JP4679313B2 - Surface smoothness measuring device - Google Patents

Surface smoothness measuring device Download PDF

Info

Publication number
JP4679313B2
JP4679313B2 JP2005266864A JP2005266864A JP4679313B2 JP 4679313 B2 JP4679313 B2 JP 4679313B2 JP 2005266864 A JP2005266864 A JP 2005266864A JP 2005266864 A JP2005266864 A JP 2005266864A JP 4679313 B2 JP4679313 B2 JP 4679313B2
Authority
JP
Japan
Prior art keywords
light
smoothness
intensity distribution
ave
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005266864A
Other languages
Japanese (ja)
Other versions
JP2007078517A (en
Inventor
勝也 上村
Original Assignee
株式会社沖データ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社沖データ filed Critical 株式会社沖データ
Priority to JP2005266864A priority Critical patent/JP4679313B2/en
Publication of JP2007078517A publication Critical patent/JP2007078517A/en
Application granted granted Critical
Publication of JP4679313B2 publication Critical patent/JP4679313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、表面平滑性測定装置に関するものである。   The present invention relates to a surface smoothness measuring apparatus.

従来、プラスチックフィルム等の物体の表面粗さ、すなわち、表面平滑性を計測する場合、物体の表面に接触する接触子を摺(しゅう)動させて測定を行う装置が使用されていた。しかし、このような装置では、測定の対象となる物体の表面に接触子が接触するため、物体の表面に損傷を与えてしまうことがあった。   Conventionally, when measuring the surface roughness of an object such as a plastic film, that is, the surface smoothness, an apparatus has been used that performs measurement by sliding a contactor that contacts the surface of the object. However, in such an apparatus, since the contact contacts the surface of the object to be measured, the object surface may be damaged.

そこで、光学的な測定計を用いて、非接触で物体の表面平滑性を測定する装置が提案されている(例えば、特許文献1参照。)。この場合、物体の表面に測定光を照射し、その反射光を利用して物体の表面平滑性を非接触で測定するようになっている。
特開平5−340747号公報
In view of this, an apparatus that measures the surface smoothness of an object in a non-contact manner using an optical measuring instrument has been proposed (see, for example, Patent Document 1). In this case, the surface of the object is irradiated with measurement light, and the surface smoothness of the object is measured in a non-contact manner using the reflected light.
JP-A-5-340747

しかしながら、前記従来の表面平滑性測定装置においては、測定光が照射範囲の狭いスポットビームであるため、物体の表面全体の表面平滑性を測定する場合には、時間と手間がかかってしまう。   However, in the conventional surface smoothness measuring apparatus, since the measurement light is a spot beam with a narrow irradiation range, it takes time and effort to measure the surface smoothness of the entire surface of the object.

本発明は、前記従来の表面平滑性測定装置の問題点を解決して、物体表面に特定パターンの照射光を照射し、物体表面からの反射光の受光強度分布に基づいて物体表面の平滑度を算出することにより、各種の物体表面の平滑性を安定的に、正確に、迅速に、かつ、容易に測定することができる表面平滑性測定装置を提供することを目的とする。   The present invention solves the problems of the conventional surface smoothness measuring apparatus, irradiates the object surface with irradiation light of a specific pattern, and smoothes the object surface based on the received light intensity distribution of the reflected light from the object surface. It is an object of the present invention to provide a surface smoothness measuring apparatus that can measure the smoothness of various object surfaces stably, accurately, quickly, and easily.

そのために、本発明の表面平滑性測定装置においては、物体表面に光を照射する光源と、前記物体と光源との間に設けられ、該光源から物体に照射される照射光を所定方向の明暗から成る特定パターンを形成するように遮光する遮光手段と、前記物体表面から反射する反射光を受光する受光手段と、該受光手段が受光した光に基づき、所定方向の位置毎の受光強度分布を検出する受光強度分布検出手段と、該受光強度分布検出手段が検出した受光強度分布に基づき、前記物体表面の平滑度を算出する平滑度算出手段とを有し、前記遮光手段は、光を遮蔽する遮蔽部と光を透過する光透過部とを備え、該光透過部は同心円状に所定の間隔で交互に配列され、前記照射光を同心円状の縞状パターンを形成するように遮蔽し、前記平滑度算出手段は、複数方向の受光強度分布から求められる極大値と極小値とに基づいて複数方向の平滑度を算出する。
For this purpose, in the surface smoothness measuring apparatus of the present invention, a light source that irradiates light on the surface of an object and a light source that is provided between the object and the light source and that irradiates the object from the light source in a predetermined direction. A light shielding means for shielding light so as to form a specific pattern, a light receiving means for receiving reflected light reflected from the surface of the object, and a received light intensity distribution for each position in a predetermined direction based on the light received by the light receiving means. A received light intensity distribution detecting means for detecting; and a smoothness calculating means for calculating the smoothness of the object surface based on the received light intensity distribution detected by the received light intensity distribution detecting means, wherein the light shielding means shields light. A light transmitting portion that transmits light, and the light transmitting portions are arranged alternately at predetermined intervals in a concentric manner, shielding the irradiation light so as to form a concentric striped pattern, the smoothing degree calculating means Calculating a plurality of directions of smoothness based on the maximum and minimum values obtained from a plurality of directions of the light-receiving intensity distribution.

本発明によれば、表面平滑性測定装置は、物体表面に特定パターンの照射光を照射し、物体表面からの反射光の受光強度分布に基づいて物体表面の平滑度を算出するようになっている。そのため、各種の物体表面の平滑性を安定的に、正確に、迅速に、かつ、容易に測定することができる。   According to the present invention, the surface smoothness measuring apparatus irradiates the object surface with irradiation light of a specific pattern, and calculates the smoothness of the object surface based on the received light intensity distribution of the reflected light from the object surface. Yes. Therefore, the smoothness of various object surfaces can be measured stably, accurately, quickly and easily.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1の実施の形態における表面平滑性測定装置の概略図、図2は本発明の第1の実施の形態におけるパターン投影板を示す図、図3は本発明の第1の実施の形態における信号処理装置の構成を示すブロック図である。   FIG. 1 is a schematic diagram of a surface smoothness measuring apparatus according to a first embodiment of the present invention, FIG. 2 is a diagram showing a pattern projection plate according to the first embodiment of the present invention, and FIG. It is a block diagram which shows the structure of the signal processing apparatus in the embodiment.

本実施の形態における表面平滑性測定装置は、各種の材質から成る物体の表面平滑性を測定するための装置であり、図1に示されるように、パターン投影装置11、受光手段としての光電変換素子12、並びに、受光強度分布検出手段及び平滑度算出手段としての信号処理装置13を有する。そして、被測定物である物体は、例えば、プラスチックフィルムであるが、金属板であってもよいし、いかなる種類のいかなる形状のものであってもよい。   The surface smoothness measuring apparatus in the present embodiment is an apparatus for measuring the surface smoothness of an object made of various materials. As shown in FIG. 1, the pattern projection apparatus 11 and photoelectric conversion as a light receiving means. It has the element 12, and the signal processing apparatus 13 as a received light intensity distribution detection means and a smoothness calculation means. The object to be measured is, for example, a plastic film, but may be a metal plate or any type of any shape.

ここで、前記パターン投影装置11は、光源11a及び遮光手段としてのパターン投影板11bを備える。そして、前記光源11aは、例えば、タングステン電球、ハロゲン電球等の白熱電球や、白色蛍光ランプなどであるが、物体の表面に光を照射するものであればいかなる種類のものであってもよい。また、パターン投影板11bは、照射光を線状パターンを形成するように遮蔽(へい)するものであり、図2に示されるように、例えば、厚さが0.5〔mm〕のステンレス板であり、表面には光源11aからの照射光を反射しないようにつや消しの塗装が施された遮蔽部と、複数の光透過部としての開口部31を備える。図2に示される例において、開口部31の数は8個であり、各開口部31は、幅が1〔mm〕のスリット形状を備え、隣同士の間隔が1〔mm〕となるように配設されている。さらに、前記パターン投影装置11は、物体表面としての被測定物表面14に対して所定の角度θで光を照射するように保持されている。なお、θの値は被測定物の種類や測定方法によって任意に変えることができるが、本実施の形態においてはθ=45度としている。   Here, the pattern projection device 11 includes a light source 11a and a pattern projection plate 11b as a light shielding unit. The light source 11a is, for example, an incandescent bulb such as a tungsten bulb or a halogen bulb, or a white fluorescent lamp, but may be any type as long as it irradiates light on the surface of an object. Further, the pattern projection plate 11b shields the irradiation light so as to form a linear pattern. For example, as shown in FIG. 2, a stainless steel plate having a thickness of 0.5 [mm] is used. The surface is provided with a shielding portion on which a matte coating is applied so as not to reflect the irradiation light from the light source 11a, and openings 31 as a plurality of light transmission portions. In the example shown in FIG. 2, the number of the opening portions 31 is eight, and each opening portion 31 has a slit shape with a width of 1 [mm] so that the distance between adjacent ones is 1 [mm]. It is arranged. Further, the pattern projection device 11 is held so as to irradiate light at a predetermined angle θ with respect to the object surface 14 as the object surface. Note that the value of θ can be arbitrarily changed depending on the type of the object to be measured and the measuring method, but in this embodiment, θ = 45 degrees.

また、前記光電変換素子12は、多数の受光素子を直線状(1次元)に配列したCCD(Charge Coupled Device:電荷結合素子)アレイを備える。なお、該CCDアレイとしては、受光素子であるCCDを2次元に配列したものを使用することもできるが、本実施の形態における前記光電変換素子12は、受光素子を1次元に配列したCCDアレイを使用する。そのため、被測定物表面14に投影されたパターンの反射像は、それぞれの受光素子によって電気信号に変換され、受光素子の各位置における出力値に基づき、反射光分布波形が表示される。   In addition, the photoelectric conversion element 12 includes a CCD (Charge Coupled Device) array in which a large number of light receiving elements are arranged linearly (one-dimensionally). The CCD array can be one in which CCDs that are light receiving elements are two-dimensionally arranged, but the photoelectric conversion element 12 in the present embodiment is a CCD array in which light receiving elements are one-dimensionally arranged. Is used. Therefore, the reflected image of the pattern projected on the surface 14 of the object to be measured is converted into an electric signal by each light receiving element, and the reflected light distribution waveform is displayed based on the output value at each position of the light receiving element.

そして、前記光電変換素子12は、パターン投影装置11から被測定物表面14への入射光が前記被測定物表面14に投影される投影面からの反射光が検出可能である位置に配設される。なお、パターン投影装置11からの入射光の光軸と被測定物表面14とのなす角度がθであるとき、パターン投影装置11から投影面への光軸と投影面から光電変換素子12へ結ぶ軸とによってなす角度が(180−2θ)となる位置に光電変換素子12が配設される。   The photoelectric conversion element 12 is disposed at a position where the reflected light from the projection surface onto which the incident light from the pattern projection device 11 is projected onto the surface 14 to be measured can be detected. The When the angle between the optical axis of the incident light from the pattern projection device 11 and the surface 14 of the object to be measured is θ, the optical axis from the pattern projection device 11 to the projection surface and the projection surface to the photoelectric conversion element 12 are connected. The photoelectric conversion element 12 is disposed at a position where the angle formed by the axis is (180-2θ).

さらに、光電変換素子12の出力は信号処理装置13に接続されている。図3に示されるように、該信号処理装置13は、光電変換素子12からの電気信号を受信する受信部21、前記電気信号をA/D変換するA/D変換部22、該A/D変換部22で変換されたデジタル信号を波形処理し、極大値(Max)と極小値(Min)とを選択し、平滑度を算出する平滑度算出手段としてのデータ解析部23、及び、反射光分布波形と平滑度(S)とを表示する表示部24を有する。ここで、前記極大値及び極小値は、A/D変換部22において得られたデータよりデータ解析部23が選択する。   Further, the output of the photoelectric conversion element 12 is connected to the signal processing device 13. As shown in FIG. 3, the signal processing device 13 includes a receiving unit 21 that receives an electrical signal from the photoelectric conversion element 12, an A / D conversion unit 22 that performs A / D conversion on the electrical signal, and the A / D. The digital signal converted by the conversion unit 22 is subjected to waveform processing, a maximum value (Max) and a minimum value (Min) are selected, and a data analysis unit 23 as smoothness calculation means for calculating smoothness, and reflected light The display unit 24 displays the distribution waveform and the smoothness (S). Here, the maximum value and the minimum value are selected by the data analysis unit 23 from the data obtained in the A / D conversion unit 22.

なお、極大値及び極小値の選択は、データ解析部23ではなく、ユーザが行うようにしてもよい。この場合、信号波形を表示し、ユーザに対して前記信号波形から極大値及び極小値の選択を要求するメッセージを表示部24に表示させる。そして、信号処理装置13が備える図示されない入力部をユーザが操作することによって、極大値及び極小値が入力されて選択される。ここで、ユーザによって極大値及び極小値の選択が行われるのは、例えば、信号波形が、きれいな曲線から成るsinカーブではなく、ぎざぎざの波形である場合のように、本来、極大値及び極小値でない値がデータ解析部23によって選択されてしまう可能性がある場合である。   The maximum value and the minimum value may be selected by the user instead of the data analysis unit 23. In this case, the signal waveform is displayed, and a message requesting the user to select a maximum value and a minimum value from the signal waveform is displayed on the display unit 24. Then, when the user operates an input unit (not shown) included in the signal processing device 13, the maximum value and the minimum value are input and selected. Here, the maximum value and the minimum value are selected by the user because, for example, the signal waveform is not a sin curve composed of a clean curve, but is a jagged waveform. This is a case where there is a possibility that a value other than 1 may be selected by the data analysis unit 23.

次に、前記構成の表面平滑性測定装置の動作について説明する。   Next, the operation of the surface smoothness measuring apparatus having the above configuration will be described.

図4は本発明の第1の実施の形態における被測定物表面の表面平滑性と光電変換素子の出力との関係を示す図、図5は本発明の第1の実施の形態におけるA/D変換されたデータ並びに信号波形の極大値又は極小値の平均及び平滑度の値を算出する数式を示す図である。   FIG. 4 is a diagram showing the relationship between the surface smoothness of the surface of the object to be measured and the output of the photoelectric conversion element in the first embodiment of the present invention, and FIG. 5 is the A / D in the first embodiment of the present invention. It is a figure which shows the numerical formula which calculates the average of the converted data and the maximum value of signal waveform, or the minimum value, and the value of smoothness.

まず、前記光源11aからパターン投影板11bに平行光線を照射し、被測定物表面14に光の明暗パターンを投影する。そして、被測定物表面14に投影されたパターンの反射像を光電変換素子12によって撮像し、アナログ信号である電気信号に変換する。   First, a parallel light beam is irradiated from the light source 11a onto the pattern projection plate 11b to project a light / dark pattern of light onto the surface 14 of the object to be measured. Then, a reflected image of the pattern projected on the surface 14 of the object to be measured is picked up by the photoelectric conversion element 12 and converted into an electric signal which is an analog signal.

ここで、被測定物表面14の物理的な表面平滑性と光電変換素子12の出力との関係について説明する。まず、被測定物表面14に、図4(a)に示されるような強度分布を持つ投影パターンを投影する。そして、被測定物表面14が、図4(b)−(1)に示されるように、凹凸のない理想的な平滑な平面である場合、投影パターンは忠実に反射され、光電変換素子12の出力は、図4(c)−(1)に示されるように、図4(a)の投影パターンと同じ受光強度分布波形になる。   Here, the relationship between the physical surface smoothness of the surface 14 to be measured and the output of the photoelectric conversion element 12 will be described. First, a projection pattern having an intensity distribution as shown in FIG. And when the to-be-measured object surface 14 is an ideal smooth plane without an unevenness | corrugation as FIG.4 (b)-(1) shows, a projection pattern is reflected faithfully and the photoelectric conversion element 12 of FIG. As shown in FIGS. 4 (c)-(1), the output has the same received light intensity distribution waveform as the projection pattern of FIG. 4 (a).

ところが、被測定物表面14が、図4(b)−(2)に示されるように、平滑性は高いが凹凸を備える面である場合、投影された光は被測定物表面14で散乱してしまうので、光電変換素子12の出力は、図4(c)−(2)に示されるような受光強度分布波形になる。   However, as shown in FIGS. 4 (b) to 4 (2), when the measured object surface 14 is a surface having high smoothness but having unevenness, the projected light is scattered by the measured object surface 14. Therefore, the output of the photoelectric conversion element 12 has a received light intensity distribution waveform as shown in FIGS.

更に、被測定物表面14が、図4(b)−(3)に示されるように、平滑性が低く、大きな凹凸を備える面である場合、投影された光は被測定物表面14で散乱してしまう度合いが大きくなるので、光電変換素子12の出力は、図4(c)−(3)に示されるように、山が低く、谷が高い受光強度分布波形にとなる。本実施の形態は、このような光電変換素子12の出力波形、すなわち、受光強度分布波形の差異を利用して、被測定物表面14の平滑性を定量化するものである。   Further, when the object surface 14 is a surface having low smoothness and large unevenness as shown in FIGS. 4B to 4C, the projected light is scattered by the object surface 14 to be measured. Therefore, as shown in FIGS. 4C to 4C, the output of the photoelectric conversion element 12 has a light reception intensity distribution waveform having a low peak and a high valley. In the present embodiment, the smoothness of the surface 14 of the object to be measured is quantified by using the difference in the output waveform of the photoelectric conversion element 12, that is, the received light intensity distribution waveform.

続いて、前記光電変換素子12の出力は信号処理装置13に入力される。該信号処理装置13に入力された強度信号は、A/D変換部22によってA/D変換され、変換されたデジタル信号に基づいて波形処理がなされる。このとき、A/D変換されて波形処理されたデータは、図5(a)に示されるような受光強度分布波形として、表示部24に表示される。   Subsequently, the output of the photoelectric conversion element 12 is input to the signal processing device 13. The intensity signal input to the signal processing device 13 is A / D converted by the A / D converter 22 and subjected to waveform processing based on the converted digital signal. At this time, the A / D converted and waveform processed data is displayed on the display unit 24 as a received light intensity distribution waveform as shown in FIG.

続いて、図5(a)に示されるような受光強度分布波形の中の極大値の平均値である平均Max(Ave)、及び、前記受光強度分布波形の中の極小値の平均値である平均Min(Ave)を求める。この場合、Max(Ave)及びMin(Ave)は、図5(b)に示される式(1)及び(2)に従って求めることができる。さらに、求められたMax(Ave)とMin(Ave)に基づき、図5(b)に示される式(3)に従って、平滑度(S)が算出され、算出結果が表示部24に表示される。   Next, average Max (Ave), which is an average value of local maximum values in the received light intensity distribution waveform as shown in FIG. 5A, and an average value of local minimum values in the received light intensity distribution waveform. The average Min (Ave) is obtained. In this case, Max (Ave) and Min (Ave) can be obtained according to equations (1) and (2) shown in FIG. Further, based on the obtained Max (Ave) and Min (Ave), the smoothness (S) is calculated according to the equation (3) shown in FIG. 5B, and the calculation result is displayed on the display unit 24. .

本実施の形態においては、図5(a)に示されるような受光強度分布波形の中の極大値及び極小値からそれぞれの平均値を式(1)及び式(2)(図5(b))により求め、式(3)(図5(b))に従って平滑度(S)を求めたが、図5(a)に示されるような受光強度分布波形の中から各組の極大値及び極小値から次の式(4)より平滑度(s)を求め、その平滑度の平均値から次の式(5)により平滑度(S)を求めても構わない。
s(n)=(Max(n)−Min(n))/(Max(n)+Min(n)) ・・・式(4)
平滑度(S)=(Σs(n))/n ・・・式(5)
次に、前記受光強度分布波形に示される極大値及び極小値に基づく表面平滑性の評価について説明する。
In the present embodiment, the respective average values from the maximum value and the minimum value in the received light intensity distribution waveform as shown in FIG. 5A are expressed by the equations (1) and (2) (FIG. 5 (b)). ) And the smoothness (S) was obtained according to the equation (3) (FIG. 5B). From the received light intensity distribution waveform as shown in FIG. The smoothness (s) may be obtained from the following equation (4) from the value, and the smoothness (S) may be obtained from the average value of the smoothness by the following equation (5).
s (n) = (Max (n) −Min (n)) / (Max (n) + Min (n)) (4)
Smoothness (S) = (Σs (n)) / n (5)
Next, the evaluation of the surface smoothness based on the maximum value and the minimum value shown in the received light intensity distribution waveform will be described.

図6は本発明の第1の実施の形態における反射率の異なる2つの被測定物表面についての受光強度分布波形を示す図である。   FIG. 6 is a diagram showing received light intensity distribution waveforms for two surfaces of objects to be measured having different reflectivities in the first embodiment of the present invention.

ここでは、表面粗さ、すなわち、表面平滑性が同一であるが、反射率が相違する2つの物体を被測定物とし、各々の被測定物表面14からの反射光を光電変換素子12によって受光した出力を、信号処理装置13が波形処理することによって得られた受光強度分布波形について説明する。図6(a)は被測定物表面14の反射率が高い場合における受光強度分布波形を示し、図6(b)は被測定物表面14の反射率が低い場合における受光強度分布波形を示している。   Here, two objects having the same surface roughness, that is, surface smoothness but having different reflectances are measured objects, and reflected light from each measured object surface 14 is received by the photoelectric conversion element 12. The received light intensity distribution waveform obtained by the signal processing device 13 performing waveform processing on the output obtained will be described. 6A shows the received light intensity distribution waveform when the reflectance of the object surface 14 is high, and FIG. 6B shows the received light intensity distribution waveform when the reflectance of the object surface 14 is low. Yes.

ところで、被測定物表面14の表面平滑性を評価するために受光強度分布波形における極大値と極小値との標準偏差を用いると、図6(a)に示される受光強度分布波形の場合、標準偏差の値が2.2となる。また、図6(b)に示される受光強度分布波形の場合、標準偏差の値が1.1となる。このように、反射率が相違すると、表面平滑性が同一であっても、標準偏差の値が相違するので、受光強度分布波形における極大値と極小値との標準偏差によっては、被測定物表面14の表面平滑性を適切に評価することができないことが分かる。   By the way, when the standard deviation between the maximum value and the minimum value in the received light intensity distribution waveform is used to evaluate the surface smoothness of the surface 14 of the object to be measured, in the case of the received light intensity distribution waveform shown in FIG. The deviation value is 2.2. In the case of the received light intensity distribution waveform shown in FIG. 6B, the standard deviation value is 1.1. Thus, when the reflectance is different, the standard deviation value is different even if the surface smoothness is the same. Therefore, depending on the standard deviation between the maximum value and the minimum value in the received light intensity distribution waveform, the surface of the object to be measured It turns out that the surface smoothness of 14 cannot be evaluated appropriately.

これに対し、前述のようにして平滑度(S)を算出すると、図6(a)に示される受光強度分布波形の場合、平滑度(S)の値が0.33となり、同様に、図6(b)に示される受光強度分布波形の場合にも、平滑度(S)の値が0.33となる。このことから、反射率が相違する場合であっても、式(3)(図5(b))により絶対的な表面平滑性が求められるため、表面平滑性が同一であれば、平滑度(S)の値が同一になることが分かる。すなわち、平滑度(S)を被測定物表面14の表面平滑性の指標とすることによって、被測定物表面14の表面平滑性を適切に評価することができる。   On the other hand, when the smoothness (S) is calculated as described above, in the case of the received light intensity distribution waveform shown in FIG. 6 (a), the value of the smoothness (S) is 0.33. In the case of the received light intensity distribution waveform shown in FIG. 6B, the smoothness (S) value is 0.33. From this, even if the reflectivity is different, absolute surface smoothness is obtained by the equation (3) (FIG. 5B). Therefore, if the surface smoothness is the same, the smoothness ( It can be seen that the values of S) are the same. That is, by using the smoothness (S) as an index of the surface smoothness of the surface 14 to be measured, the surface smoothness of the surface 14 to be measured can be appropriately evaluated.

このように、本実施の形態においては、平滑度を算出し、該平滑度によって被測定物表面14の平滑性を測定する。そのため、被測定物表面14の反射率の相違、光源11aの発光強度の変動、光電変換素子12の感度の変動、反射光の受光強度分布の平均レベルの変動等があっても、厳密な校正や、環境温度の変動、光源11aの経時変化等に対する補正を行う必要がなく、同じ表面形状を持つ被測定物に対して、常に、安定して同じ測定値を得ることができる。   Thus, in the present embodiment, the smoothness is calculated, and the smoothness of the surface 14 to be measured is measured based on the smoothness. Therefore, even if there is a difference in the reflectance of the surface 14 to be measured, a change in the light emission intensity of the light source 11a, a change in the sensitivity of the photoelectric conversion element 12, a change in the average level of the received light intensity distribution of the reflected light, etc. In addition, it is not necessary to make corrections for fluctuations in environmental temperature, changes with time of the light source 11a, and the like, and the same measurement value can be obtained stably and constantly with respect to an object having the same surface shape.

そして、1回の測定で、パターン投影板11bで形成される被測定物表面14から反射パターンを検知する直線方向(1次元方向)の表面粗さが測定可能となる。   Then, the surface roughness in the linear direction (one-dimensional direction) in which the reflection pattern is detected from the surface 14 of the object to be measured formed by the pattern projection plate 11b can be measured by one measurement.

また、反射率の異なる物質、例えば、プラスチックと金属の表面平滑度を直接比較することができ、表面平滑性測定装置の利用範囲が拡大することを期待することができる。   In addition, it is possible to directly compare the surface smoothness of substances having different reflectivities, for example, plastic and metal, and it can be expected that the range of use of the surface smoothness measuring apparatus will be expanded.

次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構成を有するものについては、同じ符号を付与することによって、その説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。   Next, a second embodiment of the present invention will be described. In addition, about what has the same structure as 1st Embodiment, the description is abbreviate | omitted by providing the same code | symbol. The description of the same operation and the same effect as those of the first embodiment is also omitted.

図7は本発明の第2の実施の形態におけるパターン投影板を示す図である。   FIG. 7 is a diagram showing a pattern projection plate according to the second embodiment of the present invention.

本実施の形態における表面平滑性測定装置は、前記第1の実施の形態におけるパターン投影板11bに代えて、図7に示されるようなパターンを備える遮光手段としてのパターン投影板41を使用する。該パターン投影板41は、照射光を同心円状の縞(しま)状パターンを形成するように遮蔽するものであり、図7に示されるように、例えば、厚さが1〔mm〕の透明ガラス板であり、表面には光源11aからの照射光を透過しないように遮蔽部として遮光性の塗装が施され、塗装が施されない部分を光透過部とした同心円状のパターンを備える。図7に示される例において、光透過部は、幅が1〔mm〕の同心円状のスリット形状を備え、隣同士の間隔が1〔mm〕となるように配設されている。これにより、パターン投影装置11は、被測定物表面14に、同心円状の明暗パターンを投影することができる。   The surface smoothness measuring apparatus in the present embodiment uses a pattern projection plate 41 as a light shielding means having a pattern as shown in FIG. 7 instead of the pattern projection plate 11b in the first embodiment. The pattern projection plate 41 shields the irradiation light so as to form a concentric stripe pattern, and as shown in FIG. 7, for example, a transparent glass having a thickness of 1 mm. The plate is provided with a concentric pattern with a light-shielding coating as a shielding portion on the surface so as not to transmit the irradiation light from the light source 11a, and a portion that is not coated with the light-transmitting portion. In the example shown in FIG. 7, the light transmission part has a concentric slit shape with a width of 1 mm, and is arranged so that the distance between adjacent ones is 1 mm. Thereby, the pattern projection apparatus 11 can project a concentric bright and dark pattern on the surface 14 to be measured.

また、本実施の形態における光電変換素子12は、受光素子を2次元に配列したCCDアレイを使用する。なお、図7における軸a〜dは、光電変換素子12の後述される画素列1〜4に対応する。その他の点の構成については、前記第1の実施の形態と同じであるので、その説明を省略する。   The photoelectric conversion element 12 in the present embodiment uses a CCD array in which light receiving elements are two-dimensionally arranged. Note that axes a to d in FIG. 7 correspond to pixel columns 1 to 4 to be described later of the photoelectric conversion element 12. Since the configuration of other points is the same as that of the first embodiment, description thereof is omitted.

次に、本実施の形態における表面平滑性測定装置の動作について説明する。   Next, the operation of the surface smoothness measuring apparatus in the present embodiment will be described.

図8は本発明の第2の実施の形態における光電変換素子の受光素子の配列を模式的に示す図である。   FIG. 8 is a diagram schematically showing the arrangement of the light receiving elements of the photoelectric conversion element in the second embodiment of the present invention.

まず、同心円状のパターン投影板41を使用して被測定物表面14に光を照射すると、光電変換素子12の受像面にも同様に同心円状の光の像が入射する。本実施の形態において、光電変換素子12は受光素子を2次元に配列したCCDアレイを使用するので、受像面には受光素子としての画素が複数個2次元に配列されている。なお、図8は、説明のために光電変換素子12の受像面における画素の配列を25画素×25画素で表しているが、実際には、光電変換素子12の受像面には、l000画素×1000画素程度の画素が配列されている。   First, when light is applied to the surface 14 to be measured using the concentric pattern projection plate 41, concentric light images are similarly incident on the image receiving surface of the photoelectric conversion element 12. In the present embodiment, since the photoelectric conversion element 12 uses a CCD array in which light receiving elements are two-dimensionally arranged, a plurality of pixels as light receiving elements are two-dimensionally arranged on the image receiving surface. In FIG. 8, for the sake of explanation, the pixel array on the image receiving surface of the photoelectric conversion element 12 is represented by 25 pixels × 25 pixels, but actually, the image receiving surface of the photoelectric conversion element 12 has 1000 pixels × 25 pixels. About 1000 pixels are arranged.

そして、図8に示される例において、図面における横方向の座標軸をx軸とし、縦方向の座標軸をy軸とし、中心を原点(x=0、y=0)とする。また、y軸上、すなわち、x=0の直線上に存在する画素の列を画素列1とし、x軸上、すなわち、y=0の直線上に存在する画素の列を画素列2とし、y=xの直線上に存在する画素の列を画素列3とし、y=−xの直線上に存在する画素の列を画素列4とする。なお、画素列1〜画素列4の隣接するもの同士間の角度は45度である。そして、本実施の形態においては、前記画素列1〜画素列4の4組の画素列について、それぞれの画素列毎に、受光強度分布に基づいて、前記第1の実施の形態において説明した平滑度(S)を前記式(3)に従って求めるようになっている。   In the example shown in FIG. 8, the horizontal coordinate axis in the drawing is the x axis, the vertical coordinate axis is the y axis, and the center is the origin (x = 0, y = 0). Further, a pixel column existing on the y-axis, that is, a line of x = 0 is defined as a pixel column 1, a pixel column existing on the x-axis, that is, a line of y = 0 is defined as a pixel column 2, A column of pixels existing on the straight line y = x is referred to as a pixel column 3, and a column of pixels existing on the straight line y = −x is referred to as a pixel column 4. The angle between adjacent ones of the pixel columns 1 to 4 is 45 degrees. In the present embodiment, the smoothing described in the first embodiment is performed on the four pixel columns of the pixel column 1 to the pixel column 4 based on the received light intensity distribution for each pixel column. The degree (S) is obtained according to the equation (3).

ここで、被測定物表面14の形状の異方性と光の反射について説明する。   Here, the anisotropy of the shape of the measurement object surface 14 and the reflection of light will be described.

図9は本発明の第2の実施の形態における被測定物表面による光の反射を示す図、図10は本発明の第2の実施の形態における各画素列についての受光強度分布波形を示す図である。なお、図9において、説明のため便宜上、図面横方向をX、縦方向をZ、及び、法線方向をYとする。   FIG. 9 is a diagram showing light reflection by the surface of the object to be measured in the second embodiment of the present invention, and FIG. 10 is a diagram showing a received light intensity distribution waveform for each pixel column in the second embodiment of the present invention. It is. In FIG. 9, for convenience of explanation, the horizontal direction in the drawing is X, the vertical direction is Z, and the normal direction is Y.

被測定物表面14は、図9に示される形状を備えるが、該形状はYの値によらず同一とする。これは、被測定物表面14が、金属表面の研削跡等のように、一定方向に筋上の凹凸がある表面であることを想定している。このような表面形状の場合、反射光の散乱は、図9の平面内(X−Z平面内)で強く発生し、紙面の法線方向(Y方向)にはほとんど散乱しないか、又は、あっても極めて弱いと考えることができる。   The surface 14 to be measured has the shape shown in FIG. 9, and the shape is the same regardless of the value of Y. This assumes that the surface 14 to be measured is a surface having irregularities on the streaks in a certain direction, such as a grinding trace of a metal surface. In the case of such a surface shape, scattering of reflected light occurs strongly in the plane of FIG. 9 (in the XZ plane) and hardly scatters in the normal direction (Y direction) of the paper. But it can be considered very weak.

このような異方性を持つ被測定物表面14を、本実施の形態における表面平滑性測定装置によって測定すると、図8に示される画素列1が図9のX−Z平面上に配列している場合、互いに45度の角度を持った4つの画素列1〜4の受光強度分布を測定しているため、図10に示されるような強度分布波形が得られる。なお、図10(a)は画素列1の強度分布波形を示し、図10(b)は画素列2の強度分布波形を示し、図10(c)は画素列3の強度分布波形を示し、図10(d)は画素列4の強度分布波形を示している。   When the surface 14 to be measured having such anisotropy is measured by the surface smoothness measuring apparatus in the present embodiment, the pixel rows 1 shown in FIG. 8 are arranged on the XZ plane of FIG. In this case, since the received light intensity distributions of the four pixel columns 1 to 4 having an angle of 45 degrees are measured, an intensity distribution waveform as shown in FIG. 10 is obtained. 10A shows the intensity distribution waveform of the pixel column 1, FIG. 10B shows the intensity distribution waveform of the pixel column 2, FIG. 10C shows the intensity distribution waveform of the pixel column 3, FIG. 10D shows the intensity distribution waveform of the pixel column 4.

図10から、画素列1の平滑度は高く、画素列2の平滑度は低く、また、画素列3と画素列4は、その中間の平滑度を示していることがわかる。   From FIG. 10, it can be seen that the smoothness of the pixel row 1 is high, the smoothness of the pixel row 2 is low, and the pixel row 3 and the pixel row 4 show intermediate smoothness.

このように、本実施の形態においては、同心円状のパターン投影板41を用い、互いに45度の角度を持った複数の画素列の強度分布波形に基づいて、それぞれの平滑度を求めるようになっている。そのため、前記第1の実施の形態の効果に加え、被測定物表面14の表面形状の異方性を検出することが可能となり、被測定物表面14の状態をより詳細に測定することができる。   As described above, in the present embodiment, the concentric pattern projection plate 41 is used, and the smoothness of each is obtained based on the intensity distribution waveforms of a plurality of pixel columns having an angle of 45 degrees with each other. ing. Therefore, in addition to the effects of the first embodiment, it becomes possible to detect the anisotropy of the surface shape of the measurement object surface 14 and to measure the state of the measurement object surface 14 in more detail. .

なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said embodiment, It can change variously based on the meaning of this invention, and does not exclude them from the scope of the present invention.

本発明の第1の実施の形態における表面平滑性測定装置の概略図である。It is the schematic of the surface smoothness measuring apparatus in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるパターン投影板を示す図である。It is a figure which shows the pattern projection board in the 1st Embodiment of this invention. 本発明の第1の実施の形態における信号処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing apparatus in the 1st Embodiment of this invention. 本発明の第1の実施の形態における被測定物表面の表面平滑性と光電変換素子の出力との関係を示す図である。It is a figure which shows the relationship between the surface smoothness of the to-be-measured object surface in the 1st Embodiment of this invention, and the output of a photoelectric conversion element. 本発明の第1の実施の形態におけるA/D変換されたデータ並びに信号波形の極大値又は極小値の平均及び平滑度の値を算出する数式を示す図である。It is a figure which shows the numerical formula which calculates the average of the A / D-converted data in the 1st Embodiment of this invention, and the average of the maximum value or minimum value of a signal waveform, and the value of smoothness. 本発明の第1の実施の形態における反射率の異なる2つの被測定物表面についての受光強度分布波形を示す図である。It is a figure which shows the light reception intensity distribution waveform about two to-be-measured object surfaces from which the reflectance in the 1st Embodiment of this invention differs. 本発明の第2の実施の形態におけるパターン投影板を示す図である。It is a figure which shows the pattern projection board in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における光電変換素子の受光素子の配列を模式的に示す図である。It is a figure which shows typically the arrangement | sequence of the light receiving element of the photoelectric conversion element in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における被測定物表面による光の反射を示す図である。It is a figure which shows reflection of the light by the to-be-measured object surface in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における各画素列についての受光強度分布波形を示す図である。It is a figure which shows the light reception intensity distribution waveform about each pixel row | line in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11a 光源
11b、41 パターン投影板
12 光電変換素子
13 信号処理装置
14 被測定物表面
23 データ解析部
31 開口部
11a Light source 11b, 41 Pattern projection plate 12 Photoelectric conversion element 13 Signal processing device 14 Measurement object surface 23 Data analysis unit 31 Opening

Claims (3)

(a)物体表面に光を照射する光源と、
(b)前記物体と光源との間に設けられ、該光源から物体に照射される照射光を所定方向の明暗から成る特定パターンを形成するように遮光する遮光手段と、
(c)前記物体表面から反射する反射光を受光する受光手段と、
(d)該受光手段が受光した光に基づき、所定方向の位置毎の受光強度分布を検出する受光強度分布検出手段と、
(e)該受光強度分布検出手段が検出した受光強度分布に基づき、前記物体表面の平滑度を算出する平滑度算出手段とを有し、
(f)前記遮光手段は、光を遮蔽する遮蔽部と光を透過する光透過部とを備え、該光透過部は同心円状に所定の間隔で交互に配列され、前記照射光を同心円状の縞状パターンを形成するように遮蔽し、
前記平滑度算出手段は、複数方向の受光強度分布から求められる極大値と極小値とに基づいて複数方向の平滑度を算出することを特徴とする表面平滑性測定装置。
(A) a light source for irradiating the object surface with light;
(B) a light-shielding unit that is provided between the object and the light source, and shields the irradiation light applied to the object from the light source so as to form a specific pattern composed of brightness and darkness in a predetermined direction;
(C) light receiving means for receiving reflected light reflected from the object surface;
(D) a received light intensity distribution detecting means for detecting a received light intensity distribution for each position in a predetermined direction based on the light received by the light receiving means;
(E) having a smoothness calculating means for calculating the smoothness of the object surface based on the received light intensity distribution detected by the received light intensity distribution detecting means;
(F) The light-shielding means includes a light-shielding part that shields light and a light-transmissive part that transmits light, and the light-transmissive parts are arranged concentrically alternately at predetermined intervals, and the irradiation light is concentrically shaped. Shield to form a striped pattern,
( G ) The surface smoothness measuring apparatus, wherein the smoothness calculating means calculates smoothness in a plurality of directions based on a maximum value and a minimum value obtained from a light reception intensity distribution in a plurality of directions.
前記平滑度算出手段は、前記極大値の平均値Max(Ave)と前記極小値の平均値Min(Ave)とを算出し、下記の式により平滑度を算出する請求項1に記載の表面平滑性測定装置。
平滑度=(Max(Ave)−Min(Ave))/(Max(Ave)+Min(Ave))
2. The surface smoothing according to claim 1, wherein the smoothness calculating means calculates an average value Max (Ave) of the maximum value and an average value Min (Ave) of the minimum value, and calculates the smoothness by the following formula. Sex measuring device.
Smoothness = (Max (Ave) −Min (Ave)) / (Max (Ave) + Min (Ave))
前記複数方向は4方向であり、隣接する方向同士のなす角度は45度である請求項1又は2に記載の表面平滑性測定装置。 The surface smoothness measuring apparatus according to claim 1 or 2 , wherein the plurality of directions are four directions, and an angle between adjacent directions is 45 degrees.
JP2005266864A 2005-09-14 2005-09-14 Surface smoothness measuring device Expired - Fee Related JP4679313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266864A JP4679313B2 (en) 2005-09-14 2005-09-14 Surface smoothness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266864A JP4679313B2 (en) 2005-09-14 2005-09-14 Surface smoothness measuring device

Publications (2)

Publication Number Publication Date
JP2007078517A JP2007078517A (en) 2007-03-29
JP4679313B2 true JP4679313B2 (en) 2011-04-27

Family

ID=37939000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266864A Expired - Fee Related JP4679313B2 (en) 2005-09-14 2005-09-14 Surface smoothness measuring device

Country Status (1)

Country Link
JP (1) JP4679313B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200236A (en) * 2008-02-21 2009-09-03 Daisho Denshi Co Ltd Board with contact terminal, ic memory card, and manufacturing method of board with contact terminal
JP5386331B2 (en) 2009-12-11 2014-01-15 株式会社沖データ Belt device, transfer unit, and image forming apparatus
KR20140132773A (en) * 2012-04-23 2014-11-18 쌩-고벵 글래스 프랑스 Method and arrangement for measuring blowing structures of a prestressed disc
KR101669075B1 (en) * 2014-10-27 2016-10-27 충북대학교 산학협력단 System and method for inspecting defects
CN105241400A (en) * 2015-11-09 2016-01-13 福建农林大学 Glass flatness detection method and device
JP7242418B2 (en) * 2019-05-15 2023-03-20 興和株式会社 SURFACE INSPECTION METHOD AND ITS DEVICE
WO2022118798A1 (en) * 2020-12-04 2022-06-09 京セラドキュメントソリューションズ株式会社 Sheet specification device, image processing device, and sheet specification method
JPWO2022118797A1 (en) * 2020-12-04 2022-06-09
JPWO2022118799A1 (en) * 2020-12-04 2022-06-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099632A (en) * 1999-10-01 2001-04-13 Arc Harima Kk Normal reflection type surface shape measuring method and device with ccd camera

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175236A (en) * 1984-09-20 1986-04-17 Nippon Soken Inc Apparatus for measuring coated surface
JPH0850011A (en) * 1994-08-05 1996-02-20 Tokai Rika Co Ltd Apparatus for measuring orange peel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099632A (en) * 1999-10-01 2001-04-13 Arc Harima Kk Normal reflection type surface shape measuring method and device with ccd camera

Also Published As

Publication number Publication date
JP2007078517A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4679313B2 (en) Surface smoothness measuring device
US9412189B2 (en) Method and system for detecting known measurable object features
US9074868B2 (en) Automated borescope measurement tip accuracy test
EP2800946B1 (en) Arrangement for optical measurements and related method
JP2009139248A (en) Defect detecting optical system and surface defect inspecting device for mounting defect detecting image processing
JP2004251878A (en) Apparatus and method for evaluating optical distortion of plate
JP6053506B2 (en) Reflection characteristic measuring device
EP3314571B1 (en) Method and system for detecting known measurable object features
JP2011512533A (en) Method for measuring glass surface shape and optical distortion by reflection optical imaging
JP4799268B2 (en) Unevenness inspection apparatus and unevenness inspection method
TW201544788A (en) Methods and system for inspecting a 3D object using 2D image processing
TW201221901A (en) Method and device for evaluating surface shape
US10740890B2 (en) Image processing apparatus, method, and storage medium
US20180367722A1 (en) Image acquisition device and image acquisition method
WO2002039076A1 (en) Method for correcting sensor output
JP4597946B2 (en) End tilt angle measuring method, inspection method and inspection apparatus for inspected object having undulations
TW201231914A (en) Surface shape evaluating method and surface shape evaluating device
CN105277558B (en) Multi-step method for studying surface and corresponding equipment
JP5979387B2 (en) Method for measuring height of protrusions or ridges on article surface and apparatus therefor
TWI555997B (en) Method and system for measuring distance between the system and an object
CN107193428B (en) Optical touch screen, touch positioning method thereof and optical distortion calibration method
JP2018112532A (en) Measurement device, information processing device, information processing method, and program
JPH08178855A (en) Method for inspecting light-transmissive object or specular object
JP2006003168A (en) Measurement method for surface shape and device therefor
JP6595951B2 (en) Method and apparatus for estimating roughness of metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4679313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees