JP4679718B2 - Recycling of recovered foundry sand - Google Patents

Recycling of recovered foundry sand Download PDF

Info

Publication number
JP4679718B2
JP4679718B2 JP2000381606A JP2000381606A JP4679718B2 JP 4679718 B2 JP4679718 B2 JP 4679718B2 JP 2000381606 A JP2000381606 A JP 2000381606A JP 2000381606 A JP2000381606 A JP 2000381606A JP 4679718 B2 JP4679718 B2 JP 4679718B2
Authority
JP
Japan
Prior art keywords
water
foundry sand
recovered
sand
recovered foundry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000381606A
Other languages
Japanese (ja)
Other versions
JP2002178100A (en
Inventor
幸一 藤江
裕之 大門
正勝 岡本
茂夫 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2000381606A priority Critical patent/JP4679718B2/en
Publication of JP2002178100A publication Critical patent/JP2002178100A/en
Application granted granted Critical
Publication of JP4679718B2 publication Critical patent/JP4679718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回収鋳物砂の再生方法に関する。
【0002】
【従来の技術】
有機自硬性バインダーが使用された回収鋳物砂の再生方法として、鋳物砂に振動、衝撃を与えてブロック状のものを粉砕した後、さらに砂粒子同士または砥石などとの摩擦によって機械的に表面の不純物を取り除く方法が一般的である。このような方法に用いる装置として、例えば特開平7−314082号に記載されたような鋳物砂再生装置が提案されている。
【0003】
しかしながら、このような機械的な方法では、不純物の除去を十分行うことが困難であり、砂の破砕、細粒化などによる歩留まりの低下や、鋳型強度低下が生じてしまう。
【0004】
【発明が解決しようとする課題】
本発明は、従来技術の問題点を解決するものであり、不純物の除去率が高く鋳物品質及び鋳型強度が向上できる回収鋳物砂の再生方法を提供することを目的とする。更に本発明は、砂の破砕や細粒化が起こらず歩留まりが向上する回収鋳物砂の再生方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、回収鋳物砂を100℃以上に加熱された水(以下、高温水という)と接触させる工程を有する回収鋳物砂の再生方法に関する。
【0006】
回収鋳物砂と高温水とを接触させる方法としては、高温水発生器で発生させた高温水を回収鋳物砂洗浄器に導いて接触させてもよいし、回収鋳物砂と水とを耐圧密閉容器中で加熱することで高温水を発生させて接触させてもよい。設備が簡便である点から、後者の方法が好ましい。
【0007】
【発明の実施の形態】
本発明に用いられる回収鋳物砂は、ケイ砂、ジルコン砂、クロマイト砂、合成ムライト砂などの鋳物砂に、バインダーを使用して造型した後、解枠(型ばらし)して得られた回収砂ないし余剰砂である。本発明の再生方法は、特に有機自硬性バインダーで造型された鋳型から回収された鋳物砂に好適である。ここで、有機自硬性バインダーとは、フラン、アルカリフェノール、フェノールウレタン等の自硬性樹脂である。
【0008】
本発明では、100℃以上、好ましくは150℃〜550℃、特に好ましくは250℃〜450℃に加熱された水を用いる。なお、回収鋳物砂に接触させる水の量は、加熱前の重量比で、水/回収鋳物砂=1/1〜50/1、更に2/1〜30/1、特に5/1〜20/1で用いることが好ましい。また、耐圧密閉容器中で両者を接触させる場合、その容器は限定されないが、加熱中、すなわち回収鋳物砂と高温水との接触中に内部が50MPaの圧力となっても耐え得るような材質、構成のものが好ましい。また、回収鋳物砂と水は、加熱前の耐圧密閉容器の空間容積率が90%以下、更に1〜80%、特に5〜75%となるように、容器に投入することが好ましい。また、高温水発生器と回収鋳物砂洗浄器とを用いる場合、高温水発生器は、高温水を調製するための加圧器、加熱器を有し、洗浄器は、回収鋳物砂を出し入れできる洗浄室と、この洗浄室に前記高温水を導入する導入口と、この洗浄室から排出弁を介して液体を排出する排出口とを有していればよい。
【0009】
本発明の再生方法の一例を図1により説明する。図1において、1は回収鋳物砂、2は水、3は耐圧密閉容器(反応容器)、4は塩浴(ソルトバス)、5は圧力計である。反応容器3に所定量の回収鋳物砂1と水2とを入れる。その際、上記の通り、水/回収鋳物砂の重量比、空間容積率を調整することが好ましい。なお、空間容積率は、図1の反応容器3容積のうち、水2の上方にできる空間の体積が占める割合である。その後、ソルトバス4に反応容器3を浸漬し加熱を行う。その際、上記の通り、加熱温度、容器内圧力を調整することが好ましい。加熱時間(加熱温度の保持時間)は限定しないが、5分〜2時間、更に15分〜1時間を目安とするのが好ましい。なお、加熱温度は、一定でも変動させてもよい。
【0010】
本発明の好ましい実施条件として、耐圧密閉容器を用いる方法において、加熱前の水と回収鋳物砂の重量比を水/鋳物回収砂=5/1〜25/1とし、空間容積率を5〜80%とし、加熱温度を150〜450℃とし、加熱時間(加熱温度の保持時間)を30〜60時間とする方法が挙げられる。この場合、耐圧密閉容器内部の圧力は10〜45MPaが好ましい。
【0011】
本発明の再生方法は、水の存在下で、回収鋳物砂を高温、高圧処理するため、共存する水が蒸気ないし臨界状態となり、その一方で有機自硬性バインダーの分解が進行し、水への溶解や低分子化合物への分解が相乗的に進行し、効率的にバインダー成分を除去できるものと考えられる。このため、本発明では、水の臨界温度(374℃)以上の温度並びに水の臨界圧力(221気圧≒224000hPa)以上の圧力で、回収鋳物砂を処理することがより好ましい。
【0012】
本発明のより具体的に好ましい態様としては、有機自硬性バインダーが付着した回収鋳物砂を、100℃以上に加熱された水と、接触、好ましくは耐圧密閉容器中で接触させて、前記バインダーを除去する再生方法が挙げられる。
【0013】
【実施例】
尿素変成フラン樹脂又は水溶性アルカリフェノール樹脂を粘結剤に使用したケイ砂回収鋳物砂と水とを、図1に示す反応装置に投入し、加熱処理した。そのときの処理条件(水/回収鋳物砂重量比、空間容積率、加熱温度、加熱時間)を表1、2に示す。なお、加熱時間は、表1、2の加熱温度を保持した時間である。
【0014】
加熱処理後の砂について、鋳型強度、強熱減量、残留窒素分及び残留硫黄分(尿素変成フラン樹脂のみ)、並びに歩留まりを以下の方法で測定した。結果を表1、2に示す。
【0015】
(1)鋳型強度
JIS Z 2604−1976により測定した。ただし、尿素変成フラン樹脂を用いた回収鋳物砂については25℃×60%RH条件下で、花王ライトナーC−14(スルホン酸系硬化剤、花王クエーカー(株)製)を回収鋳物砂(ケイ砂再生砂)に対し0.32重量%添加し混連後、花王ライトナー340B(尿素変成フラン樹脂、花王クエーカー(株)製)をケイ砂再生砂に対し0.8重量%添加し混練後、直ちに直径50mm×高さ50mmのテストピースに充填し24Hr後、圧縮強度(MPa)を測定した。また、水溶性アルカリフェノール樹脂を用いた回収鋳物砂については花王ステップQX−140(エステル系硬化剤、花王クエーカー(株)製)を回収鋳物砂(ケイ砂再生砂)に対し0.3重量%添加し混練後、花王ステップS−660(水溶性アルカリフェノール樹脂、花王クエーカー(株)製)をケイ砂再生砂に対し1.2重量%添加し混連後、直ちに直径50mm×高さ50mmのテストピースに充填し24Hr後、圧縮強度(MPa)を測定した。
【0016】
(2)強熱減量
不純物の除去率を示すものであり、JIS Z 2604により測定した。
【0017】
(3)残留窒素分
残留窒素は鋳物のガス欠陥を誘発する元素であり、JIS M 8813−1994 7.2ケルダール法で測定した。残留量が少ない事が望ましい。
【0018】
(4)残留硫黄分
残留硫黄はダクタイル鋳鉄において鋳物表層部の黒鉛球状化を阻害する元素であり、JIS M 8813−1994 5.3高温燃焼法で測定した。残留量が少ない事が望ましい。
(5)歩留まり
再生処理前後での回収砂重量%で求めた。
【0019】
【表1】

Figure 0004679718
【0020】
*試験No.4は、通常の機械的処理を想定したものであり、ロータリーリクレーマ(日本鋳造(株)製)のB再生条件(弱条件)により1パス処理した。
【0021】
【表2】
Figure 0004679718
【0022】
**試験No.8は、通常の機械的処理を想定したものであり、ロータリーリクレーマ(日本鋳造(株)製)のA再生条件(強条件)により4パス処理した。
【0023】
【発明の効果】
本発明では、回収鋳物砂を高温水で処理する事により、従来の機械的に砂表面を処理する方法に較べ、歩留まりを落とすことなく効率よく不純物を除去できる。また、本発明によって再生された鋳物砂は、鋳物品質及び鋳型強度に優れる。
【0024】
例えば、尿素変成フラン樹脂を使用する造型法では、鋳型強度が向上し安定した鋳型の製造が可能となり、残留窒素の低減によりガス欠陥の軽減、更に残留硫黄の低減によりダクタイル鋳鉄において鋳物表層部の黒鉛球状化阻害の軽減が可能となる。また、水溶性アルカリフェノール樹脂を使用する造型法では、従来の機械的再生法では安定した鋳型強度を維持するため強力な再生条件が必要で、その結果歩留まりが大幅に低下するという問題がある。しかし、本発明により歩留まりを低下すること無く、強度の安定した鋳型の製造が可能となる。
【図面の簡単な説明】
【図1】本発明の実施態様の一例を示す概略図
【符号の説明】
1 回収鋳物砂
2 水
3 耐圧密閉容器
4 ソルトバス
5 圧力計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reclaiming recovered foundry sand.
[0002]
[Prior art]
As a method of reclaiming recovered foundry sand using an organic self-hardening binder, the cast sand is vibrated and impacted to pulverize the block-shaped one, and then mechanically the surface is rubbed by friction between sand particles or a grindstone. A method of removing impurities is common. As an apparatus used for such a method, for example, a foundry sand recycling apparatus as described in JP-A-7-314082 has been proposed.
[0003]
However, with such a mechanical method, it is difficult to sufficiently remove impurities, resulting in a decrease in yield due to sand crushing and fine graining and a decrease in mold strength.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the prior art, and to provide a method for reclaiming recovered foundry sand that has a high impurity removal rate and can improve casting quality and mold strength. A further object of the present invention is to provide a method for reclaiming recovered foundry sand that does not cause sand crushing or fine graining and improves yield.
[0005]
[Means for Solving the Problems]
The present invention relates to a method for reclaiming recovered foundry sand having a step of bringing recovered foundry sand into contact with water heated to 100 ° C. or higher (hereinafter referred to as high temperature water).
[0006]
As a method of bringing the recovered foundry sand into contact with the high temperature water, the high temperature water generated by the high temperature water generator may be brought into contact with the recovered foundry sand washing device, or the recovered foundry sand and water may be brought into pressure-resistant sealed containers. You may make it contact by generating high temperature water by heating in. The latter method is preferable because the facilities are simple.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The recovered foundry sand used in the present invention is recovered sand obtained by forming a cast sand such as silica sand, zircon sand, chromite sand, and synthetic mullite sand using a binder, and then releasing the frame. Or surplus sand. The regeneration method of the present invention is particularly suitable for foundry sand recovered from a mold formed with an organic self-hardening binder. Here, the organic self-hardening binder is a self-hardening resin such as furan, alkali phenol, or phenolurethane.
[0008]
In the present invention, water heated to 100 ° C. or higher, preferably 150 ° C. to 550 ° C., particularly preferably 250 ° C. to 450 ° C. is used. In addition, the amount of water brought into contact with the recovered foundry sand is, by weight ratio before heating, water / recovered foundry sand = 1/1 to 50/1, further 2/1 to 30/1, particularly 5/1 to 20 /. 1 is preferable. In addition, when both are brought into contact in a pressure-resistant sealed container, the container is not limited, but a material that can withstand even when the pressure is 50 MPa during heating, that is, during contact between recovered foundry sand and high-temperature water, A configuration is preferred. The recovered foundry sand and water are preferably introduced into the container so that the space volume ratio of the pressure-tight airtight container before heating is 90% or less, further 1 to 80%, particularly 5 to 75%. In addition, when using a high-temperature water generator and a recovered foundry sand washer, the high-temperature water generator has a pressurizer and a heater for preparing high-temperature water, and the washer is capable of taking in and out the recovered foundry sand. It is only necessary to have a chamber, an inlet for introducing the high-temperature water into the cleaning chamber, and a discharge port for discharging the liquid from the cleaning chamber via a discharge valve.
[0009]
An example of the reproducing method of the present invention will be described with reference to FIG. In FIG. 1, 1 is recovered foundry sand, 2 is water, 3 is a pressure-resistant sealed container (reaction vessel), 4 is a salt bath (salt bath), and 5 is a pressure gauge. A predetermined amount of recovered foundry sand 1 and water 2 are placed in a reaction vessel 3. At that time, as described above, it is preferable to adjust the weight ratio of water / recovered foundry sand and the space volume ratio. The space volume ratio is the ratio of the volume of the space formed above the water 2 to the volume of the reaction container 3 in FIG. Thereafter, the reaction vessel 3 is immersed in the salt bath 4 and heated. At that time, as described above, it is preferable to adjust the heating temperature and the pressure in the container. The heating time (heating temperature holding time) is not limited, but is preferably 5 minutes to 2 hours, and more preferably 15 minutes to 1 hour. Note that the heating temperature may be constant or variable.
[0010]
As a preferred implementation condition of the present invention, in the method using a pressure-resistant airtight container, the weight ratio of water before heating and recovered foundry sand is water / cast recovered sand = 5/1 to 25/1, and the space volume ratio is 5 to 80. %, Heating temperature is 150 to 450 ° C., and heating time (heating temperature holding time) is 30 to 60 hours. In this case, the pressure inside the pressure tight sealed container is preferably 10 to 45 MPa.
[0011]
In the recycling method of the present invention, the recovered foundry sand is treated at a high temperature and high pressure in the presence of water, so that the coexisting water is in a vapor or critical state, while the decomposition of the organic self-hardening binder proceeds, and the water is converted into water. It is considered that dissolution and decomposition into low molecular weight compounds proceed synergistically and the binder component can be efficiently removed. Therefore, in the present invention, it is more preferable to treat the recovered foundry sand at a temperature equal to or higher than the critical temperature of water (374 ° C.) and a pressure equal to or higher than the critical pressure of water (221 atm≈224000 hPa).
[0012]
As a more specifically preferred embodiment of the present invention, the recovered foundry sand to which the organic self-hardening binder is attached is brought into contact with water heated to 100 ° C. or higher, preferably in a pressure-tight airtight container, and the binder is used. Examples of the regeneration method include removal.
[0013]
【Example】
Silica sand recovered foundry sand and water using urea-modified furan resin or water-soluble alkali phenol resin as a binder were put into the reaction apparatus shown in FIG. 1 and heat-treated. The processing conditions (water / recovered foundry sand weight ratio, space volume ratio, heating temperature, heating time) at that time are shown in Tables 1 and 2. The heating time is the time for which the heating temperatures in Tables 1 and 2 are maintained.
[0014]
For the sand after the heat treatment, the mold strength, loss on ignition, residual nitrogen content and residual sulfur content (urea modified furan resin only), and yield were measured by the following methods. The results are shown in Tables 1 and 2.
[0015]
(1) Mold strength Measured according to JIS Z 2604-1976. However, for recovered foundry sand using urea-modified furan resin, Kao Lightner C-14 (sulfonic acid curing agent, manufactured by Kao Quaker Co., Ltd.) was recovered under the conditions of 25 ° C. × 60% RH (silica sand). After adding 0.32% by weight to the regenerated sand), Kao Lightner 340B (urea modified franc resin, manufactured by Kao Quaker Co., Ltd.) is added 0.8% by weight to the regenerated sand of sand and immediately after kneading. A test piece having a diameter of 50 mm and a height of 50 mm was filled, and after 24 hours, the compressive strength (MPa) was measured. For recovered foundry sand using water-soluble alkali phenol resin, Kao Step QX-140 (ester hardener, manufactured by Kao Quaker Co., Ltd.) is 0.3% by weight with respect to recovered foundry sand (silica sand recycled sand). After adding and kneading, Kao Step S-660 (water-soluble alkali phenol resin, manufactured by Kao Quaker Co., Ltd.) is added by 1.2% by weight to the regenerated sand of silica sand, and immediately after mixing, the diameter is 50 mm × height is 50 mm. After filling the test piece and 24 hours, the compressive strength (MPa) was measured.
[0016]
(2) Shows the removal rate of ignition loss impurities, measured according to JIS Z 2604.
[0017]
(3) Residual nitrogen content Residual nitrogen is an element that induces gas defects in castings, and was measured by the JIS M 8813-1994 7.2 Kjeldahl method. It is desirable that the residual amount is small.
[0018]
(4) Residual Sulfur Content Residual sulfur is an element that inhibits graphite spheroidization of the casting surface layer in ductile cast iron, and was measured by JIS M 8813-1994 5.3 high temperature combustion method. It is desirable that the residual amount is small.
(5) Obtained by weight% of collected sand before and after the yield regeneration treatment.
[0019]
[Table 1]
Figure 0004679718
[0020]
* Test No. No. 4 was assumed to be a normal mechanical treatment, and was subjected to one pass treatment under the B regeneration condition (weak condition) of a rotary reclaimer (manufactured by Nippon Casting Co., Ltd.).
[0021]
[Table 2]
Figure 0004679718
[0022]
** Test No. No. 8 was assumed to be a normal mechanical treatment, and was subjected to a 4-pass treatment under A regeneration conditions (strong conditions) of a rotary reclaimer (manufactured by Nippon Casting Co., Ltd.).
[0023]
【The invention's effect】
In the present invention, by treating the recovered foundry sand with high-temperature water, impurities can be efficiently removed without lowering the yield as compared with the conventional method of mechanically treating the sand surface. Moreover, the foundry sand regenerated by the present invention is excellent in casting quality and mold strength.
[0024]
For example, in the molding method using urea-modified furan resin, the mold strength is improved, and a stable mold can be produced. Reduction of residual nitrogen reduces gas defects, and reduction of residual sulfur further reduces the casting surface layer of ductile cast iron. It is possible to reduce inhibition of graphite spheroidization. In addition, the molding method using a water-soluble alkali phenol resin has a problem that the conventional mechanical regeneration method requires strong regeneration conditions in order to maintain a stable mold strength, resulting in a significant decrease in yield. However, the present invention makes it possible to produce a mold having a stable strength without reducing the yield.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.
1 recovered sand 2 water 3 pressure-resistant sealed container 4 salt bath 5 pressure gauge

Claims (5)

回収鋳物砂を250℃〜450℃に加熱された水と耐圧密閉容器中で接触させる工程を有する回収鋳物砂の再生方法。A method for reclaiming recovered foundry sand, comprising a step of bringing the recovered foundry sand into contact with water heated to 250 ° C to 450 ° C in a pressure-resistant sealed container . 加熱される前の水と回収鋳物砂との重量比が、水/回収鋳物砂=1/1〜50/1である請求項1記載の再生方法。The weight ratio of water before being heated and recovered foundry sand, water / recovered foundry sand = 1 / 1-50 / 1 at which claim 1 Symbol mounting playback method. 耐圧密閉容器の空間容積率が90%以下となるよう、回収鋳物砂と水とを耐圧密閉容器に投入し、その後水を加熱する請求項1又は2記載の再生方法。The regeneration method according to claim 1 or 2 , wherein the recovered foundry sand and water are put into the pressure-tight container and the water is heated thereafter so that the space volume ratio of the pressure-tight container is 90% or less. 回収鋳物砂が有機自硬性バインダーで造型された鋳型から回収されたものである請求項1〜の何れか1項記載の再生方法。The recycling method according to any one of claims 1 to 3 , wherein the recovered foundry sand is recovered from a mold formed with an organic self-hardening binder. 有機自硬性バインダーが、尿素変成フラン樹脂又は水溶性アルカリフェノール樹脂である請求項4記載の再生方法。The regeneration method according to claim 4, wherein the organic self-hardening binder is a urea-modified furan resin or a water-soluble alkali phenol resin.
JP2000381606A 2000-12-15 2000-12-15 Recycling of recovered foundry sand Expired - Fee Related JP4679718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381606A JP4679718B2 (en) 2000-12-15 2000-12-15 Recycling of recovered foundry sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381606A JP4679718B2 (en) 2000-12-15 2000-12-15 Recycling of recovered foundry sand

Publications (2)

Publication Number Publication Date
JP2002178100A JP2002178100A (en) 2002-06-25
JP4679718B2 true JP4679718B2 (en) 2011-04-27

Family

ID=18849574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381606A Expired - Fee Related JP4679718B2 (en) 2000-12-15 2000-12-15 Recycling of recovered foundry sand

Country Status (1)

Country Link
JP (1) JP4679718B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679931B2 (en) * 2005-03-01 2011-05-11 花王株式会社 Recycled sand production method
JP5827927B2 (en) 2012-06-20 2015-12-02 新東工業株式会社 Foundry sand recycling equipment
JP6188502B2 (en) * 2013-09-06 2017-08-30 大木産業株式会社 Casting sand recycling process
HUE054926T2 (en) * 2018-06-29 2021-10-28 Nemak Sab De Cv Method for preparing a foundry sand mixture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119332A (en) * 1978-01-07 1979-09-17 Nobuo Miyazawa Organic coking agent for casting sand

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841135B2 (en) * 1975-03-26 1983-09-09 三菱重工業株式会社 Imonozu Nano Saiseihouhou
JPS5281018A (en) * 1975-12-29 1977-07-07 Isuzu Motors Ltd Molding sand regenerate mixg method
JPS5299924A (en) * 1976-02-18 1977-08-22 Hitachi Ltd Old sand cleaning reproduction process
JPS5429827A (en) * 1977-08-10 1979-03-06 Hitachi Ltd Resurrection method of heattgenerating* selff hardned sand
JPH06154941A (en) * 1992-11-20 1994-06-03 Kurimoto Ltd Reconditioning method for molding sand and production of casting mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119332A (en) * 1978-01-07 1979-09-17 Nobuo Miyazawa Organic coking agent for casting sand

Also Published As

Publication number Publication date
JP2002178100A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
US3563711A (en) Process for removal of siliceous cores from castings
JP4403072B2 (en) Mold removal casting method and equipment
EP0141666A2 (en) Method of reclaiming sand used in evaporative casting process
JP4679718B2 (en) Recycling of recovered foundry sand
US5126089A (en) Method for easy removal of sand cores from castings
US4108931A (en) System of making molds for investment casting
US7147031B2 (en) Lost pattern mold removal casting method and apparatus
US2597896A (en) Casting core removal
TW202140167A (en) Method for reproducing molding sand
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
KR100824100B1 (en) A method for making sand covered with bentonite, the sand, and a method for recycling molding sand for a mold using the sand covered by bentonite
CZ140398A3 (en) Process and apparatus for cold dressing of moulding sand
US11052405B2 (en) Method and system for cleaning sand
JP2006239707A (en) Method for producing reconditioned sand
NO142203B (en) PROCEDURE FOR EXPOSURE OF SILICATE BASED FORM FROM A CUSTOMIZABLE FORM
RU1836177C (en) Method of casting
US3738415A (en) Method of molding articles and reclaiming the foundry sand used
JP3574303B2 (en) Manufacturing method and slurry coating device for precision casting mold
US3867977A (en) Method of casting copper anodes using a preheated mold coating
US3212144A (en) Sand molds for metal casting and methods therefor
JP3103446B2 (en) Cooling method of steelmaking slag
RU2086341C1 (en) Method of manufacture of foundry cores and molds on cold equipment
JP2024098711A (en) Foundry sand regeneration method
JP6445333B2 (en) Recycle method of recovered foundry sand
JPH06184610A (en) Treatment of cooling steelmaking slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees