を求め、前記最適解及び前記売り手と前記買い手のそれぞれの入札関数に基づいて、約定価格決定母線を検索し、前記等式制約条件及び前記不等式制約条件を、前記約定価格にその価値が陽に評価される有価制約条件と、前記約定価格にその価値が陽に評価されない無価制約条件とに分け、前記有価制約条件、前記無価制約条件、前記最適解及び前記双対解に基づいて、前記約定価格決定母線における電圧感度を計算することにより、前記約定価格を、前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とから構成される線形多項式に分解して、前記各項の値を計算するため、分解された前記多項式から前記約定価格を決める要因(詳細情報)が解明され、入札情報、非スポット市場の発電機及び負荷の運用情報、電圧及び電力などの制約条件等を含む要因による前記約定価格への影響を定量的に評価することを実現させることができる。 According to the determinant analysis method (1) of the contract price in the power trading market, the generator of the seller who sells power at the contract price settled by bidding in the power trading market and the buyer who purchases the power at the contract price. Contract price in the power trading market of a power system comprising a load of a non-spot market that provides power at a fixed electricity rate, and a load on a non-spot market that consumes power at the fixed electricity rate In the determinant analysis method, there are equality constraints including the power flow equation in the power system and the relation between the liberalized power generation and demand balance including transmission loss, the active / reactive power upper and lower limits, and the voltage upper and lower limits. And an inequality constraint that includes the upper and lower limits of the tidal current, and a social function surplus that includes all power consumer surpluses and all power supplier surpluses. A single price auction optimal solution and a dual solution thereof are searched, and a contract pricing bus is searched based on the optimal solution and each bid function of the seller and the buyer, and the equality constraint and the The inequality constraint condition is divided into a value constraint condition whose value is explicitly evaluated at the contract price and a value constraint condition whose value is not evaluated explicitly at the contract price, and the value constraint condition and the value constraint By calculating the voltage sensitivity at the contract pricing bus based on the condition, the optimal solution and the dual solution, the contract price is calculated in terms of the consumption cost of the non-spot market load; A term relating to the power generation cost of the generator, a term relating to the bid function of the buyer, a term relating to the bid function of the seller, and the equivalent value of the value constraint In order to calculate the value of each term by decomposing it into a linear polynomial composed of a term relating to the upper limit constraint on the bid amount, and a term relating to the lower limit constraint on the bid amount. Factors that determine prices (detailed information) are elucidated, and quantitative evaluation of the impact on the contract price due to factors including bid information, non-spot market generator and load operation information, voltage and power constraints, etc. Can be realized.
また、本発明に係る電力取引市場における約定価格の決定要因分析方法(2)は、上記電力取引市場における約定価格の決定要因分析方法(1)において、前記目標関数を下記の式(1)で表し、前記等式制約条件を下記の式(2)と(4)で表し、前記不等式制約条件を下記の式(3)で表すことを特徴としている。 Also, the determinant analysis method (2) of the contract price in the power trading market according to the present invention is the following determinant analysis method (1) of the contract price in the power transaction market. The equality constraint condition is expressed by the following formulas (2) and (4), and the inequality constraint condition is expressed by the following formula (3).
上記電力取引市場における約定価格の決定要因分析方法(2)によれば、前記目標関数を下記の式(1)で表し、前記等式制約条件を下記の式(2)と(4)で表し、前記不等式制約条件を下記の式(3)で表すため、前記シングルプライスオークションのシミュレーションモデルが数式で定式化され、前記シングルプライスオークションの最適解を求めることができる。 According to the determinant analysis method (2) of the contract price in the power trading market, the target function is expressed by the following formula (1), and the equality constraint condition is expressed by the following formulas (2) and (4). Since the inequality constraint condition is expressed by the following equation (3), the simulation model of the single price auction is formulated by a mathematical formula, and the optimal solution of the single price auction can be obtained.
一般的に、シングルプライスオークションでは、約定価格が各売り手の限界入札価格中一番高い限界入札価格又は各買い手の限界入札価格中一番安い限界入札価格により決定される。 In general, in a single price auction, the contract price is determined by the highest limit bid price of each seller's limit bid price or the lowest limit bid price of each buyer's limit bid price.
上記電力取引市場における約定価格の決定要因分析方法(3)によれば、前記最適解での入札価格が一番高い売り手の発電機に接続されている母線と、前記最適解での入札価格が一番安い買い手の負荷に接続されている母線をそれぞれ前記約定価格決定母線とするため、前記約定価格決定母線が前記約定価格を決定する母線となる。 According to the determinant analysis method (3) of the contract price in the power trading market, the bus connected to the generator of the seller with the highest bid price at the optimal solution and the bid price at the optimal solution are Since each bus connected to the cheapest buyer's load is used as the contract price determination bus, the contract price determination bus is a bus that determines the contract price.
また、本発明に係る電力取引市場における約定価格の決定要因分析方法(4)は、上記電力取引市場における約定価格の決定要因分析方法(2)又は(3)において、前記売り手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(5)と(7)により計算し、前記買い手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(6)と(7)により計算することを特徴としている。 Further, the contract factor determining factor analysis method (4) in the power trading market according to the present invention is connected to the seller's generator in the contract price determining factor analysis method (2) or (3) in the power trading market. The voltage sensitivity at the contracted pricing bus is calculated by the following formulas (5) and (7), and the voltage sensitivity at the contracted pricing bus connected to the generator of the buyer is expressed by the following formula (6): It is characterized by calculating by (7).
上記電力取引市場における約定価格の決定要因分析方法(4)によれば、前記売り手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(5)と(7)により計算し、前記買い手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(6)と(7)により計算するため、前記電圧感度の値をそれぞれ計算することができる。 According to the determinant analysis method (4) of the contract price in the power trading market, the voltage sensitivity at the contract price determination bus connected to the generator of the seller is calculated by the following equations (5) and (7). Since the voltage sensitivity at the contract pricing bus connected to the generator of the buyer is calculated by the following equations (6) and (7), the voltage sensitivity values can be calculated respectively.
また、本発明に係る電力取引市場における約定価格の決定要因分析方法(5)は、上記電力取引市場における約定価格の決定要因分析方法(4)において、前記約定価格を、前記最適解での各売り手の入札価格中一番高い入札価格と、前記最適解での各買い手の入札価格中一番安い入札価格との線形結合とし、下記の式(8)に示すように分解し、計算することを特徴としている。 In addition, the determinant analysis method (5) of the contract price in the power trading market according to the present invention is the same as the determinant analysis method (4) of the contract price in the power transaction market. A linear combination of the highest bid price among the seller's bid prices and the lowest bid price among the buyers in the optimal solution, and it is decomposed and calculated as shown in Equation (8) below. It is characterized by.
上記電力取引市場における約定価格の決定要因分析方法(5)によれば、前記約定価格を、前記最適解での各売り手の入札価格中一番高い入札価格と、前記最適解での各買い手の入札価格中一番安い入札価格との線形結合とし、下記の式(8)に示すように分解し計算するため、前記約定価格を前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とから構成される線形多項式に分解し、さらに各項の値を計算することができる。 According to the determinant analysis method (5) of the contract price in the power trading market, the contract price is calculated by using the highest bid price among the bid prices of each seller in the optimal solution and each buyer in the optimal solution. In order to make a linear combination with the lowest bid price among the bid prices, and to decompose and calculate as shown in the following equation (8), the contract price is a term related to the consumption cost of the load of the non-spot market, and the non-spot A term relating to the power generation cost of the generator in the market, a term relating to the bid function of the buyer, a term relating to the bid function of the seller, a term relating to the equivalent value of the value constraint, a term relating to the upper limit constraint of the bid amount, and bidding It can be decomposed into a linear polynomial composed of terms relating to the lower limit constraint of the quantity, and the value of each term can be calculated.
また、本発明に係る電力取引市場における約定価格の決定要因分析のためのコンピュータプログラム(1)は、電力取引市場で入札により約定された約定価格で電力を販売する売り手の発電機と、前記約定価格で電力を購入する買い手の負荷と、固定電気料金で電力を提供する非スポット市場の発電機と、固定電気料金で電力を消費する非スポット市場の負荷とを含んで構成される電力系統において、下記の式(2)で表す潮流方程式及び下記の式(4)で表す送電損失を含む自由化発電と需要の需給バランス関係式を含んで構成された等式制約条件と、下記の式(3)で表す有効・無効電力上下限、電圧上下限及び潮流上下限を含んで構成された不等式制約条件とを満たした上で、下記の式(1)で表す全ての電力需要者余剰と全ての電力供給者余剰とを含む社会余剰を示す目標関数の値を最大化するシングルプライスオークションの最適解及びその双対解を求めるステップと、約定価格決定母線となる前記最適解での入札価格が一番高い売り手の発電機に接続されている母線と、前記最適解での入札価格が一番安い買い手の負荷に接続されている母線とをそれぞれ検索するステップと、前記等式制約条件及び前記不等式制約条件から分けられた前記約定価格にその価値が陽に評価される有価制約条件、前記約定価格にその価値が陽に評価されない無価制約条件、前記最適解及び前記双対解に基づいて、前記売り手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(5)と(7)とにより計算し、前記買い手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(6)と(7)とにより計算するステップと、下記の式(8)により、前記約定価格を前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とに分解して計算するステップとをコンピュータに実行させることを特徴としている。 The computer program (1) for analyzing determinants of contract prices in the power trading market according to the present invention includes a generator of a seller that sells power at a contract price contracted by bidding in the power trading market, and the contract. In a power system comprising a load of a buyer who purchases electricity at a price, a non-spot market generator that provides power at a fixed electricity rate, and a non-spot market load that consumes electricity at a fixed electricity rate , An equality constraint condition including a tidal current equation expressed by the following equation (2) and a liberalized power generation including transmission loss expressed by the following equation (4) and a demand-supply balance relation equation, and the following equation ( 3) After satisfying the inequality constraints that include the upper and lower limits of active and reactive power, the upper and lower limits of voltage, and the upper and lower limits of power flow, all power consumer surpluses and all expressed by the following formula (1) Power of A step of obtaining an optimal solution and a dual solution of a single price auction that maximizes the value of a target function indicating a social surplus including a surplus of surplus, and a bid price at the optimal solution serving as a contract price determination bus is the highest. Searching for the bus connected to the generator of the seller and the bus connected to the buyer's load with the lowest bid price in the optimal solution, and the equality and inequality constraints Based on the value constraint that the value is positively evaluated for the contract price divided from the above, the value constraint that the value is not explicitly evaluated for the contract price, the optimal solution and the dual solution, the seller The voltage sensitivity at the contract pricing bus connected to the generator is calculated by the following equations (5) and (7), and the contract pricing bus connected to the buyer's generator is calculated. Calculating the voltage sensitivity according to the following formulas (6) and (7), the following formula (8) to calculate the contract price as a term relating to the consumption cost of the load of the non-spot market, and the non-spot market: A term relating to the power generation cost of the generator, a term relating to the bid function of the buyer, a term relating to the bid function of the seller, a term relating to the equivalent value of the value constraint, a term relating to the upper limit constraint of the bid amount, and a bid amount The computer is caused to execute a step of calculating by decomposing into a term relating to the lower limit constraint.
上記電力取引市場における約定価格の決定要因分析プログラム(1)によれば、下記の式(2)で表す潮流方程式及び下記の式(4)で表す送電損失を含む自由化発電と需要の需給バランス関係式を含んで構成された等式制約条件と、下記の式(3)で表す有効・無効電力上下限、電圧上下限及び潮流上下限を含んで構成された不等式制約条件とを満たした上で、下記の式(1)で表す全ての電力需要者余剰と全ての電力供給者余剰とを含む社会余剰を示す目標関数の値を最大化するシングルプライスオークションの最適解及びその双対解を求めるステップと、約定価格決定母線となる前記最適解での入札価格が一番高い売り手の発電機に接続されている母線と、前記最適解での入札価格が一番安い買い手の負荷に接続されている母線とをそれぞれ検索するステップ、前記等式制約条件及び前記不等式制約条件から分けられた前記約定価格にその価値が陽に評価される有価制約条件、前記約定価格にその価値が陽に評価されない無価制約条件、前記最適解及び前記双対解に基づいて、前記売り手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(5)と(7)とにより計算し、前記買い手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(6)と(7)とにより計算するステップと、下記の式(8)により、前記約定価格を前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とに分解して計算するステップとをコンピュータに実行させるため、前記約定価格における前記各項を占める割合、前記各項の影響度合いから、入札情報を含む電力系統における様々な要因が前記約定価格へ与える影響を定量的に分析、評価することができる。 According to the determinant analysis program (1) of the contract price in the above power trading market, the power supply and demand balance including the power flow equation represented by the following equation (2) and the transmission loss represented by the following equation (4) After satisfying the equality constraint condition including the relational expression and the inequality constraint condition including the active / reactive power upper / lower limit, voltage upper / lower limit, and power flow upper / lower limit expressed by the following equation (3) Then, the optimal solution of the single price auction that maximizes the value of the target function indicating the social surplus including all the power consumer surpluses and all the power supplier surpluses expressed by the following formula (1) and its dual solution are obtained. Connected to the generator connected to the generator of the seller with the highest bid price at the optimal solution as the contract price determination bus and the buyer's load with the lowest bid price at the optimal solution And the bus Retrieval step, valuable constraint condition whose value is positively evaluated for the contract price divided from the equality constraint condition and the inequality constraint condition, and a non-value constraint whose value is not explicitly evaluated for the contract price Based on the conditions, the optimal solution and the dual solution, the voltage sensitivity at the contract pricing bus connected to the seller's generator is calculated by the following equations (5) and (7), Calculating the voltage sensitivity at the contract pricing bus connected to the machine by the following formulas (6) and (7), and the formula (8) below, the contract price is calculated as the load of the non-spot market. A term relating to consumption costs, a term relating to power generation costs of generators in the non-spot market, a term relating to the bid function of the buyer, a term relating to the bid function of the seller, In order to cause the computer to execute the step of decomposing and calculating the term relating to the value and value, the term relating to the upper limit constraint on the bid amount, and the term relating to the lower limit constraint on the bid amount, the proportion of the respective terms in the contract price, From the degree of influence of each item, it is possible to quantitatively analyze and evaluate the influence of various factors in the power system including bid information on the contract price.
図1は、本発明の実施の形態に係る電力市場における約定価格の決定要因分析方法が適用された電力系統の要部を概略的に示した構成図である。図中1は電力取引制度を導入した場合の電力系統を示しており、電力系統1は、電力取引市場に参加するスポット市場の発電機SG12(SGは発電機SG1、SG2、…、SGNGの集合を意味する)とスポット市場の負荷SD13(SDは負荷SD1、SD2、…、SDNDの集合を意味する)、及び電力取引市場に参加しない非スポット市場の発電機G14(Gは発電機G1、G2、…、GNgの集合を意味する)と非スポット市場の負荷D15(Dは負荷D1、D2、…、DNdの集合を意味する)を含んで構成されている。非スポット市場の発電機G14は固定価格で電力系統1へ電力を提供し、非スポット市場の負荷D15は固定価格で電力系統1から電力を消費する。一方、電力取引市場に参加する者(発電機SG12、負荷SD13)は、電力取引所を介して入札により電力の売買価格を決定する。但し、取引が成立しなかった者の負荷(SD13中の負荷)は、発電機G14から電力を買うことも可能である。
FIG. 1 is a configuration diagram schematically illustrating a main part of an electric power system to which a determinant analysis method for a contract price in an electric power market according to an embodiment of the present invention is applied. Figure 1 shows the power system in the case of introducing electric power trading system, the
図1に示した電力系統1において、シングルプライスオークションが行われた場合、シングルプライスオークションのシミュレーションモデルを式(1)〜(4)により表す。
式(1)中、F(X)は電力供給者余剰と電力需要者余剰の合計である社会余剰を示す目標関数であり、その第1項は非スポット市場の負荷D15の消費コスト(既知量)を示しており、その第2項は非スポット市場の発電機G14の発電コストを示しており、その第3項はスポット市場の買い手(負荷SD13)の購入コストを示しており、その第4項はスポット市場の売り手(発電機SG12)の販売コストを示している。非スポット市場の負荷の消費量とその料金は事前に与えられるため、第1項は既知量となり、目標関数の最適解に影響しない。ωi(Pgi)は発電機の増分燃料費関数のため、通常Pgiの1次関数で表される。また、買い手の入札関数θi(PDi)と売り手の入札関数φi(PGi)は一般的に線形関数または区分線形関数で表現できる。
In the
In Formula (1), F (X) is a target function indicating the social surplus that is the sum of the power supplier surplus and the power demand surplus, and the first term thereof is the consumption cost (known amount) of the load D15 in the non-spot market. The second term represents the power generation cost of the generator G14 in the non-spot market, the third term represents the purchase cost of the spot market buyer (load SD13), and the fourth term The term shows the selling cost of the spot market seller (generator SG12). Since the non-spot market load consumption and its charge are given in advance, the first term is a known amount and does not affect the optimal solution of the target function. ω i (P gi ) is usually expressed as a linear function of P gi because of the incremental fuel cost function of the generator. The buyer's bid function θ i (P Di ) and the seller's bid function φ i (P Gi ) can be generally expressed by a linear function or a piecewise linear function.
G’(X)は電力系統における等式制約条件、即ち、潮流方程式であり、H(X)は電力系統における不等式制約条件、即ち、有効・無効発電電力上下限、電圧上下限及び潮流上下限等の制限であり、K(X)はスポット市場バランス等式制約条件、即ち、送電損失を含む自由化発電と需要の需給バランス等式である。 G '(X) is the equality constraint in the power system, that is, the power flow equation, and H (X) is the inequality constraint in the power system, that is, the upper and lower limits of the effective and reactive power generation, the voltage upper and lower limits, and the power flow upper and lower limits. K (X) is a spot market balance equation constraint, that is, a supply-demand balance equation of liberalized power generation and demand including transmission loss.
Xは、上記した目標関数F(X)、等式制約条件G’(X)、不等式制約条件H(X)及び等式制約条件K(X)の独立変数であり、図1に示した電力系統1における母線電圧の実部と虚部からなるベクトルである。また、電力の量Pgi、PGi、PDiもXの関数である。
X is an independent variable of the target function F (X), the equation constraint G ′ (X), the inequality constraint H (X), and the equation constraint K (X) described above, and the power shown in FIG. It is a vector composed of a real part and an imaginary part of the bus voltage in the
また、式(1)において、非スポット市場の負荷(D15)の消費電力の量とその電気料金は事前に与えられるため、πdiとPdiは定数となり、最適解Xに影響を与えない。ωi(Pgi)が発電機(G14)の増分燃料費関数であり、Pgiの1次関数で表すことができる。買い手(SD13)の入札関数θi(PDi)と売り手(SG12)の入札関数φi(PGi)はそれぞれ図3bと図3aに示した線形関数または区分線形関数とする。図3aに示した入札関数(供給曲線)は、売り手i(SG12中のSGi)がφi(PGi)以上の価格で最大PGiまでの電力を売ることを示し、図3bに示した入札関数(需要曲線)は、買い手i(SD13中のSDi)がθi(PDi)以下の価格で最大PDiまでの電力を買うことを示す。 Moreover, in Formula (1), since the amount of power consumption of the load (D15) of the non-spot market and the electricity charge are given in advance, π di and P di are constants and do not affect the optimal solution X. ω i (P gi ) is an incremental fuel cost function of the generator (G14), and can be expressed by a linear function of P gi . The bid function θ i (P Di ) of the buyer (SD13) and the bid function φ i (P Gi ) of the seller (SG12) are the linear functions or piecewise linear functions shown in FIGS. 3b and 3a, respectively. The bidding function (supply curve) shown in FIG. 3a shows that seller i (SG i in SG12) sells power up to P Gi at a price greater than φ i (P Gi ) and is shown in FIG. 3b. The bid function (demand curve) indicates that buyer i (SD i in SD 13) buys power up to the maximum P Di at a price equal to or less than θ i (P Di ).
式(1)を解くことにより、電力供給者(SG12とG14)余剰と電力需要者(SD13とD15)余剰の合計である社会余剰を最大化する最適解Xを求めることができる。さらに、最適解Xにより、各売り手(SG12)、各買い手(SD13)の約定量PGi(X)、 PDi(X)と非スポットの発電機(G14)の出力Pgi(X)が得られる。さらに、約定量PGi(X)、 PDi(X)をそれぞれ入札関数φi(PGi)、θi(PDi)に代入すれば、各売り手(SG12)の限界入札価格(πGi)と各買い手(SD13)の限界入札価格(πDi)がそれぞれの入札関数φi(PGi)、θi(PDi)により計算される。 By solving equation (1), it is possible to obtain an optimal solution X that maximizes the social surplus that is the sum of the surplus of power suppliers (SG12 and G14) and the surplus of power consumers (SD13 and D15). Furthermore, the optimal solution X gives approximately fixed amounts P Gi (X) and P Di (X) of each seller (SG12) and each buyer (SD13) and the output P gi (X) of the non-spot generator (G14). It is done. Further, by substituting approximately fixed amounts P Gi (X) and P Di (X) into bid functions φ i (P Gi ) and θ i (P Di ), respectively, the limit bid price (π Gi ) of each seller (SG12) And the limit bid price (π Di ) of each buyer (SD13) is calculated by the respective bid functions φ i (P Gi ) and θ i (P Di ).
図3cに示したように供給曲線(図3a)と需要曲線(図3b)が交差すれば、約定価格(MCP)π は各売り手(SG12)の限界入札価格(πGi)中一番高い限界入札価格(πGmax)又は各買い手(SD13)の限界入札価格(πDi)中一番安い限界入札価格(πDmin)により決定され、即ち、π=πGmax=πDminとなる。 If the supply curve (FIG. 3a) and the demand curve (FIG. 3b) intersect as shown in FIG. 3c, the contract price (MCP) π Is the highest limit bid price (π Gmax ) in the limit bid price (π Gi ) of each seller (SG12) or the lowest limit bid price (π Dmin ) in the limit bid price (π Di ) of each buyer (SD13) I.e. , π = π Gmax = π Dmin .
供給曲線(図3a)と需要曲線(図3b)の交点が複数存在する場合(即ち、πGmax≠πDmin)では、約定価格πを式(9)〜(11)により計算することができる。 When there are a plurality of intersections between the supply curve (FIG. 3a) and the demand curve (FIG. 3b) (that is, π Gmax ≠ π Dmin ), the contract price π can be calculated by the equations (9) to (11).
ここで、上記したシングルモデルプライスオークションのシミュレーションモデルを用いて、約定価格πを計算することができたが、計算結果は約定価格πの値のみであり、入札情報および各電力系統の要因が該約定価格の値にどの程度の影響を与えているかはまだ不明である。 Here, it was possible to calculate the contract price π using the simulation model of the single model price auction described above, but the calculation result is only the value of the contract price π, and the factors of the bid information and each power system are It is still unclear how much it affects the value of the contract price.
次に、約定価格πを分解するために、成行売り入札(即ち、入札価格を任意とする入札)の量を表すパラメータP=(P1, ..., Pn)を導入し、式(1)における目標関数F、制約条件G(制約条件Gは式(2)における制約条件G’と式(4)における制約条件Kとを合わせたものとする)、式(3)におけるHを全てXとPの関数とし、そのラグランジュ関数Lを式(12)で表す。
式(12)におけるラグランジュ関数LをPの要素であるPGkで偏微分すれば、式(13)が得られる。
式(14)において、PGKを約定価格決定母線GKに接続するスポット市場の発電機(SG12中の1つ)の入札量とすれば、φ (PGK)は売り手の最大限界価格πGmaxとなる。即ち、売り手の最大限界価格πGmaxを式(15)で表すことができる。 In equation (14), if P GK is the bid amount of the spot market generator (one in SG12) that connects to the contract pricing bus GK, then φ (P GK ) is the seller's maximum marginal price π Gmax . That is, the seller's maximum marginal price π Gmax can be expressed by equation (15).
同じ方法により、PDKを約定価格決定母線DKに接続するスポット市場の負荷(SD13中の1つ)の入札量とすれば、買い手の最小限界価格πDminを導出し、式(16)で表すことができる。さらに、式(9)により、約定価格πを式(18)で表すことができる。 Using the same method, if P DK is the bid amount of the spot market load (one in SD13) that connects to the contract pricing bus DK, the buyer's minimum limit price π Dmin is derived and expressed by equation (16) be able to. Furthermore, the contract price π can be expressed by Expression (18) by Expression (9).
したがって、式(18)における母線GKのSPAノーダルプライスμPGKと母線DKのSPAノーダルプライスμPDKとを分解すれば、約定価格πの分解を実現することができる。即ち、約定価格πには約定価格決定母線GKとDKの限界等価社会余剰と入札量上下限制約のラグランジュ乗数が含まれ、母線GKとDKが入札量上下限制約にかかっていない場合(ρGmax、ρGmin、ρDmax、ρDminは0となる)、約定価格πは限界等価社会余剰、すなわち母線GKとDKに成行売り入札を微小量投入した場合の社会余剰の増加分を示していることが分かる。 Therefore, if the SPA nodal price μ PGK of the bus GK and the SPA nodal price μ PDK of the bus DK in Formula (18) are decomposed, the contract price π can be decomposed. That is, the contract price π includes the marginal equivalent social surplus of the contract pricing buses GK and DK and the Lagrange multiplier of the bid volume upper and lower limit constraints, and the buses GK and DK are not subject to the bid volume upper and lower limit constraints (ρ Gmax , Ρ Gmin , ρ Dmax , ρ Dmin are 0), and the contract price π represents the marginal equivalent social surplus, that is, the increase in social surplus when a small amount of market bids are placed on the buses GK and DK I understand.
次に、母線GKのSPAノーダルプライスμPGKと母線DKのSPAノーダルプライスμPDKの分解について説明する。
式(1)の最適解Xで、Hを活性化制約とすれば、該最適解は式(19)〜(21)を満たす。
If H is an activation constraint in the optimum solution X of equation (1), the optimum solution satisfies equations (19) to (21).
一方、約定価格をより詳細に分解するために、どの制約要因を特に約定価格に陽に反映するかを決定する必要がある。電力系統運用における各要因あるいは制約を、市場価値があり取引できる要因と、市場価値がなく取引できない要因、又は緩和できる制約と緩和できない制約に分類することができる。例えば、送電線潮流制約と母線電圧制約などは技術革新及び設備投資により緩和できるため、市場のニーズにより取引できる要因に属する。一方、母線注入電力の合計がゼロである電力バランス制約はキルヒホッフの物理法則のため、緩和できない非取引要因に属する。本発明では、制約条件GとHの中で、価格を陽に表現しない制約式(非取引要因)を無価制約条件Mとし、残りの制約式、即ち、料金を陽に表現する制約式(取引できる要因)を有価制約条件Nとする。さらに、αを無価制約条件Mにおけるラグランジュ乗数、βを有価制約条件Nにおけるラグランジュ乗数とすると、式(19)の第2項目と第3項目(λ∂G /∂X+ρ∂H /∂X)をα∂M /∂X+β∂N /∂Xに置き換えることができる。即ち、式(19)を式(22)に書き換えることができる。 On the other hand, in order to break down the contract price in more detail, it is necessary to determine which constraint factors are specifically reflected in the contract price. Each factor or constraint in power system operation can be classified into a factor that has a market value and can be traded, a factor that has no market value and cannot be traded, or a constraint that can be relaxed and a constraint that cannot be relaxed. For example, power transmission line power constraints and bus voltage constraints can be relaxed by technological innovation and capital investment, and therefore belong to factors that can be traded according to market needs. On the other hand, the power balance constraint in which the total bus injection power is zero belongs to a non-transactional factor that cannot be relaxed because of Kirchhoff's physical law. In the present invention, among the constraint conditions G and H, a constraint expression (non-transaction factor) that does not express the price explicitly is defined as a non-value constraint condition M, and the remaining constraint expression, that is, a constraint expression that expresses the charge explicitly ( The factor that can be traded) is the value constraint condition N. Further, if α is a Lagrange multiplier in the non-value constraint M, and β is a Lagrange multiplier in the value constraint N, the second and third items (λ∂G / ∂X + ρ∂H / ∂X) in Equation (19) Can be replaced by α∂M / ∂X + β∂N / ∂X. That is, Expression (19) can be rewritten as Expression (22).
また、式(22)〜(24)はラグランジュ関数Lが常に最大値となるための必要条件である。
Expressions (22) to (24) are necessary conditions for the Lagrangian function L to always have the maximum value.
次に、約定価格の構成を分解するために、式(1)の最適解Xにおいて、式(25)が示す条件が成立することを仮定する。
即ち、式(25)に表す条件が成立すれば、与えられた変数Pの近傍で唯一の関数[X(P), a(P)]が存在する。しがたって、式(22)〜(24)が成立する限り、変数(X, a)はPと独立ではなく、Pの関数となる。X(P)とa(P)を式(22)と(24)に代入することにより、式(26)と(27)が得られる。 That is, if the condition expressed by the equation (25) is satisfied, there is only one function [X (P), a (P)] in the vicinity of the given variable P. Therefore, as long as the equations (22) to (24) hold, the variable (X, a) is not independent of P, but is a function of P. By substituting X (P) and a (P) into equations (22) and (24), equations (26) and (27) are obtained.
式(25)が成立すれば、式(28)を式(29)に書き換え、約定価格決定母線GKにおける電圧感度XPGkとラグランジュ乗数αPGkを求めることができる。
同じ方法により、約定価格決定母線DKにおける電圧感度XPDkとラグランジュ乗数αPDkを表す式(30)を導出することができる。
If Expression (25) is established, Expression (28) can be rewritten to Expression (29), and the voltage sensitivity X PGk and Lagrange multiplier α PGk at the contract price determination bus GK can be obtained.
By the same method, the expression (30) representing the voltage sensitivity X PDk and the Lagrange multiplier α PDk in the contract pricing bus DK can be derived.
一方、変数X、目標関数F、制約条件MとN、ラグランジュ乗数をすべてPの関数で表示すると、ラグランジュ関数Lは式(31)に書き換えられる。
そこで、成行売り入札量PGK で式(31)のラグランジュ関数L を偏微分すれば、式(32)が得られる。
最適解Xで、FX=0、M=0、また、MXXPGK+MPGK=0(式(28)より)のため、式(33)が得られる。
同じ方法により、約定価格決定母線DKにおいて、式(34)を導出することができる。
By the same method, Expression (34) can be derived in the contract pricing bus DK.
式(33)と(34)におけるμPGKとμPDKを式(18)に代入すれば、約定価格の分解式は式(35)となる。
したがって、分解された約定価格πの展開式(式(35))は、非スポット市場の負荷(D15)の消費コストに関する項、非スポット市場の発電機(G14)の発電コストに関する項、買い手(SD13)の入札関数θiに関する項、売り手(SG12)の入札関数φiに関する項、制約条件Nの等価価値に関する項、売り手、買い手の最大入札量に関する項、及び売り手、買い手の最小入札量に関する項の線形結合となっている。 Therefore, the expansion formula (formula (35)) of the decomposed contract price π is a term related to the consumption cost of the load (D15) in the non-spot market, a term related to the power generation cost of the generator (G14) in the non-spot market, the buyer ( SD13) for bid function θ i , for seller (SG12) for bid function φ i, for equivalent value of constraint N, for seller, buyer's maximum bid, and for seller, buyer's minimum bid It is a linear combination of terms.
なお、制約条件Nが等式制約条件Gと不等式制約条件Hの全てを含めば、ラグランジュ関数Lに現れる全ての要素は零ではないため、約定価格の中で陽に表される。一方、もし制約条件Mが等式制約条件Gと不等式制約条件Hの全てを含めれば、目標関数Fを除いた全ての項は約定価格πの分解式から消去される。
即ち、市場価値のある制約条件Nの設定を決めれば約定価格πは一意的に求まるものであるが、制約条件Nの決め方により約定価格πの分解式が異なることがある。
Note that if the constraint condition N includes all of the equality constraint condition G and the inequality constraint condition H, all elements appearing in the Lagrangian function L are not zero, and therefore are represented explicitly in the contract price. On the other hand, if the constraint M includes all of the equality constraint G and the inequality constraint H, all terms except the target function F are eliminated from the decomposition formula of the contract price π.
That is, if the setting of the constraint condition N with market value is determined, the contract price π can be obtained uniquely, but the decomposition formula of the contract price π may differ depending on how the constraint condition N is determined.
