JP4675671B2 - Novel short-time detection method for nucleic acid amplification reaction - Google Patents

Novel short-time detection method for nucleic acid amplification reaction Download PDF

Info

Publication number
JP4675671B2
JP4675671B2 JP2005137993A JP2005137993A JP4675671B2 JP 4675671 B2 JP4675671 B2 JP 4675671B2 JP 2005137993 A JP2005137993 A JP 2005137993A JP 2005137993 A JP2005137993 A JP 2005137993A JP 4675671 B2 JP4675671 B2 JP 4675671B2
Authority
JP
Japan
Prior art keywords
dntp
reaction solution
molybdate
polymerization reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005137993A
Other languages
Japanese (ja)
Other versions
JP2006317201A (en
Inventor
秀明 花木
智 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
Original Assignee
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Institute filed Critical Kitasato Institute
Priority to JP2005137993A priority Critical patent/JP4675671B2/en
Publication of JP2006317201A publication Critical patent/JP2006317201A/en
Application granted granted Critical
Publication of JP4675671B2 publication Critical patent/JP4675671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、PCR等の核酸増幅法における、デオキシヌクレオシド三リン酸(deoxynucleotide tri−phosphate:以下dNTP)の重合反応生成物である核酸とピロリン酸の簡易検出法に関する。   The present invention relates to a simple method for detecting nucleic acid and pyrophosphate which are polymerization reaction products of deoxynucleoside tri-phosphate (hereinafter referred to as dNTP) in nucleic acid amplification methods such as PCR.

遺伝子を用いた診断方法として核酸重合(Polymerase Chain Reaction;PCR)法やligase chain reaction(LCR)法が用いられてきた。これらを実施するためには、高価なサーマルサイクラー(温度サイクリング増幅法)が必要なばかりか、特定のサーマルサイクラーでしか反応できないことも頻繁におこり、簡便で安価な迅速診断にはなり得なかった。この温度サイクリング増幅法に代わり得る方法として一定の温度でDNAやRNAの増幅が高頻度で行える等温増幅法が開発されてきている。DNAを用いる方法として、Standard Displacement Amplification(SDA)法、Isothermal and Chimeric primer−initiated Amplification of Nucleic acids(ICAN)法とその変法であるUCAN法、Loop−mediated Isothermal Amplification (LAMP)法などがあり、RNAを用いる方法としてTranscription Reverse transcription(TRC)法、Nucleic Acid Sequence−Based Amplification(NASBA)法、Transcription Mediated Amplification method(TMA)法 などがある。これらの増幅方法は、いずれもdNTPの重合反応である。   Nucleic acid polymerization (Polymerase Chain Reaction; PCR) and ligase chain reaction (LCR) methods have been used as diagnostic methods using genes. In order to carry out these, not only was an expensive thermal cycler (temperature cycling amplification method) necessary, but it was also possible to react only with a specific thermal cycler, which could not be a simple and inexpensive rapid diagnosis. . As a method that can replace this temperature cycling amplification method, an isothermal amplification method capable of amplifying DNA and RNA at a constant temperature at a high frequency has been developed. As a method using DNA, the Standard Displacement Amplification (SDA) method, the Isothermal and Chimeric Primer-Initiated Amplification of Nucleic Acids (ICAN) method, and the modified UCAN method, which is a modified method such as the UCAN method, the MPI method, and the modified method are the UCAN method. As a method using RNA, a transcription reverse transcription (TRC) method, a nucleic acid sequence-based amplification (NASBA) method, a transcription produced amplification There is a method (TMA) method. All of these amplification methods are dNTP polymerization reactions.

増幅反応を確認する方法には、直接増幅されたDNAやRNAを検出方法する方法がある。例えば、電気泳動後にエチジウムブロマイドによる染色、ビオチン化プローブを用いた発光法、エキシマー形成蛍光センサー、電気化学的センサーなど、様々な方法があるが、何れも高価な機器や試薬を必要とするか、操作が煩雑になる欠点を有している。
また、dNTP重合反応液中のピロリン酸をリンモリブテン反応によって検出する方法が、特許文献1又は2に見られるが、いずれもdNTP重合反応液中に存在するdNTPやDNAやRNAに結合されているリン酸を検出する危険性を含んでいるばかりか、簡便なキット化はされていない。
As a method for confirming the amplification reaction, there is a method for detecting directly amplified DNA or RNA. For example, there are various methods such as staining with ethidium bromide after electrophoresis, luminescence method using biotinylated probe, excimer-forming fluorescent sensor, electrochemical sensor, etc., all of which require expensive equipment and reagents, It has a drawback that the operation becomes complicated.
Moreover, although the method of detecting the pyrophosphoric acid in dNTP polymerization reaction liquid by a phosphomolybten reaction is seen in patent document 1 or 2, all are couple | bonded with dNTP, DNA, and RNA which exist in dNTP polymerization reaction liquid. Not only does it contain the danger of detecting phosphoric acid, but it has not been made into a simple kit.

等温増幅法によるDNAやRNAの検出方法も、一部を除いてほとんどが従来のPCRの検出方法と同様であり、検出方法に関する改善はなんら認められていない。唯一、栄研化学で開発されたLoop−mediated isothermal amplification(LAMP)法は高価なサーマルサークラーを必要とせず、約60℃前後の一定の温度でDNAの増幅(等温増幅法)が高頻度で行え、かつDNA増幅の確認はDNA増幅時に産生されるピロリン酸と過剰量に添加されているマグネシウムが反応したピロリン酸−マグネシウムの析出を目視で行う簡便な方法がとられている。しかし、ピロリン酸−マグネシウムが目視できるまでの産生量を確保する反応時間が必要になり、一般的に約1時間以上を要す。さらに、LAMP法に使用されるプライマーはPCRのプライマーよりも特殊で複雑であり、目視可能なまでの十分な反応をおこすには非常に制限された特定のプライマーが必要になる欠点を有す。
特開平7−59600号公報 特開2004−205298公報
The detection method of DNA and RNA by the isothermal amplification method is almost the same as the conventional PCR detection method except for a part, and no improvement regarding the detection method is recognized. The only loop-mediated thermal amplification (LAMP) method developed by Eiken Chemical does not require an expensive thermal cycler, and DNA amplification (isothermal amplification method) is frequently performed at a constant temperature of about 60 ° C. Confirmation of DNA amplification can be performed by a simple method in which the pyrophosphate-magnesium precipitated by the reaction between pyrophosphate produced during DNA amplification and magnesium added in excess is visually observed. However, a reaction time for securing a production amount until the pyrophosphate-magnesium can be visually confirmed is required, and generally about 1 hour or more is required. Furthermore, the primers used in the LAMP method are more specific and complex than PCR primers, and have the disadvantage that specific primers that are very limited are required to carry out sufficient reactions until they are visible.
JP 7-59600 A JP 2004-205298 A

本発明の目的は、頻繁に使用されているdNTP重合反応の結果を、従来法である電気泳動法や蛍光法などの高価な機器や試薬を用いることなく簡便な操作方法で5分以内に目視で判定可能な方法をキットとして提供するものである。   The object of the present invention is to visually observe the results of frequently used dNTP polymerization reactions within 5 minutes without using expensive equipment and reagents such as conventional electrophoresis and fluorescence methods. The method that can be determined by is provided as a kit.

上記目的を達成するべく、本発明者らはdNTP重合時の産生物質である核酸と遊離のピロリン酸とピロリン酸金属塩ならびにピロリン酸の分解物であるリン酸とリン酸金属塩に注目した。一般的にdNTP重合反応溶液中には、dNTP重合反応に必要な酵素の補酵素的役割をマグネシウム、マンガン、亜鉛などの2価の金属イオンが担っている。dNTPが重合される量に比例してピロリン酸が産生されるが、このピロリン酸は反応液中に含有されている2価の金属イオンとキレートを形成し、不溶性のピロリン酸−2価金属塩が形成されると同時に、ピロリン酸が分解したリン酸でもリン酸−2価金属塩が形成される。一方、dNTP重合反応溶液中には、未反応物質として残存しているdNTPが共存しているが、これらはいずれもリン酸を結合している。dNTPに結合したリン酸は全リン酸測定方法であるモリブテン法でも検出されるため、これらが含有されている反応溶液中で特異的にピロリン酸−2価金属もしくはリン酸−2価金属中のピロリン酸とリン酸を短時間で簡便に検出することは困難であると考えられた。しかし、本発明者は鋭意検討の結果、未反応のdNTP中に結合している有機リン酸が呈色できない条件があることを見い出し、特異的にピロリン酸−2価金属もしくはリン酸−2価金属中のピロリン酸とリン酸を短時間で簡便に検出することに成功した。さらに、dNTP重合反応によって産生される核酸は、ベタイン存在下強酸性の条件下で析出することを見出し、核酸の析出によってもdNTP重合反応の進行を確認できることを見出した。   In order to achieve the above object, the present inventors paid attention to nucleic acids, free pyrophosphoric acid and pyrophosphoric acid metal salts, which are products produced during dNTP polymerization, and phosphoric acid and phosphoric acid metal salts, which are pyrophosphoric acid degradation products. In general, in a dNTP polymerization reaction solution, a divalent metal ion such as magnesium, manganese, or zinc plays a coenzyme role for an enzyme necessary for the dNTP polymerization reaction. Although pyrophosphoric acid is produced in proportion to the amount of dNTP polymerized, this pyrophosphoric acid forms a chelate with the divalent metal ion contained in the reaction solution, and is insoluble pyrophosphoric acid-divalent metal salt At the same time, phosphoric acid-divalent metal salt is formed even with phosphoric acid decomposed by pyrophosphoric acid. On the other hand, dNTP remaining as an unreacted substance coexists in the dNTP polymerization reaction solution, and these all bind phosphoric acid. Since phosphoric acid bound to dNTP is also detected by the molybden method, which is a total phosphoric acid measurement method, it is specifically detected in the reaction solution containing these in the pyrophosphate-2valent metal or phosphate-2valent metal. It was considered difficult to detect pyrophosphate and phosphate easily in a short time. However, as a result of intensive studies, the present inventor has found that there are conditions under which organic phosphoric acid bound in unreacted dNTP cannot be colored, and specifically pyrophosphate-2valent metal or phosphate-2valent. We succeeded in detecting pyrophosphoric acid and phosphoric acid in metals easily in a short time. Furthermore, it has been found that the nucleic acid produced by the dNTP polymerization reaction is precipitated under strongly acidic conditions in the presence of betaine, and that the progress of the dNTP polymerization reaction can be confirmed also by precipitation of the nucleic acid.

即ち、本発明以下のとおりである。
第一の発明は、デオキシヌクレオシド三リン酸(deoxynucleotide tri−phosphate:dNTP)の重合反応液をベタイン存在下に酸性条件とすることにより、該反応液中に核酸が析出物として検出されることを指標として、該重合反応の結果を判定するdNTP重合反応の結果判定方法である。
第二の発明は、未反応のdNTPに結合している有機リン酸が呈色できない条件下で、dNTPの重合反応液を酸性条件にするとともに、モリブテン酸もしくはモリブテン酸塩と還元剤を添加することにより、dNTPの重合反応によって産生された遊離のピロリン酸とピロリン酸金属塩ならびに遊離のリン酸とリン酸金属塩を呈色させることを指標として判定するdNTP重合反応の結果判定方法である。
第三の発明は、未反応のdNTPに結合している有機リン酸が呈色できない条件下で、dNTPの重合反応液をベタイン存在下に酸性条件にするとともに、モリブテン酸もしくはモリブテン酸塩と還元剤を添加することにより、該反応液中に核酸が析出物として検出されること及び又はdNTPの重合反応によって産生された遊離のピロリン酸とピロリン酸金属塩ならびに遊離のリン酸とリン酸金属塩を呈色させることを指標として判定するdNTP重合反応の結果判定方法である。
第四の発明は、少なくともモリブテン酸もしくはモリブテン酸塩、酸性水、還元剤よりなる前記のdNTP重合反応の結果判定方法に用いるキットである
That is, the present invention is as follows.
According to a first aspect of the present invention, by making a polymerization reaction solution of deoxynucleoside tri-phosphate (dNTP) in an acidic condition in the presence of betaine, nucleic acid is detected as a precipitate in the reaction solution. This is a dNTP polymerization reaction result determination method for determining the result of the polymerization reaction as an index.
In the second aspect of the invention, the dNTP polymerization reaction solution is made acidic under conditions where the organic phosphoric acid bonded to the unreacted dNTP cannot be colored, and molybdate or molybdate and a reducing agent are added. This is a method for determining the result of a dNTP polymerization reaction in which free pyrophosphate and metal pyrophosphate produced by dNTP polymerization reaction and coloration of free phosphoric acid and metal phosphate are used as indicators.
According to a third aspect of the present invention, dNTP polymerization reaction solution is made acidic in the presence of betaine under conditions where organic phosphoric acid bonded to unreacted dNTP cannot be colored, and reduced with molybdate or molybdate. By adding a reagent, nucleic acid is detected as a precipitate in the reaction solution and / or free pyrophosphate and metal pyrophosphate produced by polymerization reaction of dNTP and free phosphate and metal phosphate This is a method for determining the result of a dNTP polymerization reaction that is determined using coloration as an index.
4th invention is a kit used for the result determination method of said dNTP polymerization reaction which consists of at least molybthenic acid or molybdate, acidic water, and a reducing agent.

第一の発明の方法によれば、通常二本鎖DNAを不安定にし、かつ核酸を溶解するために用いられるベタイン存在下において、dNTP重合反応生成物である核酸の析出によってdNTP重合反応の進行を検出可能である。
第二の発明の方法は、dNTP重合反応に比例して産生されるピロリン酸とその分解物であるリン酸および反応液中に含まれる金属で塩を形成したピロリン酸金属塩およびリン酸金属塩を、酸性条件下でモリリブデン酸(塩)と還元剤の添加による呈色でdNTP重合反応の進行を検出する方法であり、dNTP重合反応が進行しない反応液では着色しない特異性を有する。
第三の発明の方法は、核酸の析出とともに、dNTP重合反応に比例して産生されるピロリン酸とその分解物であるリン酸および反応液中に含まれる金属で塩を形成したピロリン酸金属塩およびリン酸金属塩を、ベタイン存在下かつ酸性条件下でモリリブデン酸(塩)と還元剤の添加による呈色でdNTP重合反応の進行を検出する方法であり、dNTP重合反応が進行しない反応液では着色しない特異性を有する。この方法によれば、dNTP重合反応によって産生される核酸とピロリン酸の両方を確認することも可能であり、より確実にdNTP重合反応の進行を確認できることになる。
According to the method of the first invention, the dNTP polymerization reaction proceeds by precipitation of nucleic acid as a dNTP polymerization reaction product in the presence of betaine, which is usually used to destabilize double-stranded DNA and dissolve nucleic acid. Can be detected.
The method of the second invention is a pyrophosphate metal salt and a phosphate metal salt formed with pyrophosphate and its decomposition product phosphoric acid produced in proportion to the dNTP polymerization reaction and a metal contained in the reaction solution. Is a method of detecting the progress of the dNTP polymerization reaction by coloring by addition of molybridenic acid (salt) and a reducing agent under acidic conditions, and has a specificity that is not colored in a reaction solution in which the dNTP polymerization reaction does not proceed.
The method of the third invention is a metal pyrophosphate salt in which a salt is formed with pyrophosphoric acid produced in proportion to the dNTP polymerization reaction, phosphoric acid that is a decomposition product thereof, and a metal contained in the reaction solution along with precipitation of nucleic acid. In addition, in the reaction solution in which dNTP polymerization reaction does not proceed, the metal phosphate is detected by coloration by addition of molyribdenic acid (salt) and a reducing agent in the presence of betaine and acidic conditions. Specificity not to be colored. According to this method, it is possible to confirm both the nucleic acid and pyrophosphate produced by the dNTP polymerization reaction, and the progress of the dNTP polymerization reaction can be confirmed more reliably.

上記、本発明の方法によれば、特にLAMP法などで用いられている多量のdNTP重合物質(DNAもしくはRNA)が産生される方法において、その結果判定の大幅な短縮が可能となる。さらに検出感度が優れているため一定以上のdNTPの重合が行われれば、不完全なプライマーでも使用できる。特許文献2で公開されている「フィルターを用いたピロリン酸の比色検出法」もリンモリブテン反応を利用している。しかし、dNTP重合反応終了液にてモリブテン反応を行った後、フィルター上に呈色された色素物を集めることで比色検出する方法であり、同一容器内で検出できない不便さを有している。また、特許文献1の「標的核酸の検出方法および診断試験キット」は無機オルトホスフェートの検出方法であり、遊離のピロリン酸とその金属塩およびリン酸金属塩の検出に関する記載はない。   According to the above-described method of the present invention, the determination of the result can be greatly shortened particularly in the method of producing a large amount of dNTP polymerized substance (DNA or RNA) used in the LAMP method or the like. Furthermore, since the detection sensitivity is excellent, an incomplete primer can be used if a certain amount or more of dNTP is polymerized. The “colorimetric detection method for pyrophosphate using a filter” disclosed in Patent Document 2 also uses the phosphomolybten reaction. However, this is a method for colorimetric detection by collecting colored substances on the filter after the molybden reaction in the dNTP polymerization reaction completion solution, and has the inconvenience that cannot be detected in the same container. . Further, “Target Nucleic Acid Detection Method and Diagnostic Test Kit” of Patent Document 1 is a detection method of inorganic orthophosphate, and there is no description regarding detection of free pyrophosphate, its metal salt, and metal phosphate.

本検出方法で用いるモリブテン法自体は既知の方法である。しかし、ピロリン酸2価金属もしくはリン酸2価金属中のピロリン酸もしくはリン酸を反応溶液中に共存するdNTP中のリン酸と区別して検出する手段を講じた例は無い。また、ベタイン存在下又はベタインとモリブテン酸もしくはモリブテン酸塩存在下の酸性条件下で特定のdNTP重合反応生成物の核酸の析出と析出量が多くなることを報告した例もない。本検出方法は、dNTP重合反応溶液中に共存するdNTP中の有機リン酸と反応性生物である無機ピロリン酸を区別して検出することが可能であるばかりか、産生された核酸をも検出することができる。つまり、添加する酸性物質濃度、モリブテン酸もしくはモリブテン酸塩及び/又は還元剤濃度を調整することで、意図的に核酸の析出物を生じさせることに成功し、かつピロリン酸の特異的呈色も可能となったばかりか検出感度も高くなった。   The molybdenum method itself used in this detection method is a known method. However, there is no example in which a means for detecting pyrophosphoric acid or phosphoric acid in divalent metal pyrophosphate or divalent metal phosphate is distinguished from phosphoric acid in dNTP coexisting in the reaction solution. Moreover, there is no example which reports that precipitation and the amount of precipitation of the nucleic acid of a specific dNTP polymerization reaction product increase under the acidic conditions in the presence of betaine or betaine and molybdate or molybdate. This detection method can detect not only the organic phosphate in dNTP coexisting in the dNTP polymerization reaction solution but also the inorganic pyrophosphate, which is a reactive organism, as well as the produced nucleic acid. Can do. In other words, by adjusting the concentration of the acidic substance to be added, molybdate or molybdate and / or the reducing agent, it was possible to intentionally produce a nucleic acid precipitate, and the specific coloration of pyrophosphate was also achieved. Not only has it become possible, but also the detection sensitivity has increased.

本発明の原理は、dNTP重合反応生成物である核酸を析出させると同時に無機リン酸であるピロリン酸と未反応のdNTP中の有機リン酸をリンモリブテン反応の感度差を利用して特異的に感度良くピロリン酸のみを検出することである。さらに、酸性物質濃度とモリブテン酸もしくはモリブテン酸塩ならびに還元剤濃度を調整することで目視判定での検出感度を高めることもできる。特に還元剤が塩化第一スズの場合は析出物が青色に染まるため沈殿状態での目視は極めて判定しやすくなる。そのため、個人による判定の誤差を少なくすることが出来きるばかりか、検出感度が高まる利点もある。また、判定に要する時間は約5秒〜5分で、従来の方法に比べて大幅に短い。   The principle of the present invention is to specifically deposit nucleic acid, which is a dNTP polymerization reaction product, and at the same time, use pyrophosphoric acid, which is inorganic phosphoric acid, and organic phosphoric acid in unreacted dNTP by utilizing the difference in sensitivity of the phosphomolybten reaction. It is to detect only pyrophosphate with high sensitivity. Furthermore, the detection sensitivity in visual judgment can also be improved by adjusting the acidic substance concentration and the concentration of molybdate or molybdate and the reducing agent. In particular, when the reducing agent is stannous chloride, the precipitate is dyed blue, so visual observation in the precipitated state is extremely easy to determine. Therefore, not only can an error in determination by an individual be reduced, but also there is an advantage that detection sensitivity is increased. The time required for determination is about 5 seconds to 5 minutes, which is significantly shorter than the conventional method.

以下に本発明を詳細に説明する。
本発明の方法は、リン酸含有の緩衝液を用いない全てのdNTP重合反応結果判定に使用できる。例えば核酸のサイクリング増幅法(denaturation → annealing → extension)であるPCR法、Reverse Transcription(RT)−PCR法、Arbitrarily Primed(AP)−PCR法、Single Strain Counting(SSC)−PCR法、ligase chain reaction(LCR)法、等温増幅法であるLAMP法、Standard Displacement Amplification(SDA法)、Ligase chain reaction(LCR法)、Single Nucleotide Polymorphysm(SNP法)、Isothermal and Chimeric primer−initiated Amplification of Nucleic acids(ICAN法)などの重合反応液を対象とすることができる。
The present invention is described in detail below.
The method of the present invention can be used for determination of all dNTP polymerization reaction results without using a phosphate-containing buffer. For example, PCR method, reverse transcription (RT) -PCR method, Arbitrary Primed (AP) -PCR method, Single Strain Counting (SSC) -PCR method, ligation tactication (LCR) method, isothermal amplification method LAMP method, Standard Displacement Amplification (SDA method), Ligase chain reaction (LCR method), Single Nucleotide Polymerism (SNP method), Isotherm-immersed-Camp ification of Nucleic acids (ICAN method) can be directed to a polymerization reaction liquid such.

第一及び第三の発明においては、ベタイン存在下で酸性にすることにより核酸が析出する。ベタインとしては、トリメチルグリシンが代表的であるが、それ以外の、第4級アンモニウム塩、スルホニウム塩、ホスホニウム塩等のベタインも用いられる。ベタイン量は、生成される反応物によって変わるが、添加するdNTP量の10倍〜5000重量倍が通常用いられる。なお、例えばLAMP法のように増幅法自体でベタインを使用し、反応液が既にベタインを十分含有している場合があるが、その場合は改めてベタインを添加する必要はない。
なお、重合反応液中の核酸の生成量が多い場合は、ベタインが不存在でも単に酸性にするだけで析出が見られることがあるが、ベタインが存在すると析出量が多くなり、判定が容易となる。
In the first and third inventions, the nucleic acid is precipitated by acidification in the presence of betaine. A typical example of betaine is trimethylglycine, but other betaines such as quaternary ammonium salts, sulfonium salts, and phosphonium salts are also used. The amount of betaine varies depending on the reaction product to be produced, but it is usually 10 to 5000 times the amount of dNTP added. Note that, for example, betaine is used in the amplification method itself as in the LAMP method, and the reaction solution may already contain sufficient betaine, but in that case, it is not necessary to add betaine again.
In addition, when the amount of nucleic acid produced in the polymerization reaction solution is large, precipitation may be seen only by acidification even in the absence of betaine. However, if betaine is present, the amount of precipitation increases and the determination is easy. Become.

本発明において、dNTP重合反応液中に核酸を析出させるための酸性条件は、pH3以下が好ましく、さらに好ましくはpH1以下である。酸性にする試薬は、リンモリブテン酸反応を阻害しない酸性物質であれば特に制限なく使用できる。例えば塩酸、硫酸、硝酸などが例示できる。酸濃度としては0.25〜3Nが好ましい。酸性条件があまり強すぎると、例えば硫酸や塩酸で3Nを超えると、核酸の析出は低下する。   In the present invention, the acidic condition for precipitating nucleic acid in the dNTP polymerization reaction solution is preferably pH 3 or less, more preferably pH 1 or less. The acidifying reagent can be used without particular limitation as long as it is an acidic substance that does not inhibit the phosphomolybtenic acid reaction. For example, hydrochloric acid, sulfuric acid, nitric acid and the like can be exemplified. The acid concentration is preferably 0.25 to 3N. If the acidic condition is too strong, for example, if it exceeds 3N with sulfuric acid or hydrochloric acid, the precipitation of nucleic acid is reduced.

第二、第三の発明においては、リンモリブデン反応を利用して、呈色反応を行う。使用するモリブテン酸(塩)は、一般的に使用されているモリブテン酸、モリブデン酸アンモニウム、モリブデン酸アルミニウム、モリブデン酸カドミウム、モリブデン酸カルシウム、モリブデン酸バリウム、モリブデン酸ビスマス、モリブデン酸リチウム、モリブデン酸カリウム、モリブデン酸ナトリウム、モリブデン酸亜鉛およびモリブデン酸アルキルアンモニウム(1〜6個の炭素原子を有するアルキルを有する)が挙げられる。また、還元剤としてアスコルビン酸、メルカプトエタノールなどのSH含有還元剤、アミノナフトールスルホン酸、硫酸p−メチルアミノフェノール、塩化第一錫、フェニルヒドラジン、ヒドロキノン、硫酸第一鉄、2,4−ジアミノフェノール、N−フェニル−p−フェニレンジアミン並びにハロゲン化銀化合物が挙げられるが、短時間で着色可能な塩化第一スズか2−メルカプトエタノールが好ましい。感度を上げるために必要であれば、アミド硫酸アンモニウム、タルトラトアンチモン酸カリウムもしくは酒石酸アンチモルニルカリウムが使用できる。
上記物質は、試薬として市販されているものでも合成品でも構わない。また、液状でも固形状でも構わない。さらに、個々の試薬自体でも、混合された状態でも構わない。また作成されうる塩の形態をとっていても構わない。
In the second and third inventions, the color reaction is performed using the phosphomolybdenum reaction. Commonly used molybdates (salts) are commonly used molybdate, ammonium molybdate, aluminum molybdate, cadmium molybdate, calcium molybdate, barium molybdate, bismuth molybdate, lithium molybdate, potassium molybdate , Sodium molybdate, zinc molybdate and alkyl ammonium molybdate (having alkyl having 1 to 6 carbon atoms). Further, as a reducing agent, an SH-containing reducing agent such as ascorbic acid or mercaptoethanol, aminonaphtholsulfonic acid, p-methylaminophenol sulfate, stannous chloride, phenylhydrazine, hydroquinone, ferrous sulfate, 2,4-diaminophenol N-phenyl-p-phenylenediamine and a silver halide compound are preferable, but stannous chloride or 2-mercaptoethanol which can be colored in a short time is preferable. If necessary to increase sensitivity, ammonium amidosulfate, potassium tartrate antimonate or potassium antimornyl tartrate can be used.
The substance may be a commercially available reagent or a synthetic product. Further, it may be liquid or solid. Furthermore, it may be an individual reagent itself or a mixed state. Moreover, you may take the form of the salt which can be created.

第二、第三の発明においては、未反応のdNTP中に結合している有機リン酸が呈色できない条件下で、dNTPの重合反応によって産生された遊離のピロリン酸とピロリン酸金属塩ならびに遊離のリン酸とリン酸金属塩をモリブテン酸もしくはモリブテン酸塩と還元剤の添加によって呈色させる。未反応のdNTP中に結合している有機リン酸が呈色できない条件とは、主として反応液中の還元剤の濃度、pHである。これらの条件は実験により定めることができる。還元剤の濃度は使用する還元剤により異なるが、形成されたリンモリブテン酸化合物を還元して青色を呈色する充分な量が望ましく、一般的には最終濃度として0.01〜10重量%の添加量が好ましい。塩化第一スズ場合は反応液中で0.15〜2重量%が特に好ましく、2−メルカプトエタノールの場合は0.01〜0.5Mが特に好ましい。還元剤として塩化第一スズを用いた場合、0.01%未満では呈色が弱くなりすぎ、2%を超えると反応液中で黒色の沈殿が形成され判定がしにくくなる。2−メルカプトエタノールの場合、0.01M未満の添加量では呈色が弱くなりすぎ、0.5Mを超えるとメルカプトエタノール自体の色(オレンジ色)が強くなりすぎて、判定しにくくなる。反応液のpHはpH3以下が好ましく、pH1以下がさらに好ましい。   In the second and third inventions, free pyrophosphoric acid and pyrophosphoric acid metal salt produced by the polymerization reaction of dNTP and free metal phosphate under the condition that the organic phosphoric acid bound in unreacted dNTP cannot be colored. The phosphoric acid and metal phosphate are colored by the addition of molybdate or molybdate and a reducing agent. The conditions under which the organic phosphoric acid bound in the unreacted dNTP cannot be colored are mainly the concentration and pH of the reducing agent in the reaction solution. These conditions can be determined by experiment. The concentration of the reducing agent varies depending on the reducing agent to be used, but a sufficient amount to reduce the formed phosphomolybthenic acid compound to give a blue color is desirable. Generally, the final concentration is 0.01 to 10% by weight. The amount added is preferred. In the case of stannous chloride, 0.15 to 2% by weight is particularly preferred in the reaction solution, and in the case of 2-mercaptoethanol, 0.01 to 0.5M is particularly preferred. When stannous chloride is used as the reducing agent, if less than 0.01%, the color becomes too weak, and if it exceeds 2%, a black precipitate is formed in the reaction solution, making it difficult to determine. In the case of 2-mercaptoethanol, if the amount is less than 0.01M, the color becomes too weak, and if it exceeds 0.5M, the color of the mercaptoethanol itself (orange) becomes too strong, making it difficult to determine. The pH of the reaction solution is preferably 3 or less, more preferably 1 or less.

第二、第三の発明におけるリンモリブテン試薬の添加量は、dNTP重合反応に用いられるdNTP量と溶液量によってかわるため制限はないが、添加するdNTPと同モル数のピロリン酸が充分に反応可能なモリブテン酸(塩)を含有することが望ましく、最終濃度として0.01〜10重量%のモリブテン酸(塩)の添加量が好ましく、さらに好ましくは0.125〜1重量%である。   The addition amount of the phosphomolybten reagent in the second and third inventions is not limited because it varies depending on the amount of dNTP used in the dNTP polymerization reaction and the amount of the solution. It is desirable to contain molybthenic acid (salt), and a final concentration of 0.01 to 10% by weight of molybthenic acid (salt) is preferable, and more preferably 0.125 to 1% by weight.

本発明に用いる酸性物質、モリブテン化合物、還元剤は別々に又は組み合わせて常法により任意の剤形とすることができる。例えば固化製剤、水剤とすることができる。また、担体に個々、もしくは複数の試薬を含有される形態をとることもできる。例えば、ろ紙に試薬を染み込ませて乾燥したものを用いることができる。
試薬は、酸性物質、モリブテン化合物、還元剤をキットとして提供することができる。これらはそれぞれ別々に又は組み合わせて容器に入れて提供することができる。好ましくは、酸性物質含有水、モリブテン化合物含有水、還元剤含有水の個々の試薬が分別されたキットが安定性の面で好ましい。容器は内容物を滴下でき、且つ、1滴当たりの滴下液量が一定で明らかなものを使用するのが好ましい。このような容器を使用することにより、秤量操作を簡易化でき、また還元剤と空気の余分な接触を避けることができるので、試薬の安定性を保つことができる。なお、試薬には安定化剤が配合されても構わない。
The acidic substance, molybden compound, and reducing agent used in the present invention can be made into an arbitrary dosage form by a conventional method separately or in combination. For example, it can be a solidified preparation or a liquid preparation. In addition, the carrier may take a form containing individual or plural reagents. For example, a filter paper soaked with a reagent and dried can be used.
As the reagent, an acidic substance, a molybdenum compound, and a reducing agent can be provided as a kit. Each of these can be provided separately or in combination in a container. Preferably, a kit in which individual reagents containing acidic substance-containing water, molybdate compound-containing water, and reducing agent-containing water are separated is preferable in terms of stability. It is preferable to use a container in which the contents can be dropped and the amount of dropping liquid per drop is constant and clear. By using such a container, the weighing operation can be simplified, and excessive contact between the reducing agent and air can be avoided, so that the stability of the reagent can be maintained. In addition, a stabilizer may be mix | blended with a reagent.

本発明を実施するには、例えば以下のようにして行う。
第一の発明の場合は、これらの重合反応液に酸性物質及び必要ならベタインを加えて5〜40℃(室温)で5〜20秒間反応させる。重合が進んで重合反応物が生成している場合は、核酸が析出物として検出される。
第二、第三の発明の場合は、これらの重合反応液にモリブテン酸(塩)、還元剤、必要ならベタイン及び酸性物質を加えて5〜40℃(室温)で5秒〜10分間反応させる。重合が進んでいる場合は核酸が析出物として検出されるとともにピロリン酸(金属塩)又は遊離のリン酸(金属塩)が呈色する。dNTPに結合しているリン酸は反応しないので、重合が進んでいない場合は呈色しない。
For example, the present invention is performed as follows.
In the case of 1st invention, an acidic substance and betaine if necessary are added to these polymerization reaction liquids, and it is made to react at 5-40 degreeC (room temperature) for 5 to 20 seconds. When polymerization proceeds and a polymerization reaction product is generated, nucleic acid is detected as a precipitate.
In the case of the second and third inventions, molybthenic acid (salt), a reducing agent, if necessary betaine and an acidic substance are added to these polymerization reaction solutions, and reacted at 5 to 40 ° C. (room temperature) for 5 seconds to 10 minutes. . When the polymerization proceeds, nucleic acid is detected as a precipitate and pyrophosphate (metal salt) or free phosphoric acid (metal salt) is colored. Since phosphoric acid bonded to dNTP does not react, it does not color when polymerization does not proceed.

以下、実施例で本発明を説明する。
実施例1
LAMP法に用いる黄色ブドウ球菌検出(femA)のプライマーは、配列番号1(f−1)と配列番号2(f−2)及び配列番号3(f−3)と配列番号4(f−4)を使用した。
LAMP反応液は、抽出DNAを2.0μL(コントロールは滅菌蒸留水を添加)、各100pmol/μLのプライマーを、f−1とf−2は各々0.8μL、f−3とf−4は各々0.1μL、8.0U/μLのBst DNA Polymeraseを2.0μLのそれぞれを添加して核酸増幅反応を行った。反応液は上記プライマーと酵素以外に、20mM Tris HCl(pH8.8)、10mM KCl、8mM MgSO、10mM SO(NH、0.1% Tween20、0.8M Betaine、1.4mM each of dNTPsが全量50μLの反応液中に含有されている。反応液を63℃で60分間加温後、10μLの25%HCl(最終濃度2.5%、pH1以下)を添加して写真撮影を行い、図1に示した。比較のためにLAMP未反応液及びHCl添加前のLAMP未反応液の写真も示した。図1において、1はLAMP反応終了液+0.25N硫酸、2はLAMP反応終了液、3はLAMP未反応液の写真である。
LAMP反応終了液を酸性にした1の場合、中性のままの2と比較して明らかな白濁が確認される。また、未反応液3は透明のままであった。
Hereinafter, the present invention will be described by way of examples.
Example 1
The primers for detection of S. aureus (femA) used in the LAMP method are SEQ ID NO: 1 (f-1), SEQ ID NO: 2 (f-2), SEQ ID NO: 3 (f-3), and SEQ ID NO: 4 (f-4). It was used.
In the LAMP reaction solution, 2.0 μL of the extracted DNA (sterilized distilled water was added as a control), 100 pmol / μL of each primer, f-1 and f-2 were each 0.8 μL, f-3 and f-4 were each A nucleic acid amplification reaction was performed by adding 2.0 μL of 0.1 μL and 8.0 U / μL of Bst DNA Polymerase, respectively. In addition to the above primers and enzyme, the reaction solution was 20 mM Tris HCl (pH 8.8), 10 mM KCl, 8 mM MgSO 4 , 10 mM SO 4 (NH 4 ) 2 , 0.1% Tween 20, 0.8 M Betaine, 1.4 mM etch. of dNTPs is contained in a total of 50 μL of the reaction solution. The reaction solution was heated at 63 ° C. for 60 minutes, 10 μL of 25% HCl (final concentration 2.5%, pH 1 or less) was added, and a photograph was taken, as shown in FIG. For comparison, photographs of the LAMP unreacted solution and the LAMP unreacted solution before HCl addition are also shown. In FIG. 1, 1 is a photograph of a LAMP reaction end solution + 0.25N sulfuric acid, 2 is a LAMP reaction end solution, and 3 is a LAMP unreacted solution.
In the case of 1 in which the LAMP reaction end solution is acidified, clear cloudiness is confirmed in comparison with 2 that remains neutral. Moreover, the unreacted liquid 3 remained transparent.

実施例2
実施例1のHClを添加した反応液に15μLの1.0%モリブデン酸アンモニウム(最終濃度0.15%)、25μL の1.0% 塩化第一スズ(最終濃度0.25%)を順次混合し、5分間静置後、写真撮影を行った。同時に7,000gで1分間の遠心を行って写真撮影した。同時にLAMP反応終了液をLAMP未反応液で2段階希釈により1/64倍まで希釈した各溶液で、塩化第一スズを用いたリンモリブテン酸反応を行い、電気泳動法との比較を行った。リンモリブテン酸反応の結果の写真を図2に、電気泳動法の結果の写真を図3に示した。電気泳動法は以下の操作に従った。8.0μL のLAMP反応液とその2段階希釈した溶液に4.0μLの0.1%ブロムフェノールブルーを添加し、Tris(hydroxyl−methyl)aminomethane−酢酸−Disodium EDTA(pH8.0)bufferで作成した2%アガロースゲルに各サンプルの8μLずつを添加した。コントロールとして3μL のDNA ladderを添加後、Tris(hydroxymethyl)aminomethane−酢酸− Disodium EDTA(pH8.0)buffer中で100Vの電圧をかけて45分間電気泳動を行った。電気泳動終了後、アガロースゲルを1.0μg/mLのエチジウムブロマイドに20分間浸漬後、精製水に10分間浸漬を2回行った。バンドはUVランプで確認した。
Example 2
15 μL of 1.0% ammonium molybdate (final concentration 0.15%) and 25 μL of 1.0% stannous chloride (final concentration 0.25%) were sequentially mixed with the reaction solution to which HCl of Example 1 was added. Then, after standing for 5 minutes, a photograph was taken. At the same time, a photo was taken by centrifuging at 7,000 g for 1 minute. At the same time, phosphomolybthenic acid reaction using stannous chloride was performed with each solution obtained by diluting the LAMP reaction-terminated solution with LAMP unreacted solution to 1/64 times by two-step dilution, and compared with electrophoresis. A photograph of the result of the phosphomolybthenic acid reaction is shown in FIG. 2, and a photograph of the result of the electrophoresis is shown in FIG. The electrophoresis method followed the following procedure. 4.0 μL of 0.1% bromophenol blue was added to 8.0 μL of the LAMP reaction solution and the two-fold diluted solution, and prepared with Tris (hydroxyl-methyl) aminomethane-acetic acid-Disodium EDTA (pH 8.0) buffer. 8 μL of each sample was added to the prepared 2% agarose gel. As a control, 3 μL of DNA ladder was added, followed by electrophoresis for 45 minutes in Tris (hydroxymethyl) aminomethane-acetic acid-disodium EDTA (pH 8.0) buffer with a voltage of 100V. After completion of electrophoresis, the agarose gel was immersed in 1.0 μg / mL ethidium bromide for 20 minutes and then immersed in purified water twice for 10 minutes. The band was confirmed with a UV lamp.

同様にLAMP反応液の50μLに 20μLの7.5N硫酸(最終濃度1.5N)、20μLの3.75% モリブテン酸アンモニウム(終濃度0.75%)、10μL の1M 2−メルカプトエタノール(終濃度0.1M)を順次混合し(pH1以下)、5分間静置の後、7,000g、1分遠心を行った。反応開始5分後に遠心前後の写真撮影結果を図4に示した。
還元剤として塩化第一スズを用いたリンモリブテン酸反応は目視で32倍希釈まで確認され、遠心後では64倍希釈まで確認された。電気泳動では64倍以上の希釈まで確認されたことから、本検出方法は電気泳動法と同程度の感度と考えられる。また、LAMP反応で白濁を目視で確認できる時点はせいぜい4倍希釈程度であるが、本検出法では16倍程度の強い感度であった。つまり、LAMP反応によって白濁が確認されない時点でも、本検出方法による検出が可能であることが判明した。また、還元剤として2−メルカプトエタノールを用いたリンモリブテン酸反応は目視で32から64倍希釈まで確認され、遠心後でも同様であった。但し、塩化第一スズを用いた方が、着色時間は若干早く、かつ析出物が青色に呈色していた。
Similarly, to 50 μL of the LAMP reaction solution, 20 μL of 7.5 N sulfuric acid (final concentration 1.5 N), 20 μL of 3.75% ammonium molybdate (final concentration 0.75%), 10 μL of 1M 2-mercaptoethanol (final concentration) 0.1M) was sequentially mixed (pH 1 or less), allowed to stand for 5 minutes, and then centrifuged at 7,000 g for 1 minute. The photographed results before and after centrifugation 5 minutes after the start of the reaction are shown in FIG.
The phosphomolybthenic acid reaction using stannous chloride as the reducing agent was visually confirmed up to a 32-fold dilution, and after centrifugation was confirmed up to a 64-fold dilution. In electrophoresis, it was confirmed that the dilution was 64 times or more, and thus this detection method is considered to have the same sensitivity as the electrophoresis method. Moreover, although the time point at which white turbidity can be visually confirmed by the LAMP reaction is at most about 4-fold dilution, this detection method has a strong sensitivity of about 16-fold. That is, it has been found that detection by this detection method is possible even when no cloudiness is confirmed by the LAMP reaction. Moreover, the phosphomolybtenic acid reaction using 2-mercaptoethanol as a reducing agent was visually confirmed from 32- to 64-fold dilution, and was the same even after centrifugation. However, the coloration time was slightly faster when stannous chloride was used, and the precipitates were colored blue.

実施例3
リンモリブテン反応試薬を用いたPCR反応終了液に対する検討
PCRはブドウ球菌が保有する遺伝子の中で、黄色ブドウ球菌のみが特異的に保有する領域を配列番号5と配列番号6(PCR products 306bp)のプライマーで検出した。PCR反応液は、黄色ブドウ球菌の抽出DNAを0.2μL(コントロールは滅菌蒸留水を添加)、各100pmol/μLのプライマーをそれぞれ0.2μL、5.0U/μLのAmpliTaq Gold(Applied Biosystems)を0.4μL、2mM dTNPmix(GeneAmp)を1.0μL、25mM MgClを3.0μL、10xPCR緩衝液(Applied Biosystems)を5.0μL、蒸留水を40.0μL添加した。サイクリング時間と温度設定は、femA用が、95℃で12分間加温後、(94℃,30sec.→52℃,1min.→70℃,1min.)×40サイクルし、70℃で10分間処理した。サーマルサイクラーはGeneAmp PCR System 9700 (Applied Biosystems)を使用した。反応結果を図5に示す。左側がベタイン無添加、中央が0.5Mベタイン添加、右側が0.5Mベタイン添加遠心後の写真である。LAMP反応液と同様にリンモリブテン酸反応試薬(還元剤:塩化第一スズ)で検出可能であり、ベタインの添加によって実施例1と同様に核酸の析出も確認された。
Example 3
Examination of PCR reaction completion solution using lympholybten reaction reagent PCR is a region of SEQ ID NO: 5 and SEQ ID NO: 6 (PCR products 306 bp), which is a region specifically retained only by S. aureus, among genes possessed by staphylococci. Detected with primers. The PCR reaction solution was 0.2 μL of S. aureus extract DNA (sterilized distilled water was added as a control), 0.2 μL of each 100 pmol / μL primer, and 5.0 U / μL of AmpliTaq Gold (Applied Biosystems). 0.4 μL, 1.0 μL of 2 mM dTNPmix (GeneAmp), 3.0 μL of 25 mM MgCl 2 , 5.0 μL of 10 × PCR buffer (Applied Biosystems), and 40.0 μL of distilled water were added. Cycling time and temperature setting for femA was heated at 95 ° C for 12 minutes, then (94 ° C, 30sec. → 52 ° C, 1min. → 70 ° C, 1min.) X 40 cycles and treated at 70 ° C for 10 minutes did. As the thermal cycler, GeneAmp PCR System 9700 (Applied Biosystems) was used. The reaction results are shown in FIG. The left side is a photograph after addition of betaine, the center is 0.5M betaine addition, and the right side is a photograph after 0.5M betaine addition centrifugation. Like the LAMP reaction solution, it was detectable with a phosphomolybthenic acid reaction reagent (reducing agent: stannous chloride), and precipitation of nucleic acid was also confirmed in the same manner as in Example 1 by adding betaine.

実施例1のLAMP反応終了液+0.25N硫酸(1)、LAMP反応終了液(2)、LAMP未反応液(3)の写真である。It is a photograph of the LAMP reaction completion liquid of Example 1 + 0.25N sulfuric acid (1), the LAMP reaction completion liquid (2), and the LAMP unreacted liquid (3). 実施例2の塩化第一スズを用いたリンモリブテン酸反応の結果の写真である。2 is a photograph of the results of a phosphomolybthenic acid reaction using stannous chloride of Example 2. 実施例2の比較とした電気泳動の写真である。4 is a photograph of electrophoresis as a comparison with Example 2. 実施例2の2−メルカプトエタノールを用いたリンモリブテン酸反応の結果の写真である。2 is a photograph of the results of a phosphomolybdate reaction using 2-mercaptoethanol in Example 2. FIG. 実施例3のPCR反応終了液の塩化第一スズを用いたリンモリブテン酸反応の結果の写真である。4 is a photograph of the results of a phosphomolybthenic acid reaction using stannous chloride in the PCR reaction completion solution of Example 3.

Claims (11)

デオキシヌクレオシド三リン酸(deoxynucleotide tri−phosphate:dNTP)の重合反応液をベタイン存在下に酸性条件とすることにより、該反応液中に核酸が析出物として検出されることを指標として、該重合反応の結果を判定するdNTP重合反応の結果判定方法。   By setting the polymerization reaction solution of deoxynucleoside tri-phosphate (dNTP) to acidic conditions in the presence of betaine, the polymerization reaction is performed using nucleic acid as a precipitate in the reaction solution as an index. DNTP polymerization reaction result determination method for determining the result of dNTPの重合反応液をベタイン存在下にpH3以下の酸性条件にするとともに、モリブデン酸もしくはモリブデン酸塩と反応液中で0.01〜10重量%の還元剤を添加することにより、該反応液中に核酸が析出物として検出されること及びdNTPの重合反応によって産生された遊離のピロリン酸とピロリン酸金属塩ならびに遊離のリン酸とリン酸金属塩を呈色させることを指標として判定するdNTP重合反応の結果判定方法。   The dNTP polymerization reaction solution was brought to acidic conditions of pH 3 or less in the presence of betaine, and 0.01 to 10% by weight of a reducing agent was added to the reaction solution in the reaction solution by adding molybdic acid or molybdate and the reaction solution. DNTP polymerization is judged using as indicators the detection of nucleic acids as precipitates and the coloration of free pyrophosphate and metal pyrophosphate and free phosphate and metal phosphate produced by the polymerization reaction of dNTP Method for determining the result of the reaction. ベタインの量が重合反応に際して添加したdNTP量の10倍〜5000重量倍である請求項1又は2の方法。   The method according to claim 1 or 2, wherein the amount of betaine is 10 to 5000 times the amount of dNTP added during the polymerization reaction. 還元剤が塩化第一スズ又は2−メルカプトエタノールであることを特徴とする請求項2の判定方法。   The determination method according to claim 2, wherein the reducing agent is stannous chloride or 2-mercaptoethanol. 反応液中の塩化第一スズ濃度が0.01〜2重量%又は2−メルカプトエタノールの濃度が0.01〜0.5Mである請求項4の判定方法。   The determination method according to claim 4, wherein the stannous chloride concentration in the reaction solution is 0.01 to 2% by weight or the concentration of 2-mercaptoethanol is 0.01 to 0.5M. 反応液のモリブデン酸もしくはモリブデン酸塩の濃度が0.01〜10重量%である請求項2の判定方法。   The determination method according to claim 2, wherein the concentration of molybdic acid or molybdate in the reaction solution is 0.01 to 10% by weight. モリブデン酸もしくはモリブテン酸塩の濃度が0.05〜2.5重量%で、酸物質濃度が0.1〜5Nである請求項2の判定方法。   The determination method according to claim 2, wherein the concentration of molybdic acid or molybdate is 0.05 to 2.5% by weight and the acid substance concentration is 0.1 to 5N. 呈色後さらに反応液を濃縮して判定する請求項2の判定方法。   The determination method according to claim 2, wherein the reaction solution is further concentrated after the coloration. 少なくともモリブデン酸もしくはモリブデン酸塩、酸性水、還元剤よりなる請求項2のdNTP重合反応の結果判定方法に用いるキット。   The kit used for the result determination method of the dNTP polymerization reaction according to claim 2, comprising at least molybdic acid or molybdate, acidic water, and a reducing agent. モリブデン酸もしくはモリブデン酸塩含有水、酸性水、還元剤含有水を個々もしくは組み合わせて滴下液量が明確な容器に入れた請求項9のキット。   The kit according to claim 9, wherein molybdic acid or molybdate-containing water, acidic water, and reducing agent-containing water are individually or combined and placed in a container with a clear amount of dropping liquid. モリブデン酸もしくはモリブデン酸塩及び/又は還元剤を担体に担持させてなる請求項9のキット。   The kit according to claim 9, wherein molybdic acid or molybdate and / or a reducing agent is supported on a carrier.
JP2005137993A 2005-05-11 2005-05-11 Novel short-time detection method for nucleic acid amplification reaction Expired - Fee Related JP4675671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137993A JP4675671B2 (en) 2005-05-11 2005-05-11 Novel short-time detection method for nucleic acid amplification reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137993A JP4675671B2 (en) 2005-05-11 2005-05-11 Novel short-time detection method for nucleic acid amplification reaction

Publications (2)

Publication Number Publication Date
JP2006317201A JP2006317201A (en) 2006-11-24
JP4675671B2 true JP4675671B2 (en) 2011-04-27

Family

ID=37538019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137993A Expired - Fee Related JP4675671B2 (en) 2005-05-11 2005-05-11 Novel short-time detection method for nucleic acid amplification reaction

Country Status (1)

Country Link
JP (1) JP4675671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706869B (en) * 2012-06-05 2014-09-17 宁波美康生物科技股份有限公司 System for amplifying alkaline phosphatase label signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759600A (en) * 1993-06-25 1995-03-07 Eastman Kodak Co Detecting method for target nucleic acid and diagnostic test kit
JP2004516812A (en) * 2000-06-21 2004-06-10 インサイト・ゲノミックス・インコーポレイテッド Receptor
WO2004048976A1 (en) * 2002-11-22 2004-06-10 Daiichi Pure Chemicals Co., Ltd. Method of inspecting staphylococcus aureus
JP2004205298A (en) * 2002-12-24 2004-07-22 Asahi Kasei Corp Colorimetric detection method of pyrophosphoric acid using filter
JP2004208512A (en) * 2002-12-27 2004-07-29 Asahi Kasei Corp Cartridge for detecting nucleic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759600A (en) * 1993-06-25 1995-03-07 Eastman Kodak Co Detecting method for target nucleic acid and diagnostic test kit
JP2004516812A (en) * 2000-06-21 2004-06-10 インサイト・ゲノミックス・インコーポレイテッド Receptor
WO2004048976A1 (en) * 2002-11-22 2004-06-10 Daiichi Pure Chemicals Co., Ltd. Method of inspecting staphylococcus aureus
JP2004205298A (en) * 2002-12-24 2004-07-22 Asahi Kasei Corp Colorimetric detection method of pyrophosphoric acid using filter
JP2004208512A (en) * 2002-12-27 2004-07-29 Asahi Kasei Corp Cartridge for detecting nucleic acid

Also Published As

Publication number Publication date
JP2006317201A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
US9809845B2 (en) Methods and reagents for amplifying nucleic acids
EP2888374B1 (en) Detection of an amplification reaction product using ph-sensitive dyes
EP3134553B1 (en) Colorimetric detection of nucleic acid amplification
EP2785866B1 (en) Method for the detection of nucleic acid synthesis and/or amplification
WO2017209920A1 (en) Detection of an amplification reaction product using ph-sensitive dyes
US20200362404A1 (en) Electrochemical Detection Of Polymerase Reactions By Specific Metal-Phosphate Complex Formation
Srivastava et al. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies
AU2021202823A1 (en) A method of detecting small rna
JP4675671B2 (en) Novel short-time detection method for nucleic acid amplification reaction
Zhou et al. Gold nanoparticles based colorimetric detection of target DNA after loop-mediated isothermal amplification
CN103305605B (en) Based on the non-enzymatic ion detection method of DNA self-assembly
CN108949917B (en) Mercury ion mismatch type general partition ultrafast amplification colorimetric sensor
CN101443457A (en) Method for production of PCR amplification product and use thereof
CN104087655A (en) Single strand cleavage analysis method for restriction endonuclease based on rolling circle amplification
JP2022521772A (en) Use of mooring enzymes to detect nucleic acids
Lee et al. A fluorescent confirmation method for DNA amplification in PCR through a fluorescent pyrophosphate sensor
AU2021107694A4 (en) A method of detecting small rna
CN109457013B (en) Method for detecting nucleic acid by combining cross primer amplification with nano biosensor and AUDG (autonomous Underwater vehicle)
Yokawa et al. DNA-mediated sensitive detection and quantification of rare earth ions using polymerase chain reaction
EP3608422A1 (en) Electrochemical detection of polymerase reactions by specific metal-phosphate complex formation
GB2324865A (en) Assay of amplification of a nucleic acid sequence involving conversion of pyrophosphate into inorganic orthophosphate
Pazhanivel et al. Development of Calorimetric PCR Assay as Cost Effective, Direct Post PCR Readout Platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees