JP4679486B2 - Surface organic compound concentration measurement method - Google Patents

Surface organic compound concentration measurement method Download PDF

Info

Publication number
JP4679486B2
JP4679486B2 JP2006285567A JP2006285567A JP4679486B2 JP 4679486 B2 JP4679486 B2 JP 4679486B2 JP 2006285567 A JP2006285567 A JP 2006285567A JP 2006285567 A JP2006285567 A JP 2006285567A JP 4679486 B2 JP4679486 B2 JP 4679486B2
Authority
JP
Japan
Prior art keywords
measured
organic compound
oil
infrared
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006285567A
Other languages
Japanese (ja)
Other versions
JP2008102044A (en
Inventor
▲慎▼太郎 尾崎
弘之 清水
邦彰 宮▲崎▼
淳紀 白滝
哲直 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006285567A priority Critical patent/JP4679486B2/en
Priority to CN200710180105A priority patent/CN100580425C/en
Publication of JP2008102044A publication Critical patent/JP2008102044A/en
Application granted granted Critical
Publication of JP4679486B2 publication Critical patent/JP4679486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、溶接用ワイヤ等の表面に塗布された潤滑油等の表面有機化合物の濃度を測定する表面有機化合物濃度測定方法に関する。   The present invention relates to a surface organic compound concentration measurement method for measuring the concentration of a surface organic compound such as lubricating oil applied to the surface of a welding wire or the like.

通常、溶接用ワイヤ等の製造に当たっては、ワイヤをスプール又はペールパック等の包装容器に格納する直前に、油が塗布される。この塗布工程においては、油付着量を特定の範囲内に管理することが極めて重要であり、油量が不足した場合には、錆が発生したり、溶接時にワイヤを一定の速度で送給することが困難となり、逆に油量が過剰な場合には、溶接金属中に油の燃焼ガスが混入し、気孔欠陥を生じて溶接部の強度を低下させてしまう。そのため、塗布直後に油量を測定し、油量が所定範囲にない場合は、塗布装置の操業条件に速やかにフィードバックして、条件修正を行うことが必要である。   Usually, when manufacturing a welding wire or the like, oil is applied immediately before the wire is stored in a packaging container such as a spool or a pail pack. In this coating process, it is extremely important to manage the amount of oil adhesion within a specific range. When the amount of oil is insufficient, rust occurs or the wire is fed at a constant speed during welding. On the contrary, when the amount of oil is excessive, combustion gas of oil is mixed in the weld metal, resulting in pore defects and reducing the strength of the weld. For this reason, it is necessary to measure the oil amount immediately after application, and when the oil amount is not within a predetermined range, it is necessary to promptly feed back to the operating conditions of the coating apparatus and correct the conditions.

このような要請に基づき、従来から、ワイヤ表面の油量を測定する手段が提案されている(特許文献1,2)。この油量測定方法としては、(a)四塩化炭素を抽出溶媒とする油分濃度計を使用する方法、(b)代替フロンを抽出溶媒とする油分濃度計を使用する方法、(c)KBr等赤外線を吸収しない物質で錠剤を作成し、錠剤表面からの直接反射光を用いた赤外線分光光度計(FTIR)を使用する方法、(d)直接、被測定物表面に赤外線を照射し、直接反射光を検出する赤外線分光法、(e)ろ紙等でワイヤ表面を拭き取り、ろ紙表面の染みの付着状況から油付着量を推定する方法がある。   Based on such a request, conventionally, means for measuring the oil amount on the wire surface has been proposed (Patent Documents 1 and 2). As this oil amount measuring method, (a) a method using an oil concentration meter using carbon tetrachloride as an extraction solvent, (b) a method using an oil concentration meter using an alternative fluorocarbon as an extraction solvent, (c) KBr, etc. Making a tablet with a substance that does not absorb infrared rays, and using an infrared spectrophotometer (FTIR) using direct reflected light from the tablet surface, (d) Directly reflecting infrared rays on the surface of the object to be measured and reflecting directly There are infrared spectroscopy for detecting light, and (e) a method of wiping the wire surface with filter paper or the like, and estimating the oil adhesion amount from the state of stain adhesion on the filter paper surface.

特開2005−257553JP 2005-257553 A 特開2005−91306JP 2005-91306 A

しかしながら、上述の従来のワイヤ表面の油量測定方法には以下に示す問題点がある。先ず、(a)の方法で使用される四塩化炭素は、モントリオール議定書の規制物質であり、分析・測定等のエッセンシャルユースにのみ使用が許された物質であるが、2007年末にはこれも廃止される予定であり、今後使用できなくなる。また、C−H結合を有する油を測定対象とする装置であり、C−H結合の原子間距離に相当する波長が3.4μm近傍の赤外線の吸光度しか測定できないため、例えばパーフルオロポリエーテル、PTFE(polytetra-fluoroethylene)等のC−F結合だけを有する潤滑剤の付着量を測定することは不可能である。   However, the conventional method for measuring the oil amount on the wire surface has the following problems. First, carbon tetrachloride used in the method (a) is a regulated substance of the Montreal Protocol, and is a substance that can only be used for essential uses such as analysis and measurement, but it will also be abolished at the end of 2007 Will no longer be available. Further, it is an apparatus for measuring oil having C—H bonds, and can measure only the absorbance of infrared rays having a wavelength corresponding to the inter-atomic distance of C—H bonds in the vicinity of 3.4 μm. It is impossible to measure the adhesion amount of a lubricant having only a C—F bond such as PTFE (polytetra-fluoroethylene).

(b)の方法では、抽出に使用する溶媒が高価であり、C−Cl結合を持つ代替フロン系溶媒のほとんどは、オゾン層破壊物質であるため、今後規制対象物質となる可能性が高い。この方法も、(a)の方法と同じく、C−H油以外の潤滑油の測定は不可能である。   In the method (b), the solvent used for the extraction is expensive, and most of the alternative chlorofluorocarbon solvents having a C—Cl bond are ozone-depleting substances, and thus are likely to become regulated substances in the future. In this method, as in the method (a), it is impossible to measure lubricating oil other than C—H oil.

(c)の方法では、石油エーテル又はアセトン等の有機溶媒で油分を抽出した後に、KBr粉末と混合し、溶媒を除去した後に、錠剤に成型し、KBr錠剤に照射した赤外線の吸光度から油量を測定する。溶媒が四塩化炭素に限定されない利点がある一方で、溶媒の蒸発及び除去並びにKBr錠剤の作成等の前処理に長い時間を必要とするため、操業条件への速やかなフィードバックが困難である。   In the method (c), after extracting oil with an organic solvent such as petroleum ether or acetone, mixing with KBr powder, removing the solvent, forming into a tablet, and the amount of oil from the infrared absorbance irradiated to the KBr tablet Measure. While there is an advantage that the solvent is not limited to carbon tetrachloride, it requires a long time for the pretreatment such as evaporation and removal of the solvent and preparation of KBr tablets, so that quick feedback to the operating conditions is difficult.

(d)の方法は、鋼板の塗膜計等に使用されており、簡便な方法であるが、板材用の技術であり、被測定物の形状や粗さが制限されるため、円柱形状のワイヤには使用することができない。   The method (d) is used for a coating film meter of a steel sheet and is a simple method, but is a technique for a plate material, and the shape and roughness of an object to be measured are limited. It cannot be used for wires.

(e)の方法は非常に簡便であるが、定量性が劣り、水素割れ感受性の高い高張力鋼用溶接ワイヤ等の油量管理には不適である。   Although the method (e) is very simple, it is unsuitable for oil quantity management of a welding wire for high-strength steel having high quantitative cracking and high hydrogen cracking sensitivity.

また、所謂赤外線分光分析には、上述の(a)、(b)、(c)の方法のように、透過光を使用するものと、(d)の方法のように直接反射光を使用するものに加えて、拡散反射光を使用する方法があるが、この拡散反射光を使用する方法は、粉末試料の構造解析に利用される方法であり、曲率をもった被測定物の表面付着物濃度の測定に対して適用されることは無かった。   In so-called infrared spectroscopic analysis, transmitted light is used as in the methods (a), (b), and (c) described above, and directly reflected light is used as in the method (d). In addition to the above, there is a method using diffuse reflected light. This method using diffuse reflected light is a method used for structural analysis of a powder sample, and the surface adhering material of the object to be measured has a curvature. There was no application for concentration measurements.

本発明はかかる問題点に鑑みてなされたものであって、被測定物の鋼種及びは油の種類によらず、被測定物上に塗布された油の付着量を、環境負荷の高い規制物質を使用することなく、高精度に且つ簡便に測定することができる表面有機化合物濃度測定方法を提供することを目的とする。   The present invention has been made in view of such a problem. Regardless of the steel type and oil type of the object to be measured, the amount of oil applied on the object to be measured can be controlled by a highly regulated substance. An object of the present invention is to provide a method for measuring the concentration of a surface organic compound that can be easily measured with high accuracy without using any of the above.

本発明に係る表面有機化合物濃度測定方法は、被測定物としての溶接ワイヤ表面の有機化合物濃度を測定する方法において、赤外線照射域の直径をA、円柱又は円筒状の前記被測定物の外径をD、被測定物を赤外線照射域に並列に複数本並べた場合の搭載幅をBとしたとき、A/D≧2、B≧(A+D)の関係を満たすように、赤外線照射域内に、円柱又は円筒状の被測定物を並べ、赤外線を照射し、被測定物からの拡散反射光を用いて特定波長の赤外線の吸光度を計測することを特徴とする。   The surface organic compound concentration measuring method according to the present invention is a method for measuring the organic compound concentration on the surface of a welding wire as an object to be measured, wherein the diameter of the infrared irradiation region is A, the outer diameter of the columnar or cylindrical object to be measured. D, and when the mounting width when a plurality of objects to be measured are arranged in parallel in the infrared irradiation area is B, in the infrared irradiation area so as to satisfy the relationship of A / D ≧ 2, B ≧ (A + D), Columnar or cylindrical objects to be measured are arranged, irradiated with infrared rays, and the absorbance of infrared rays having a specific wavelength is measured using diffusely reflected light from the objects to be measured.

この表面有機化合物濃度測定方法において、測定対象となる有機化合物は、例えば、なたね油等の脂肪酸グリセリド、ライスワックス等の1価アルコールの脂肪酸エステル、オレイン酸アルコール等の脂肪族アルコール、エルカ酸アミド等の脂肪酸アミド、極性基をを持たない鉱油類で2重結合がないスピンドル油若しくは2重結合を持つポリブデン、又はC−H結合を持たないパーフルオロポリエーテルである。 In this surface organic compound concentration measurement method, the organic compounds to be measured include, for example, fatty acid glycerides such as rapeseed oil, fatty acid esters of monohydric alcohols such as rice wax, aliphatic alcohols such as oleic alcohol, erucic acid amide, etc. Fatty acid amides, mineral oils without polar groups, spindle oils without double bonds or polybudenes with double bonds, or perfluoropolyethers without C—H bonds.

又は、測定対象となる有機化合物は、例えば、バインダにより被測定物の表面に付着したPTFE(polytetra-fluoroethylene)である。これらの固形物の付着量についても、付着させた物質毎に検量線を作成することにより、高精度で濃度を測定することができる。   Alternatively, the organic compound to be measured is, for example, PTFE (polytetra-fluoroethylene) attached to the surface of the object to be measured with a binder. Concerning the adhesion amount of these solids, the concentration can be measured with high accuracy by creating a calibration curve for each adhered substance.

また、本発明の表面有機化合物濃度測定方法は、前記被測定物に対して表裏2方向から赤外線を照射して、その吸光度を計測し、その平均値から、前記被測定物表面の有機化合物濃度を測定することができる。   Moreover, the surface organic compound concentration measuring method of the present invention irradiates the object to be measured with infrared rays from two directions, the absorbance is measured, and the average value of the organic compound concentration on the surface of the object to be measured is measured. Can be measured.

以下、本発明の実施形態について説明する。前述のとおり、拡散反射光を使用する赤外線分光分析装置は、従来、粉末試料の構造解析に使用されてきた装置であり、赤外線の照射領域には、粒径が数μmから200μmの粉末粒子が隙間無く並んだ状態で測定がなされることが通例である。このため、本発明のように、被測定物が溶接ワイヤの場合には、拡散反射光を使用する赤外線分光分析装置を、そのまま適用することはできない。   Hereinafter, embodiments of the present invention will be described. As described above, an infrared spectroscopic analyzer using diffuse reflected light is an apparatus that has been conventionally used for structural analysis of powder samples. In the infrared irradiation region, powder particles having a particle size of several μm to 200 μm are present. It is customary that measurements are made with no gaps. For this reason, when the object to be measured is a welding wire as in the present invention, an infrared spectroscopic analyzer using diffuse reflected light cannot be applied as it is.

しかし、本発明者らは鋭意研究を重ね、粉末試料の粒経に比べて極めて大きな直径を持つ溶接用ワイヤ(常用される直径は、0.8〜2.4mm)等の円柱状又は円筒状の被測定物に対して拡散反射型赤外分光装置の適用の方法を実験研究したところ、図1に示すように、赤外線の照射域よりも広い幅となるように被測定物を複数本並べ、被測定物の直径に応じて赤外線照射径を適切に選定することで、精度よく付着物濃度が測定できることを見出した。   However, the present inventors have conducted intensive research and have made a cylindrical or cylindrical shape such as a welding wire having a very large diameter compared to the particle size of a powder sample (a commonly used diameter is 0.8 to 2.4 mm). As a result of experimental research on the method of applying the diffuse reflection type infrared spectroscopic apparatus to the measured object, a plurality of measured objects are arranged so that the width is wider than the infrared irradiation area, as shown in FIG. It has been found that the deposit concentration can be measured accurately by appropriately selecting the infrared irradiation diameter according to the diameter of the object to be measured.

これは、円柱状の被測定物(ワイヤ)を平面上に、並列に複数本並べると、試料表面に照射された光線が、隣接するワイヤとの間で互いに干渉しながら拡散反射を起こし、あたかも特定の表面粗度を有する平面のように反射光を返すためであると考えられる。   This is because when a plurality of cylindrical objects (wires) are arranged in parallel on a plane, the light rays irradiated on the sample surface cause diffuse reflection while interfering with adjacent wires. This is considered to be because the reflected light is returned like a plane having a specific surface roughness.

被測定物を並べる幅(搭載幅)が、赤外線の照射幅よりも狭い場合には、試料を並べていない部分からの反射光が誤差となり、十分な測定精度が得られない。このため、搭載幅は、(照射幅十被測定物外径)以上であることが必要である。   When the width of the objects to be measured (mounting width) is narrower than the infrared irradiation width, the reflected light from the portion where the sample is not arranged becomes an error, and sufficient measurement accuracy cannot be obtained. For this reason, the mounting width needs to be equal to or greater than (irradiation width 10 outer diameter of object to be measured).

また、照射径に対して、被測定物の外径が大きい場合には、照射城に対して測定物の並び方が軸対称である場合と、軸対称でない場合とで赤外線吸光度の誤差が大きくなる。従って、被測定物の線径に応じて、適切な赤外線照射径を選定する必要がある。   In addition, when the outer diameter of the object to be measured is larger than the irradiation diameter, the error in infrared absorbance increases depending on whether the arrangement of the measurement objects is axisymmetric with respect to the irradiation castle or not. . Therefore, it is necessary to select an appropriate infrared irradiation diameter according to the wire diameter of the object to be measured.

本発明は、このような知見に基づいてなされたものであり、図1に示すように、赤外線照射域の直径Aと、円柱状又は円筒状の被測定物(溶接ワイヤ)の外径Dと、被測定物を赤外線照射域に複数本並べた場合の搭載幅Bとの間に、
A/D≧2 (1)
B≧(A+D) (2)
の関係を満足するように、赤外線照射域内に、円柱状又は円筒状の被測定物を並べ、赤外線を照射し、被測定物からの拡散反射光を使用して、特定波長の赤外線の吸光度を計測する。
The present invention has been made based on such knowledge, and as shown in FIG. 1, the diameter A of the infrared irradiation region and the outer diameter D of a columnar or cylindrical object to be measured (welding wire) Between the mounting width B when a plurality of objects to be measured are arranged in the infrared irradiation region,
A / D ≧ 2 (1)
B ≧ (A + D) (2)
In order to satisfy the above relationship, columnar or cylindrical objects to be measured are arranged in the infrared irradiation area, infrared rays are irradiated, and diffused reflected light from the objects to be measured is used to obtain the absorbance of infrared rays of a specific wavelength. measure.

これにより、被測定物表面の有機化合物濃度を測定することができる。従って、本発明により、被測定物の鋼種及び油の種類によらず、被測定物上に塗布された油の付着量を、環境負荷が高い規制物質を使用することなく、高精度に測定できる。   Thereby, the organic compound concentration on the surface of the object to be measured can be measured. Therefore, according to the present invention, regardless of the steel type and oil type of the object to be measured, the amount of oil applied to the object to be measured can be measured with high accuracy without using a regulated substance with a high environmental load. .

図2は、本発明の実施形態で使用する拡散光反射型赤外線分光光度計の光学系を示す模式図である。光源からの赤外線は、干渉計1により収束され、平面ミラーM1、M2を経て凹面ミラーM3に入射し、この凹面ミラーM3で絞られて試料2の表面を照射する。試料2の表面で反射した拡散反射光は、凹面ミラーM4で収束した後、平面ミラーM5、M6を経由して検出器3(図1参照)へと導かれる。   FIG. 2 is a schematic diagram showing an optical system of a diffuse light reflection type infrared spectrophotometer used in the embodiment of the present invention. Infrared light from the light source is converged by the interferometer 1 and enters the concave mirror M3 through the plane mirrors M1 and M2, and is focused by the concave mirror M3 to irradiate the surface of the sample 2. The diffusely reflected light reflected from the surface of the sample 2 is converged by the concave mirror M4 and then guided to the detector 3 (see FIG. 1) via the plane mirrors M5 and M6.

例えば、2個の試料(被測定物2)と標準試料2aは、図3に示すホルダー4上に固定される。即ち、油が付着していない標準試料2aと、被測定物2をホルダー4に取り付け、例えば、図4に示すように、標準試料2a→第1の被測定物2→第2の被測定物2の順に、赤外線分光光度計による吸光度の測定を行う。次に、ホルダー4を測定装置から取り出し、図5に示すように、ホルダー4を裏返して、標準試料→被測定物1→被測定物2の順に裏側の面の測定を行う。最後に、測定値の平均値(この場合4回の平均値)を算出して、被測定物2の表面油量を得ることができる。   For example, two samples (measurement object 2) and a standard sample 2a are fixed on a holder 4 shown in FIG. That is, the standard sample 2a to which no oil is attached and the object 2 to be measured are attached to the holder 4, for example, as shown in FIG. 4, the standard sample 2a → the first object 2 to be measured → the second object to be measured. In the order of 2, the absorbance is measured with an infrared spectrophotometer. Next, the holder 4 is taken out from the measuring apparatus, and as shown in FIG. 5, the holder 4 is turned over and the back side surface is measured in the order of standard sample → measurement object 1 → measurement object 2. Finally, the average value of the measured values (in this case, the average value of four times) can be calculated to obtain the surface oil amount of the DUT 2.

図1は、図2中の試料室近傍を拡大した図であり、外径がDである円柱状又は円筒状の被測定物2を赤外線照射域に複数本並べたときの搭載幅がBであることと、赤外線照射域の直径がAであることを示している。   FIG. 1 is an enlarged view of the vicinity of the sample chamber in FIG. 2, and the mounting width when a plurality of columnar or cylindrical objects 2 having an outer diameter D are arranged in the infrared irradiation region is B. And the diameter of the infrared irradiation area is A.

本発明においては、A/D≧2を満足する。A/Dの値が2未満の場合、ワイヤ頂部が赤外線照射域のどこに位置するかによって、即ち、赤外線照射域に対して軸対称となるように試料を搭載した場合と、軸対象の位置からずれた場合とで、吸光度の値が大きく変化する。このため、測定値のバラツキが大きくなり、高精度の吸光度測定ができない。   In the present invention, A / D ≧ 2 is satisfied. When the value of A / D is less than 2, depending on where in the infrared irradiation area the top of the wire is located, that is, when the sample is mounted so as to be axially symmetric with respect to the infrared irradiation area, The absorbance value changes greatly depending on the deviation. For this reason, the variation of measured values becomes large, and high-precision absorbance measurement cannot be performed.

また、本発明においては、B≧(A+D)を満足する。被測定物を並べる幅(搭載幅)Bが、赤外線の照射幅よりも狭い場合には、試料を並べていない部分からの反射光が誤差となり、十分な測定精度が得られない。また、いたずらに搭載幅を広くすることは測定時間の延長を招く。また、(A+D)>B≧Aの場合には、搭載幅の増加に伴って吸光度が微増するため、測定精度の誤差を招く。   In the present invention, B ≧ (A + D) is satisfied. When the width (mounting width) B for arranging the objects to be measured is narrower than the infrared irradiation width, the reflected light from the part where the sample is not arranged becomes an error, and sufficient measurement accuracy cannot be obtained. Also, unnecessarily widening the mounting width leads to an increase in measurement time. Further, when (A + D)> B ≧ A, the absorbance slightly increases as the mounting width increases, resulting in an error in measurement accuracy.

(A+D)以上に試料を並べた場合(B≧(A+D))には、照射域外縁部においても、照射域中央部と同様に、特定の表面粗度を有する平面のように反射光を返し、搭載幅を増やしても吸光度が変動しない。このため、B≧(A+D)とすることが必要である。   When the samples are arranged more than (A + D) (B ≧ (A + D)), the reflected light is also returned at the outer edge of the irradiation area, like a plane having a specific surface roughness, similar to the central area of the irradiation area. Even if the mounting width is increased, the absorbance does not fluctuate. For this reason, it is necessary to satisfy B ≧ (A + D).

本発明の測定対象となる有機化合物は、例えば、脂肪酸グリセリド、1価アルコールの脂肪酸エステル、脂肪族アルコール、又はパーフルオロポリエーテルである。これらの物質は、送給潤滑剤として有効な物質であり、本発明方法を使用して適切な付着量に制御する必要がある。   The organic compound to be measured in the present invention is, for example, fatty acid glyceride, fatty acid ester of monohydric alcohol, aliphatic alcohol, or perfluoropolyether. These substances are effective substances as a feed lubricant, and need to be controlled to an appropriate amount of adhesion using the method of the present invention.

また、これらの測定対象となる有機化合物は、バインダにより被測定物の表面に付着したPTFE(polytetra-fluoroethylene)とすることもできる。このPTFEも送給潤滑剤として有効な物質である。   Further, the organic compound to be measured can be PTFE (polytetra-fluoroethylene) attached to the surface of the object to be measured by a binder. This PTFE is also an effective substance as a feed lubricant.

溶接ワイヤ表面の有機化合物濃度を測定する際に、溶接ワイヤに対して、表裏2方向から赤外線を照射して、その吸光度を計測し、その平均値から、前記被測定物表面の有機化合物濃度を測定することが好ましい。   When measuring the organic compound concentration on the surface of the welding wire, the welding wire is irradiated with infrared rays from two directions, the absorbance is measured, and from the average value, the organic compound concentration on the surface of the object to be measured is determined. It is preferable to measure.

ワイヤ表面に被着された有機化合物(油)の付着量は、油の塗布方法により、ワイヤの周方向で変動する。図10(a)は浸漬法で油が塗布された場合のワイヤの長手方向直角断面における塗布油の存在状態を模式的に示す図、図10(b)は油が静電塗付された場合の湯付着状態を模式的に示す図である。油が浸漬法で塗布された場合は、ワイヤ周方向の付着量の変動は少なく、静電塗布された場合は、ワイヤ周方向の付着量の変動が大きい。   The amount of organic compound (oil) deposited on the wire surface varies in the circumferential direction of the wire depending on the method of applying the oil. FIG. 10 (a) is a diagram schematically showing the state of application oil in a cross section perpendicular to the longitudinal direction of the wire when oil is applied by the dipping method, and FIG. 10 (b) is a case where the oil is electrostatically applied. It is a figure which shows typically the hot water adhesion state. When oil is applied by the dipping method, the fluctuation in the amount of adhesion in the circumferential direction of the wire is small, and when it is applied electrostatically, the fluctuation in the amount of adhesion in the circumferential direction of the wire is large.

ワイヤ表面の油量をFTIR法により測定すると、図11における赤外線を反射する部分(ワイヤ周方向の上半分)に付着した有機物だけが測定される。このため、油が静電塗布されたワイヤ表面の油付着量を一方向からのみ(上方からのみ)測定すると、ワイヤの周方向の付着量の変動の影響で、ワイヤ全体の油量を正確に測定することができない場合がある。   When the amount of oil on the surface of the wire is measured by the FTIR method, only the organic matter adhering to the portion reflecting the infrared rays in FIG. 11 (the upper half in the wire circumferential direction) is measured. For this reason, if the oil adhesion amount on the surface of the wire to which oil is electrostatically applied is measured only from one direction (from only above), the oil amount of the entire wire can be accurately determined due to the influence of the fluctuation of the adhesion amount in the circumferential direction of the wire It may not be possible to measure.

このため、平行に並べたワイヤに対し、多方向から油付着量を測定して平均化することにより、ワイヤ周方向の付着量のばらつきの影響を軽減することが好ましい。これにより、ワイヤ全体の油付着量を正確に評価することができる。この場合に、測定する方向を増やすほど誤差は減少すると考えられるが、一方で、測定に要する時間及び手間の増大を招く。本願発明者等は、図12に示すように、ホルダに複数本のワイヤを設置し、表面から測定すると共に、その表裏を反転させて裏面から再度測定することにより、2方向から油量を測定してこれを平均化した場合は、例えば、90°ずつ測定方向を変えて4方向から油量を測定して平均化した場合と同程度の測定精度を得ることができることを知見した。そして、図12に示すように、表裏裏返して2回油量を測定する処理は、90°ずつ方向を変えて油量を測定する処理に比して、その手間が極めて少ない。   For this reason, it is preferable to reduce the influence of the variation in the adhesion amount in the circumferential direction of the wire by measuring the oil adhesion amount from multiple directions and averaging the wires arranged in parallel. Thereby, the oil adhesion amount of the whole wire can be evaluated accurately. In this case, the error is considered to decrease as the measurement direction is increased, but on the other hand, the time and labor required for measurement are increased. As shown in FIG. 12, the inventors of the present application measure the oil amount from two directions by installing a plurality of wires in a holder and measuring from the front surface, inverting the front and back and measuring from the back surface again. Then, when this was averaged, it was found that, for example, it was possible to obtain the same measurement accuracy as when the oil quantity was measured and averaged from four directions by changing the measurement direction by 90 °. Then, as shown in FIG. 12, the process of measuring the oil amount twice by turning it upside down is much less labor than the process of measuring the oil amount by changing the direction by 90 °.

次に、本発明の範囲に入る実施例について、本発明の範囲から外れる比較例と比較して、本発明の効果について説明する。図6はなたね油を塗布した溶接ワイヤ(線径:1.2mm)を測定対象に、赤外線照射径4.0mmの拡散光型赤外分光光度計を使用して、試料搭載幅と赤外線吸光度との関係を調べた結果を示すグラフ図である。搭載幅がA+D以上(5.2mm以上)の範囲で吸光度は一定値を示しており、搭載幅がこの領域にある場合には、あらかじめ求めた検量線を元に、正確な油量を求めることができる。搭載幅がA+D未満の領域では、搭載幅の上昇に応じて吸光度が変化しており、正確な油量を求めることが困難である。   Next, the effects of the present invention will be described with respect to examples that fall within the scope of the present invention compared to comparative examples that depart from the scope of the present invention. FIG. 6 shows the measurement of the sample mounting width and the infrared absorbance using a diffused infrared spectrophotometer with an infrared irradiation diameter of 4.0 mm on a welding wire (wire diameter: 1.2 mm) coated with rapeseed oil. It is a graph which shows the result of having investigated the relationship. Absorbance shows a constant value in the range where the mounting width is A + D or more (5.2 mm or more). If the mounting width is in this area, calculate the correct oil amount based on the calibration curve obtained in advance. Can do. In the region where the mounting width is less than A + D, the absorbance changes as the mounting width increases, and it is difficult to obtain an accurate oil amount.

この検量線の作成方法は、以下のとおりである。先ず、浸漬法を使用して脂肪酸グリセリドを塗布したワイヤを作成し、サンプルとした。浸漬槽の油濃度を変化させることにより、ワイヤへの油付着量を変化させた。そして、ワイヤをガラス瓶に捕集して質量を測定し、有機溶媒で油を抽出した後に、KBr粉末と混和し、溶媒を蒸発除去して、KBr錠剤を作成した。透過法によりFTIRスペクトルを測定し、油量を測定した。   The method for creating this calibration curve is as follows. First, the wire which apply | coated the fatty acid glyceride using the immersion method was created, and it was set as the sample. By changing the oil concentration in the immersion tank, the amount of oil attached to the wire was changed. The wire was collected in a glass bottle, the mass was measured, and the oil was extracted with an organic solvent, and then mixed with KBr powder, and the solvent was removed by evaporation to prepare a KBr tablet. The FTIR spectrum was measured by the transmission method, and the oil amount was measured.

次に、ワイヤを試料台の上に並べて赤外線を照射し、反射光より赤外線吸収スペクトルを測定し、−CH吸収ピークの面積を求めた。このワイヤ採取を繰り返し、図7に示すように、4方向からの測定を行い、ピーク面積の平均値を求めた。図8は、この油の吸収スペクトルの一例を示す。また、図9は、上述の如くして求めた脂肪酸グリセリド塗布ワイヤの検量線の一例を示す。図9に示す検量線は、横軸に透過法で求めた油量(ワイヤ10kgあたりの油量(g))をとり、縦軸に−CH吸収ピークの面積をとって、両者の関係を示したものである。この図9に示すように、ピーク面積yと油量xとの間には、一次関数の関係がある。 Next, the wires were placed on a sample stage and irradiated with infrared rays, and the infrared absorption spectrum was measured from the reflected light, and the area of the —CH 2 absorption peak was determined. This wire sampling was repeated and, as shown in FIG. 7, measurements were taken from four directions, and the average value of peak areas was obtained. FIG. 8 shows an example of the absorption spectrum of this oil. FIG. 9 shows an example of a calibration curve of the fatty acid glyceride-coated wire obtained as described above. In the calibration curve shown in FIG. 9, the horizontal axis represents the oil amount obtained by the transmission method (oil amount per 10 kg of wire (g)), the vertical axis represents the area of the —CH 2 absorption peak, and the relationship between the two is shown. It is shown. As shown in FIG. 9, there is a linear function relationship between the peak area y and the oil amount x.

下記表1は、照射領域及びワイヤのサイズと塗布油種を変化させて、付着量を調査した結果を示す。本発明の実施例1〜21の場合は、拡散反射FTIR法により求めた油量はKBr錠剤を用いた赤外分光法の測定値と良く一致しており、いずれも正しく測定がなされている。   Table 1 below shows the results of investigating the amount of adhesion by changing the irradiation area, wire size, and coating oil type. In the case of Examples 1 to 21 of the present invention, the amount of oil determined by the diffuse reflection FTIR method is in good agreement with the measured value of the infrared spectroscopy using the KBr tablet, and all are measured correctly.

一方、比較例1〜6では、搭載幅Bが狭い(B<(A+D)ために、拡散反射FTIR法により求めた油量は、KBr錠剤を用いた赤外分光法の測定値とズレを生じており、不適である。   On the other hand, in Comparative Examples 1 to 6, since the mounting width B is narrow (B <(A + D), the oil amount obtained by the diffuse reflection FTIR method causes a deviation from the measured value of the infrared spectroscopy using the KBr tablet. It is inappropriate.

また、比較例7〜9では、照射領域に占める被測定物の本数が少ない(A/D<2)ために、拡散反射が十分になされないため、拡散反射FTIR法により求めた油量は、KBrを用いたFTIRで求めた付着油量に比べて、極めて少ない油量を示しており、正しく測定ができていない。   In Comparative Examples 7 to 9, since the number of objects to be measured occupying the irradiated area is small (A / D <2), the diffuse reflection is not sufficiently performed. Therefore, the oil amount obtained by the diffuse reflection FTIR method is Compared to the amount of adhered oil determined by FTIR using KBr, the amount of oil is extremely small, and measurement is not possible correctly.

Figure 0004679486
Figure 0004679486

本発明の構成を説明する模式図である。It is a schematic diagram explaining the structure of this invention. 本発明の実施形態の吸光度測定方法を示す模式図である。It is a schematic diagram which shows the light absorbency measuring method of embodiment of this invention. 同じく、そのホルダーに取り付けられた被測定物及び標準試料を示す図である。Similarly, it is a figure which shows the to-be-measured object and standard sample which were attached to the holder. ホルダーの表側の測定を示す図である。It is a figure which shows the measurement of the front side of a holder. ホルダーの裏側の測定を示す図である。It is a figure which shows the measurement of the back side of a holder. 搭載幅Bと吸光度との関係を示すグラフ図である。It is a graph which shows the relationship between the mounting width B and a light absorbency. 4方向からの測定を示す図である。It is a figure which shows the measurement from 4 directions. 油の吸収スペクトルの1例を示す図である。It is a figure which shows an example of the absorption spectrum of oil. 脂肪酸グリセリド塗布ワイヤの検量線の1例を示す図である。It is a figure which shows an example of the calibration curve of a fatty-acid-glyceride application | coating wire. 塗布油の存在状態を模式的に示す図である。It is a figure which shows typically the presence state of coating oil. 油付着量を1方向からのみ測定した場合を示す図である。It is a figure which shows the case where the amount of oil adhesion is measured only from one direction. 油付着量を表裏2方向から測定した場合を示す図である。It is a figure which shows the case where an oil adhesion amount is measured from front and back 2 directions.

符号の説明Explanation of symbols

1:干渉計
2:被測定物
2a:標準試料
3:検出器
4:ホルダー
1: Interferometer 2: Object to be measured 2a: Standard sample 3: Detector 4: Holder

Claims (4)

被測定物としての溶接ワイヤ表面の有機化合物濃度を測定する方法において、赤外線照射域の直径をA、円柱又は円筒状の前記被測定物の外径をD、被測定物を赤外線照射域に並列に複数本並べた場合の搭載幅をBとしたとき、A/D≧2、B≧(A+D)の関係を満たすように、赤外線照射域内に、円柱又は円筒状の被測定物を並べ、赤外線を照射し、被測定物からの拡散反射光を用いて特定波長の赤外線の吸光度を計測することを特徴とする表面有機化合物濃度測定方法。 In the method of measuring the organic compound concentration on the surface of the welding wire as the object to be measured, the diameter of the infrared irradiation area is A, the outer diameter of the cylindrical or cylindrical object to be measured is D, and the object to be measured is parallel to the infrared irradiation area. When the mounting width in the case of arranging two or more is set to B, columnar or cylindrical objects to be measured are arranged in the infrared irradiation region so as to satisfy the relationship of A / D ≧ 2 and B ≧ (A + D). And measuring the absorbance of infrared light having a specific wavelength using diffusely reflected light from the object to be measured. 測定対象となる有機化合物は、脂肪酸グリセリド、1価アルコールの脂肪酸エステル、脂肪族アルコール、又はパーフルオロポリエーテルであることを特徴とする請求項1に記載の表面有機化合物濃度測定方法。 2. The surface organic compound concentration measuring method according to claim 1, wherein the organic compound to be measured is a fatty acid glyceride, a fatty acid ester of a monohydric alcohol, an aliphatic alcohol, or a perfluoropolyether. 測定対象となる有機化合物は、バインダにより被測定物の表面に付着したPTFE(polytetra-fluoroethylene)であることを特徴とする請求項1に記載の表面有機化合物濃度測定方法。 2. The surface organic compound concentration measuring method according to claim 1, wherein the organic compound to be measured is PTFE (polytetra-fluoroethylene) attached to the surface of the object to be measured by a binder. 前記被測定物に対して表裏2方向から赤外線を照射して、その吸光度を計測し、その平均値から、前記被測定物表面の有機化合物濃度を測定することを特徴とする請求項1乃至3のいずれか1項に記載の表面有機化合物濃度測定方法。 The infrared rays are irradiated to the object to be measured from two directions, the absorbance is measured, and the concentration of the organic compound on the surface of the object to be measured is measured from the average value. The surface organic compound density | concentration measuring method of any one of these.
JP2006285567A 2006-10-19 2006-10-19 Surface organic compound concentration measurement method Active JP4679486B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006285567A JP4679486B2 (en) 2006-10-19 2006-10-19 Surface organic compound concentration measurement method
CN200710180105A CN100580425C (en) 2006-10-19 2007-10-10 Soldering wire surface organic compound concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285567A JP4679486B2 (en) 2006-10-19 2006-10-19 Surface organic compound concentration measurement method

Publications (2)

Publication Number Publication Date
JP2008102044A JP2008102044A (en) 2008-05-01
JP4679486B2 true JP4679486B2 (en) 2011-04-27

Family

ID=39334248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285567A Active JP4679486B2 (en) 2006-10-19 2006-10-19 Surface organic compound concentration measurement method

Country Status (2)

Country Link
JP (1) JP4679486B2 (en)
CN (1) CN100580425C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998423B (en) * 2012-11-26 2014-08-06 苏州市新的电工有限公司 Oil mass testing method of liquid lubricating oil for coating surface of enamelled wire
CN107340253B (en) * 2017-03-29 2024-01-16 宁波方太厨具有限公司 Handheld organic matter detection terminal and detection method thereof
CN107340256B (en) * 2017-03-29 2024-01-16 宁波方太厨具有限公司 Water purifier
CN107335641B (en) * 2017-03-29 2024-01-16 宁波方太厨具有限公司 Cleaning machine
CN107340257B (en) * 2017-03-29 2024-01-16 宁波方太厨具有限公司 System for detecting organic matters in air
CN107340260B (en) * 2017-03-29 2024-01-16 宁波方太厨具有限公司 Organic matter detection sensor and detection method thereof
CN107340252A (en) * 2017-03-29 2017-11-10 宁波方太厨具有限公司 A kind of container
CN107340251A (en) * 2017-03-29 2017-11-10 宁波方太厨具有限公司 A kind of water quality on-line detecting system
BR112020020009A2 (en) * 2018-03-30 2021-01-05 Jfe Steel Corporation DEVICE FOR MEASURING THE FINE PROPORTION, FINE PROPORTION MEASUREMENT SYSTEM AND METHOD OF OPERATING THE BLAST
CN110006791A (en) * 2019-05-16 2019-07-12 珠海蓉胜超微线材有限公司 A kind of test method of enameled wire surface lubricating oil content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110347A (en) * 1988-10-20 1990-04-23 Teijin Ltd Measuring method of adhering amount of oil to fiber
JP2002131305A (en) * 2000-10-23 2002-05-09 Sensu Kk Method for simultaneously measuring concentration of a plurality of constituents by using detector tube and measuring instrument for the same
JP2002350342A (en) * 2001-05-28 2002-12-04 Advantest Corp Method and apparatus for measuring surface state
JP2003181684A (en) * 2001-12-19 2003-07-02 Kobe Steel Ltd Mig wire for welding aluminum or aluminum alloy material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110347A (en) * 1988-10-20 1990-04-23 Teijin Ltd Measuring method of adhering amount of oil to fiber
JP2002131305A (en) * 2000-10-23 2002-05-09 Sensu Kk Method for simultaneously measuring concentration of a plurality of constituents by using detector tube and measuring instrument for the same
JP2002350342A (en) * 2001-05-28 2002-12-04 Advantest Corp Method and apparatus for measuring surface state
JP2003181684A (en) * 2001-12-19 2003-07-02 Kobe Steel Ltd Mig wire for welding aluminum or aluminum alloy material

Also Published As

Publication number Publication date
CN101165470A (en) 2008-04-23
CN100580425C (en) 2010-01-13
JP2008102044A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4679486B2 (en) Surface organic compound concentration measurement method
US8263000B2 (en) Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence
KR20210089164A (en) Slurry Monitor Coupling Bulk Size Distribution and Single Particle Detection
US20060177566A1 (en) Anodizing system with a coating thickness monitor and an anodized product
Pessanha et al. Application of spectroscopic techniques to the study of illuminated manuscripts: a survey
CN109001207B (en) Method and system for detecting surface and internal defects of transparent material
Alberts et al. In situ melt pool monitoring and the correlation to part density of Inconel® 718 for quality assurance in selective laser melting
Librera et al. On the use of areal roughness parameters to assess surface quality in laser cutting of stainless steel with CO2 and fiber sources
JPH0249141A (en) Method and instrument for determining quickly concentration of sludge
EP1914538A1 (en) Method and device for recording the cleanliness or the contamination of a surface of a component
CN110455775A (en) Super hydrophobic surface for Surface enhanced Raman spectroscopy detection enhances substrate
Mikulewitsch et al. Geometry measurement of submerged metallic micro-parts using confocal fluorescence microscopy
US7889337B2 (en) Optical method for determination of the total suspended solids in jet fuel
Lyon et al. An improved surface plasmon resonance imaging apparatus
CN105115944B (en) A kind of auto focusing method and system for LIBS material composition detections
EP2002204B1 (en) Method and apparatus for determining and gauging deviations in shape and waviness of rotationally symmetrical parts
Kohli et al. Developments in surface contamination and cleaning, volume 12: Methods for assessment and verification of cleanliness of surfaces and characterization of surface contaminants
US5281819A (en) Apparatus for nondestructively determining coating thickness on a metal object and associated method
Alam et al. Online surface characterization of paper and paperboards in a wide-range of the spatial wavelength spectrum
Keerthi et al. Optimization of different sampling approaches in liquid LIBS analysis for environmental applications
Zou et al. Accurate determination of the layer thickness of a multilayer polymer film by non-invasive multivariate confocal Raman microscopy
Schrage et al. Influence of powder application parameters on powder bed properties and on productivity of laser powder bed fusion (L-PBF)
Poprawe Laser Measurement Technology
Schmid-Schirling et al. Laser scanning based straightness measurement of precision bright steel rods
Schmid-Schirling et al. Laser scanning–based straightness measurement of precision bright steel rods at one point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4679486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3