次に、上記した電力取引市場における約定価格の決定要因分析プログラムの処理を図4に示したフローチャートに基づいて説明する。まず、ステップS1では、図1に示した電力系統1において、各売り手(SG12)の入札関数φiと買い手(SD13)の入札関数θi、及び電力系統における送電線(図示せず)定数と電圧・有効電力・無効電力の制約条件などのデータを設定する。ステップS1に続いて、ステップS2では、式(1)〜(4)を解くことにより、最適解Xとその双対解(λ, ρ)を求める。ステップS2に続いて、ステップS3では、式(10)により、最適解で各売り手の入札価格を計算し、入札価格が一番高い売り手の発電機に接続されている母線GKを検出する。ステップS3に続いて、ステップS4では、式(11)により、最適解で各買い手の入札価格を計算し、入札価格が一番安い買い手の負荷に接続されている母線DKを検出する。ステップS4に続いて、ステップS5では、有価制約条件Nと無価制約条件Mに基づいて、式(29)により母線GKにおける電圧感度XPGKを計算する。ステップS5に続いて、ステップS6では、有価制約条件Nと無価制約条件Mに基づいて、式(30)により母線DKにおける電圧感度XPDKを計算する。ステップS6に続いて、ステップS7では、式(35)により約定価格の構成要素の値を求める。
Next, the processing of the determinant analysis program for the contract price in the above-mentioned power trading market will be described based on the flowchart shown in FIG. First, in step S1, in the
上記実施の形態に係る電力取引市場における約定価格の決定要因分析方法及び分析のためのコンピュータプログラムによれば、シングルプライスオークションにおける約定価格πを買い手(SD13)の入札関数に関する項と、前記売り手(SG12)の入札関数に関する項と、前記非スポット市場の発電機(G14)の発電コストに関する項と、前記非スポット市場の負荷(D15)の消費コストに関する項と、前記有価制約条件Nの等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とから構成される線形多項式に分解するため、分解された前記多項式から約定価格πを決定する要因に関する詳細情報が解明され、更に、上記各項の値が計算されるため、入札情報、非スポット市場の発電機及び負荷の運用情報、電圧及び電力などの制約条件等を含む要因による約定価格への影響を定量的に評価することが実現される。そのため、本発明に係る電力取引市場における約定価格の決定要因分析方法及び分析のためのコンピュータプログラムは、電力運用管理、電源及び送電網運用と混雑管理の効率化に使えるだけでなく、投資リスクのマネジメント強化や入札の意思決定等にも利用できる。 According to the method for analyzing the determinants of the contract price in the power trading market and the computer program for the analysis according to the above-described embodiment, the contract price π in the single price auction is the term relating to the bid function of the buyer (SD13), and the seller ( SG12) a term relating to the bid function, a term relating to the power generation cost of the generator (G14) in the non-spot market, a term relating to the consumption cost of the load (D15) in the non-spot market, and the equivalent value of the value constraint N Divides into a linear polynomial consisting of a term on the upper limit constraint on the bid amount, a term on the lower limit constraint on the bid amount, and a term on the lower limit constraint on the bid amount, so detailed information on the factors that determine the contract price π from the decomposed polynomial is clarified In addition, since the values of the above terms are calculated, bid information, non-spot market generators and load It is possible to quantitatively evaluate the effect on the contract price due to factors including constraints such as utility information, voltage and power. Therefore, the determinant analysis method of contract prices in the power trading market and the computer program for the analysis according to the present invention can be used not only for the efficiency of power operation management, power supply and transmission network operation and congestion management, but also for investment risk. It can also be used for strengthening management and bidding decisions.
次に、本発明の電力取引市場における約定価格の決定要因分析方法及び分析のためのコンピュータプログラムを用いた実施例を示す。 Next, an embodiment using the determinant analysis method of the contract price in the power trading market of the present invention and the computer program for the analysis will be shown.
図5は、本発明に係る電力取引市場における約定価格の決定要因分析方法を用いた実施例の電力系統を示す図である。図5中、2は電力系統を示しており、電力系統2は、電力取引市場に参加する第1売り手(発電機)21と、第2売り手(発電機)22と、第1買い手(負荷)31と、第2買い手(負荷)32と、電力取引市場に参加しない非スポット市場の発電機23と、非スポット市場の負荷33と、発電機21に接続されている第1母線41と、負荷31に接続されている第2母線42と、負荷33に接続されている第3母線43と、発電機22に接続されている第4母線44と、負荷32に接続されている第5母線45と、発電機23に接続されている第6母線46と、各母線を接続する送電線51を含んで構成されている。
FIG. 5 is a diagram showing an electric power system according to an embodiment using the determinant analysis method of the contract price in the power trading market according to the present invention. In FIG. 5,
非スポット市場の発電機23は固定電気料金で電力系統2へ電力を提供し、非スポット市場の負荷33は固定電気料金で電力系統2から電力を消費し、一方、第1売り手21と第2売り手22は、電力取引所を介して、シングルプライスオークションで約定された約定価格(電気料金)で各自の発電機で生産された電力を電力系統2へ提供し、第1買い手31と第2買い手32は、電力取引所を介して、シングルプライスオークションで約定された約定価格(電気料金)で電力系統2から電力を購入するようになっている。発電機21〜23は、それぞれ接続されている母線41、母線44、母線46を介して発電電力を電力系統2に注入し、負荷31〜33は、それぞれ接続されている母線42、母線43、母線45を介して電力系統1から消費電力を吸収し、各送電線51は供給・需要の要求に応じて、母線41〜46の間で電力を配送するようになっている。
The
図6aは、電力系統2における各送電線の抵抗r、リアクタンスx及び送電線アドミタンスy/2の値をそれぞれ示す表である。図6bは、電力取引に参加する売り手21と22、買い手31と32のそれぞれの入札関数及び電力の量を示す表である。
また、母線46に接続されている非スポット市場の発電機23の増分燃料費関数はω6(Pg6)=7.0Pg6 であり、有効・無効出力上下限は0.0≦Pg6≦1.0であり、無効出力上下限は0.0≦Qg6≦0.5である。母線43に接続されている非スポット需要家33の有効負荷はPd3=0.3であり、無効負荷はQd3=0.18である。売り手・買い手の無効電力出力の下限は0.0、上限は入札量の1/2とする。全ての母線41〜46に対する電圧の上下限制約は0.95≦Vk≦1.05であり、母線43と母線42との間の送電線51の有効電力潮流上下限は-0.05≦Pf3-2≦0.05であり、非スポット需要家33の電気料金πdiは15.0であり、スポット市場送電ロス率k は0.0とする。なお、全ての値はpu表記である。
FIG. 6 a is a table showing the values of resistance r, reactance x, and transmission line admittance y / 2 of each transmission line in the
The incremental fuel cost function of the
上記したデータに基づいて、式(1)〜(4)のシングルプライスオークションのシミュレーションモデルを作成し、式(1)を解くことにより、得られた最適解となる母線41〜46の電圧Xの実部と虚部及び社会余剰Fを図7に示している。 Based on the data described above, a simulation model of a single price auction of formulas (1) to (4) is created, and by solving formula (1), the voltage X of buses 41 to 46 that is the optimum solution obtained is obtained. The real part, the imaginary part and the social surplus F are shown in FIG.
図7に示した結果により、第1売り手21の限界入札価格は14.969、第2売り手22の限界入札価格は9.586、第1買い手31の限界入札価格は19.284、第2買い手32の限界入札価格は14.969となる。そのため、式(9)〜(10)より約定価格は14.969となり、約定価格決定母線は第1売り手の発電機21に接続されている第1母線41、および第2買い手の負荷32に接続されている第5母線45となる。
From the results shown in FIG. 7, the limit bid price of the
また、制約条件G中3つの制約条件を無価制約条件Mとし、不等式制約条件H中6つの活性化制約条件を有価制約条件Nとし、約定価格決定係数cを1とすれば、約定価格πを式(36)に分解することができる。
但し、φ1(PG1)は第1売り手21の入札価格であり、θ2(PD2)は第1買い手31の入札価格であり、πd3は非スポット負荷33の電気料金であり、φ4(PG4)は第2売り手22の入札価格であり、θ5(PD5)は第2買い手32の入札価格であり、ω6(Pg6)は非スポット市場の発電機23の増分燃料費であり、ρV4、ρV6 は第4母線44と第6母線46の電圧上限制約のラグランジュ乗数であり、ρpf3-2は第3母線43から第2母線42へ流れる潮流の上限制約のラグランジュ乗数であり、∂/∂p1は第1母線41の成行売り入札量による偏微分である。
Where φ 1 (P G1 ) is the bid price of the
さらに、式(29)により第1母線の電圧感度XPGKを計算して、式(36)に代入すれば、約定価格πとその構成要素が、式(37)に示したように計算される。計算された約定価格における各構成要素の影響度合い、占める割合などを図8に示している。 Further, if the voltage sensitivity X PGK of the first bus is calculated according to equation (29) and substituted into equation (36), the contract price π and its components are calculated as shown in equation (37). . FIG. 8 shows the degree of influence and the proportion of each component in the calculated contract price.
図8に示した数値結果によれば、各要素の中に、有価制約条件1と2の影響度合いが大きく、入札関数の占める割合が大きいことが判る。
According to the numerical results shown in FIG. 8, it can be seen that the influence degree of the
1、2 電力系統
12 スポット市場の発電機SG
13 スポット市場の負荷SD
14 非スポット市場の発電機G
15 非スポット市場の負荷D
16 操作&表示手段
21 第1売り手
22 第2売り手
23 非スポット市場の発電機
31 第1買い手
32 第2買い手
33 非スポット市場の負荷
41 第1母線
42 第2母線
43 第3母線
44 第4母線
45 第5母線
46 第6母線
51 送電線
1, 2 Power system 12 Spot market generator SG
13 Spot Market Load SD
14 Non-spot market generator G
15 Non-spot market load D
16 Operation &
Claims (6)
前記電力系統における潮流方程式及び送電損失を含む自由化発電と需要の需給バランス関係式を含んで構成された等式制約条件と、有効・無効電力上下限、電圧上下限及び潮流上下限を含んで構成された不等式制約条件とを満たした上で、全ての電力需要者余剰と全ての電力供給者余剰とを含む社会余剰を示す目標関数の値を最大化するシングルプライスオークションの最適解及びその双対解を求め、
前記最適解及び前記売り手と前記買い手のそれぞれの入札関数に基づいて、約定価格決定母線を検索し、
前記等式制約条件及び前記不等式制約条件を、前記約定価格にその価値が陽に評価される有価制約条件と、前記約定価格にその価値が陽に評価されない無価制約条件とに分け、
前記有価制約条件、前記無価制約条件、前記最適解及び前記双対解に基づいて、前記約定価格決定母線における電圧感度を計算することにより、
前記約定価格を、前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とから構成される線形多項式に分解して、前記各項の値を計算することを特徴とする電力取引市場における約定価格の決定要因分析方法。 A generator of a seller who sells power at a contract price settled by a bid in the power trading market, a load of a buyer who purchases power at the contract price, and a generator in a non-spot market that provides power at a fixed electricity rate In the determinant analysis method of the contract price in the power trading market of the power system configured to include the load of the non-spot market that consumes power at the fixed electricity rate,
Including the power flow equation in the power system and the equality constraints including the power supply / demand balance relational expression including power transmission loss, including the active / reactive power upper and lower limits, the voltage upper and lower limits, and the power flow upper and lower limits An optimal solution for a single price auction that satisfies the configured inequality constraints and maximizes the value of the target function indicating the social surplus including all power demand surplus and all power surplus, and its dual Seeking a solution
Based on the optimal solution and the bid function of each of the seller and the buyer, search for a contract pricing bus,
The equality constraint and the inequality constraint are divided into a value constraint whose value is positively evaluated for the contract price and a valueless constraint whose value is not explicitly evaluated for the contract price,
Based on the value constraint, the valueless constraint, the optimal solution and the dual solution, calculating the voltage sensitivity at the contract pricing bus,
The contract price, a term relating to a consumption cost of the non-spot market load, a term relating to a power generation cost of the non-spot market generator, a term relating to the bid function of the buyer, a term relating to the bid function of the seller, The value of each term is calculated by decomposing into a linear polynomial composed of a term relating to the equivalent value of the valuable constraint condition, a term relating to the upper limit constraint on the bid amount, and a term relating to the lower limit constraint on the bid amount. A determinant analysis method of contract prices in the electricity trading market.
下記の式(2)で表す潮流方程式及び下記の式(4)で表す送電損失を含む自由化発電と需要の需給バランス関係式を含んで構成された等式制約条件と、下記の式(3)で表す有効・無効電力上下限、電圧上下限及び潮流上下限を含んで構成された不等式制約条件とを満たした上で、下記の式(1)で表す全ての電力需要者余剰と全ての電力供給者余剰とを含む社会余剰を示す目標関数の値を最大化するシングルプライスオークションの最適解及びその双対解を求めるステップと、
約定価格決定母線となる前記最適解での入札価格が一番高い売り手の発電機に接続されている母線と、前記最適解での入札価格が一番安い買い手の負荷に接続されている母線とをそれぞれ検索するステップと、
前記等式制約条件及び前記不等式制約条件から分けられた前記約定価格にその価値が陽に評価される有価制約条件、前記約定価格にその価値が陽に評価されない無価制約条件、前記最適解及び前記双対解に基づいて、前記売り手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(5)と(7)とにより計算し、前記買い手の発電機に接続されている約定価格決定母線における電圧感度を下記の式(6)と(7)とにより計算するステップと、
下記の式(8)により、前記約定価格を前記非スポット市場の負荷の消費コストに関する項と、前記非スポット市場の発電機の発電コストに関する項と、前記買い手の入札関数に関する項と、前記売り手の入札関数に関する項と、前記有価制約条件の等価価値に関する項と、入札量の上限制約に関する項と、入札量の下限制約に関する項とに分解して計算するステップとをコンピュータに実行させることを特徴とする電力取引市場における約定価格の決定要因分析のためのコンピュータプログラム。
An equality constraint condition including a power flow equation represented by the following equation (2) and a liberalized power generation including transmission loss represented by the following equation (4) and a demand-supply balance relation equation, and the following equation (3 ) And the inequality constraints that include the upper and lower limits of active and reactive power, the upper and lower limits of voltage, and the upper and lower limits of power flow, and all power consumer surpluses and all Obtaining an optimal solution and a dual solution of a single price auction that maximizes a value of a target function indicating a social surplus including a power supplier surplus;
A bus connected to the generator of the seller with the highest bid price at the optimal solution to be a contract price determination bus, and a bus connected to the load of the buyer with the lowest bid price at the optimal solution; Searching for each of the
A value constraint condition whose value is positively evaluated for the contract price divided from the equation constraint condition and the inequality constraint condition, a non-value constraint condition whose value is not explicitly evaluated for the contract price, the optimal solution and Based on the dual solution, the voltage sensitivity at the contract pricing bus connected to the generator of the seller is calculated by the following equations (5) and (7) and connected to the generator of the buyer. Calculating the voltage sensitivity at the contract pricing bus using the following equations (6) and (7):
According to the following equation (8), the contract price is a term relating to the consumption cost of the load in the non-spot market, a term relating to the power generation cost of the generator in the non-spot market, a term relating to the bid function of the buyer, and the seller. Causing the computer to execute a step of decomposing and calculating a term relating to a bid function, a term relating to the equivalent value of the value constraint condition, a term relating to an upper limit constraint on the bid amount, and a term relating to a lower limit constraint on the bid amount. A computer program for analyzing determinants of contract prices in a featured electricity trading market.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005008421A JP4679910B2 (en) | 2005-01-14 | 2005-01-14 | Determinant analysis method of contract price in power trading market and computer program for analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005008421A JP4679910B2 (en) | 2005-01-14 | 2005-01-14 | Determinant analysis method of contract price in power trading market and computer program for analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006195848A JP2006195848A (en) | 2006-07-27 |
JP4679910B2 true JP4679910B2 (en) | 2011-05-11 |
Family
ID=36801881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005008421A Active JP4679910B2 (en) | 2005-01-14 | 2005-01-14 | Determinant analysis method of contract price in power trading market and computer program for analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4679910B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6383209B2 (en) * | 2014-07-31 | 2018-08-29 | 国立大学法人 筑波大学 | Power trading support device, power trading support method and program |
CN111027802B (en) * | 2019-06-06 | 2023-07-25 | 国网辽宁省电力有限公司 | Automatic power generation control method and device based on bidding auxiliary service market |
CN110689286B (en) * | 2019-11-13 | 2022-03-11 | 国网陕西省电力公司电力科学研究院 | Optimal contract electric quantity decision method for wind-fire bundling power plant in medium-and-long-term electric power market |
CN111276965B (en) * | 2020-01-21 | 2022-08-02 | 广东电网有限责任公司电力调度控制中心 | Electric energy market optimization method, system and equipment based on relaxation penalty factor |
CN111799802B (en) * | 2020-07-22 | 2023-12-05 | 国网重庆市电力公司 | Linear combination-based load flow equation linearization method |
CN112182964A (en) * | 2020-09-24 | 2021-01-05 | 新奥数能科技有限公司 | Transaction method and device for power contract |
CN112329210A (en) * | 2020-10-15 | 2021-02-05 | 苏州英迈菲智能科技有限公司 | Solving method for quadratic form optimal load tracking model of power price driving of power system |
CN114037505B (en) * | 2021-11-11 | 2024-04-16 | 东南大学 | New energy on-site absorption system suitable for nearby transactions of power distribution network producers and consumers |
CN115099456B (en) * | 2022-05-16 | 2024-06-11 | 昆明电力交易中心有限责任公司 | Distributed energy configuration method and device, mobile terminal and storage medium |
CN115760197B (en) * | 2022-12-07 | 2024-07-23 | 国家电网有限公司华东分部 | Cross-regional electric energy transaction method, system, medium and electronic equipment |
CN116805792B (en) * | 2023-06-21 | 2024-06-11 | 国网湖南省电力有限公司 | Thermal power-energy storage regulation demand judging method and system in high-proportion new energy system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268790A (en) * | 2000-03-15 | 2001-09-28 | Univ Osaka Sangyo | Resolution calculating method of nodal price in electric power system |
JP2005275990A (en) * | 2004-03-25 | 2005-10-06 | Toshiba Corp | Power transaction contract processing method, program, and power transaction contract processing support system |
-
2005
- 2005-01-14 JP JP2005008421A patent/JP4679910B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268790A (en) * | 2000-03-15 | 2001-09-28 | Univ Osaka Sangyo | Resolution calculating method of nodal price in electric power system |
JP2005275990A (en) * | 2004-03-25 | 2005-10-06 | Toshiba Corp | Power transaction contract processing method, program, and power transaction contract processing support system |
Also Published As
Publication number | Publication date |
---|---|
JP2006195848A (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4679910B2 (en) | Determinant analysis method of contract price in power trading market and computer program for analysis | |
Ding et al. | A hierarchical pricing decision process on a dual-channel problem with one manufacturer and one retailer | |
Singh et al. | A fuzzy TOPSIS based approach for e-sourcing | |
Gurnani et al. | Supply contracts in manufacturer‐retailer interactions with manufacturer‐quality and retailer effort‐induced demand | |
Gazafroudi et al. | Hierarchical approach for coordinating energy and flexibility trading in local energy markets | |
Heilmann et al. | Design of regional flexibility markets for electricity: A product classification framework for and application to German pilot projects | |
Fang et al. | A double auction model for competitive generators and large consumers considering power transmission cost | |
Erhun et al. | Dynamic procurement, quantity discounts, and supply chain efficiency | |
Chu | Truthful bundle/multiunit double auctions | |
Hsieh | Combinatorial reverse auction based on revelation of Lagrangian multipliers | |
Kang et al. | Double auction-based manufacturing cloud service allocation in an industrial park | |
Taheri et al. | Analytical approach in computing nash equilibrium for oligopolistic competition of transmission-constrained GENCOs | |
JP2005339527A (en) | Bid support system in electricity market | |
Nourollahi et al. | Risk-based purchasing energy for electricity consumers by retailer using information gap decision theory considering demand response exchange | |
Lopes | Electricity markets and intelligent agents Part I: market architecture and structure | |
Shil et al. | Meeting peak electricity demand through combinatorial reverse auctioning of renewable energy | |
Qian et al. | Mechanism design of unknown bidding preference and discrete cost structure in multi-attribute reverse auctions | |
Yao et al. | Design of distributed power trading mechanism based on P2P contract | |
Khajeh et al. | Peer-to-peer electricity market based on local supervision | |
CN113807961A (en) | Multi-microgrid energy transaction method and system based on alliance chain | |
Bae et al. | Comparison between seller and buyer pricing systems for energy trading in microgrids | |
Gautam et al. | Optimal auctions for multi-unit procurement with volume discount bids | |
Wu et al. | A decision support tool for multi-attribute evaluation of demand-side commercial battery storage products | |
Shao | A capacity reservation game for suppliers with multiple blocks of capacity | |
Wu et al. | Effect of risk aversion on the performance of supply chain and carbon reducing initiatives under asymmetric information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4679910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |