JP4673955B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP4673955B2
JP4673955B2 JP2000088580A JP2000088580A JP4673955B2 JP 4673955 B2 JP4673955 B2 JP 4673955B2 JP 2000088580 A JP2000088580 A JP 2000088580A JP 2000088580 A JP2000088580 A JP 2000088580A JP 4673955 B2 JP4673955 B2 JP 4673955B2
Authority
JP
Japan
Prior art keywords
light
observed
optical system
phase information
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000088580A
Other languages
Japanese (ja)
Other versions
JP2001272603A (en
Inventor
豊彦 谷田貝
雅英 伊藤
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000088580A priority Critical patent/JP4673955B2/en
Publication of JP2001272603A publication Critical patent/JP2001272603A/en
Application granted granted Critical
Publication of JP4673955B2 publication Critical patent/JP4673955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生体組織に代表される光学的散乱体(被観察物体)の内部構造や、半導体基板上に形成された積層パターンの構造情報を得る為の光学装置に関する。
【0002】
【従来の技術】
生物・医療分野では、生体の生理機能の観察や病理診断を行う場合、観察用の標本を作成すること無しに、生体の状態で非侵襲に内部組織等の観察を行うことが望まれている。
生体組織は光学的には光散乱体であり、生体の内部を観察する場合には、観察すべき領域の前後の組織により観察光が散乱の影響を受け、被観察領域を識別することが難しい。
この問題を解決する為に、特公平6−35946号公報や米国特許第5321501号等で提案されている低コヒーレンス干渉技術を用いて観察する方法が使われるようになっている。低コヒーレンス干渉技術を用いて生体を観察すると、生体内で特定の領域の信号のみを検出することが出来る。更に、観察している領域の前後の媒質による光の散乱の影響を低減することも出来る。
また、半導体分野においても、ICの高密度集積化を実現する為に、シリコンウエハー上に形成する回路パターンを積層して3次元的に形成することが進められている。このような回路パターンの3次元化に伴い、シリコンウエハー上に積層された特定の回路パターン層の構造や欠陥を検査する方法も必要になっている。
従来、ICの回路パターンを検査する方法として、赤外光をシリコン基板に透過させて回路パターンを観察する方法があるが、この方法の採用により、シリコンウエハーの表面から観察することの出来ない部分についても、観察が可能になった。
【0003】
【発明が解決しようとする課題】
ところで、現状の低コヒーレンス干渉技術は、光源の可干渉距離の短さを利用して被観察物体の特定の領域からの信号を検出し、これにより被観察領域の座標と反射率を求めるようにしているが、被観察領域の前後の媒質での光の散乱による干渉信号の低下についての考慮がなされていないので、散乱光と干渉信号を分離することは可能であるが、被観察領域の位相変化を検出して位相情報を再生することが難しく、そのため、被観察領域の構造や密度の変化を検出することが難しいと云う問題があった。
また、生体の生理機能の観察や病理診断を行う場合には、被観察領域の構造や密度の変化を検出する必要もあり、被観察領域の座標や光の反射率を求める以外に、位相変化を検出することも重要である。
また、シリコン基板上に3次元的に形成された回路パターンを、赤外光を用いて透過観察し、特定の領域の構造や欠陥を検査する場合にも、被観察領域の前後の回路パターンにより散乱光及び回折光が発生する。また、回路パターンを形成する段差情報等も段差の前後の領域での光の散乱の影響により、その検出信号に減衰が生じる。なお、各層の回路パターンの構造や欠陥を観察する場合には、被観察領域以外で発生する散乱光と検出光を分離する必要があるが、赤外光源と低コヒーレンス干渉技術を組合せることにより、散乱光と検出光を分離することは出来る。しかし、被観察領域以外の領域での光の散乱により、検出信号の減衰が生じるので、生体内部の観察の場合と同様に、光の散乱による検出信号の減衰を考慮しなくては、段差等の構造情報を再生することは難しい。
【0004】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、その目的とするところは、被観察物体の特定の領域における位相情報を光の散乱の影響を受けることなしに再生することの出来る光学装置を提供しようとするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明による光学装置は、光源と、該光源からの光を被観察物体に導く照明光学系と、該照明光学系内に配置されていて前記光源からの光を被観察光と被観察物体の干渉像を形成する為の参照光とにそれぞれ分割して導光する部材と、被観察光と参照光の干渉により形成された干渉像を撮像素子に導く結像光学系と、干渉像を撮像する撮像素子と、該撮像素子からの画像情報を演算して位相情報を得る演算装置と、前記照明光学系内または結像光学系内に配置されていて干渉像を形成する被観察光と参照光の相対的な位相差量を変化させる手段を有する光学装置であって、被観察物体内の深さ方向における複数の点で光強度情報を取得し、前記演算装置が、前記複数の点のうちの少なくとも2点の光強度情報の減衰特性に基づいて前記被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得ることを特徴としている。
【0006】
一般に、光散乱媒質中を透過して来た光は、図1及び図2に模式的に示したように、光学特性上散乱光と非散乱光とに分類されるが、散乱光は、媒質中の光散乱物質と衝突を繰り返し、統計的に散乱角度内で分布する。そして、散乱光は光散乱物質と衝突を繰り返すことにより相対的に光路長がランダムになり、光源のコヒーレンスが低い場合には、インコヒーレントな状態になると考えられている。また、非散乱光は、媒質中の光散乱物質に衝突することなく透過する光、若しくは光散乱物質に衝突してもその光路長が光源のコヒーレンス長以内の光であり、特定の領域の密度分布や凹凸等の位相情報を伝達する光である。
【0007】
従って、光源と、光源からの光を被観察物体に導く照明光学系と、照明光学系内に配置されていて光源からの光を被観察と被観察物体の干渉像を形成する為の参照とに夫々分割して導光する部材と、被観察と参照の干渉により形成された干渉像を撮像素子に導く結像光学系と、干渉像を撮像して位相情報を得る撮像素子と、撮像素子からの画像情報を演算する演算装置と、照明光学系または結像光学系内に配置されていて干渉像を形成する被観察と参照の相対的な位相差量を変化させる手段を有する光学装置を構成することで、光散乱媒質中の特定の領域からの非散乱光を干渉像として検出することが出来る。
【0008】
光散乱媒質中を光が透過する時、光散乱物質に光が衝突して生じる散乱光と衝突せずに進む非散乱光とに分かれる。光散乱物質に衝突しないで進む非散乱光は、進む距離が長くなるにしたがって光散乱物質に衝突する確率が大きくなり、光散乱物質と衝突して散乱光に変わって行く。従って、非散乱光の散乱光または入射光に対する割合は、媒質中の光散乱物質の濃度等によって決まる光散乱係数や伝達距離に依存して小さくなる。
光散乱係数を光が光散乱物質に衝突する確率と考えると、非散乱光は光散乱係数と伝達距離に依存してその存在する確率が低下し、散乱光及び入射光に対する割合が小さくなる。
【0009】
被観察点の位相情報は非散乱光成分と散乱光成分の比の関数になる。光が光散乱媒質中を伝達すると、非散乱光成分の減衰率が散乱光成分の減衰率に対し大きくなることから、位相情報が減少して計測される。従って、上記構成の光学装置で取得した干渉画像は、媒質の光散乱係数と伝達距離とによって非散乱光成分が減衰した情報になっている。
【0010】
予め被観察物体と同種の物体から光散乱係数を測定するサンプルを作成して光散乱係数を計測し、伝達距離と減衰率の関係を計算機シミュレーション等により求め、レファレンスデータとして演算装置の内部に保持させて置く。そして被観察物体中の観察点の座標を、その表面を基準に測定し、上記のレファレンスデータから観察点での非散乱光の減衰率を求める。そして、取得した干渉画像を、この減衰率を用いて補正することにより、光散乱媒質中の位相分布を光の散乱の影響を受けることなく求めることが出来る。
【0011】
た、光散乱媒質中の特定点の位相情報を求める場合には、非散乱光の減衰特性を推定することが重要になってくる。減衰特性を推定する方法として、先ず被観察物質と同種の物質から光散乱係数を測定する為のサンプルを作成し、光散乱係数を計測し、Lambert−Beerの式等を用いて非散乱光の被観察物体の厚さと減衰の関係を数値計算から求める事が考えられる。光散乱係数を求める方法としては、被観察物体から計測用のサンプルを作成しなくても、被観察物体中の少なくとも2点以上の点からの散乱光を計測することにより、求めることが可能である。
【0012】
従って、上記本発明のように、観察物体内の深さ方向における複数の点での光の強度情報を取得し、前記複数の点のうちの少なくとも2点の光強度情報の減衰特性に基づいて被観察物体の光散乱係数を求めることで、非散乱光の減衰特性を算出し、厚さ方向の減衰データをレファレンスデータとして保持し、光の強度情報を得た点もしくはそれ以外の点での非散乱光の減衰特性を算出し、被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得ることが可能となる。
【0013】
また、本発明による光学装置は、光源と、該光源からの光を被観察物体に導く照明光学系と、該照明光学系内に配置されていて前記光源からの光を被観察光と被観察物体の干渉像を形成する為の参照光とにそれぞれ分割して導光する部材と、被観察光と参照光の干渉により形成された干渉像を撮像素子に導く結像光学系と、干渉像を撮像する撮像素子と、該撮像素子からの画像情報を演算して位相情報を得る演算装置と、前記照明光学系内または結像光学系内に配置されていて干渉像を形成する被観察光と参照光の相対的な位相差量を変化させる手段を有する光学装置であって、被観察物体内の深さ方向における複数の点で類似した構造の位相情報を取得し、前記演算装置が、前記複数の点のうちの少なくとも2点の位相情報の減衰特性に基づいて前記被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得るようにしている。
シリコンウエハーウ上に形成された回路パターンなどは、各層の回路パターンの厚さはほぼ均等であることから、被観察物体中の2点の位相情報を取得し、その信号比を求めることにより、位相情報の部分的な減衰率を求めることが出来る。積層回路パターンのように同様な構造が周期的に積層されている物の場合は、全体として均一と考えられ、部分的な減衰率から深さ方向の減衰特性を推定することが可能である。
従って、上記発明のように、被観察体内の深さ方向における複数の点で類似した構造の位相情報を取得し、前記複数の点のうちの少なくとも2点の位相情報の減衰特性から被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得ることが出来る。
【0014】
また、本発明によれば、結像光学系が顕微鏡光学系であるように構成されている。これにより、生体の生理機能やシリコンウエハー上の回路パターンを拡大することができ、より詳細な情報を得ることが出来る。
【0015】
また、本発明によれば、照明光学系及び結像光学系が共焦点光学系となるように構成されている。これにより、非散乱光については深さ方向の情報の分解能が向上して、被観察点の位置を正確に特定することができ、位相情報の減衰を補正する精度を向上させることが出来る。また、位相情報を取得するための干渉画像に散乱光の漏れ込みを減らすことができ、位相情報の取得精度を向上させることも出来る。
そして、散乱光については被観察点以外からの光の影響を少なくすることができ、被観察点に独立した点光源が存在することと等価に扱うことができる。被観察物体中で観察点を移動させ複数の観察点で散乱光を計測することにより、被観察物体の散乱光の減衰特性を求めることが出来る。この減衰特性から光散乱係数を求めることが出来、更に位相情報の減衰特性を求めることが出来る。
【0016】
また、本発明によれば、光源が低コヒーレンス光源となるように構成されている。これにより、干渉画像から被観察物体の位相情報を取得する際、非散乱光を散乱光から分離することができるばかりか、散乱光と非散乱光の分離の精度を上げることが出来る。
【0017】
また、本発明によれば、被観察物体内の深さ方向の少なくとも2点で光強度情報及び位相情報を取得し、前記演算装置が、前記2点間での光強度情報及び位相情報の減衰特性から被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得るようにしている。
また、本発明を適用するに当り、共焦点顕微鏡を構成することにより、散乱光強度及び位相情報を計測する際のセクショニング効果を得ることが出来るので、光の減衰率の計測をより正確に行うことが出来る。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図示した実施例に基づき説明する。
実施例1
図3は、本発明に係る光学装置を微分干渉顕微鏡に適用した場合の概略構成図である。ここでは、結像光学系として物体からの光を対物レンズで平行光束にし、結像レンズによって被観察物体の像を形成する無限遠補正光学系を用いた正立型顕微鏡の構成で説明する。なお、微分干渉顕微鏡はシァーリング干渉法を応用した干渉顕微鏡であり、光路中にノマルスキープリズムを配置させることによって横ずれした2つの光束を発生させ、この2つの光束を干渉させて干渉像を生成するものである。よって、シァーリング干渉法ではノマルスキープリズムによって発生した2つの光束が、それぞれ交互に被観察光と参照光の役目を果たすことになる。
図中、1はステージ2上に抑止された被観察物体である標本、3は対物レンズ、4はピエゾ素子、5はノマルスキープリズム、6はハーフミラー、7は結像レンズ、8は開口パターンディスク、9はモーター、10はリレーレンズ、11はハーフミラー、12はリレーレンズ、13は検光子、14は撮像素子、15は記憶・演算装置、16は表示装置、17は光源、18は集光レンズ、19は位相変化装置、20は光源、21は集光レンズ、22は位相変化装置、23は光源、24は集光レンズ、25は位相変化装置、26はミラー、27はノマルスキープリズム、28はコンデンサーレンズである。なお、開口パターンディスク8とモーター9は開口部材を、リレーレンズ10,12とハーフミラー11と検光子13はリレー光学系を、光源17と集光レンズ18と位相変化装置19は共焦点照明光学系を、光源20と集光レンズ21と位相変化装置22は落射照明光学系を、光源23と集光レンズ24と位相変化装置25とミラー26とノマルスキープリズム27とコンデンサーレンズ28は透過照明光学系を、夫々構成している。
【0019】
開口パターンディスク(ニポウディスク(Nipkow Disk))8は結像レンズ7の焦点位置に配置されており、上記リレー光学系は開口パターンディスク8を透過した光が撮像素子14の受光面上に結像するように配置されている。また、リレー光学系内にはハーフミラー11が設けられていて、共焦点照明光学系によりハーフミラー11と開口パターンディスク8を介して被観察物体1の表面を共焦点照明するように構成されている。さらに、結像光学系内にノマルスキープリズム5を配置し、リレー光学系内に検光子13を配置して、落射微分干渉観察可能なニポウディスク走査型共焦点微分干渉顕微鏡を構成している。
共焦点照明光学系内には位相変化装置19が配置されており、撮像素子14によって撮像された被観察物体の画像を記憶・演算するための装置15と、演算した画像を表示するための表示装置16が付加されている。また、対物レンズ3はピエゾ素子4に取り付けられていて、被観察物体1を載置しているステージ2との協働により、対物レンズ3と被観察物体1の間隔が正確に制御され得るようになっている。この実施例では、位相変化装置19によりリターデーション量を変化させて複数の微分干渉画像を撮像し、これを記憶・演算装置15で演算して位相情報を抽出することが出来るようになっている。
【0020】
次に共焦点光学系を用いて生体内部の構造を観察する場合について説明する。先ず、被観察物体である生体標本1をステージ2上に載せて、これを深さ方向即ち上下方向に移動可能にする。生体標本1の表面近傍から内部に向かってステージ2とピエソ素子4の両方を用いて観察点を移動させながら、共焦点観察により光の強度情報と位相情報を取得し、これらを夫々記憶・演算装置15にデータとして保持させて行く。そして、取得したデータから光強度情報の観察点の移動による変化を求め、散乱光の減衰特性に変換する。そして、散乱光の減衰特性から光散乱係数を算出し、更に位相情報の減衰特性を求める。かくして算出した位相情報の減衰特性と各観察点で計測した位相情報を用いて、生体内部の3次元的な位相分布を再生する。位相再生に関する上記の処理は、一連のプログラムで記憶・演算装置15により行われる。
なお、本実施例によれば、透過照明光学系と落射照明光学系を有しているので、共焦点観察以外の観察も可能である。
【0021】
実施例2
図3に示された微分干渉顕微鏡を用いて実施例1とは異なる性質の被観察物体を観察した場合を実施例2として以下に説明する。
先ず、内部特性が予め分かっているシリコン基盤上に形成された回路パターンを基準サンプルとし、この基準サンプルをステージ2上に乗せて光源23を赤外光源とした透過照明光学系を用い、結像光学系中のニポウディスク8を回転させながら、照明光学系内に配置された位相変化装置19によりリターデーション量を変化させて複数枚の微分干渉画像を撮像し、記憶・演算装置15で演算して位相情報を抽出する。次に、積層された回路パターン中で構造が等しい表面近傍の1点と内部の1点を選び、その位相情報を比較し、その2点の座標と位相情報の比較値から2点間の位相情報の減衰率を求める。さらに、表面近傍の点の位相構造を、落射照明光学系又は共焦点光学系を用いてその位相情報を計測する。
次に、落射照明光学系を用いて計測した位相情報と透過照明光学系を用いて計測した位相の減衰特性と1点の座標から、基準サンプル内部の位相の減衰特性を推定する。この減衰特性をレファレンスデータとして記憶・演算装置15内に保持させる。
次に、基準サンプルと同種のサンプルをステージ2に載せ、落射照明光学系又は共焦点光学系を用いて表面近傍の構造を計測する。照明光学系を切り替えて、透過照明光学系を用いて回路パターン内部の位相情報を計測する。記憶・演算装置内部に保持されていた位相の減衰特性のレファレンスデータを用いて、被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を再生する。
【0022】
実施例3
図4は本発明に係る光学装置をマイケルソン型干渉計に適用した場合の概略構成図である。図中、29はSLD等を用いた低コヒーレンス光源、30は集光レンズ、31,32,33はミラー、34はビームスプリッタ、35は対物レンズ、36は被観察物体、37はステージ、38はステッピングモーター、39は結像レンズ、40はCCD等から成る光ディテクター、41は集光レンズ、42は参照ミラー、43はピエゾ素子である。ステージ37はステッピングモーター38により光軸方向に正確に位置を移動できるように構成されており、また、参照ミラー42もピエゾ素子43により光軸方向に位置を変えられるように構成されている。また、図示されていないが、ディテクター40には実施例1に示した如き記憶・演算装置15及び表示装置16が接続されている。
本実施例は上記のように構成されているから、集光レンズ30及びミラー31,32,33を介してビームスプリッタ34に達した光源29からの光は、ビームスプリッタ34により被観察物体36へ向かう光と参照ミラー42へ向かう光の2つに分割される。そして、被観察物体36で反射した光と参照ミラー42で反射した光はビームスプリッタ34により合成され、光ディテクター40上に被観察点での干渉縞を形成せしめる。本実施例の如く光源29として低コヒーレンス光源を用いると、被観察物体36で反射する被観察光の光路長と参照ミラー42で反する参照光の光路長が一致した位置でのみ干渉信号が発生するので、被観察物体36上の特定点を観察する場合は、ピエゾ素子43により参照ミラー42を移動させて上記光路長を一致させる。参照ミラー42を移動させた時の光ディテクター40からの信号は、横軸に参照ミラー42の移動距離を、縦軸に光ディテクターの信号強度をとると、該略図5に示すような形になる。ここで信号強度は負の電圧値で表示されている。
【0023】
被観察物体36の内部を観察する場合には、光散乱物質の存在により光ディテクター40からの受信信号強度は低下する。これを図5を参照して説明すると、図中のPは参照ミラー42の移動によって変化する干渉信号であり、Sは光ディテクター40に到達する光の強度の総和である。従って、Pは非散乱光成分、Sは散乱光成分と考えることができる。観察点を被観察物体36の表面から内部へ移動させると、非散乱光成分Pと散乱光成分Sは共に減衰して行く。この減衰量を観察点の座標に対応させると、散乱光成分と非散乱光成分の減衰特性を知ることが出来る。更に、特定の観察点で参照ミラー42を走査させて縞走査法等の位相検出法を用いることにより、その観察点での位相情報を得ることが出来るので、得られた位相情報と非散乱光及び散乱光の減衰特性とを用いて、被観察物体内の深さ方向の特定の点での光の散乱による減衰量を補正すればその観察点での光の散乱の影響のない位相情報を再生することができる。
【0024】
なお、図4には示されていないが、被観察物体36を光軸に対し垂直な面内でも移動させるか、或いは観察光をその面内で走査させるようにすれば、被観察物体内部の3次元的な位相情報を再生することも出来る。また、散乱光成分と非散乱光成分の各減衰特性から観察点近傍の局所的な光散乱係数を検出することが出来るので、この局所的な光散乱係数を比較することにより、被観察物体の内部構造の変化または基準となる物体との差異を検出することも出来る。
本実施例を含む各実施例では、深さ方向における光強度情報や位相情報の取得は2点としているが、2点以上の複数の点で光強度情報や位相情報を取得しても構わない。また、減衰特性を求めるにあたっては、取得した複数の情報を全て使っても良いし、取得した複数の情報の一部を使用しても構わない。
【0026】
【発明の効果】
上述の如く本発明によれば、生体内部のように光の散乱を伴う物質中の2点以上の観察点で位相情報と散乱光情報を検出し、夫々の変化を求めることによりその物質内部で散乱されない光と散乱された光の減衰特性を求め、この減衰特性を用いて被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報をることにより上記物質内部の3次元的な構造情報を得ることの出来る光学装置を提供することが出来る。また、本発明によれば、上記物質の内部で散乱されない光と散乱する光の減衰情報からその内部の局所的な光散乱係数を算出することができ、局所的な光散乱係数から物質内部の構造変化を知ることの可能な光学装置を提供することが出来る。同様にして、本発明によれは、シリコン基板上に形成された積層回路パターンの3次元的な構造情報や内部構造の変化を知ることの出来る光学装置を提供することが出来る。
【図面の簡単な説明】
【図1】光を透過する物質内での散乱光と非散乱光の進行状態を模式的に示した説明図である。
【図2】図1に示した散乱光と非散乱光のコヒーレンスを示す図である。
【図3】本発明に係る光学装置を微分干渉顕微鏡に適用した実施例の概略構成図である。
【図4】本発明に係る光学装置をマイケルソン型干渉計に適用した実施例の概略構成図である。
【図5】図4に示した実施例における参照ミラー42の移動距離とディテクター40における信号強度との関係を示す概略図である。
【符号の説明】
1,36 被観察物体(標本)
2,37 ステージ
3,35 対物レンズ
4,43 ピエゾ素子
5,27 ノマルスキープリズム
6,11 ハーフミラー
7,39 結像レンズ
8 開口パターンディスク(ニポウディスク)
9 モーター
10,12 リレーレンズ
13 検光子
14 撮像素子
15 記憶・演算装置
16 表示装置
17,20,23,29 光源
18,21,24,30,41 集光レンズ
19,22,25 位相変化装置
26,31,32,33 ミラー
28 コンデンサーレンズ
34 ビームスプリッタ
38 ステッピングモーター
40 光ディテクター
42 参照ミラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical device for obtaining the internal structure of an optical scatterer (object to be observed) typified by biological tissue and the structure information of a laminated pattern formed on a semiconductor substrate.
[0002]
[Prior art]
In the biological / medical field, when observing the physiological function of a living body or performing pathological diagnosis, it is desired to observe an internal tissue or the like non-invasively in the state of the living body without creating a specimen for observation. .
A living tissue is optically a light scatterer, and when observing the inside of a living body, the observation light is affected by scattering by the tissues before and after the region to be observed, and it is difficult to identify the region to be observed. .
In order to solve this problem, an observation method using a low coherence interference technique proposed in Japanese Patent Publication No. 6-35946 and US Pat. No. 5,321,501 has been used. When a living body is observed using a low coherence interference technique, only a signal in a specific region can be detected in the living body. Furthermore, the influence of light scattering by the medium before and after the observed region can be reduced.
Also in the semiconductor field, in order to realize high-density integration of ICs, it is advancing to form three-dimensionally by laminating circuit patterns to be formed on a silicon wafer. Along with such a three-dimensional circuit pattern, a method for inspecting the structure and defects of a specific circuit pattern layer laminated on a silicon wafer is also required.
Conventionally, as a method for inspecting a circuit pattern of an IC, there is a method of observing a circuit pattern by transmitting infrared light through a silicon substrate. However, by adopting this method, a portion that cannot be observed from the surface of a silicon wafer. As for, it became possible to observe.
[0003]
[Problems to be solved by the invention]
By the way, the current low coherence interference technique detects a signal from a specific area of an object to be observed by using the short coherence distance of the light source, and thereby obtains the coordinates and reflectance of the area to be observed. However, since no consideration is given to the reduction of the interference signal due to light scattering in the medium before and after the observed region, it is possible to separate the scattered light and the interference signal, but the phase of the observed region There is a problem that it is difficult to detect the change and reproduce the phase information, and therefore it is difficult to detect the change in the structure and density of the observation region.
In addition, when observing the physiological function of a living body or performing pathological diagnosis, it is necessary to detect changes in the structure and density of the observed region. In addition to obtaining the coordinates of the observed region and the light reflectance, the phase change It is also important to detect.
In addition, when a circuit pattern formed three-dimensionally on a silicon substrate is transmitted and observed using infrared light to inspect a structure or defect in a specific region, the circuit pattern before and after the region to be observed depends on the circuit pattern. Scattered light and diffracted light are generated. In addition, step information and the like forming a circuit pattern are attenuated in detection signals due to light scattering in regions before and after the step. In addition, when observing the structure and defects of the circuit pattern of each layer, it is necessary to separate the scattered light and detection light generated outside the region to be observed, but by combining an infrared light source and low-coherence interference technology The scattered light and the detection light can be separated. However, since the detection signal is attenuated due to light scattering in a region other than the region to be observed, as in the case of observation inside the living body, it is necessary to consider the attenuation of the detection signal due to light scattering. It is difficult to reproduce the structural information.
[0004]
The present invention has been made in view of such problems of the prior art, and the object of the present invention is to avoid phase information in a specific region of an object to be observed without being affected by light scattering. An object of the present invention is to provide an optical device that can be reproduced.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an optical apparatus according to the present invention includes a light source, an illumination optical system that guides light from the light source to an object to be observed, and a light that is disposed in the illumination optical system and that emits light from the light source. A member that divides and guides light to be observed and reference light for forming an interference image of the object to be observed, and an image that guides the interference image formed by the interference between the light to be observed and the reference light to the image sensor. An optical system, an image sensor that captures an interference image, an arithmetic device that calculates image information from the image sensor to obtain phase information, and an interference image disposed in the illumination optical system or the imaging optical system An optical apparatus having means for changing the relative phase difference between the observation light and the reference light forming the light intensity information at a plurality of points in the depth direction within the observation object, and performing the calculation device, reducing the light intensity information of at least two points of the plurality of points Obtains the light scattering coefficient of said object under observation object based on the characteristics, the phase information of attenuation due to scattering of light at a particular point in the depth direction of the observed the object is corrected by using the light scattering coefficient obtained Rukoto is characterized in.
[0006]
In general, the light transmitted through the light scattering medium is classified into scattered light and non-scattered light in terms of optical characteristics as schematically shown in FIGS. 1 and 2. It collides repeatedly with the light scattering material inside, and is distributed statistically within the scattering angle. The scattered light is considered to be incoherent when the optical path length becomes relatively random by repeatedly colliding with the light scattering material, and when the coherence of the light source is low. Non-scattered light is light that transmits without colliding with the light scattering material in the medium, or light that does not collide with the light scattering material and whose optical path length is within the coherence length of the light source. Light that transmits phase information such as distribution and unevenness.
[0007]
Thus, light source and an illumination optical system that guides the observation target object light from the light source, the reference light from the light source be located in the illumination optical system for forming an interference image of the observed light and the observed object a member for light guide and each divided into a light, an imaging device for obtaining an imaging optical system for guiding to the imaging device an interference image formed by the interference of the reference light and the observation light, a phase information by imaging the interference image And an arithmetic unit that calculates image information from the image sensor, and a relative phase difference between the observation light and the reference light that are arranged in the illumination optical system or the imaging optical system and form an interference image are changed. By configuring the optical device having the means, non-scattered light from a specific region in the light scattering medium can be detected as an interference image.
[0008]
When light passes through the light scattering medium, it is divided into scattered light generated by light colliding with a light scattering material and non-scattered light traveling without colliding. The non-scattered light traveling without colliding with the light scattering material has a higher probability of colliding with the light scattering material as the traveling distance becomes longer, and collides with the light scattering material to change into scattered light. Therefore, the ratio of non-scattered light to scattered light or incident light becomes small depending on the light scattering coefficient determined by the concentration of the light scattering material in the medium and the transmission distance.
Considering the light scattering coefficient as the probability that light collides with a light scattering material, the probability that non-scattered light exists depends on the light scattering coefficient and the transmission distance, and the ratio to scattered light and incident light decreases.
[0009]
The phase information of the observation point is a function of the ratio of the non-scattered light component and the scattered light component. When the light is transmitted through the light scattering medium, the attenuation rate of the non-scattered light component becomes larger than the attenuation rate of the scattered light component, so that the phase information is reduced and measured. Therefore, the interference image acquired by the optical apparatus having the above configuration is information in which the non-scattered light component is attenuated by the light scattering coefficient and the transmission distance of the medium.
[0010]
Create a sample to measure the light scattering coefficient from the same type of object as the object to be observed in advance, measure the light scattering coefficient, find the relationship between transmission distance and attenuation rate by computer simulation, etc., and store it as reference data inside the arithmetic unit Let me put. Then, the coordinates of the observation point in the observed object are measured with reference to the surface thereof, and the attenuation rate of the non-scattered light at the observation point is obtained from the reference data. Then, by correcting the acquired interference image using this attenuation factor, the phase distribution in the light scattering medium can be obtained without being affected by light scattering.
[0011]
Also, in the case of obtaining the phase information for a specific point in the light scattering medium is to estimate the attenuation characteristics of the non-scattered light is important. As a method for estimating the attenuation characteristics, first, a sample for measuring the light scattering coefficient is prepared from the same kind of substance as the observed substance, the light scattering coefficient is measured, and the non-scattered light is calculated using the Lambert-Beer equation. It is conceivable to obtain the relationship between the thickness of the object to be observed and the attenuation by numerical calculation. The light scattering coefficient can be obtained by measuring scattered light from at least two points in the observed object without preparing a measurement sample from the observed object. is there.
[0012]
Therefore, as in the present invention, the light intensity information at a plurality of points in the depth direction within the observation object is acquired, and based on the attenuation characteristics of the light intensity information of at least two of the plurality of points. By calculating the light scattering coefficient of the object to be observed, the attenuation characteristic of the non-scattered light is calculated, the attenuation data in the thickness direction is retained as reference data, and the light intensity information is obtained at the point or other points. It is possible to calculate the attenuation characteristic of non-scattered light and obtain phase information in which the attenuation amount due to light scattering at a specific point in the depth direction in the observed object is corrected .
[0013]
Further, the optical device that by the present invention, light source and an illumination optical system that guides the observation target object light from the light source, and the observation light light from the light source is disposed in the illumination optical system A member that divides and guides the reference light for forming an interference image of the object to be observed, and an imaging optical system that guides the interference image formed by the interference between the observation light and the reference light to the image sensor; An image pickup device that picks up an interference image, a calculation device that calculates image information from the image pickup device to obtain phase information, and an object that is disposed in the illumination optical system or the imaging optical system and forms an interference image. An optical device having means for changing a relative phase difference amount between observation light and reference light , wherein the arithmetic device acquires phase information of similar structures at a plurality of points in the depth direction in the object to be observed. Is based on the attenuation characteristics of the phase information of at least two of the plurality of points. There obtains a light scattering coefficient of said object to be observed object, so that to obtain the phase information of attenuation due to scattering of light is corrected at a particular point in the depth direction in the observed object using the light scattering coefficient I have to.
Since the circuit pattern formed on the silicon wafer has almost the same circuit pattern thickness, the phase information of the two points in the observed object is obtained and its signal ratio is obtained. The partial attenuation rate of the phase information can be obtained. In the case of an object in which similar structures are periodically laminated, such as a laminated circuit pattern, it is considered as uniform as a whole, and the attenuation characteristics in the depth direction can be estimated from the partial attenuation rate.
Therefore, as in the above-described invention, phase information of a similar structure is obtained at a plurality of points in the depth direction within the observed body, and the object to be observed is obtained from the attenuation characteristics of the phase information of at least two of the plurality of points. Determination of light scattering coefficient, attenuation corrected phase information to obtain Rukoto can due to scattering of light at the point specified in the depth direction of the observed in the object with the light scattering coefficient.
[0014]
According to the invention, the imaging optical system is configured to be a microscope optical system. Thereby, the physiological function of the living body and the circuit pattern on the silicon wafer can be enlarged, and more detailed information can be obtained.
[0015]
Further, according to the present invention, the illumination optical system and the imaging optical system are configured to be a confocal optical system. As a result, the resolution of the information in the depth direction of the non-scattered light is improved, the position of the observation point can be specified accurately, and the accuracy of correcting the attenuation of the phase information can be improved. Moreover, the leakage of scattered light can be reduced in the interference image for acquiring the phase information, and the acquisition accuracy of the phase information can be improved.
The scattered light can be reduced in the influence of light from other than the observation point, and can be treated as equivalent to the presence of an independent point light source at the observation point. By moving the observation point in the observed object and measuring the scattered light at a plurality of observation points, the attenuation characteristic of the scattered light of the observed object can be obtained. The light scattering coefficient can be obtained from this attenuation characteristic, and further the attenuation characteristic of the phase information can be obtained.
[0016]
Further, according to the present invention, the light source is configured to be a low coherence light source. Thereby, when acquiring the phase information of the observed object from the interference image, not only the non-scattered light can be separated from the scattered light but also the accuracy of the separation of the scattered light and the non-scattered light can be improved.
[0017]
According to the present invention, the light intensity information and the phase information are acquired at at least two points in the depth direction in the observed object, and the arithmetic unit attenuates the light intensity information and the phase information between the two points. obtains the light scattering coefficient of the observed object from the characteristics, to so that to obtain the phase information attenuation due to scattering of light at a particular point in the depth direction of the observed the object is corrected by using the light scattering coefficient ing.
Further, in applying the present invention, by configuring a confocal microscope, it is possible to obtain a sectioning effect when measuring scattered light intensity and phase information, so that the attenuation rate of light is measured more accurately. I can do it.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on illustrated examples.
Example 1
FIG. 3 is a schematic configuration diagram when the optical apparatus according to the present invention is applied to a differential interference microscope. Here, a configuration of an upright microscope using an infinite correction optical system in which light from an object is converted into a parallel light beam by an objective lens and an image of the object to be observed is formed by the imaging lens will be described as an imaging optical system. The differential interference microscope is an interference microscope that applies the shearing interferometry, which generates two interfering light beams by arranging a Nomarski prism in the optical path and generates an interference image by interfering the two light beams. It is. Therefore, in the shearing interferometry, the two light beams generated by the Nomarski prism alternately serve as the observation light and the reference light.
In the figure, 1 is a specimen which is an object to be observed suppressed on the stage 2, 3 is an objective lens, 4 is a piezo element, 5 is a Nomarski prism, 6 is a half mirror, 7 is an imaging lens, and 8 is an aperture pattern disk. , 9 is a motor, 10 is a relay lens, 11 is a half mirror, 12 is a relay lens, 13 is an analyzer, 14 is an image sensor, 15 is a storage / arithmetic unit, 16 is a display device, 17 is a light source, and 18 is a light collector. Lens, 19 is a phase change device, 20 is a light source, 21 is a condenser lens, 22 is a phase change device, 23 is a light source, 24 is a condenser lens, 25 is a phase change device, 26 is a mirror, 27 is a Nomarski prism, 28 Is a condenser lens. The aperture pattern disk 8 and the motor 9 are aperture members, the relay lenses 10 and 12, the half mirror 11 and the analyzer 13 are relay optical systems, and the light source 17, the condenser lens 18 and the phase change device 19 are confocal illumination optics. The light source 20, the condenser lens 21, and the phase change device 22 are incident illumination optical systems, and the light source 23, the condenser lens 24, the phase change device 25, the mirror 26, the Nomarski prism 27, and the condenser lens 28 are transmitted illumination optical systems. Respectively.
[0019]
An aperture pattern disk (Nipkow Disk) 8 is disposed at the focal position of the imaging lens 7, and the relay optical system forms an image of light transmitted through the aperture pattern disk 8 on the light receiving surface of the image sensor 14. Are arranged as follows. Further, a half mirror 11 is provided in the relay optical system, and the surface of the object to be observed 1 is confocally illuminated via the half mirror 11 and the aperture pattern disk 8 by the confocal illumination optical system. Yes. Further, the Nomarski prism 5 is arranged in the imaging optical system, and the analyzer 13 is arranged in the relay optical system to constitute a Nipo disk scanning confocal differential interference microscope capable of observing incident-light differential interference.
A phase change device 19 is disposed in the confocal illumination optical system, and a device 15 for storing / calculating an image of the observed object imaged by the image sensor 14 and a display for displaying the computed image. A device 16 is added. The objective lens 3 is attached to the piezo element 4 so that the distance between the objective lens 3 and the observed object 1 can be accurately controlled in cooperation with the stage 2 on which the observed object 1 is placed. It has become. In this embodiment, the phase change device 19 changes the amount of retardation to pick up a plurality of differential interference images, which can be calculated by the storage / calculation device 15 to extract the phase information. .
[0020]
Next, the case where the structure inside the living body is observed using a confocal optical system will be described. First, the biological specimen 1 which is an object to be observed is placed on the stage 2 and is movable in the depth direction, that is, the vertical direction. Light intensity information and phase information are acquired by confocal observation while moving the observation point from the vicinity of the surface of the biological specimen 1 toward the inside using both the stage 2 and the piezo element 4, and these are stored and calculated, respectively. The data is stored in the device 15 as data. And the change by the movement of the observation point of light intensity information is calculated | required from the acquired data, and it converts into the attenuation | damping characteristic of scattered light. Then, the light scattering coefficient is calculated from the attenuation characteristic of the scattered light, and further the attenuation characteristic of the phase information is obtained. Using the attenuation characteristics of the phase information thus calculated and the phase information measured at each observation point, a three-dimensional phase distribution inside the living body is reproduced. The above processing relating to phase reproduction is performed by the storage / arithmetic unit 15 in a series of programs.
In addition, according to the present Example, since it has a transmission illumination optical system and an epi-illumination optical system, observation other than confocal observation is also possible.
[0021]
Example 2
A case where an object to be observed having a property different from that of the first embodiment is observed using the differential interference microscope shown in FIG.
First, a circuit pattern formed on a silicon substrate whose internal characteristics are known in advance is used as a reference sample, and this reference sample is placed on the stage 2 and imaged using a transmission illumination optical system using the light source 23 as an infrared light source. While rotating the Nipou disc 8 in the optical system, the retardation amount is changed by the phase change device 19 arranged in the illumination optical system, and a plurality of differential interference images are taken and calculated by the storage / calculation device 15. Extract phase information. Next, in the laminated circuit pattern, one point near the surface and one point in the inside having the same structure are selected, the phase information is compared, and the phase between the two points is calculated from the comparison value of the coordinates of the two points and the phase information Obtain the attenuation rate of information. Further, the phase information of the phase structure near the surface is measured using an epi-illumination optical system or a confocal optical system.
Next, the phase attenuation characteristic inside the reference sample is estimated from the phase information measured using the epi-illumination optical system, the phase attenuation characteristic measured using the transmission illumination optical system, and the coordinates of one point. This attenuation characteristic is held in the storage / arithmetic unit 15 as reference data.
Next, a sample of the same type as the reference sample is placed on the stage 2 and the structure near the surface is measured using an epi-illumination optical system or a confocal optical system. By switching the illumination optical system, phase information inside the circuit pattern is measured using the transmission illumination optical system. Using the phase attenuation characteristic reference data held in the storage / arithmetic unit, the phase information in which the attenuation due to light scattering at a specific point in the depth direction in the observed object is corrected is reproduced. .
[0022]
Example 3
FIG. 4 is a schematic configuration diagram when the optical device according to the present invention is applied to a Michelson interferometer. In the figure, 29 is a low coherence light source using an SLD, 30 is a condensing lens, 31, 32 and 33 are mirrors, 34 is a beam splitter, 35 is an objective lens, 36 is an object to be observed, 37 is a stage, 38 is A stepping motor, 39 is an imaging lens, 40 is an optical detector comprising a CCD, 41 is a condenser lens, 42 is a reference mirror, and 43 is a piezo element. The stage 37 is configured so that the position can be accurately moved in the optical axis direction by the stepping motor 38, and the reference mirror 42 is also configured so that the position can be changed in the optical axis direction by the piezo element 43. Although not shown, the detector 40 is connected to the storage / arithmetic unit 15 and the display unit 16 as shown in the first embodiment.
Since the present embodiment is configured as described above, the light from the light source 29 that has reached the beam splitter 34 via the condenser lens 30 and the mirrors 31, 32, 33 is transmitted to the object 36 by the beam splitter 34 . It is divided into two light toward the light and the reference mirror 42 toward. Then, the light reflected by the observed object 36 and the light reflected by the reference mirror 42 are combined by the beam splitter 34 to form an interference fringe at the observation point on the optical detector 40. With low coherence light source as the light source 29 as in the present embodiment, the reference optical interference signal only at a position where the optical path length matches the that reflection by the reference mirror 42 and the optical path length of the observation light reflected by the observed object 36 Therefore, when observing a specific point on the observed object 36, the reference mirror 42 is moved by the piezo element 43 to match the optical path lengths. When the reference mirror 42 is moved, the signal from the optical detector 40 takes the form shown in FIG. 5 when the horizontal axis indicates the movement distance of the reference mirror 42 and the vertical axis indicates the signal intensity of the optical detector. . Here, the signal intensity is displayed as a negative voltage value.
[0023]
When observing the inside of the object to be observed 36, the intensity of the received signal from the light detector 40 decreases due to the presence of the light scattering material. This will be described with reference to FIG. 5. In the figure, P is an interference signal that changes as the reference mirror 42 moves, and S is the sum of the intensities of the light that reaches the photodetector 40. Therefore, P can be considered as a non-scattered light component and S as a scattered light component. When the observation point is moved from the surface of the observed object 36 to the inside, both the non-scattered light component P and the scattered light component S are attenuated. By making this attenuation amount correspond to the coordinates of the observation point, it is possible to know the attenuation characteristics of the scattered light component and the non-scattered light component. Furthermore, the phase information at the observation point can be obtained by scanning the reference mirror 42 at a specific observation point and using a phase detection method such as a fringe scanning method. and by using the damping characteristics of the scattered light, the phase information not affected by scattering of light at the observation point by correcting the attenuation due to scattering of light at the point specified in the depth direction of the observed in the object Can be played.
[0024]
Although not shown in FIG. 4, if the observed object 36 is moved also in a plane perpendicular to the optical axis, or if the observation light is scanned in that plane, the inside of the observed object will be shown. Three-dimensional phase information can also be reproduced. In addition, since the local light scattering coefficient near the observation point can be detected from the attenuation characteristics of the scattered light component and the non-scattered light component, by comparing this local light scattering coefficient, It is also possible to detect a change in internal structure or a difference from a reference object.
In each embodiment including this embodiment, the light intensity information and the phase information in the depth direction are acquired at two points, but the light intensity information and the phase information may be acquired at a plurality of two or more points. . In obtaining the attenuation characteristics, all of the acquired plurality of information may be used, or some of the acquired plurality of information may be used.
[0026]
【The invention's effect】
As described above, according to the present invention, phase information and scattered light information are detected at two or more observation points in a substance with light scattering, such as inside a living body, and the respective changes are obtained to find the inside of the substance. Determine the attenuation characteristics of unscattered light and scattered light, use this attenuation characteristic to determine the light scattering coefficient of the object under observation, and use the light scattering coefficient to determine the light scattering coefficient at a specific point in the depth direction within the object under observation. can attenuation due to scattering of light provides an optical apparatus capable of obtaining a three-dimensional structural information of the internal above substances by Rukoto obtain the phase information corrected. Further, according to the present invention, the local light scattering coefficient inside the substance can be calculated from the light not scattered inside the substance and the attenuation information of the scattered light, and the local light scattering coefficient can be calculated from the local light scattering coefficient. An optical device capable of knowing the structural change can be provided. Similarly, according to the present invention, it is possible to provide an optical device capable of knowing the three-dimensional structural information of the laminated circuit pattern formed on the silicon substrate and the change in the internal structure.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing the progress of scattered light and non-scattered light in a substance that transmits light.
FIG. 2 is a diagram showing coherence between scattered light and non-scattered light shown in FIG. 1;
FIG. 3 is a schematic configuration diagram of an embodiment in which an optical apparatus according to the present invention is applied to a differential interference microscope.
FIG. 4 is a schematic configuration diagram of an embodiment in which the optical device according to the present invention is applied to a Michelson interferometer.
5 is a schematic diagram showing the relationship between the moving distance of the reference mirror 42 and the signal intensity at the detector 40 in the embodiment shown in FIG.
[Explanation of symbols]
1,36 Object to be observed (specimen)
2,37 Stage 3,35 Objective lens 4,43 Piezo element 5,27 Nomarski prism 6,11 Half mirror 7,39 Imaging lens 8 Aperture pattern disk (Nipou disk)
DESCRIPTION OF SYMBOLS 9 Motor 10, 12 Relay lens 13 Analyzer 14 Image pick-up element 15 Memory | storage / arithmetic apparatus 16 Display apparatus 17, 20, 23, 29 Light source 18, 21, 24, 30, 41 Condensing lens 19, 22, 25 Phase change apparatus 26 , 31, 32, 33 Mirror 28 Condenser lens 34 Beam splitter 38 Stepping motor 40 Optical detector 42 Reference mirror

Claims (6)

光源と、
該光源からの光を被観察物体に導く照明光学系と、
該照明光学系内に配置されていて前記光源からの光を被観察光と被観察物体の干渉像を形成する為の参照光とにそれぞれ分割して導光する部材と、
被観察光と参照光の干渉により形成された干渉像を撮像素子に導く結像光学系と、
干渉像を撮像する撮像素子と、
該撮像素子からの画像情報を演算して位相情報を得る演算装置と、
前記照明光学系内または結像光学系内に配置されていて干渉像を形成する被観察光と参照光の相対的な位相差量を変化させる手段を有する光学装置であって、
被観察物体内の深さ方向における複数の点で光強度情報を取得し、
前記演算装置が、前記複数の点のうちの少なくとも2点の光強度情報の減衰特性に基づいて前記被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得ることを特徴とする光学装置。
A light source;
An illumination optical system that guides light from the light source to an object to be observed;
A member that is arranged in the illumination optical system and that divides and guides light from the light source into light to be observed and reference light for forming an interference image of the object to be observed;
An imaging optical system for guiding an interference image formed by the interference between the observation light and the reference light to the image sensor;
An image sensor that captures an interference image;
A computing device that computes image information from the image sensor to obtain phase information;
An optical apparatus having means for changing a relative phase difference amount of observation light and reference light which are arranged in the illumination optical system or the imaging optical system and form an interference image,
Obtain light intensity information at multiple points in the depth direction within the observed object,
The arithmetic unit determines the light scattering coefficient of said object under observation object based on the attenuation characteristic of the light intensity information of at least two points of the plurality of points, the depth of the observation target object by using the light scattering coefficient optical apparatus attenuation due to scattering of light at a particular point in the direction, characterized in Rukoto obtain a corrected phase information.
光源と、A light source;
該光源からの光を被観察物体に導く照明光学系と、An illumination optical system that guides light from the light source to an object to be observed;
該照明光学系内に配置されていて前記光源からの光を被観察光と被観察物体の干渉像を形成する為の参照光とにそれぞれ分割して導光する部材と、A member that is arranged in the illumination optical system and that divides and guides light from the light source into observation light and reference light for forming an interference image of the observation object;
被観察光と参照光の干渉により形成された干渉像を撮像素子に導く結像光学系と、An imaging optical system for guiding an interference image formed by the interference between the observation light and the reference light to the image sensor;
干渉像を撮像する撮像素子と、An image sensor that captures an interference image;
該撮像素子からの画像情報を演算して位相情報を得る演算装置と、A computing device that computes image information from the image sensor to obtain phase information;
前記照明光学系内または結像光学系内に配置されていて干渉像を形成する被観察光と参照光の相対的な位相差量を変化させる手段を有する光学装置であって、An optical apparatus having means for changing the relative phase difference between the observation light and the reference light that are arranged in the illumination optical system or the imaging optical system and form an interference image,
被観察物体内の深さ方向における複数の点で類似した構造の位相情報を取得し、Obtain phase information of similar structures at multiple points in the depth direction within the observed object,
前記演算装置が、前記複数の点のうちの少なくとも2点の位相情報の減衰特性に基づいて前記被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得ることを特徴とする光学装置。The arithmetic unit obtains a light scattering coefficient of the object to be observed based on attenuation characteristics of phase information of at least two points of the plurality of points, and uses the light scattering coefficient to determine a depth direction in the object to be observed An optical device characterized by obtaining phase information in which attenuation due to light scattering at a specific point is corrected.
前記結像光学系が顕微鏡光学系であることを特徴とする請求項1又は2に記載の光学装置。The optical device according to claim 1 or 2, wherein the imaging optical system is characterized in that the microscopic optical system. 前記照明光学系及び前記結像光学系が共焦点光学系であることを特徴とする請求項1〜3のいずれかに記載の光学装置。The optical apparatus according to any one of claims 1 to 3, wherein the illumination optical system and the imaging optical system are confocal optical systems. 前記光源が低コヒーレンス光源であることを特徴とする請求項1〜のいずれかに記載の光学装置。The optical device according to any one of claims 1 to 4, wherein said light source is a low coherence light source. 被観察物体内の深さ方向の少なくとも2点で光強度情報及び位相情報を取得し、前記演算装置が、前記2点間での光強度情報及び位相情報の減衰特性から被観察物体の光散乱係数を求め、該光散乱係数を用いて被観察物体内の深さ方向の特定の点での光の散乱による減衰量が補正された位相情報を得ることを特徴とする請求項1〜5のいずれかに記載の光学装置。Light intensity information and phase information are acquired at at least two points in the depth direction in the object to be observed, and the arithmetic unit scatters light of the object to be observed from the attenuation characteristics of the light intensity information and phase information between the two points. obtains the coefficients, according to claim 1 in which the attenuation due to scattering of light at a particular point in the depth direction of the observed in the object with the light scattering coefficient, wherein Rukoto obtain a corrected phase information The optical device according to any one of 5 .
JP2000088580A 2000-03-24 2000-03-24 Optical device Expired - Fee Related JP4673955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088580A JP4673955B2 (en) 2000-03-24 2000-03-24 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088580A JP4673955B2 (en) 2000-03-24 2000-03-24 Optical device

Publications (2)

Publication Number Publication Date
JP2001272603A JP2001272603A (en) 2001-10-05
JP4673955B2 true JP4673955B2 (en) 2011-04-20

Family

ID=18604440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088580A Expired - Fee Related JP4673955B2 (en) 2000-03-24 2000-03-24 Optical device

Country Status (1)

Country Link
JP (1) JP4673955B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869057B2 (en) 2002-09-09 2011-01-11 Zygo Corporation Multiple-angle multiple-wavelength interferometer using high-NA imaging and spectral analysis
KR101223195B1 (en) * 2002-09-09 2013-01-21 지고 코포레이션 Interferometry method and apparatus for ellipsometry, relectometry, and scatterometry measurements, including characterization of thin film structure
US7324214B2 (en) 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
JP4819383B2 (en) * 2004-03-26 2011-11-24 オリンパス株式会社 Optical microscope and optical observation method
JP2005283387A (en) * 2004-03-30 2005-10-13 Sumitomo Osaka Cement Co Ltd Thickness measuring device and thickness measuring method
ES2243129B1 (en) * 2004-04-23 2006-08-16 Universitat Politecnica De Catalunya OPTICAL PROFILE OF DUAL TECHNOLOGY (CONFOCAL AND INTERFEROMETRIC) FOR THE INSPECTION AND THREE-DIMENSIONAL MEASUREMENT OF SURFACES.
US7884947B2 (en) 2005-01-20 2011-02-08 Zygo Corporation Interferometry for determining characteristics of an object surface, with spatially coherent illumination
US7446882B2 (en) 2005-01-20 2008-11-04 Zygo Corporation Interferometer for determining characteristics of an object surface
JP5052116B2 (en) * 2006-12-19 2012-10-17 富士フイルム株式会社 Optical tomographic imaging system
US7924435B2 (en) 2006-12-22 2011-04-12 Zygo Corporation Apparatus and method for measuring characteristics of surface features
US7889355B2 (en) 2007-01-31 2011-02-15 Zygo Corporation Interferometry for lateral metrology
US8072611B2 (en) * 2007-10-12 2011-12-06 Zygo Corporation Interferometric analysis of under-resolved features
JP5222954B2 (en) 2007-11-13 2013-06-26 ザイゴ コーポレーション Interferometer using polarization scan
EP2232195B1 (en) 2007-12-14 2015-03-18 Zygo Corporation Analyzing surface structure using scanning interferometry
US8004688B2 (en) 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry
JP5249739B2 (en) * 2008-12-10 2013-07-31 浜松ホトニクス株式会社 Observation apparatus and observation method
JP2012519876A (en) * 2009-03-05 2012-08-30 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Method and system for enhancing microscopic images
JP5659048B2 (en) * 2011-03-02 2015-01-28 株式会社日立製作所 Optical inspection method and apparatus
JP6137324B2 (en) * 2013-09-06 2017-05-31 株式会社ニコン Illumination device and structured illumination microscope device
JP6886306B2 (en) * 2017-02-02 2021-06-16 オリンパス株式会社 Phase distribution calculation method, evaluation method, image processing device, image processing system, program
KR102515833B1 (en) * 2018-08-01 2023-03-29 삼성전자주식회사 Apparatus and method for analyzing substance of object, and image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635946B2 (en) * 1990-11-06 1994-05-11 直弘 丹野 Light wave reflection image measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523725B2 (en) * 1995-10-13 2004-04-26 オリンパス株式会社 Differential interference microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635946B2 (en) * 1990-11-06 1994-05-11 直弘 丹野 Light wave reflection image measuring device

Also Published As

Publication number Publication date
JP2001272603A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4673955B2 (en) Optical device
JP6130464B2 (en) System and method for Hilbert phase image processing
JP6460364B2 (en) Off-axis reflection phase microscope system and method for off-axis phase microscope
US8416400B2 (en) Wavefront imaging sensor
JP4777362B2 (en) Motion correction method in optical coherence tomography imaging
US6909509B2 (en) Optical surface profiling systems
US20150090908A1 (en) Light microscope and microscopy method for examining a microscopic specimen
KR20020027377A (en) Methods and systems using field-based light scattering spectroscopy
JPH09503065A (en) Interferometric measuring method and apparatus for measuring surface shape
JPH06505096A (en) light sensor
JP2010188114A (en) Optical tomographic imaging method and optical tomographic imaging apparatus
KR20020034988A (en) Multiple layer confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
KR20130108490A (en) Imaging apparatus and imaging method
US7973940B2 (en) Optical object measurement apparatus
US20080144006A1 (en) Method for Measuring Topographic Structures on Devices
CN108139198A (en) For exposing the method and apparatus at least one of light scattering interior of articles section
JP2009008393A (en) Optical image measuring device
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
US20090296099A1 (en) Interferometric Layer Thickness Determination
JP6405037B2 (en) Instantaneous time-domain optical coherence tomography
JP2006116028A (en) Line focusing type fourier domain interference profile measuring apparatus
JP2005241493A (en) Device for measuring and analyzing three-dimensional shape
JP2003207308A (en) Interferometer, microscope for surgical operation, and interferometric measuring method for moving speed of object
CN113767277A (en) Normal incidence phase shift deflection measurement sensor, system and method for inspecting a sample surface
JP2002323659A (en) Confocal optical system and scanning confocal microscope using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees