JP4679197B2 - Microbial separator - Google Patents

Microbial separator Download PDF

Info

Publication number
JP4679197B2
JP4679197B2 JP2005088306A JP2005088306A JP4679197B2 JP 4679197 B2 JP4679197 B2 JP 4679197B2 JP 2005088306 A JP2005088306 A JP 2005088306A JP 2005088306 A JP2005088306 A JP 2005088306A JP 4679197 B2 JP4679197 B2 JP 4679197B2
Authority
JP
Japan
Prior art keywords
microorganism
sample water
microchip
capturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005088306A
Other languages
Japanese (ja)
Other versions
JP2006262825A (en
Inventor
永 是 松
山 春 子 竹
口 智 原
野 正 人 吉
森 義 雄 石
子 政 雄 金
田 広 和 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Toshiba Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Toshiba Corp filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2005088306A priority Critical patent/JP4679197B2/en
Publication of JP2006262825A publication Critical patent/JP2006262825A/en
Application granted granted Critical
Publication of JP4679197B2 publication Critical patent/JP4679197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、上水道の原水水質管理、浄水水質管理、その他水処理水質管理、環境水質管理、食品衛生管理、養殖施設管理等において、微生物を含む可能性のある試料水中から、特定の微生物を簡易な装置により選択的に捕捉し、分離、回収するための微生物分離装置に関する。   The present invention simplifies specific microorganisms from sample water that may contain microorganisms in raw water quality management, purified water quality management, other water treatment water quality management, environmental water quality management, food sanitation management, aquaculture facility management, etc. The present invention relates to a microorganism separation apparatus for selectively capturing, separating and recovering using a simple apparatus.

上水道の浄水水質の検査、環境水の富栄養化度の検査、食品や製品の検査、食品加工施設の工程管理、養殖漁業施設の水質検査等において、微生物の検出が行われている。特に、病原性微生物の処理水や製品を通じた拡散により、人の健康に重篤な影響を及ぼす可能性があり、対象となる病原性微生物の検出、もしくは、病原性微生物の発生の指標となる微生物の検出が求められている。障害の発生及び拡大を防止するため、できる限り迅速に微生物の検出を行う必要がある。   Microorganisms are detected in the inspection of purified water quality in waterworks, eutrophication of environmental water, food and product inspection, process control of food processing facilities, and water quality inspection of aquaculture and fishery facilities. In particular, the spread of pathogenic microorganisms through treated water and products can have a serious impact on human health and can be used as an indicator of the detection of pathogenic microorganisms or the occurrence of pathogenic microorganisms. There is a need for detection of microorganisms. In order to prevent the occurrence and spread of obstacles, it is necessary to detect microorganisms as quickly as possible.

しかしながら、従来の微生物の検出は、培養によって形成されたコロニーを観察する方法が中心であり、この方法は簡便に行えるという利点はあるけれども、結果が得られるまでに時間がかかり、さらに、操作に熟練を要するといった問題点があった。   However, the conventional method for detecting microorganisms is mainly a method for observing colonies formed by culture. Although this method has the advantage of being easy to perform, it takes time until results are obtained, and further, it is difficult to operate. There was a problem of requiring skill.

また、浄水場で問題になっているクリプトスポリジウムやジアルジアといった原虫類の場合には、上記のような培養による検出は不可能であり、現状の検出方法では前処理から検出を行うまでに、多くの煩雑な過程が必要で、その操作に熟練を要した。さらに、原虫類の場合は、少量であっても問題となる可能性があるため、希薄な大量の試料水中から、当該微生物のみを検出することが求められる。   In addition, in the case of protozoa such as Cryptosporidium and Giardia, which are problematic in water purification plants, detection by culture as described above is impossible, and there are many cases from the pretreatment to detection by the current detection method. The process was complicated, and the operation required skill. Furthermore, in the case of protozoa, there is a possibility that even a small amount may cause a problem. Therefore, it is required to detect only the microorganism from a large amount of diluted sample water.

近年、遺伝子、DNA、免疫といった分子生物学的な手法を、これらの微生物の検知や同定に適用する方法が提案されている。これらの分子生物学的な手法では、対象微生物に固有の塩基配列や抗原を選択的に識別することが可能であり、特異的に対象微生物を検知することが可能である。   In recent years, methods for applying molecular biological techniques such as genes, DNA, and immunity to detection and identification of these microorganisms have been proposed. In these molecular biological techniques, it is possible to selectively identify a base sequence and an antigen unique to the target microorganism, and to specifically detect the target microorganism.

しかし、これらの手法で使用するDNA断片や抗体等は対象とする微生物以外の微生物、もしくは、鉱物質の濁質等の夾雑物等に非特異的に吸着することがあり、誤認識の原因となる。実際には、微生物は純粋な状態で存在しているわけではなく、他の多くの微生物及び懸濁物質と共存しており、誤認識を完全に排除するのは困難である。   However, DNA fragments and antibodies used in these methods may adsorb nonspecifically to microorganisms other than the target microorganisms, or contaminants such as turbidity of minerals, which may cause misrecognition. Become. In practice, microorganisms do not exist in a pure state, but coexist with many other microorganisms and suspended solids, and it is difficult to completely eliminate misrecognition.

また、一般的に生物のDNAによる検出を行う場合、細胞を破砕してDNAもしくはRNAを取り出し、場合によってはこれらをPCRもしくはRT-PCRにより増幅した上で、検出対象DNAと相補プローブとの結合を検知することにより、対象とする生物が存在することを確認する。しかし、この場合も擬陽性の可能性があるが、既に微生物の構造は破壊されており、形状因子、内部構造等の情報から検証することは不可能である。   In general, when detecting organism DNA, the cells are disrupted and DNA or RNA is removed. In some cases, these are amplified by PCR or RT-PCR, and then the target DNA and the complementary probe are bound. By detecting this, it is confirmed that the target organism exists. However, there is a possibility of false positives in this case as well, but the structure of the microorganism has already been destroyed, and it is impossible to verify it from information such as the shape factor and internal structure.

これらの状況に鑑み、中空糸膜を利用した分離、回収システム(例えば、特許文献1参照。)、固定化プレート上での抗体及びDNAによる二重標識検出法(例えば、特許文献2参照。)、水中の原中およびそのオーシストの検出方法(例えば、特許文献3参照。)が開示されている。これらの特許文献に記載された技術により、中空糸膜フィルタ等を用いた多段の分離処理工程及びそれに回収率を向上させる処理工程を付随させることにより、高効率かつ大量に連続的に対象微生物を回収でき、さらに、プレート上に固定化した微生物を抗体及びDNAにより二重に染色した上、細胞の形状的因子を判別因子に加えることにより、精度向上を図り、試料水中から特定の対象微生物のみを選択的に検出することが可能となる。
特開平10−314552号公報 特許第3127244号公報 特開平11−193号公報
In view of these circumstances, a separation and recovery system using a hollow fiber membrane (see, for example, Patent Document 1), a double label detection method using an antibody and DNA on an immobilized plate (for example, see Patent Document 2). A method for detecting underwater and its oocysts is disclosed (for example, see Patent Document 3). By the technology described in these patent documents, the target microorganism is continuously and efficiently produced in a large amount by attaching a multi-stage separation process using a hollow fiber membrane filter and the like and a process for improving the recovery rate. In addition, the microorganisms immobilized on the plate are double-stained with antibody and DNA, and the shape factor of the cells is added to the discriminating factor to improve accuracy. Can be selectively detected.
JP 10-314552 A Japanese Patent No. 3127244 Japanese Patent Laid-Open No. 11-193

従来、微生物を検出するために使用する固定化プレートとしては、ニトロセルロース製メンブレンフィルタ等のディスク状のフィルタを想定しており、検出部の面積が比較的大きくなることから、検出に画像処理を適用する上で、顕微鏡視野の移動のためのステージ走査機構、もしくは、励起レーザー光の走査機構が必要になり、装置の大型化、コストの高騰化、走査に要する時間による応答遅れが避けられないというような問題があった。   Conventionally, as an immobilization plate used for detecting microorganisms, a disk-like filter such as a nitrocellulose membrane filter has been assumed, and since the area of the detection unit is relatively large, image processing is performed for detection. In application, a stage scanning mechanism for moving the microscope field of view or a scanning mechanism for the excitation laser light is required, which increases the size of the apparatus, increases the cost, and delays in response due to the time required for scanning. There was such a problem.

本発明の目的は、上記の問題点を解決するためになされたもので、検出対象とする微生物を、微小領域にて選択的に捕捉、分離、回収を行うことのできる微生物分離装置を提供することにある。   An object of the present invention was made to solve the above-described problems, and provides a microorganism separation apparatus that can selectively capture, separate, and recover microorganisms to be detected in a micro area. There is.

上記目的を達成するために、請求項1に係る発明は、試料水中に含まれる特定の微生物を捕捉し、分離、回収する微生物分離装置において、基板上に試料水の流路が形成され、流路の途中に分離対象微生物を捕捉するための複数の微生物捕捉穴が配設されてなる捕捉部を有するマイクロチップと、分離対象微生物を含む試料水を前記マイクロチップに流し込むための試料水供給手段と、マイクロチップを通過した排水を回収し、試料水供給手段に戻す試料水循環手段と、を備え、試料水に含まれる分離対象微生物が複数の微生物捕捉穴に接触した際に、この微生物捕捉穴に捕捉される分離対象微生物が多くなるように、試料水供給手段及び試料水循環手段による試料水循環動作を複数回繰り返すようにした、ことを特徴とする。 In order to achieve the above object, the invention according to claim 1 is a microorganism separation apparatus that captures, separates and recovers specific microorganisms contained in sample water, wherein a flow path of sample water is formed on a substrate, A microchip having a capturing part in which a plurality of microorganism capturing holes for capturing separation target microorganisms are disposed in the middle of the path, and sample water supply means for flowing sample water containing the separation target microorganisms into the microchip And a sample water circulation means for collecting the waste water that has passed through the microchip and returning it to the sample water supply means, and when the microorganisms to be separated contained in the sample water come into contact with the plurality of microorganism capture holes, The sample water circulation operation by the sample water supply means and the sample water circulation means is repeated a plurality of times so that the number of microorganisms to be separated captured by the sample water increases .

請求項2に係る発明は、請求項1に記載の微生物分離装置において、マイクロチップに物理的洗浄手段を付設させたことを特徴とする。 The invention according to claim 2 is the microorganism separation apparatus according to claim 1, characterized in that a physical cleaning means is attached to the microchip.

請求項3に係る発明は、請求項1又は2に記載の微生物分離装置において、マイクロチップに洗浄液を流し込むための洗浄液供給手段を備えたことを特徴とする。 According to a third aspect of the present invention, in the microorganism separation apparatus according to the first or second aspect of the present invention, a cleaning liquid supply means for pouring the cleaning liquid into the microchip is provided.

請求項4に係る発明は、請求項1ないし3のいずれか1項に記載の微生物分離装置において、マイクロチップは基板の表面に被せる遮蔽板を含み、基板は導電性材料でなり、かつ、微生物捕捉穴以外の平板部分が絶縁層によって電気的に絶縁され、遮蔽板の捕捉部に対向する部位に、絶縁層を介して、電極が埋設され、この電極と基板との間に電圧を印加することによって試料水の流路に電界を発生させる電圧印加装置を備えたことを特徴とする。 According to a fourth aspect of the present invention, in the microorganism separation apparatus according to any one of the first to third aspects, the microchip includes a shielding plate that covers the surface of the substrate, the substrate is made of a conductive material, and the microorganism A flat plate portion other than the catching hole is electrically insulated by the insulating layer, and an electrode is embedded through the insulating layer in a portion facing the catching portion of the shielding plate, and a voltage is applied between the electrode and the substrate. Thus, a voltage application device for generating an electric field in the flow path of the sample water is provided.

請求項5に係る発明は、請求項1ないし3のいずれか1項に記載の微生物分離装置において、マイクロチップは基板の表面に被せる遮蔽板を含み、基板は非導電性材料でなり、微生物捕捉穴の内部に第1電極が設けられ、遮蔽板の捕捉部に対向する部位に、絶縁層を介して、第2の電極が埋設され、第1及び第2の電極間に電圧を印加することによって試料水の流路に電界を発生させる電圧印加装置を備えたことを特徴とする。 The invention according to claim 5 is the microorganism separation apparatus according to any one of claims 1 to 3, wherein the microchip includes a shielding plate that covers the surface of the substrate, the substrate is made of a non-conductive material, and captures microorganisms. A first electrode is provided inside the hole, and a second electrode is embedded via an insulating layer in a portion facing the capturing portion of the shielding plate, and a voltage is applied between the first and second electrodes. And a voltage applying device for generating an electric field in the flow path of the sample water.

請求項6に係る発明は、請求項1ないし5のいずれか1項に記載の微生物分離装置において、微生物捕捉穴に固定化され、対象微生物を抗原として認識する抗体を備えたことを特徴とする。 The invention according to claim 6 is the microorganism separation device according to any one of claims 1 to 5, comprising an antibody that is immobilized in the microorganism capturing hole and recognizes the target microorganism as an antigen. .

請求項7に係る発明は、請求項1ないし3のいずれか1項に記載の微生物分離装置において、微生物捕捉穴に向かう方向に試料水の流れを作るように、遮蔽板の流路面に突起を
設けたことを特徴とする。
The invention according to claim 7 is the microorganism separation device according to any one of claims 1 to 3 , wherein the projection is provided on the flow path surface of the shielding plate so as to create a flow of the sample water in a direction toward the microorganism capturing hole. It is provided.

請求項8に係る発明は、請求項1ないし7のいずれか1項に記載の微生物分離装置において、対象微生物を選択的に識別して吸着することのできる蛍光色素もしくは発光色素で標識した生物材料をマイクロチップに供給するための、染色用生物材料供給手段を備えたことを特徴とする。 The invention according to claim 8 is the biological material labeled with a fluorescent dye or a luminescent dye capable of selectively identifying and adsorbing the target microorganism in the microorganism separating apparatus according to any one of claims 1 to 7. It is characterized by comprising a biological material supply means for staining for supplying the microchip to the microchip.

請求項9に係る発明は、請求項1ないし8のいずれか1項に記載の微生物分離装置において、マイクロチップの基板が透明な材質で構成されていることを特徴とする。 The invention according to claim 9 is the microorganism separation apparatus according to any one of claims 1 to 8 , characterized in that the substrate of the microchip is made of a transparent material.

本発明は上記のように構成したことにより、検出対象とする微生物を、微小領域に選択的に捕捉、分離、回収を行う微生物分離装置を提供することができる。   By configuring as described above, the present invention can provide a microorganism separation apparatus that selectively captures, separates, and collects microorganisms to be detected in a minute region.

以下、本発明を図面に示す好適な実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings.

図1(a)及び(b)は本発明に係る微生物分離装置の第1実施例を構成するマイクロチップ1Aの平面図及び縦断面図である。このマイクロチップ1Aは、基板1aと、その表面に被せる遮蔽板1bとで構成されている。基板1aの表面には、試料水のフロー流路2と、その途中に分離対象微生物を捕捉する捕捉部3とを備えている。そして、フロー流路2の一端部、すなわち、図面の左側端部には遮蔽板1bを貫通する試料水供給口5が形成され、フロー流路2の他端部、すなわち、図面の右側端部には底方向に貫通する試料水排水口6が形成されている。   FIGS. 1A and 1B are a plan view and a longitudinal sectional view of a microchip 1A constituting a first embodiment of a microorganism separation apparatus according to the present invention. The microchip 1A includes a substrate 1a and a shielding plate 1b that covers the surface of the substrate 1a. On the surface of the substrate 1a, a flow path 2 of sample water and a capturing part 3 for capturing the separation target microorganisms are provided in the middle. And the sample water supply port 5 which penetrates the shielding board 1b is formed in the one end part of the flow channel 2, ie, the left side part of drawing, and the other end part of the flow channel 2, ie, the right side part of drawing Is formed with a sample water drain port 6 penetrating in the bottom direction.

捕捉部3はフロー流路2の長手方向中間部にて横方向に亀甲状に広がっており、その広がり部分には分離対象微生物をその形状的特徴により捕捉することが可能な複数の微生物捕捉穴4が配設されている。試料水は後述する外部の試料水供給手段により、試料水供給口5からフロー流路2に導入される。このための試料水供給手段として、チューブポンプもしくはプランジャポンプ等の微小流量を制御することが可能なマイクロポンプが好適である。特に、微生物を含む試料水には粒子状物質が含まれることから、濁質を送液するのに適した上記ポンプが望ましい。   The capturing part 3 spreads in the shape of a turtle shell in the lateral direction in the longitudinal direction intermediate part of the flow channel 2, and a plurality of microorganism capturing holes capable of capturing the microorganisms to be separated by their shape characteristics in the expanded part. 4 is arranged. The sample water is introduced into the flow channel 2 from the sample water supply port 5 by an external sample water supply means described later. As the sample water supply means for this purpose, a micro pump capable of controlling a minute flow rate such as a tube pump or a plunger pump is suitable. In particular, since the sample water containing microorganisms contains particulate matter, the above pump suitable for feeding turbidity is desirable.

マイクロチップ1Aの材質としては、シリコン、金属、プラスチック、ガラス、セラミック等の使用が可能である。フロー流路2及び微生物捕捉穴4の加工については、フォトリソグラフィと化学的エッチング処理を組み合わせる方法や、レーザー加工、マイクロ機械加工等を利用する。   As the material of the microchip 1A, silicon, metal, plastic, glass, ceramic, or the like can be used. For processing the flow channel 2 and the microorganism capturing hole 4, a method combining photolithography and chemical etching, laser processing, micromachining, or the like is used.

図2(a)及び(b)はクリプトスポリジウムを選択的に捕捉することを目的としてデザインしたマイクロチップ1Aの捕捉部3を部分的に断裁して示した斜視図及び微生物捕捉穴4の形状を示す斜視図である。クリプトスポリジウムは直径5μmの球状をしており、これを捕捉するために開口部の直径が10μm、深さが10μmの円柱状の微生物捕捉穴4を50μm間隔で配置している。材質はシリコン基板を使用している。   2 (a) and 2 (b) are perspective views showing the microchip 1A designed for the purpose of selectively capturing Cryptosporidium partially cut out and the shape of the microorganism capture hole 4 shown in FIG. It is a perspective view shown. Cryptosporidium has a spherical shape with a diameter of 5 μm, and in order to capture this, cylindrical microorganism capturing holes 4 having an opening diameter of 10 μm and a depth of 10 μm are arranged at intervals of 50 μm. The material is a silicon substrate.

このマイクロチップ1Aの試料水供給口5を通して基板1a上に、クリプトスポリジウ
ム(Cryptsporidium parvum)のオーシストを含む懸濁液20ml(1.0×106cells/m
l)を滴下し、洗浄後、抗クリプト抗体による染色及びFISH法による染色を行った。そ
の結果を図3(a)及び(b)に示す。
20 ml of a suspension containing oocysts of Cryptsporidium parvum (1.0 × 10 6 cells / m) on the substrate 1a through the sample water supply port 5 of the microchip 1A.
l) was dropped and washed, followed by staining with anti-crypt antibody and staining with FISH method. The results are shown in FIGS. 3 (a) and 3 (b).

抗体による染色については、FITC標識抗体を基板1a上に滴下し、37℃で1時間インキュベートを行った。FISH法による染色については、Cy3標識クリプトスポリジウム特異的プローブを用い、Hybridization buffer(0.9mol/l NaCl, 20 mmol/l Tris-HCl, 0.05%SDS, 2pmol/μl oligonucleotide probe, pH7.2)中で48℃1時間ハイブリダイゼーションを行った。規則的に配置された穴の存在位置で、両方の色素での発光が確認されることから、穴内に微生物が捕捉されていることがわかる。抗体については、クリプトスポリジウム以外の粒子への非特異吸着による発光が確認される。これに対してFISH法ではクリプトスポリジウム以外の発光は確認できない。このように、捕捉した粒子が対象微生物であるか否かを確認する手段として、抗体による染色もしくはFISH法による染色等、生物情報を利用した検出方法を適用することが有効である。さらに、2つの染色方法の結果を比較することは、誤認識を防止するのに有効な手段となる。   For staining with an antibody, a FITC-labeled antibody was dropped on the substrate 1a and incubated at 37 ° C. for 1 hour. For staining by FISH method, use Cy3-labeled Cryptosporidium-specific probe in Hybridization buffer (0.9 mol / l NaCl, 20 mmol / l Tris-HCl, 0.05% SDS, 2 pmol / μl oligonucleotide probe, pH 7.2) Hybridization was performed at 48 ° C. for 1 hour. Since the light emission of both dyes is confirmed at the positions where regularly arranged holes are present, it can be seen that microorganisms are trapped in the holes. Regarding the antibody, light emission due to nonspecific adsorption to particles other than Cryptosporidium is confirmed. On the other hand, luminescence other than Cryptosporidium cannot be confirmed by the FISH method. As described above, it is effective to apply a detection method using biological information such as antibody staining or FISH method as a means for confirming whether the captured particles are target microorganisms. Furthermore, comparing the results of the two staining methods is an effective means for preventing misrecognition.

図4(a)〜(d)は、マイクロチップ1Aの捕捉部3に配設する微生物捕捉穴4の変形例を示したものである。開口部が円の場合には円柱状の他、(a)に示す円錐状の微生物捕捉穴4a、(b)に示すすり鉢状の微生物捕捉穴4b等が適用できる。開口部が四角の場合には、(c)に示す直方体の微生物捕捉穴4c、(d)に示す四角錘の微生物捕捉穴4d等の形状が適用できる。   4 (a) to 4 (d) show modified examples of the microorganism capturing hole 4 disposed in the capturing unit 3 of the microchip 1A. When the opening is a circle, in addition to a cylindrical shape, a conical microorganism capturing hole 4a shown in (a), a mortar-shaped microorganism capturing hole 4b shown in (b), and the like can be applied. In the case where the opening is a square, shapes such as a rectangular parallelepiped microorganism capturing hole 4c shown in (c) and a square pyramid microorganism capturing hole 4d shown in (d) can be applied.

図5は、図1及び図2に示したマイクロチップ1Aの端部を簡略化して示すと共に、試料水供給手段及びその循環機構を取り入れた微生物分離装置の系統図である。ここで、試料水は試料水供給ライン7を通じて、リザーバタンク9に導入される。このリザーバタンク9に所定量の試料水を導入した後、試料水供給弁8を閉じ、試料水供給ポンプ10によってマイクロチップ1Aの試料水供給口5に試料水を供給する。試料水は、捕捉部3を通過した後、試料水排水口6より排出される。この排出液を循環ポンプ12により、再度リザーバタンク9に戻し、マイクロチップ1Aに供給する。この循環工程においては、循環弁13を開の状態に、排水弁14を閉の状態にしておく。所定の時間循環を繰り返した後、循環弁13を閉じ、排水弁14を開き、液を排出する。この循環過程において微生物を含む粒子状物質はマイクロチップ1Aの捕捉部3を複数回通過することになり、捕捉率が向上する。   FIG. 5 is a system diagram of a microorganism separation apparatus that simplifies and shows the end of the microchip 1A shown in FIGS. 1 and 2 and incorporates sample water supply means and its circulation mechanism. Here, the sample water is introduced into the reservoir tank 9 through the sample water supply line 7. After introducing a predetermined amount of sample water into the reservoir tank 9, the sample water supply valve 8 is closed, and the sample water is supplied to the sample water supply port 5 of the microchip 1A by the sample water supply pump 10. The sample water passes through the capturing unit 3 and is then discharged from the sample water drain 6. The discharged liquid is returned again to the reservoir tank 9 by the circulation pump 12 and supplied to the microchip 1A. In this circulation process, the circulation valve 13 is opened and the drain valve 14 is closed. After repeating the circulation for a predetermined time, the circulation valve 13 is closed, the drain valve 14 is opened, and the liquid is discharged. In this circulation process, the particulate matter containing microorganisms passes through the capturing part 3 of the microchip 1A a plurality of times, and the capturing rate is improved.

試料水排水口6より液を排出した後、染色抗体供給手段15、もしくは染色DNAプローブ供給手段16から、捕捉部3に蛍光色素や発光色素により染色された抗体、もしくはDNAプローブを注入する。このとき使用する抗体は、対象微生物を抗原として作製した抗体が適用できるが、できればモノクローナル抗体であることが望ましい。また、DNAプローブは対象微生物に特異的な塩基配列と対合するようにデザインしたものを使用する。   After the liquid is discharged from the sample water drain port 6, an antibody or DNA probe stained with a fluorescent dye or a luminescent dye is injected into the capture unit 3 from the stained antibody supply means 15 or the stained DNA probe supply means 16. As the antibody used at this time, an antibody prepared using the target microorganism as an antigen can be applied, but it is desirable that the antibody be a monoclonal antibody if possible. A DNA probe designed to pair with a base sequence specific to the target microorganism is used.

一定時間反応させた後、洗浄処理を行い、非特異的に吸着した抗体もしくはDNAプローブを除去した後、マイクロチップ1Aを観察する。このとき蛍光像もしくは発光像を確認することにより、対象微生物の有無を検出することができる。   After reacting for a certain period of time, washing treatment is performed to remove the nonspecifically adsorbed antibody or DNA probe, and then the microchip 1A is observed. At this time, the presence or absence of the target microorganism can be detected by confirming the fluorescence image or the emission image.

図6は本発明に係る微生物分離装置の第2実施例の概略構成を示した系統図であり、図中、第1実施例を示す図5と同一の要素には同一の符号を付してその説明を省略する。ここでは、リザーバタンク9と試料水供給ポンプ10との接続経路に、洗浄液供給弁18を介して、洗浄液保存容器17が新たに接続され、さらに、捕捉部3が形成された基板1aの外底部に図示省略の超音波発振器によって駆動される超音波振動子19が装着されたマイクロチップ1Bを用いた点が図5と異なっている。   FIG. 6 is a system diagram showing a schematic configuration of a second embodiment of the microorganism separation device according to the present invention, in which the same elements as those in FIG. 5 showing the first embodiment are denoted by the same reference numerals. The description is omitted. Here, a cleaning liquid storage container 17 is newly connected to a connection path between the reservoir tank 9 and the sample water supply pump 10 via a cleaning liquid supply valve 18, and an outer bottom portion of the substrate 1a on which the capturing unit 3 is formed. 5 differs from FIG. 5 in that a microchip 1B equipped with an ultrasonic transducer 19 driven by an ultrasonic oscillator (not shown) is used.

この実施例においては、第1実施例と同様に、試料水の導入、循環、排出の工程を実行する。次に、洗浄液保存容器17から、試料水供給ポンプ10により、洗浄液をマイクロチップ1Bに供給する。ここで、洗浄液としては界面活性剤、アルコール、有機溶剤、酸、アルカリ等を使用する。界面活性剤の効果として、マイクロチップ1Bの表面と粒子との界面に、洗浄液が浸透し、表面と粒子との距離を離すことにより、表面から粒子が引き離されるのに必要なポテンシャルエネルギーを低減することがある。その結果、対象微生物は穴の内面との相互作用が大きいのに対し、それ以外の粒子の相互作用は小さいことから脱離しやすくなり、対象微生物のみが微生物捕捉穴に捕捉されることになる。   In this embodiment, similar to the first embodiment, the steps of introducing, circulating and discharging the sample water are executed. Next, the cleaning liquid is supplied from the cleaning liquid storage container 17 to the microchip 1 </ b> B by the sample water supply pump 10. Here, a surfactant, alcohol, organic solvent, acid, alkali or the like is used as the cleaning liquid. As an effect of the surfactant, the cleaning liquid penetrates into the interface between the surface of the microchip 1B and the particles, and the potential energy necessary for separating the particles from the surface is reduced by separating the distance between the surface and the particles. Sometimes. As a result, the target microorganism has a large interaction with the inner surface of the hole, whereas the other particles have a small interaction, so that the target microorganism is easily detached and only the target microorganism is captured in the microorganism capturing hole.

粒子状物質が金属の酸化物である場合、酸による洗浄が有効である。これらの酸化物については、抗体、DNAプローブと非特異吸着を起こす場合があり、誤認識を防止するために、除去することが望ましい。この場合、対象とする酸化物を溶解可能な酸、例えば、酸化鉄を除去するために塩酸を用いることが有効である。その他、亜鉛やアルミニウム等の両性酸化物についてはアルカリ洗浄も適用可能である。ただし、言うまでもなく、洗浄液によりマイクロチップ1B及び対象微生物がダメージを受けないものを選定することが必要である。   When the particulate material is a metal oxide, cleaning with an acid is effective. These oxides may cause non-specific adsorption with antibodies and DNA probes, and it is desirable to remove them in order to prevent erroneous recognition. In this case, it is effective to use hydrochloric acid to remove an acid capable of dissolving the target oxide, for example, iron oxide. In addition, alkali cleaning can be applied to amphoteric oxides such as zinc and aluminum. However, needless to say, it is necessary to select a microchip 1B and a target microorganism that are not damaged by the cleaning liquid.

このとき、微生物捕捉穴4からの対象微生物以外の粒子状物質の脱離を促進するために、物理的洗浄手段を備えることが有効である。図6の例では、超音波振動子19をマイクロチップ1bの底部に装着しており、振動による機械的エネルギーを粒子状物質に与えることにより、脱離に必要なエネルギーを供給する。同様に、加熱によりエネルギーを供給することによっても、脱離を促進することが可能となる。ただし、過剰の振動や過熱によって対象微生物も脱離してしまう可能性もある。これを防止し、かつ他の粒子状物質を効果的に除去するために、最適な洗浄条件を設定する必要がある。   At this time, in order to promote the detachment of the particulate matter other than the target microorganism from the microorganism capturing hole 4, it is effective to provide a physical cleaning means. In the example of FIG. 6, the ultrasonic vibrator 19 is mounted on the bottom of the microchip 1b, and energy necessary for desorption is supplied by applying mechanical energy by vibration to the particulate matter. Similarly, desorption can be promoted by supplying energy by heating. However, the target microorganism may also be detached due to excessive vibration or overheating. In order to prevent this and effectively remove other particulate matter, it is necessary to set optimum cleaning conditions.

上記の洗浄液による洗浄及び物理的洗浄手段はそれぞれ単独で使用しても良いし、両者を組み合わせて使用することも、効果的である。   The cleaning with the cleaning liquid and the physical cleaning means may be used alone or in combination with each other.

生物に対する選択性を向上させるのに、抗体を利用することは最も効果的な手法である。穴の内面に抗体を固定化しておくことにより、穴に到達した対象微生物を強固に捕捉することが可能となる。シリコン基板上への抗クリプトスポリジウム抗体の固定化については、下記に例示するプロセスで実現できる。   The use of antibodies is the most effective way to improve selectivity for organisms. By immobilizing the antibody on the inner surface of the hole, the target microorganism that has reached the hole can be firmly captured. Immobilization of the anti-cryptospodium antibody on the silicon substrate can be realized by the process exemplified below.

すなわち、微生物捕捉穴4を作製したシリコン基板の穴部に10%KOH-エタノール溶液を滴下し30分放置して洗浄し、アルゴン(Ar)ガスで乾燥して、2%-MEPTES(3-mercaptopropyl triethoxysilane)トルエン溶液に60分浸漬する。その後、洗浄及びアルゴンガス乾燥をした後、1mM-GMBS(N-(γ-maleimidobutyryloxy)succinimide ester)エタノール溶液に30分浸漬する。さらに、洗浄後、0.5mg/ml-Strptavidinを滴下し、一晩インキュベートする。Blocking buffer(1%-BAS,0.01%-NaN3)に20分以上浸漬した後、Deposition buffer(10mM-PBS+10mM-NaCl+10mM-Sucrose,0.1%BSA)中に混合したBiotin標識抗クリプトスポリジウム抗体を穴部にスポッティングすることにより、穴内に抗クリプトスポリジウム抗体を導入する。 That is, a 10% KOH-ethanol solution was dropped into the hole of the silicon substrate on which the microorganism capturing hole 4 was produced, left to wash for 30 minutes, dried with argon (Ar) gas, and dried with 2% -MEPTES (3-mercaptopropyl Immerse in triethoxysilane) toluene solution for 60 minutes. Then, after washing and argon gas drying, it is immersed in 1 mM-GMBS (N- (γ-maleimidobutyryloxy) succinimide ester) ethanol solution for 30 minutes. Further, after washing, 0.5 mg / ml-Strptavidin is added dropwise and incubated overnight. Biotin-labeled anti-cryptospodium mixed in Deposition buffer (10 mM-PBS + 10 mM-NaCl + 10 mM-Sucrose, 0.1% BSA) after soaking in Blocking buffer (1% -BAS, 0.01% -NaN 3 ) for 20 minutes or more By spotting the antibody in the hole, an anti-cryptospodium antibody is introduced into the hole.

抗体と生物との結合は強固であるため、抗体の固定部位は可能な限り微生物捕捉穴4内に限定することが望ましい。しかし、微生物捕捉穴4の周面に抗体が固定されている場合でも、微生物捕捉穴4内とでは脱離に必要とするエネルギーが異なることから、適切な洗浄条件を設定すれば、微生物捕捉穴4内に優先的に対象微生物を捕集することができる。   Since the binding between the antibody and the organism is strong, it is desirable to limit the fixing site of the antibody within the microorganism capturing hole 4 as much as possible. However, even when an antibody is fixed to the peripheral surface of the microorganism capture hole 4, the energy required for desorption differs from that in the microorganism capture hole 4, so that if an appropriate cleaning condition is set, the microorganism capture hole The target microorganisms can be preferentially collected within 4.

図7は本発明に係る微生物分離装置の第3実施例の概略構成図である。同図において、マイクロチップ1Cは、基板1aの捕捉部3に対向する遮蔽板1bのフロー流路2側の表面部に板状の電極20が装着され、この電極20は試料水の浸入を阻止すると共に、電気的に絶縁するための絶縁層21で覆われている。この場合、基板1aとして導電性の材料、例えば、導電性シリコン基板もしくは金属板が使用されている。そして、基板1aと電極20との間に電圧印加装置23の正極及び負極の各リード線が接続され、これによって、試料水に電界を作用させて微生物を効果的に捕捉する微生物捕集機構が構成されている。   FIG. 7 is a schematic configuration diagram of a third embodiment of the microorganism separation device according to the present invention. In the figure, a microchip 1C is provided with a plate-like electrode 20 on the surface portion of the shielding plate 1b facing the capturing portion 3 of the substrate 1a on the flow channel 2 side, and this electrode 20 prevents entry of sample water. In addition, it is covered with an insulating layer 21 for electrical insulation. In this case, a conductive material such as a conductive silicon substrate or a metal plate is used as the substrate 1a. And the lead wires of the positive electrode and the negative electrode of the voltage application device 23 are connected between the substrate 1a and the electrode 20, whereby a microorganism collecting mechanism for effectively capturing microorganisms by applying an electric field to the sample water. It is configured.

この微生物捕集機構により、帯電している粒子を微生物捕捉穴4に移動させることができる。一般的に微生物は負に帯電しており、基板1a側が正に、電極20側が負になるように電圧を印加することによって、基板1aから遮蔽板1bに向かう電界を発生させることにより、効率的に微生物を捕捉することができる。 By this microorganism collecting mechanism , charged particles can be moved to the microorganism capturing hole 4. In general, microorganisms are negatively charged. By applying a voltage so that the substrate 1a side is positive and the electrode 20 side is negative, an electric field is generated from the substrate 1a toward the shielding plate 1b. It is possible to capture microorganisms.

このとき、微生物捕捉穴4の開口部以外を絶縁層により被覆することにより、電界を微生物捕捉穴4に集中させ、微生物捕捉穴4への微生物の導入を促進することができる。絶縁層の形成方法としては有機又は無機材料による被覆や、微生物捕捉穴4をマスクした状態で、基板1aを酸化処理又は窒化処理する方法がある。より微細な加工を高精度に実施するためには後者が望ましい。   At this time, by covering the part other than the opening of the microorganism capturing hole 4 with the insulating layer, the electric field can be concentrated in the microorganism capturing hole 4 and the introduction of the microorganism into the microorganism capturing hole 4 can be promoted. As a method for forming the insulating layer, there are a method of oxidizing or nitriding the substrate 1a while covering the organic or inorganic material or masking the microorganism capturing holes 4. The latter is desirable for carrying out finer processing with high accuracy.

図8(a)(b)は本発明に係る微生物分離装置の第4実施例を構成するマイクロチップの断面図及びその部分構成を示す斜視図である。図中、第3実施例を示す図7と同一の要素には同一の符号を付してその説明を省略する。ここに示したマイクロチップ1Dは、第3実施例と同様に、電界により微生物を捕集するものであるが、基板1aとして、例えば、ガラス、プラスチック、セラミック等を用いることができ、特に、透明性の高い材料を使用することにより、位相差像、微分干渉像等の光学的な顕微鏡観察が容易になるという利点がある。   8A and 8B are a cross-sectional view of a microchip constituting a fourth embodiment of the microorganism separation apparatus according to the present invention and a perspective view showing a partial configuration thereof. In the figure, the same elements as those in FIG. 7 showing the third embodiment are designated by the same reference numerals, and the description thereof is omitted. The microchip 1D shown here collects microorganisms by an electric field, as in the third embodiment. For the substrate 1a, for example, glass, plastic, ceramic, etc. can be used. By using a material having high properties, there is an advantage that optical microscope observation of a phase difference image, a differential interference image or the like becomes easy.

なお、これらの材料は非導電性であり、電界による微生物の捕集を行う場合、電界を発生させるための補助電極が必要になる。そこで、この実施例では、微生物捕捉穴4の底面の周端部にリング状の補助電極24aを形成したり、あるいは、微生物捕捉穴4の内周面に補助電極24bを形成したりしている。これらの補助電極24a又は24bと電極20との間に電圧を印加することにより、図7に示した第3実施例と同様に、電界による帯電粒子の集積が可能となる。この構成により、底面の透明性を犠牲にすることなく、電界による捕集と、光学顕微鏡観察を実現することができる。特に、光学顕微鏡観察が必要でない場合には、言うまでもなく、微生物捕捉穴4の底面全面を補助電極とすることもできる。   These materials are non-conductive, and an auxiliary electrode for generating an electric field is required when collecting microorganisms by an electric field. Therefore, in this embodiment, the ring-shaped auxiliary electrode 24a is formed on the peripheral end portion of the bottom surface of the microorganism capturing hole 4, or the auxiliary electrode 24b is formed on the inner peripheral surface of the microorganism capturing hole 4. . By applying a voltage between the auxiliary electrode 24a or 24b and the electrode 20, it is possible to accumulate charged particles by an electric field as in the third embodiment shown in FIG. With this configuration, collection by an electric field and observation with an optical microscope can be realized without sacrificing the transparency of the bottom surface. In particular, when observation with an optical microscope is not necessary, needless to say, the entire bottom surface of the microorganism capturing hole 4 can be used as an auxiliary electrode.

図9(a)(b)は本発明に係る微生物分離装置の第5実施例を構成するマイクロチップの断面図及びその要部を示す斜視図である。この実施例に係るマイクロチップ1Eは基板1aに複数の微生物捕捉穴4が配設されて捕捉部3を形成している。遮蔽板1bのフロー流路側の表面部には、微生物捕捉穴4にそれぞれ対応させて複数の突起25が突設されている。これらの突起25は、基板1aに遮蔽板1bを装着したとき、微生物捕捉穴4よりも試料水が流れる上流側に位置するように形成され、これによって、突起25毎に微生物捕捉穴4側に水流を向ける作用をさせることができる。その結果、試料水に含まれている粒子状物質が微生物捕捉穴4に到達する確率が高くなり、捕捉率が向上する。   FIGS. 9A and 9B are a cross-sectional view of a microchip constituting a fifth embodiment of the microorganism separation apparatus according to the present invention and a perspective view showing an essential part thereof. In the microchip 1E according to this embodiment, a plurality of microorganism capturing holes 4 are provided on a substrate 1a to form a capturing part 3. A plurality of protrusions 25 project from the surface of the shielding plate 1b on the flow channel side so as to correspond to the microorganism capturing holes 4 respectively. These protrusions 25 are formed so as to be positioned on the upstream side where the sample water flows from the microorganism capturing hole 4 when the shielding plate 1b is attached to the substrate 1a. It is possible to act to direct the water flow. As a result, the probability that the particulate matter contained in the sample water reaches the microorganism capturing hole 4 is increased, and the capturing rate is improved.

突起25は、円柱状、棒状、円錐状等の形状のものを用いることができる。突起25の形状、寸法については、流れ方向の転換作用を向上させるためには大きい方が良いが、あまり流路が狭くなると抵抗が大きくなり、流速の低下、粒子状物質による閉塞が発生する懸念がある。これらの状況を考慮して最適なサイズを選定する必要がある。   The protrusion 25 can have a columnar shape, a rod shape, a conical shape, or the like. As for the shape and size of the protrusion 25, it is better to increase the shape in order to improve the flow direction switching action. However, if the flow path becomes too narrow, the resistance increases, and the flow velocity is lowered and the particulate matter may be blocked. There is. It is necessary to select an optimum size in consideration of these situations.

本発明に係る微生物分離装置の第1実施例を構成するマイクロチップの平面図及び縦断面図。The top view and longitudinal cross-sectional view of the microchip which comprise 1st Example of the microorganisms separator which concerns on this invention. クリプトスポリジウムを選択的に捕捉することを目的としてデザインしたマイクロチップの捕捉部を部分的に断裁して示した斜視図及び微生物捕捉穴の形状を示す斜視図。The perspective view which partially cut and showed the capture part of the microchip designed in order to capture | acquire cryptosporidium selectively, and the perspective view which shows the shape of a microorganisms capture | acquisition hole. 抗体染色及びFISH法によるクリプトスポリジウムの染色例を示した図。The figure which showed the example of dyeing | staining of Cryptosporidium by antibody dyeing and FISH method. マイクロチップの捕捉部に配設する微生物捕捉穴の変形例を示した図。The figure which showed the modification of the microorganisms capture hole arrange | positioned in the capture part of a microchip. 第1実施例における試料水供給手段及びその循環機構を取り入れた系統図。The system diagram which took in the sample water supply means and its circulation mechanism in 1st Example. 本発明に係る微生物分離装置の第2実施例の概略構成を示した系統図。The systematic diagram which showed schematic structure of 2nd Example of the microorganisms separator which concerns on this invention. 本発明に係る微生物分離装置の第3実施例の概略構成図。The schematic block diagram of 3rd Example of the microorganisms separator which concerns on this invention. 本発明に係る微生物分離装置の第4実施例を構成するマイクロチップの断面図及びその部分構成を示す斜視図。Sectional drawing of the microchip which comprises 4th Example of the microorganisms separator which concerns on this invention, and a perspective view which shows the partial structure. 本発明に係る微生物分離装置の第5実施例を構成するマイクロチップの断面図及びその要部を示す斜視図。Sectional drawing of the microchip which comprises 5th Example of the microorganisms separator which concerns on this invention, and a perspective view which shows the principal part.

符号の説明Explanation of symbols

1A〜1E マイクロチップ
1a 基板
1b 遮蔽板
2 フロー流路
3 捕捉部
4 微生物捕捉穴
5 試料水供給口
6 試料水排水口
7 試料水供給ライン
8 試料水供給弁
9 リザーバタンク
10 試料水供給ポンプ
12 循環ポンプ
13 循環弁
14 排水弁
15 染色抗体供給手段
16 染色DNAプローブ供給手段
17 洗浄液保存容器
18 洗浄液供給弁
19 超音波振動子
20 電極
21 絶縁層
23 電圧印加装置
24a,24b 補助電極
25 突起
1A to 1E Microchip 1a Substrate 1b Shield plate 2 Flow channel 3 Capture unit 4 Microorganism capture hole 5 Sample water supply port 6 Sample water drain port 7 Sample water supply line 8 Sample water supply valve 9 Reservoir tank 10 Sample water supply pump 12 Circulating pump 13 Circulating valve 14 Drain valve 15 Stained antibody supply means 16 Stained DNA probe supply means 17 Washing liquid storage container 18 Washing liquid supply valve 19 Ultrasonic vibrator 20 Electrode 21 Insulating layer 23 Voltage application devices 24a and 24b Auxiliary electrode 25 Protrusion

Claims (9)

試料水中に含まれる特定の微生物を捕捉し、分離、回収する微生物分離装置において、
基板上に試料水の流路が形成され、前記流路の途中に分離対象微生物を捕捉するための複数の微生物捕捉穴が配設されてなる捕捉部を有するマイクロチップと、
分離対象微生物を含む試料水を前記マイクロチップに流し込むための試料水供給手段と、
前記マイクロチップを通過した排水を回収し、前記試料水供給手段に戻す試料水循環手段と、
を備え、前記試料水に含まれる前記分離対象微生物が前記複数の微生物捕捉穴に接触した際に、この微生物捕捉穴に捕捉される前記分離対象微生物が多くなるように、前記試料水供給手段及び前記試料水循環手段による試料水循環動作を複数回繰り返すようにした、
ことを特徴とする微生物分離装置。
In a microorganism separation device that captures, separates and recovers specific microorganisms contained in sample water,
A microchip having a capturing portion in which a flow path of sample water is formed on a substrate, and a plurality of microorganism capturing holes for capturing microorganisms to be separated are disposed in the middle of the flow path;
Sample water supply means for pouring sample water containing microorganisms to be separated into the microchip;
Sample water circulation means for collecting waste water that has passed through the microchip and returning it to the sample water supply means,
And when the separation target microorganisms contained in the sample water come into contact with the plurality of microorganism capture holes, the sample water supply means and the separation target microorganisms captured in the microorganism capture holes are increased. The sample water circulation operation by the sample water circulation means was repeated a plurality of times.
Microorganism separation device, characterized in that.
前記マイクロチップに物理的洗浄手段を付設させたことを特徴とする請求項1に記載の微生物分離装置。 2. The microorganism separation apparatus according to claim 1 , wherein a physical cleaning means is attached to the microchip. 前記マイクロチップに洗浄液を流し込むための洗浄液供給手段を備えたことを特徴とする請求項1又は2に記載の微生物分離装置。 The microorganism separation apparatus according to claim 1, further comprising a cleaning liquid supply unit for pouring a cleaning liquid into the microchip. 前記マイクロチップは前記基板の表面に被せる遮蔽板を含み、前記基板は導電性材料でなり、かつ、前記微生物捕捉穴以外の平板部分が絶縁層によって電気的に絶縁され、前記遮蔽板の前記捕捉部に対向する部位に、絶縁層を介して、電極が埋設され、この電極と前記基板との間に電圧を印加することによって試料水の流路に電界を発生させる電圧印加装置を備えたことを特徴とする請求項1ないし3のいずれか1項に記載の微生物分離装置。 The microchip includes a shielding plate that covers the surface of the substrate, the substrate is made of a conductive material, and a flat plate portion other than the microorganism capturing hole is electrically insulated by an insulating layer, and the capturing of the shielding plate An electrode was embedded in a part facing the part through an insulating layer, and a voltage applying device for generating an electric field in the flow path of the sample water by applying a voltage between the electrode and the substrate was provided. The microorganism separation device according to any one of claims 1 to 3 , wherein 前記マイクロチップは前記基板の表面に被せる遮蔽板を含み、前記基板は非導電性材料でなり、前記微生物捕捉穴の内部に第1電極が設けられ、前記遮蔽板の前記捕捉部に対向する部位に、絶縁層を介して、第2の電極が埋設され、前記第1及び第2の電極間に電圧を印加することによって試料水の流路に電界を発生させる電圧印加装置を備えたことを特徴とする請求項1ないし3のいずれか1項に記載の微生物分離装置。 The microchip includes a shielding plate that covers the surface of the substrate, the substrate is made of a non-conductive material, a first electrode is provided inside the microorganism capturing hole, and a portion facing the capturing portion of the shielding plate And a voltage applying device for generating an electric field in the flow path of the sample water by applying a voltage between the first and second electrodes through the insulating layer. The microorganism separation device according to any one of claims 1 to 3 , wherein the device is a microorganism separation device. 前記微生物捕捉穴に固定化され、対象微生物を抗原として認識する抗体を備えたことを特徴とする請求項1ないし5のいずれか1項に記載の微生物分離装置。 The microorganism separation apparatus according to any one of claims 1 to 5 , further comprising an antibody that is immobilized in the microorganism capturing hole and recognizes a target microorganism as an antigen. 前記微生物捕捉穴に向かう方向に試料水の流れを作るように、前記遮蔽板の流路面に突起を設けたことを特徴とする請求項1ないし3のいずれか1項に記載の微生物分離装置。 The microorganism separation apparatus according to any one of claims 1 to 3 , wherein a projection is provided on a flow path surface of the shielding plate so as to create a flow of sample water in a direction toward the microorganism capturing hole. 対象微生物を選択的に識別して吸着することのできる蛍光色素もしくは発光色素で標識した生物材料を前記マイクロチップに供給するための、染色用生物材料供給手段を備えたことを特徴とする請求項1ないし7のいずれか1項に記載の微生物分離装置。 Claim, characterized in biological material labeled with a fluorescent dye or luminescent dye capable of absorbing the target microorganism selectively identify and to be supplied to the microchip, further comprising a dyeing biological material supply means The microorganism separation device according to any one of 1 to 7 . 前記マイクロチップの基板が透明な材質で構成されていることを特徴とする請求項1ないし8のいずれか1項に記載の微生物分離装置。 The microorganism separating apparatus according to any one of claims 1 to 8 , wherein the substrate of the microchip is made of a transparent material.
JP2005088306A 2005-03-25 2005-03-25 Microbial separator Active JP4679197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088306A JP4679197B2 (en) 2005-03-25 2005-03-25 Microbial separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088306A JP4679197B2 (en) 2005-03-25 2005-03-25 Microbial separator

Publications (2)

Publication Number Publication Date
JP2006262825A JP2006262825A (en) 2006-10-05
JP4679197B2 true JP4679197B2 (en) 2011-04-27

Family

ID=37199410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088306A Active JP4679197B2 (en) 2005-03-25 2005-03-25 Microbial separator

Country Status (1)

Country Link
JP (1) JP4679197B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100193361A1 (en) * 2007-06-01 2010-08-05 Takaharu Enjoji Apparatus for concentrating dielectric microparticles
JP5167375B2 (en) * 2011-02-14 2013-03-21 株式会社日立製作所 Cell culture apparatus and control method thereof
SG11201400151RA (en) * 2011-09-07 2014-07-30 Panasonic Healthcare Co Ltd Microorganism quantity measurement cell and microorganism quantity measurement device comprising same
JP6198070B2 (en) * 2012-07-03 2017-09-20 コニカミノルタ株式会社 Manufacturing method of microchamber chip for cell deployment
WO2014007190A1 (en) * 2012-07-03 2014-01-09 コニカミノルタ株式会社 Cell-spreading device and method for detecting rare cell
JP6303496B2 (en) * 2013-12-26 2018-04-04 コニカミノルタ株式会社 Cell deployment device
JP5825460B1 (en) * 2014-05-21 2015-12-02 コニカミノルタ株式会社 Pretreatment method for cell deployment device, cell deployment device, and cell deployment device pretreatment system
EP3357998A4 (en) * 2015-09-29 2019-06-12 Tokyo Ohka Kogyo Co., Ltd. Substrate, structure, structure-manufacturing method, cell-sorting method, cell-manufacturing method, and secretion-producing method
WO2023210798A1 (en) * 2022-04-28 2023-11-02 公立大学法人大阪 Microbe accumulation method and accumulation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833477A (en) * 1994-07-22 1996-02-06 Hitachi Ltd Device for treating microparticle, method for setting microparticle-treating plate and plate for treating microparticle and cell
JP2000262865A (en) * 1999-03-15 2000-09-26 Matsushita Electric Ind Co Ltd Bacteria concentrating apparatus
JP2002508516A (en) * 1997-12-17 2002-03-19 エコル・ポリテクニック・フェデラル・ドゥ・ロザンヌ(エ・ペー・エフ・エル) Positioning and electrophysiological characterization of single cell and reconstituted membrane systems on microstructured carriers
JP2004166692A (en) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd Integrated electrode and cell immobilizing device equipped with the same
JP2006094783A (en) * 2004-09-29 2006-04-13 Fujitsu Ltd Cell supply, exhaust and trap apparatus, and method for supplying, exhausting and trapping cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003304256A1 (en) * 2002-11-20 2005-01-13 Laser Light Technologies, Inc. An online flow through microchip for detecting hazardous chemical and biological agents in drinking water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833477A (en) * 1994-07-22 1996-02-06 Hitachi Ltd Device for treating microparticle, method for setting microparticle-treating plate and plate for treating microparticle and cell
JP2002508516A (en) * 1997-12-17 2002-03-19 エコル・ポリテクニック・フェデラル・ドゥ・ロザンヌ(エ・ペー・エフ・エル) Positioning and electrophysiological characterization of single cell and reconstituted membrane systems on microstructured carriers
JP2000262865A (en) * 1999-03-15 2000-09-26 Matsushita Electric Ind Co Ltd Bacteria concentrating apparatus
JP2004166692A (en) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd Integrated electrode and cell immobilizing device equipped with the same
JP2006094783A (en) * 2004-09-29 2006-04-13 Fujitsu Ltd Cell supply, exhaust and trap apparatus, and method for supplying, exhausting and trapping cell

Also Published As

Publication number Publication date
JP2006262825A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4679197B2 (en) Microbial separator
JP4859039B2 (en) Microbial separator
KR20100122953A (en) Cell selection apparatus, and cell selection method using the same
CN1181337C (en) Solid molecule operating method in microfluid system
US20110100820A1 (en) Triple function electrodes
US8778157B2 (en) Detecting analytes
JP2019505761A (en) Digital microfluidic system for single cell isolation and analyte characterization
US20110127222A1 (en) Trapping magnetic cell sorting system
US20070141605A1 (en) Portable preparation, analysis, and detection apparatus for nucleic acid processing
US11198139B2 (en) Analyte detection methods and apparatus using dielectrophoresis and electroosmosis
JP2011500025A (en) Microfluidic platform for detecting multiple types of targets
CN1291913A (en) Channel-less separation of bioparticles on bioelectronic chip by dielectrophoresis
CN102639716A (en) Gene expression analysis method using two dimensional cDNA library
MXPA06004205A (en) Apparatus and methods for detecting nucleic acid in biological samples.
CN106757376B (en) Biochip for biomolecule detection or sequencing and manufacturing method thereof
JP2007033353A (en) Microorganism detecting system
Taguchi et al. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC‐labeled antibody
Taguchi et al. Immuno-capture of Cryptosporidium parvum using micro-well array
JP2004081087A (en) Nucleic acid collection chip and nucleic acid collector
Taguchi et al. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter
ITTO20120302A1 (en) INTEGRATED DEVICE AND METHOD FOR CHAIN REACTION OF REAL-TIME QUANTITATIVE POLYMERASIS
AU687206B2 (en) Method and apparatus for the decontamination of products containing heavy metal
Watanabe New Cryptosporidium testing methods
JP4456000B2 (en) Sample pretreatment device
KR102001137B1 (en) Sample preparation device, method of manufacturing the same, and method of preparing sample using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4679197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250