JP4675160B2 - Optical inspection apparatus and optical film bonded product manufacturing apparatus - Google Patents
Optical inspection apparatus and optical film bonded product manufacturing apparatus Download PDFInfo
- Publication number
- JP4675160B2 JP4675160B2 JP2005157603A JP2005157603A JP4675160B2 JP 4675160 B2 JP4675160 B2 JP 4675160B2 JP 2005157603 A JP2005157603 A JP 2005157603A JP 2005157603 A JP2005157603 A JP 2005157603A JP 4675160 B2 JP4675160 B2 JP 4675160B2
- Authority
- JP
- Japan
- Prior art keywords
- optical film
- substrate
- lens array
- telecentric lens
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Liquid Crystal (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
本発明は、液晶張り合わせパネルなどの光学フィルム貼り合わせ製品の製造途中に好適に適用される光学的検査方法およびその装置、およびこの光学的検査方法およびその装置が適用される光学フィルム貼り合わせ製品製造方法およびその装置に関する。 The present invention relates to an optical inspection method and apparatus suitably applied during the manufacture of an optical film bonded product such as a liquid crystal bonded panel, and an optical film bonded product manufacturing to which the optical inspection method and the apparatus are applied. The present invention relates to a method and an apparatus thereof.
従来から、液晶貼り合わせパネルなどの貼り合わせ基板が提案され、種々の分野で利用されている。そして、貼り合わせ基板を製造する方法も提案され、実用に供されている。
先ず、貼り合わせ基板の一例としてのTFTカラー液晶基板の製造工程を説明する。
Conventionally, bonded substrates such as a liquid crystal bonded panel have been proposed and used in various fields. A method of manufacturing a bonded substrate has also been proposed and put into practical use.
First, a manufacturing process of a TFT color liquid crystal substrate as an example of a bonded substrate will be described.
液晶基板製造工程、アレイ工程では、パネルを複数面取りするマザーガラスと呼ばれるガラスを基板として、洗浄、成膜、レジスト塗布、露光、現像、エッチング、レジスト剥離という工程を複数回繰り返して微細なパターンを形成する。そして、このパターン形成面(以下、表面と称する)の異物やパターン欠陥は製品のキラー欠陥となるため、各工程内、工程間で何度も検査がなされている。これはカラーフィルタ工程でもほぼ同じである。これに対し、裏面は数ミクロン程度の異物が製品欠陥になることはなく 検査が不要であると考えられており、したがって、裏面はほとんど検査されていなかった。 In the liquid crystal substrate manufacturing process and the array process, a glass called mother glass that chamfers multiple panels is used as a substrate, and the process of cleaning, film formation, resist coating, exposure, development, etching, and resist stripping is repeated multiple times to form a fine pattern. Form. And since the foreign substance and pattern defect of this pattern formation surface (henceforth a surface) become a killer defect of a product, the inspection is made many times in each process and between processes. This is almost the same in the color filter process. On the other hand, on the back side, foreign matter of several microns is not considered to be a product defect and it is considered that inspection is unnecessary. Therefore, the back side was hardly inspected.
アレイ工程、カラーフィルタ工程から、それぞれの基板がセル工程に送られ、2枚の基板を貼り合わせる。この後、基板どうしの間に液晶を注入して封止し、偏光板を貼り付けて液晶セルを完成させる。このようにして製造された液晶セルは、パターン面に異物、パターン欠陥が存在しないことが保証される。 Each substrate is sent to the cell process from the array process and the color filter process, and the two substrates are bonded together. Thereafter, liquid crystal is injected between the substrates and sealed, and a polarizing plate is attached to complete a liquid crystal cell. The liquid crystal cell manufactured in this way is guaranteed to have no foreign matter or pattern defects on the pattern surface.
また、表面状態を検査する装置として、照明手段の光軸と検出手段の光軸の双方を被検面に対して傾け、照明手段が、照明手段の光軸と検出手段の光軸とを含む平面にほぼ平行な方向に偏光した直線偏光光を被検面に入射させるようにしたものが提案されている(特許文献1参照)。 Further, as an apparatus for inspecting the surface state, both the optical axis of the illumination unit and the optical axis of the detection unit are inclined with respect to the surface to be measured, and the illumination unit includes the optical axis of the illumination unit and the optical axis of the detection unit. There has been proposed one in which linearly polarized light polarized in a direction substantially parallel to a plane is incident on a surface to be examined (see Patent Document 1).
さらに、検査ステージに保持された試料の表面に対して光を照射するレーザパターンプロジェクタと、試料表面からの散乱光を受光するリニアアレーセンサとを有し、受光した散乱光強度に基づいて試料表面における異物の有無を検査する装置も提案されている(特許文献2参照)。 Furthermore, the sample surface has a laser pattern projector that irradiates light onto the surface of the sample held on the inspection stage and a linear array sensor that receives scattered light from the sample surface, and the sample surface is based on the received scattered light intensity. There has also been proposed an apparatus for inspecting the presence or absence of foreign matter (see Patent Document 2).
さらに、照明光源と、レンズアレイと、ラインセンサとを含み、検出した散乱光の位置および光強度に基づいて異物の位置および大きさを検出する装置も提案されている(特許文献3参照)。
従来の貼り合わせ基板の製造工程において、特に液晶セルの完成後においては、異物の検査が行われていないので、最後に偏光板を貼り合わす工程で、異物などが混入することにより製品欠陥が生じてしまうという不都合がある。 In the conventional process for manufacturing a bonded substrate, especially after the completion of the liquid crystal cell, foreign matter is not inspected, so in the last step of attaching the polarizing plate, foreign matters etc. are mixed in to cause product defects. There is an inconvenience.
製品欠陥は偏光板を貼り合わせた後の点灯検査によってはじめて偏光板を貼り合わす工程で異物などが混入したことがわかり、偏光板を剥がして廃棄し、貼り合わせ基板を洗浄した後に再度偏光板を貼り合わすことになり、偏光板の無駄、および工程の無駄が生じてしまう。 Product defects indicate that foreign matter was mixed in the process of laminating the polarizing plate for the first time by the lighting inspection after laminating the polarizing plate, and the polarizing plate was peeled off and discarded. Bonding results in waste of the polarizing plate and waste of the process.
また、偏光板を貼り合わせる前に検査員による目視検査を行うことも考えられるが、ある程度以上の大きさの異物しか検出することができず、また、見過ごしが生じてしまうという不都合がある。 Further, it is conceivable that a visual inspection is performed by an inspector before the polarizing plate is bonded, but only a foreign substance having a certain size or more can be detected, and there is an inconvenience that oversight occurs.
また、特許文献1から特許文献3の何れかの検査装置では、十分な小型化、軽量化、低コスト化を達成することができないのみならず、十分な検査精度を得ることができない。
本発明は上記の問題点に鑑みてなされたものであり、十分な小型化、軽量化、低コスト化を達成することができるとともに、十分な検査精度を得ることができる光学的検査方法およびその装置を提供することを第1の目的とし、この光学的検査方法およびその装置を用いる光学フィルム貼り合わせ製品製造方法およびその装置を提供することを第2の目的としている。
In addition, the inspection apparatus according to any one of Patent Document 1 to Patent Document 3 cannot achieve sufficient size reduction, weight reduction, and cost reduction, but also cannot obtain sufficient inspection accuracy.
The present invention has been made in view of the above problems, an optical inspection method capable of achieving sufficient size reduction, weight reduction, and cost reduction, and sufficient inspection accuracy, and its A first object is to provide an apparatus, and a second object is to provide an optical film bonded product manufacturing method and apparatus using the optical inspection method and the apparatus.
微細なパターンを形成した基板のパターン形成面と反対の面に対して所定角度で光を照射する光源手段(1)と、反対の面からの散乱光を入力として正立像を得るテレセントリックレンズアレイ(2)と、正立像を受光するラインセンサ(3)と、正立像に基づいて異物の有無を検査する画像処理手段とを備え、前記テレセントリックレンズアレイ(2)の列数は、最大入射角をθ、レンズ半径をr、レンズと基板との間の距離をWDとするとき、arctan((2N−1)r/WD)≧θを満たす最小の整数Nであることを特徴とする光学的検査装置。Light source means (1) for irradiating light at a predetermined angle to the surface opposite to the pattern formation surface of the substrate on which a fine pattern is formed, and a telecentric lens array (for obtaining an erect image by inputting scattered light from the opposite surface) 2), a line sensor (3) for receiving an erect image, and image processing means for inspecting the presence or absence of a foreign substance based on the erect image, and the number of columns of the telecentric lens array (2) has a maximum incident angle. Optical inspection, wherein θ is the minimum integer N satisfying arctan ((2N−1) r / WD) ≧ θ where r is the lens radius and WD is the distance between the lens and the substrate. apparatus.
前記テレセントリックレンズアレイ(2)の最大入射角は10度以上20度以下である請求項1に記載の光学的検査装置。The optical inspection apparatus according to claim 1, wherein a maximum incident angle of the telecentric lens array (2) is not less than 10 degrees and not more than 20 degrees.
前記ラインセンサ(3)の素子サイズは30μm角以上50μm角以下である請求項1に記載の光学的検査装置。The optical inspection apparatus according to claim 1, wherein the element size of the line sensor (3) is not less than 30 µm square and not more than 50 µm square.
微細なパターンを形成した1対の基板を、パターン形成面を互いに対向させて貼り合わせ、次いで基板のパターン形成面と反対の面に光学フィルムを貼り合わせて光学フィルム貼り合わせ製品を製造する装置であって、1対の基板の貼り合わせ後、光学フィルムの貼り合わせ前の工程に、微細なパターンを形成した基板のパターン形成面と反対の面に対して所定角度で光を照射する光源手段と、反対の面からの散乱光を入力として正立像を得るテレセントリックレンズアレイと、正立像を受光するラインセンサと、正立像に基づいて異物の有無を検査する画像処理手段とを備え、前記テレセントリックレンズアレイの列数は、最大入射角をθ、レンズ半径をr、レンズと基板との間の距離をWDとするとき、arctan((2N−1)r/WD)≧θを満たす最小の整数Nであることを特徴とする光学フィルム貼り合わせ製品製造装置。An apparatus for manufacturing an optical film bonded product by bonding a pair of substrates on which a fine pattern is formed with their pattern formation surfaces facing each other and then bonding an optical film to the surface opposite to the pattern formation surface of the substrate. A light source means for irradiating light at a predetermined angle with respect to a surface opposite to a pattern forming surface of a substrate on which a fine pattern is formed in a step after bonding of a pair of substrates and before bonding of an optical film; A telecentric lens array that obtains an erect image by inputting scattered light from the opposite surface, a line sensor that receives the erect image, and an image processing means that inspects for the presence of foreign matter based on the erect image, and the telecentric lens The number of columns in the array is as follows: arctan ((2N−1) r /) where θ is the maximum incident angle, r is the lens radius, and WD is the distance between the lens and the substrate. D) ≧ theta smallest optical film bonded product manufacturing apparatus, characterized in that an integer N that satisfies.
前記テレセントリックレンズアレイの最大入射角は10度以上20度以下である請求項5に記載の光学フィルム貼り合わせ製品製造装置。 The optical film bonded product manufacturing apparatus according to claim 5, wherein a maximum incident angle of the telecentric lens array is 10 degrees or more and 20 degrees or less .
前記ラインセンサの素子サイズは30μm角以上50μm角以下である請求項5に記載の光学フィルム貼り合わせ製品製造装置。 The optical film bonded product manufacturing apparatus according to claim 5, wherein an element size of the line sensor is 30 μm square or more and 50 μm square or less .
本発明の光学的検査方法は、基板のパターン形成面と反対の面における異物の有無を精度よく検査することができ、しかも、十分な小型化、軽量化、低コスト化を達成することができるという特有の効果を奏する。 The optical inspection method of the present invention can accurately inspect for the presence or absence of foreign matter on the surface opposite to the pattern forming surface of the substrate, and can achieve sufficient size reduction, weight reduction, and cost reduction. There is a unique effect.
本発明の光学的検査装置は、基板のパターン形成面と反対の面における異物の有無を精度よく検査することができ、しかも、十分な小型化、軽量化、低コスト化を達成することができるという特有の効果を奏する。 The optical inspection apparatus of the present invention can accurately inspect the presence or absence of foreign matter on the surface opposite to the pattern forming surface of the substrate, and can achieve sufficient size reduction, weight reduction, and cost reduction. There is a unique effect.
本発明の光学フィルム貼り合わせ製品製造方法は、異物が存在した状態で光学フィルムを貼り合わせることによる不良品の発生を未然に防止することができるという特有の効果を奏する。 The method for producing an optical film-bonded product of the present invention has a specific effect that it is possible to prevent the occurrence of defective products by bonding the optical film in the presence of foreign matter.
本発明の光学フィルム貼り合わせ製品製造装置は、異物が存在した状態で光学フィルムを貼り合わせることによる不良品の発生を未然に防止することができるという特有の効果を奏する。 The optical film bonded product manufacturing apparatus of the present invention has a specific effect that it is possible to prevent the occurrence of defective products by bonding optical films in the presence of foreign matter.
以下、添付図面を参照して、本発明の光学的検査方法およびその装置、および光学フィルム貼り合わせ製品製造方法およびその装置の実施の形態を詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an optical inspection method and apparatus and an optical film bonded product manufacturing method and apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.
図1は本発明の光学フィルム貼り合わせ製品製造方法の一実施形態を説明する工程図である。なお、図1においては、液晶基板製造工程を例にとっている。 FIG. 1 is a process diagram for explaining an embodiment of a method for producing an optical film-bonded product of the present invention. In FIG. 1, a liquid crystal substrate manufacturing process is taken as an example.
この液晶基板製造工程は、ガラス基板に対して、洗浄処理、成膜処理、レジスト塗布処理、露光処理、現像処理、エッチング処理、レジスト剥離処理をこの順に複数回反復し、その後、配向膜塗布処理、ラビング処理、スペーサ塗布処理を行ってTFT製造を行う。
また、ガラス基板に対して、洗浄処理、成膜処理、レジスト塗布処理、露光処理、現像処理、エッチング処理、レジスト剥離処理をこの順に複数回反復し、その後、配向膜塗布処理、ラビング処理を行ってカラーフィルタ製造を行う。
In this liquid crystal substrate manufacturing process, a glass substrate is repeatedly subjected to a cleaning process, a film forming process, a resist coating process, an exposure process, a developing process, an etching process, and a resist stripping process in this order, and then an alignment film coating process. Then, a rubbing process and a spacer coating process are performed to manufacture a TFT.
In addition, the glass substrate is repeatedly subjected to a cleaning process, a film forming process, a resist coating process, an exposure process, a developing process, an etching process, and a resist stripping process in this order a plurality of times, followed by an alignment film coating process and a rubbing process. To produce color filters.
以上のようにTFTとカラーフィルタとを製造した後、貼り合わせ処理、液晶注入処理、封止処理、異物検査処理、偏光板貼り付け処理を行って液晶セルを完成させる。
異物検査処理は以下において詳細に説明するが、他の処理は従来公知であるから、詳細な説明は省略する。
After manufacturing the TFT and the color filter as described above, a bonding process, a liquid crystal injection process, a sealing process, a foreign substance inspection process, and a polarizing plate bonding process are performed to complete a liquid crystal cell.
The foreign substance inspection process will be described in detail below, but the other processes are conventionally known, and thus detailed description thereof is omitted.
図2は異物検査処理に使用される異物検査装置の一実施形態を概略的に示す側面図、図3は同上の正面図、図4は同上の主要部の平面図である。 FIG. 2 is a side view schematically showing an embodiment of a foreign substance inspection apparatus used for foreign substance inspection processing, FIG. 3 is a front view of the same, and FIG. 4 is a plan view of the main part of the same.
この異物検査装置は、ガラス基板のパターン形成面と反対の面5に対して所定角度で光を照射するライン照明1と、反対の面からの散乱光を入力として正立像を得るテレセントリックレンズアレイ2と、正立像を受光する長尺ラインセンサ3と、正立像に基づいて異物の有無を検査する画像処理部(図示せず)とを有している。 This foreign matter inspection apparatus includes a line illumination 1 that irradiates light at a predetermined angle to a surface 5 opposite to a pattern formation surface of a glass substrate, and a telecentric lens array 2 that obtains an erect image by inputting scattered light from the opposite surface. And a long line sensor 3 that receives an erect image and an image processing unit (not shown) that inspects for the presence of foreign matter based on the erect image.
前記テレセントリックレンズアレイ2は、半径がrのテレセントリックレンズ2aが複数個配列されてなるものであり、好ましくは、図4に示すように、配列列数がNに設定されている。 The telecentric lens array 2 is formed by arranging a plurality of telecentric lenses 2a having a radius r, and preferably the number of array rows is set to N as shown in FIG.
また、前記テレセントリックレンズアレイ2の入射面とガラス基板のパターン形成面と反対の面との間の距離がWDに設定され(図2参照)、この状態でのテレセントリックレンズの入射角がrθであり(図2参照)、テレセントリックレンズアレイ2の最大入射角がθである(図3参照)。 The distance between the incident surface of the telecentric lens array 2 and the surface opposite to the pattern forming surface of the glass substrate is set to WD (see FIG. 2), and the incident angle of the telecentric lens in this state is rθ. (See FIG. 2) The maximum incident angle of the telecentric lens array 2 is θ (see FIG. 3).
そして、テレセントリックレンズ2aの配列列数Nは、arctan((2N−1)r/WD)≧θを満足する最小の整数に設定されることが好ましい。なぜならば、テレセントリックレンズアレイ2の列数(テレセントリックレンズ2aの配列列数)がこの最小の整数Nよりも少なければ感度が低くなり、逆に、テレセントリックレンズアレイ2の列数がこの最小の整数Nよりも多ければ感度の向上は殆ど期待できないにも拘らず大型化するからである。 The number N of array rows of the telecentric lenses 2a is preferably set to the smallest integer that satisfies arctan ((2N−1) r / WD) ≧ θ. This is because if the number of rows of the telecentric lens array 2 (the number of rows of the telecentric lenses 2a) is less than the minimum integer N, the sensitivity is low, and conversely, the number of columns of the telecentric lens array 2 is the minimum integer N. This is because if the number is larger than that, the improvement in sensitivity can hardly be expected, but the size is increased.
また、テレセントリックレンズアレイ2の最大入射角は10度以上20度以下であることが好ましい。なぜならば、最大入射角が10度未満であれば感度が低くなり、逆に、最大入射角が20度よりも大きければ、収差が大きくなってしまって感度が飽和状態に近づき、感度の向上は殆ど期待できないからである。 Moreover, it is preferable that the maximum incident angle of the telecentric lens array 2 is 10 degrees or more and 20 degrees or less. This is because if the maximum incident angle is less than 10 degrees, the sensitivity is low, and conversely, if the maximum incident angle is larger than 20 degrees, the aberration becomes large and the sensitivity approaches a saturated state. Because you can hardly expect.
さらに、ラインセンサ3の素子サイズは30μm角以上50μm角以下であることが好ましい。なぜならば、素子サイズが30μm角未満であれば感度が低くなり、かつ検査速度が遅くなってしまい、逆に、素子サイズが50μm角よりも大きければ、位置分解能が劣化して、異物の存在座標精度が悪くなってしまうからである。 Furthermore, the element size of the line sensor 3 is preferably 30 μm square or more and 50 μm square or less. This is because if the element size is less than 30 μm square, the sensitivity is low and the inspection speed is slow, and conversely, if the element size is larger than 50 μm square, the position resolution is deteriorated and the presence coordinates of the foreign matter are deteriorated. This is because the accuracy deteriorates.
図5は異物検査装置の一実施形態を概略的に示す斜視図である。
この異物検査装置は、基台11上に、検査対象基板(光学フィルム貼り付け前の基板)13を支承し、支承された検査対象基板13を挟んで、かつ互いに対向するように基台11上にスライダ12を設け、さらに、スライダ12に支承されて所定方向に往復動する検査ヘッド14を有している。
FIG. 5 is a perspective view schematically showing an embodiment of the foreign matter inspection apparatus.
This foreign matter inspection apparatus supports a substrate to be inspected (substrate before attaching an optical film) 13 on a base 11, and sandwiches the supported substrate to be inspected 13 on the base 11 so as to face each other. The slider 12 is provided with an inspection head 14 that is supported by the slider 12 and reciprocates in a predetermined direction.
なお、検査ヘッド14には、図2、図3に示すようなライン照明1が照明系として、テレセントリックレンズアレイ2および長尺ラインセンサ3が検出系として組み込まれている。 2 and 3 is incorporated in the inspection head 14 as an illumination system, and the telecentric lens array 2 and the long line sensor 3 are incorporated as a detection system.
ただし、検査ヘッド14を往復動させる代わりに、検査対象基板13を往復動させることが可能である。 However, instead of reciprocating the inspection head 14, the inspection target substrate 13 can be reciprocated.
また、図5には図示されていないが、正立像に基づいて異物の有無を検査する画像処理部(図示せず)を有している。 Further, although not shown in FIG. 5, the image processing unit (not shown) for inspecting the presence / absence of a foreign substance based on the erect image is provided.
上記の構成の異物検査装置の作用は次のとおりである。 The operation of the foreign substance inspection apparatus having the above-described configuration is as follows.
基台11上に検査対象基板13を支承し、検査ヘッド14の位置をスライダ12により設定し、この状態で、ライン照明1により検査対象基板13を照明し、検査対象基板13からの散乱光を入力としてテレセントリックレンズアレイ2により正立像を得、長尺ラインセンサ3により受光する。そして、受光光強度を表す長尺ラインセンサ3からの出力信号を画像処理部(図示せず)に供給する。 The inspection target substrate 13 is supported on the base 11, and the position of the inspection head 14 is set by the slider 12. In this state, the inspection target substrate 13 is illuminated by the line illumination 1, and scattered light from the inspection target substrate 13 is emitted. As an input, an erect image is obtained by the telecentric lens array 2 and received by the long line sensor 3. Then, an output signal from the long line sensor 3 representing the received light intensity is supplied to an image processing unit (not shown).
ここで、異物が全く存在していなければ、長尺ラインセンサ3が受光する光の強度は全範囲にわたって低いが、異物が存在していれば、長尺ラインセンサ3が受光する光の強度は、異物の存在位置に対応して著しく高くなり、残余の範囲は低い。 Here, if there is no foreign matter, the intensity of light received by the long line sensor 3 is low over the entire range, but if there is foreign matter, the intensity of light received by the long line sensor 3 is Corresponding to the position of the foreign material, it becomes extremely high and the remaining range is low.
次いで、検査ヘッド14の位置をスライダ12により変更し、この状態で上記と同様の処理を行う。 Next, the position of the inspection head 14 is changed by the slider 12, and the same processing as described above is performed in this state.
そして、検査ヘッド14の位置をスライダ12により変更する処理を検査対象基板13の全範囲について行う。 Then, the process of changing the position of the inspection head 14 by the slider 12 is performed for the entire range of the inspection target substrate 13.
画像処理部においては、例えば、長尺ラインセンサ3からの出力信号を予め設定された閾値と比較することによって、異物の有無、および該当する場合には異物の位置(長尺ラインセンサ3の素子位置、および検査ヘッド位置により定まる位置)を検出することができる。 In the image processing unit, for example, by comparing the output signal from the long line sensor 3 with a preset threshold value, the presence / absence of a foreign substance and, if applicable, the position of the foreign substance (element of the long line sensor 3) Position and a position determined by the inspection head position) can be detected.
ここで、異物の有無に対応する光強度の差が十分に大きいので、閾値の設定は簡単に行うことができる。 Here, since the difference in light intensity corresponding to the presence or absence of foreign matter is sufficiently large, the threshold can be set easily.
そして、異物が存在しないことが検出された場合にのみ、偏光板(光学フィルム)の貼り合わせを行って、異物に起因する不良品の発生を未然に防止することができる。
逆に、異物が存在することが検出された場合には、異物を除去する処理(例えば、洗浄処理など)を行った後、再び異物の有無の検査を行えばよい。
Then, only when it is detected that no foreign matter is present, the polarizing plate (optical film) can be bonded to prevent the occurrence of defective products due to the foreign matter.
On the other hand, when it is detected that a foreign substance is present, a process for removing the foreign substance (for example, a cleaning process) may be performed, and then an inspection for the presence or absence of the foreign substance may be performed again.
図6は液晶セルの構成を概略的に示す拡大部分断面図である。 FIG. 6 is an enlarged partial sectional view schematically showing the configuration of the liquid crystal cell.
なお、図示の液晶セルは、カラーフィルタ側、およびTFT側の双方に異物が存在する状態で偏光板を貼り付けようとした状態である。 In the illustrated liquid crystal cell, a polarizing plate is to be attached in a state where foreign matter exists on both the color filter side and the TFT side.
しかし、図1の光学フィルム貼り合わせ製品製造方法を採用すれば、偏光板の貼り合わせ前に異物の有無を検査するのであるから、不良品の発生を未然に防止することができる。 However, if the optical film bonded product manufacturing method of FIG. 1 is adopted, the presence or absence of foreign matter is inspected before the polarizing plates are bonded together, so that the occurrence of defective products can be prevented in advance.
また、図5の異物検査装置は、検査対象基板の一方の面を検査した後に、検査対象基板を裏返して他方の面を検査する必要があるが、検査対象基板の両方の面を同時に検査できるように、検査対象基板の上方および下方に検査ヘッドを設けることが好ましく、この場合には、検査のための所要時間をほぼ半減することができる。 Further, the foreign substance inspection apparatus of FIG. 5 needs to inspect one surface of the substrate to be inspected and then turn over the substrate to be inspected to inspect the other surface, but can inspect both surfaces of the substrate to be inspected at the same time. Thus, it is preferable to provide inspection heads above and below the substrate to be inspected, and in this case, the time required for inspection can be almost halved.
図7は、異物検出処理により得られる信号の一例を示す図であり、異物が存在する位置のみに対応させて著しく大きい信号が得られることが分かる。なお、図7は、10μm程度の異物を検出した場合を示している。 FIG. 7 is a diagram showing an example of a signal obtained by the foreign object detection process, and it can be seen that a remarkably large signal is obtained corresponding to only the position where the foreign substance exists. FIG. 7 shows a case where a foreign matter of about 10 μm is detected.
したがって、異物が存在する場合の信号と異物が存在しない場合の信号とを識別するための閾値の設定は簡単である。 Therefore, it is easy to set a threshold value for discriminating a signal when there is a foreign object and a signal when there is no foreign object.
1 ライン照明
2 テレセントリックレンズアレイ
3 長尺ラインセンサ
1 Line illumination 2 Telecentric lens array 3 Long line sensor
Claims (6)
前記テレセントリックレンズアレイ(2)の列数は、最大入射角をθ、レンズ半径をr、レンズと基板との間の距離をWDとするとき、arctan((2N−1)r/WD)≧θを満たす最小の整数Nである
ことを特徴とする光学的検査装置。 Light source means (1) for irradiating light at a predetermined angle to a surface opposite to the pattern forming surface of the substrate on which a fine pattern is formed, and a telecentric lens array (for obtaining an erect image by inputting scattered light from the opposite surface) 2), a line sensor (3) for receiving an erect image, and image processing means for inspecting for the presence of foreign matter based on the erect image ,
The number of columns of the telecentric lens array (2) is arctan ((2N−1) r / WD) ≧ θ, where θ is the maximum incident angle, r is the lens radius, and WD is the distance between the lens and the substrate. An optical inspection apparatus characterized by being the smallest integer N satisfying
1対の基板の貼り合わせ後、光学フィルムの貼り合わせ前の工程に、微細なパターンを形成した基板のパターン形成面と反対の面に対して所定角度で光を照射する光源手段と、反対の面からの散乱光を入力として正立像を得るテレセントリックレンズアレイと、正立像を受光するラインセンサと、正立像に基づいて異物の有無を検査する画像処理手段とを備え、
前記テレセントリックレンズアレイの列数は、最大入射角をθ、レンズ半径をr、レンズと基板との間の距離をWDとするとき、arctan((2N−1)r/WD)≧θを満たす最小の整数Nである
ことを特徴とする光学フィルム貼り合わせ製品製造装置。 An apparatus for manufacturing an optical film bonded product by bonding a pair of substrates on which a fine pattern is formed with their pattern formation surfaces facing each other and then bonding an optical film to the surface opposite to the pattern formation surface of the substrate. There,
The light source means for irradiating light at a predetermined angle with respect to the surface opposite to the pattern forming surface of the substrate on which the fine pattern is formed in the step before the bonding of the pair of substrates and before the bonding of the optical film, A telecentric lens array that obtains an erect image by inputting scattered light from the surface, a line sensor that receives the erect image, and an image processing means that inspects for the presence of foreign matter based on the erect image ,
The number of rows of the telecentric lens array is the minimum satisfying arctan ((2N−1) r / WD) ≧ θ, where θ is the maximum incident angle, r is the lens radius, and WD is the distance between the lens and the substrate. An optical film-laminated product manufacturing apparatus, wherein the optical film is an integer N.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005157603A JP4675160B2 (en) | 2005-05-30 | 2005-05-30 | Optical inspection apparatus and optical film bonded product manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005157603A JP4675160B2 (en) | 2005-05-30 | 2005-05-30 | Optical inspection apparatus and optical film bonded product manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006329945A JP2006329945A (en) | 2006-12-07 |
JP4675160B2 true JP4675160B2 (en) | 2011-04-20 |
Family
ID=37551763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005157603A Expired - Fee Related JP4675160B2 (en) | 2005-05-30 | 2005-05-30 | Optical inspection apparatus and optical film bonded product manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4675160B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03253177A (en) * | 1990-03-01 | 1991-11-12 | Toshiba Corp | Ghost eliminator |
JPH0735698A (en) * | 1993-07-19 | 1995-02-07 | Canon Inc | Image reader, surface state inspecting apparatus and exposure device using the same |
JPH09244254A (en) * | 1996-03-13 | 1997-09-19 | Nikon Corp | Exposure device for liquid crystal |
JP2000315712A (en) * | 1993-03-09 | 2000-11-14 | Hitachi Ltd | Production of semiconductor device |
JP2001272355A (en) * | 2000-01-21 | 2001-10-05 | Horiba Ltd | Foreign matter inspecting apparatus |
JP2004053972A (en) * | 2002-07-22 | 2004-02-19 | Nikon Corp | Apparatus for foreign matter inspection, exposure device mounted with the same device, and exposure method using the same exposure device |
-
2005
- 2005-05-30 JP JP2005157603A patent/JP4675160B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03253177A (en) * | 1990-03-01 | 1991-11-12 | Toshiba Corp | Ghost eliminator |
JP2000315712A (en) * | 1993-03-09 | 2000-11-14 | Hitachi Ltd | Production of semiconductor device |
JPH0735698A (en) * | 1993-07-19 | 1995-02-07 | Canon Inc | Image reader, surface state inspecting apparatus and exposure device using the same |
JPH09244254A (en) * | 1996-03-13 | 1997-09-19 | Nikon Corp | Exposure device for liquid crystal |
JP2001272355A (en) * | 2000-01-21 | 2001-10-05 | Horiba Ltd | Foreign matter inspecting apparatus |
JP2004053972A (en) * | 2002-07-22 | 2004-02-19 | Nikon Corp | Apparatus for foreign matter inspection, exposure device mounted with the same device, and exposure method using the same exposure device |
Also Published As
Publication number | Publication date |
---|---|
JP2006329945A (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101177299B1 (en) | Detection apparatus for particle on the glass | |
JP4396160B2 (en) | Foreign film inspection method for transparent film | |
JP4480001B2 (en) | Nonuniformity defect inspection mask, nonuniformity defect inspection apparatus and method, and photomask manufacturing method | |
KR101216803B1 (en) | Pattern inspection method, pattern inspection device, photomask manufacturing method, and pattern transfer method | |
US11635646B2 (en) | Detecting device and detecting method thereof, and detecting apparatus | |
CN1983023A (en) | Method and system for detecting corrugation defect and manufacturing method of photomask | |
JPH11242001A (en) | Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate | |
TW200307117A (en) | Method for inspecting polarizing film and apparatus for the method | |
KR20050035243A (en) | Optical measuring method and device therefor | |
JP2005009919A (en) | Inspection device and inspecting method for polarization plate with protective film | |
JP4675160B2 (en) | Optical inspection apparatus and optical film bonded product manufacturing apparatus | |
JP2007024733A (en) | Substrate inspection device and substrate inspection method | |
KR102063680B1 (en) | Display Panel Inspection Apparatus and Its Method | |
TWM477571U (en) | Image inspection device | |
JP2001124660A (en) | Inspection method and inspection device of defect and foreign matter for flat panel flat display device | |
JP4771871B2 (en) | Pattern defect inspection method, pattern defect inspection test pattern substrate, pattern defect inspection apparatus, photomask manufacturing method, and display device substrate manufacturing method | |
EP3786621B1 (en) | Foreign material inspection system of display unit | |
JP2004170102A (en) | Foreign matter inspection device for liquid crystal display panel | |
JP2009174957A (en) | Foreign matter detection method and foreign matter detector | |
KR100971081B1 (en) | Defect Inspection Method of Polarizing Film | |
JPH11190700A (en) | Translucent material nonuniformity inspection method, device therefor, and transparent board | |
JP2008046075A (en) | Optical system, and thin film evaluation device and evaluating method | |
JP2007333590A5 (en) | ||
JP4358955B2 (en) | Foreign matter inspection device | |
JP2012088070A (en) | Method and apparatus for inspecting patterned substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080403 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4675160 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |