JP4673482B2 - Se and As-containing wastewater treatment methods - Google Patents

Se and As-containing wastewater treatment methods Download PDF

Info

Publication number
JP4673482B2
JP4673482B2 JP2000399918A JP2000399918A JP4673482B2 JP 4673482 B2 JP4673482 B2 JP 4673482B2 JP 2000399918 A JP2000399918 A JP 2000399918A JP 2000399918 A JP2000399918 A JP 2000399918A JP 4673482 B2 JP4673482 B2 JP 4673482B2
Authority
JP
Japan
Prior art keywords
liquid
treatment
containing wastewater
tin
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000399918A
Other languages
Japanese (ja)
Other versions
JP2002192167A (en
Inventor
浩 佐藤
隆平 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000399918A priority Critical patent/JP4673482B2/en
Publication of JP2002192167A publication Critical patent/JP2002192167A/en
Application granted granted Critical
Publication of JP4673482B2 publication Critical patent/JP4673482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Se、As含有排水の処理方法に関し、SeおよびAsの両者を高除去率で除去することが可能なSe、As含有排水の処理方法に関する。
【0002】
【従来の技術】
従来、粗銅の電解精製など金属の電解精製においては、原鉱石中に微量のセレン(以下、Seとも記す)、砒素(以下、Asとも記す)が含まれるため、これらを回収し、Seは整流器、複写機感光体、太陽電池、触媒およびガラス着色剤など幅広い用途に用いられ、亜砒酸は殺虫剤、殺鼠剤、除草剤などの農薬、木材の防虫剤、防腐剤、ガラス工業における調色用配合剤、サルバルサンサンなどの医薬品および半導体材料などに用いられる。
【0003】
一方、上記した金属の電解精製における電解槽の沈澱物の処理工程において発生する排水中にはSe、Asが溶存することがあり、排水処理によってSe、Asを除去する必要がある。
Seの除去方法としては、水酸化第二鉄による共沈法が知られ、また特公昭48− 30558号公報において、排水中にFe2+を添加し、次いでpH=3〜5の条件下Cu2+を添加することによって、Fe2+の酸化および加水分解を促進し、さらにpH=5〜6の条件下、Seを水酸化第二鉄と共沈回収する方法が開示されている。
【0004】
また、Asの除去方法としては、第二鉄塩による共沈法が知られている。
しかしながら、上記したSeの除去方法は、4価セレンの除去には有効であるが、6価セレンに対しては除去効果が低い。
一方、近年、Seが新たに排水の水質基準項目として規定され、従来のSe除去方法では不十分となった。
【0005】
すなわち、排水の新たな水質基準に対応するため、Se含有排水の処理方法の開発が必須となった。
また、上記した粗銅の電解精製など金属の電解精製においては、原鉱石に由来するSeおよびAsの両者を含有する排水を処理し、SeおよびAsの両者を除去することが効率的な排水処理となるため、SeおよびAsの両者を高除去率で除去することが可能な排水処理方法が求められる。
【0006】
【発明が解決しようとする課題】
本発明は、SeおよびAsの両者を高除去率で除去することが可能なSe、As含有排水の処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
第1の発明は、Se6+を1mg/l以上、Asを5mg/l以上含有するSe、As含有排水に第一鉄塩を0.10〜1.0(mol/l −処理液) 添加してpH4.0 〜6.5 、液温75〜95℃とした後、Ca(OH)2 および/またはCaO をCa(OH) 2 換算の合計量で2〜15(g/l−処理液) 添加してpH5.0 〜7.5 、液温75〜95℃で反応せしめ、得られた処理液を固液分離することを特徴とするSe、As含有排水の処理方法である。
第2の発明は、鉛スクラップおよび/または鉛滓と、粗銅の電解精製工程で得られる脱銅スライムの焙焼澱物の還元溶錬で得られる煙灰および/または前記脱銅スライムの焙焼澱物の還元溶錬で得られるからみ(:スラグ)を原料とし、熔鉱炉およびその後工程としての脱錫鍋および該脱錫鍋の後工程としての錫電解槽を用いる電気錫の製造工程において、前記錫電解槽のSe6+を1mg/l以上、Asを5mg/l以上含有する電解尾液を含有する排水に、第一鉄塩を0.10〜1.0(mol/l −処理液) 添加してpH4.0 〜6.5 、液温75〜95℃とした後、Ca(OH)2 および/またはCaO をCa(OH) 2 換算の合計量で2〜15(g/l−処理液) 添加してpH5.0 〜7.5 、液温75〜95℃で反応せしめ、得られた処理液を固液分離することを特徴とするSe、As含有排水の処理方法である。
【0008】
なお、上記した第2の発明における鉛スクラップとしては、例えば、使用済鉛蓄電池、半田成分および鉛管屑から選ばれる1種または2種以上である鉛含有物が例示され、鉛滓としては、例えば、使用済鉛蓄電池の解体工場からの鉛滓および/または環境集塵で得られる鉛含有煙灰である鉛含有物が例示される。
前記した第1の発明、第2の発明は、前記したSe、As含有排水がさらにSnを含有するSe、As含有排水の処理方法としてより好適に用いられる。
【0009】
また、前記した第1の発明、第2の発明は、前記したSe、As含有排水または前記電解尾液が、Se6+ をより好ましくは1〜200mg/l 、Asをより好ましくは5〜20000mg/l 、またはさらにSnを1mg/l以上、より好ましくはSnを1〜10000mg/l 含有するSe、As含有排水の処理方法としてより好適に用いられる。
【0011】
また、前記した第1の発明、第2の発明においては、前記したSe、As含有排水にpH調整剤を添加することによってpHを6〜8の範囲内に調整した後、前記第一鉄塩を添加することが好ましい
【0012】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明者らは、前記した課題を解決するために鋭意検討した結果、下記知見(1) 〜(5) を見出し本発明に至った。
(1) Se、As含有排水への第一鉄塩添加、Ca(OH)2 、CaO 添加によるSe、Asの除去:
Se、As含有排水へ硫酸第一鉄などの第一鉄塩を添加、反応せしめ、さらにCa(OH)2 および/またはCaO を添加、反応せしめた後、得られた処理液を固液分離することによって、排水中のSeおよびAsの両者を極めて高除去率で除去できる。
【0013】
(2) Se、AsおよびSn含有排水への第一鉄塩添加、Ca(OH)2 、CaO 添加によるSe、AsおよびSnの除去:
Se、AsおよびSn含有排水へ硫酸第一鉄などの第一鉄塩を添加、反応せしめ、さらにCa(OH)2 および/またはCaO を添加、反応せしめた後、得られた処理液を固液分離することによって、排水中のSeおよびAsのみならずSnも極めて高除去率で除去できる。
【0014】
(3) 第一鉄塩添加後の処理液のpHの規制:
第一鉄塩添加後の処理液のpHを4.0 〜6.5 の範囲内に規制することによって、SeおよびAsの両者を極めて高除去率で除去できる。
(4) Ca(OH)2 、CaO 添加後の処理液のpHの規制:
Ca(OH)2 および/またはCaO を添加した後の処理液のpHを5.0 〜7.5 の範囲内に規制することによって、SeおよびAsの両者を極めて高除去率で除去できる。
【0015】
(5) 上記した(1) 〜(4) のSe、As含有排水の処理方法は、鉛スクラップおよび/または鉛滓と、粗銅の電解精製工程で得られる脱銅スライムの焙焼澱物の還元溶錬で得られる煙灰および/または脱銅スライムの焙焼澱物の還元溶錬で得られるからみ(:スラグ)を原料とし、熔鉱炉およびその後工程としての脱錫鍋および該脱錫鍋の後工程としての錫電解槽を用いる電気錫の製造工程におけるSe、As含有排水の処理方法として特に好適に用いられる。
【0016】
以下、I.第1の発明、II. 第2の発明、III.Se、AsおよびSnの除去機構、並びにIV. 本発明における好適な反応条件の順に説明する。
〔I.第1の発明:〕
第1の発明は、Se、As含有排水に第一鉄塩を添加した後、Ca(OH)2 および/またはCaO を添加、反応せしめ、得られた処理液を固液分離するSe、As含有排水の処理方法である。
【0017】
表1に、本発明のSe、As含有排水の処理方法の工程の一例を、好適反応条件と併せて示す。
また、図1に、表1に示す工程に従ってSe、As含有排水を処理した時の処理液のpHの経時変化の一例を示す。
また、表2に、この時の処理条件および処理前のSe、As含有排水(被処理液)および処理後の排水(最終処理液)の組成を示す。
【0018】
なお、図1および表2に示すSe、As含有排水の処理においては、Se、As含有排水として、後記する銅製錬および鉛製錬における錫電解尾液を用いた。
また、pH調整には希硫酸を、第一鉄塩としては、酸化抑制のために硫酸でpH:1.5 に調整した硫酸第一鉄水溶液を用い、Ca(OH)2 および/またはCaO としては消石灰乳を用いた。
【0019】
表2に示されるように、第一鉄塩と、Ca(OH)2 および/またはCaO を用いる本発明のSe、As含有排水の処理方法によれば、Asおよび従来除去が困難であったSe6+の両者を高除去率で除去できると共に、Snも高除去率で除去可能であることが分かった。
【0020】
【表1】

Figure 0004673482
【0021】
【表2】
Figure 0004673482
【0022】
〔II. 第2の発明:〕
第2の発明は、鉛スクラップおよび/または鉛滓と、▲1▼粗銅の電解精製工程で得られる脱銅スライムの焙焼澱物の還元溶錬で得られる煙灰および/または▲2▼前記脱銅スライムの焙焼澱物の還元溶錬で得られるからみ(:スラグ)を原料とし、熔鉱炉およびその後工程としての脱錫鍋および該脱錫鍋の後工程としての錫電解槽を用いる電気錫の製造工程において、前記錫電解槽の電解尾液を含有する排水に、第一鉄塩を添加した後、Ca(OH)2 および/またはCaO を添加、反応せしめ、得られた処理液を固液分離するSe、As含有排水の処理方法である。
【0023】
図2に、本発明に係わる銅製錬および鉛製錬の工程図の一例を示す。
銅製錬においては、粗銅の電解精製において、熔錬工場の転炉、精製炉、鋳銅機によって製造された粗銅を陽極とし、種板を陰極として、種板に高純度の銅を電解析出せしめ電気銅を製造する。
また、上記した粗銅の電解精製においては、銅電解槽の槽底の沈澱物である所謂澱物(アノードスライム)を、脱銅槽において硫酸浸出により脱銅し、脱銅後に得られる所謂脱銅スライムを焙焼炉で酸化焙焼し、気体として生成した二酸化セレンを捕集塔、スクラバーまたは湿式電気集塵機などで亜セレン酸として捕集し亜セレン酸を還元することによってSeを回収する。
【0024】
また、焙焼炉における焙焼残渣である焙焼澱物は、主成分がPbSO4 であり、熔澱炉(溶澱炉)において溶剤を加えて還元溶錬(還元熔錬)してAuとAgを貴鉛中に捕集し、分銀炉で処理し粗銀を得る。
一方、焙焼澱物を熔澱炉で還元溶錬(還元熔錬)する際に発生する煙灰(熔澱煙灰)およびからみ(スラグ)中にもPb、Se、Asが含まれる。
【0025】
このため、図2に示す銅製錬工程においては、上記した煙灰(熔澱煙灰)およびからみ(スラグ)を鉛製錬の原料の一部として使用する。
すなわち、使用済鉛蓄電池、半田成分および鉛管屑などの鉛スクラップ、バッテリー解体などにおいて発生する鉛滓などのリサイクル原料と、上記した熔澱煙灰およびからみを熔鉱炉で処理し、粗鉛とする。
【0026】
上記した半田成分などのリサイクル原料中には錫が含まれているため、粗鉛を脱錫鍋によって脱錫し、脱錫後の鉛分は鋳造、電解を行うことによって電気鉛を製造する。
また、脱錫鍋において副生する錫を含有する所謂脱錫滓は、電解し電気錫を製造する。
【0027】
上記した錫電解における電解槽の電解尾液(錫電解尾液)にはSn、SeおよびAsが含まれ、排水対策の面から、これらの3者を高除去率で除去することが必要となる。
本発明の排水の処理方法によれば、Sn、SeおよびAsの3者を、いずれも高除去率で除去可能であるため、本発明は上記した錫電解尾液(Sn電解尾液)の処理方法として特に好適に用いることができる。
【0028】
〔III.Se、AsおよびSnの除去機構:〕
次に、本発明におけるSe、AsおよびSnの除去機構について述べる。
本発明におけるSe、AsおよびSnの除去機構は、例えば上記したSn電解尾液であるアルカリ性排水について下記のように推定される。
(Seの除去機構:)
排水中のSeは、第一鉄塩およびCa(OH)2 の添加によって、下記反応式(1) 〜(3) に従い金属Seに還元される。
【0029】
Na2SeO4 +9Fe(OH)2→Se+3Fe3O4↓+2NaOH +8H2O………………(1)
Na2SeO4 +6Fe(OH)2→Se+3Fe2O3↓+2NaOH +5H2O………………(2)
Na2SeO4 +Fe2++Fe(OH)2 →Se+Fe3O4 、FeOOH 、Fe(OH)3 ↓…(3)
生成した金属Seおよび金属Se生成における中間生成物であるSn4+は、水酸化鉄並びに後記する反応式(4) で生成するヒ酸第二鉄と共沈し、その結果、固液分離によってSeが高除去率で除去されるものと推定される。
【0030】
(Asの除去機構:)
排水中のAsは、第一鉄塩の添加によって、主として下記反応式(4) に従いヒ酸第二鉄となって沈澱すると共に、後工程におけるCa(OH)2 および/またはCaO の添加時に、下記反応式(5) に従いヒ酸カルシウムとなって沈澱し、その結果、固液分離によってAsが高除去率で除去されるものと推定される。
【0031】
Fe3++H3AsO4+mH2O=FeAsO4・mH2O↓+3H+ …………………(4)
3Ca2+ +2H3AsO4 +nH2O=Ca3(AsO4)2・nH2O↓+6H+ ………(5)
(Snの除去機構:)
排水中のSnは、水酸化錫となって沈澱し、固液分離によってSnが高除去率で除去される。
【0032】
〔IV. 本発明における好適な反応条件:〕
次に、本発明における好適な反応条件について説明する。
(第一鉄塩添加後の処理液のpH:)
第一鉄塩添加後、Ca(OH)2 および/またはCaO 添加前の処理液(以下、第一鉄塩添加後の処理液と記す)のpHは、4.0 〜6.5 であることが好ましい。
【0033】
図3に、第一鉄塩として硫酸第一鉄を用いた場合の硫酸第一鉄添加後の処理液のpHと固液分離後の最終処理液中の残留Se濃度、残留As濃度との関係を示す。
なお、図3中において、T.Seとは全Seを示す。
図3に示されるように、第一鉄塩添加後の処理液のpHが6.5 を超える場合、Se、Asの除去率がいずれも低下し、逆に第一鉄塩添加後の処理液のpHが4.0 未満の場合、Asの除去率が低下する。
【0034】
〔Ca(OH)2 、CaO 添加後の処理液のpH:〕
Ca(OH)2 および/またはCaO を添加した後の処理液のpHは、5.0 〜7.5 であることが好ましい。
図4に、消石灰添加1.5h後の処理液のpHと固液分離後の最終処理液中の残留Se濃度、残留As濃度との関係を示す。
【0035】
図4に示されるように、消石灰添加後の処理液のpHが7.5 を超える場合、Asの除去率が低下し、逆に消石灰添加後の処理液のpHが5.0 未満の場合、Asの除去率が低下する。
(第一鉄塩の添加量:)
本発明においては、第一鉄塩の添加量が、0.10(mol/l−処理液)以上であることが好ましく、さらには0.10〜 1.0(mol/l−処理液)であることがより好ましい。
【0036】
第一鉄塩の添加量が0.10(mol/l−処理液) 未満の場合、SeおよびAsの除去率が低下し、逆に第一鉄塩の添加量が 1.0(mol/l−処理液) を超える場合、第一鉄塩の添加効果が実用上飽和し、経済的でない。
(第一鉄塩添加後の処理液の液温:)
本発明においては、第一鉄塩添加後の処理液の液温が75〜95℃であることが好ましい。
【0037】
第一鉄塩添加後の処理液の液温が75℃未満の場合、SeおよびAsの除去率が低下し、逆に第一鉄塩添加後の処理液の液温が95℃を超える場合、液温の上昇効果が実用上飽和し、エネルギー使用量の面から経済的でない。
(第一鉄塩:)
本発明における第一鉄塩の種類としては特に制限を受けるものではないが、Se、Asの除去率および入手の容易さの面から、第一鉄塩として硫酸第一鉄および/または塩化第一鉄を用いることが好ましい。
【0038】
(Ca(OH)2 、CaO の添加量:)
本発明においては、Ca(OH)2 および/またはCaO の添加量が、Ca(OH)2 換算の合計量で2(g/l−処理液) 以上であることが好ましく、さらには上記合計量で2〜15(g/l−処理液) であることがより好ましい。
Ca(OH)2 および/またはCaO の添加量が上記合計量で2(g/l−処理液) 未満の場合、SeおよびAsの除去率が低下し、逆に上記合計量が15(g/l−処理液) を超える場合、Asの除去率が低下する。
【0039】
(Ca(OH)2 、CaO 添加後の処理液の液温:)
本発明においては、Ca(OH)2 および/またはCaO 添加後の処理液の液温が75〜95℃であることが好ましい。
Ca(OH)2 および/またはCaO 添加後の処理液の液温が75℃未満の場合、SeおよびAsの除去率が低下し、逆にCa(OH)2 および/またはCaO 添加後の処理液の液温が95℃を超える場合、液温の上昇効果が実用上飽和し、エネルギー使用量の面から経済的でない。
【0040】
本発明における処理設備の反応装置としては特に制限を受けるものではないが、工業的容易さの面から、攪拌反応槽を用いることが好ましい。
固液分離装置は、特に制限を受けるものではなく、下記の図5に示すように、反応装置を沈降分離槽と兼用させてもよく、また、シックナー、遠心分離機、濾過器などを用いてもよい。
【0041】
図5に、本発明に好適に用いられる処理設備の一例を示す。
なお、図5において、1は反応槽(攪拌反応槽)、2は攪拌装置、3は過熱蒸気流通蛇管などの反応液加熱装置、4は処理液抜き出し配管、5はスラッジ抜き出し配管、6はフィルタープレス、7はpH計、8はポンプ、9は弁、10は反応液(被処理液)、11は原水(Se、As含有排水、被処理液)、12は第一鉄塩含有水溶液、13は消石灰乳、14は希硫酸、NaOHなどのpH調整剤、15は処理液、16は脱水スラッジを示す。
【0042】
図5に示す処理設備においては、先ず、反応槽1にSe、As含有排水である原水(被処理液)11を供給し、必要に応じてpH調整剤14の添加によって処理液(反応液)のpHを6〜8の範囲内に調整した後、第一鉄塩含有水溶液12を添加する。
第一鉄塩含有水溶液を添加した後の処理液(反応液)のpHは4.0 〜6.5 であることが好ましい。
【0043】
所定時間経過後、消石灰乳13を添加し、処理液(反応液)の攪拌条件下、好ましくは液温:75〜95℃、処理液(反応液)のpH:5.0 〜7.5 の範囲内に調整し、反応を行う。
所定の反応時間経過後、処理液を静置し、固液を沈降分離する。
次に、反応槽1の上澄み液(処理液)を、処理液抜き出し配管4を用いて抜き出す。
【0044】
次に、反応槽1の槽底に沈降したスラッジを、スラッジ抜き出し配管5を用いて抜き出し、フィルタープレス6に送給する。
フィルタープレス6で分離された処理液は、上記で得られた処理液と共に系外に排水し、脱水スラッジ16は再利用する。
【0045】
【実施例】
以下、本発明を実施例に基づきさらに具体的に説明する。
〔実施例1〕(本発明例1、比較例1、2、参考例1、2
本実施例においては、前記した図2に示す鉛製錬工程で生成した錫電解尾液の処理を行った。
【0046】
なお、鉛製錬の原料としては、▲1▼使用済鉛蓄電池、半田成分、鉛管屑などの鉛スクラップ、▲2▼鉛滓、▲3▼粗銅の電解精製工程で得られる脱銅スライムの焙焼澱物の還元溶錬(還元熔錬)で得られる煙灰(熔澱煙灰)および▲4▼脱銅スライムの焙焼澱物の還元溶錬(還元熔錬)で得られるからみ(スラグ)の混合原料を用いた。
【0047】
処理方法は、前記した表1の工程に従った。
なお、pH調整には希硫酸を用い、第一鉄塩としては、酸化抑制のために硫酸でpH:1.5 に調整した硫酸第一鉄水溶液を用い、Ca(OH)2 として消石灰乳を用いた。
また、処理設備としては、前記した図5に示す処理設備を用いた。
【0048】
すなわち、反応装置としては攪拌反応槽を用い、固液分離法としては沈降分離法を用いた。
なお、本実施例においては、消石灰乳無添加の場合についても実験を行った。
表3に、処理条件、被処理液組成および最終処理液組成を示す。
表3に示されるように、本発明の処理方法によれば、第一鉄塩の添加、Ca(OH)2 の添加によって、SeおよびAsさらにはSnをいずれも高除去率で除去可能であることが分かった。
【0049】
また、第一鉄塩添加後の被処理液のpHおよびCa(OH)2 添加後の被処理液のpHを本発明の好適範囲内とすることによって、SeおよびAsの両者を極めて高除去率で除去可能であることが分かった。
【0050】
【表3】
Figure 0004673482
【0051】
【表4】
Figure 0004673482
【0052】
〔実施例2〕(本発明例参考例3
前記した実施例1における本発明例1と同様の方法で錫電解尾液の処理を行った。
本実施例においては、第一鉄塩およびCa(OH)2 それぞれの添加効果を調べるため、pH調整後、FeSO4 添加5分後、Ca(OH)2 添加1〜5時間後に反応液の一部を抜き出し、抜き出し液の固液分離を行った後、液中のSe、AsおよびSnの各濃度を調べた。
【0053】
表4に、得られた結果を処理条件と併せて示す。
表4に示されるように、Se濃度はCa(OH)2 添加1時間後も経時的に低下し、添加3時間後に1mg/l未満となった。
このことから、Seが高除去率で除去可能な理由として、前記した反応式(1) 〜(3) に従って生成した金属Seおよび金属Se生成における中間生成物であるSn4+が、水酸化鉄およびヒ酸第二鉄と共沈し、その結果、固液分離によって高除去率で除去されるものと推定される。
【0054】
【表5】
Figure 0004673482
【0055】
〔実施例3〕(本発明例
前記した実施例1における本発明例1と同様の方法で錫電解尾液の処理を行った。
本実施例においては、前記した本発明例1において、硫酸第一鉄水溶液に代えて塩化第一鉄水溶液を用いた以外は本発明例1と同一処理条件で処理を行った。
【0056】
なお、塩化第一鉄の添加量は0.15(mol/l−処理液) とした。
その結果、被処理液組成;全Se濃度:57mg/l、As濃度:3360mg/l、Sn濃度:2350mg/lに対して、最終処理液組成は、全Se濃度<1mg/l、As濃度<1mg/l、Sn濃度<1mg/lとなり、前記した本発明例1と同様に優れたSe、AsおよびSnの除去効果が得られた。
【0057】
以上実施例について述べたが、本発明においては、本発明の原理から、実施例で用いた消石灰乳に代えて、Ca(OH)2 またはCaO またはそれらの両者を、直接、被処理液中に添加することもできる。
【0058】
【発明の効果】
本発明によれば、排水中のSeおよびAsの両者を高除去率で除去することが可能となり、その工業的意義は大きい。
さらに、本発明によれば、Se、AsおよびSnの3者を含有する排水を工業的に優れた簡易な方法で処理することができ、銅製錬および鉛製錬における排水を極めて効率的に処理することが可能となった。
【図面の簡単な説明】
【図1】 Se、As含有排水処理時の処理液pHの経時変化の一例を示すグラフである。
【図2】本発明に係わる銅製錬および鉛製錬の一例を示す工程図である。
【図3】硫酸第一鉄添加後の処理液pHと最終処理液中の残留Se濃度、残留As濃度との関係を示すグラフである。
【図4】消石灰添加1.5h後の処理液pHと最終処理液中の残留Se濃度、残留As濃度との関係を示すグラフである。
【図5】本発明に係わるSe、As含有排水の処理設備の一例を示すフローシートである。
【符号の説明】
1 反応槽(攪拌反応槽)
2 攪拌装置
3 反応液加熱装置(過熱蒸気流通蛇管)
4 処理液抜き出し配管
5 スラッジ抜き出し配管
6 フィルタープレス
7 pH計
8 ポンプ
9 弁
10 反応液(被処理液)
11 原水(被処理液)
12 第一鉄塩含有水溶液
13 消石灰乳
14 pH調整剤
15 処理液
16 脱水スラッジ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating Se and As-containing wastewater, and relates to a method for treating Se and As-containing wastewater that can remove both Se and As at a high removal rate.
[0002]
[Prior art]
Conventionally, in the electrolytic refining of metals such as electrolytic refining of crude copper, the raw ore contains a small amount of selenium (hereinafter also referred to as Se) and arsenic (hereinafter also referred to as As). Used in a wide range of applications such as photocopier photoreceptors, solar cells, catalysts and glass colorants. Arsenite is an agrochemical such as insecticides, rodenticides and herbicides, wood insecticides, preservatives, and toning agents for the glass industry. Used for pharmaceuticals such as Salvar Sansan and semiconductor materials.
[0003]
On the other hand, Se and As may be dissolved in the wastewater generated in the treatment process of the deposits in the electrolytic cell in the above-described metal electrolytic purification, and it is necessary to remove Se and As by the wastewater treatment.
As a method for removing Se, a coprecipitation method using ferric hydroxide is known. In Japanese Examined Patent Publication No. 48-30558, Fe 2+ is added to the waste water, and then Cu = pH 3-5. A method of promoting the oxidation and hydrolysis of Fe 2+ by adding 2+ and co-recovering Se with ferric hydroxide under the condition of pH = 5-6 is disclosed.
[0004]
As a method for removing As, a coprecipitation method using ferric salt is known.
However, the above-described method for removing Se is effective for removing tetravalent selenium, but the removal effect is low for hexavalent selenium.
On the other hand, in recent years, Se has been newly defined as a water quality standard item for wastewater, and conventional Se removal methods have become insufficient.
[0005]
In other words, in order to meet the new water quality standards for wastewater, it has become essential to develop a method for treating Se-containing wastewater.
In addition, in the electrolytic refining of metals such as the above-described electrolytic refining of crude copper, it is efficient wastewater treatment to treat wastewater containing both Se and As derived from raw ore and to remove both Se and As. Therefore, a wastewater treatment method capable of removing both Se and As with a high removal rate is required.
[0006]
[Problems to be solved by the invention]
An object of this invention is to provide the processing method of the waste water containing Se and As which can remove both Se and As with a high removal rate.
[0007]
[Means for Solving the Problems]
In the first invention, ferrous salt is added to a wastewater containing Se and As containing 1 mg / l or more of Se 6+ and 5 mg / l or more of As, and ferrous salt is added in an amount of 0.10 to 1.0 (mol / l-treatment solution) . After 0 to 6.5 and a solution temperature of 75 to 95 ° C. , Ca (OH) 2 and / or CaO 2 to 15 (g / l-treated solution) in a total amount in terms of Ca (OH) 2 was added to adjust the pH to 5. This is a method for treating Se and As-containing wastewater, characterized by reacting at 0 to 7.5 and a liquid temperature of 75 to 95 ° C. , and subjecting the resulting treatment liquid to solid-liquid separation.
The second invention relates to lead scrap and / or lead soot, smoke ash obtained by reductive smelting of roasted desulfurized slime obtained in the process of electrolytic refining of crude copper, and / or roasted starch of the decoppered slime In the manufacturing process of electrolytic tin using the slag obtained by reductive smelting of the product (: slag) as a raw material, using the smelting furnace, the detinning pan as the subsequent step, and the tin electrolytic cell as the subsequent step of the detinning pan, the tin electrolytic cell Se 6+ a 1 mg / l or more, As the wastewater containing electrolyte tail solution containing more than 5 mg / l, a ferrous salt 0.10~1.0 (mol / l - treatment solution) was added After adjusting the pH to 4.0 to 6.5 and the solution temperature to 75 to 95 ° C., add 2 to 15 (g / l-treatment solution) of Ca (OH) 2 and / or CaO in the total amount in terms of Ca (OH) 2. This is a method for treating Se and As-containing wastewater, characterized by reacting at a pH of 5.0 to 7.5 and a liquid temperature of 75 to 95 ° C. , and solid-liquid separation of the resulting treatment liquid.
[0008]
Examples of the lead scrap in the above-described second invention include, for example, one or more lead-containing materials selected from used lead storage batteries, solder components, and lead pipe scraps. Examples include lead-containing materials that are lead-containing smoke ash obtained from lead soot and / or environmental dust collection from a spent lead-acid battery dismantling plant.
In the first and second inventions described above, the Se and As-containing wastewater described above is more preferably used as a method for treating Se and As-containing wastewater further containing Sn.
[0009]
The first invention described above, the second invention, the above-described Se, As-containing wastewater, or the electrolyte tail solution, preferably Ri by the Se 6+ 1 to 200 mg / l, Ri preferably by the As 5 It is more preferably used as a method for treating Se and As-containing wastewater containing 1 to 20000 mg / l, or more preferably 1 mg / l or more, more preferably 1 to 10,000 mg / l of Sn.
[0011]
In the first and second inventions described above, after adjusting the pH within the range of 6 to 8 by adding a pH adjuster to the Se and As-containing wastewater, the ferrous iron It is preferred to add a salt .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found the following findings (1) to (5) and have reached the present invention.
(1) Addition of ferrous salt to waste water containing Se and As and removal of Se and As by adding Ca (OH) 2 and CaO:
Add ferrous sulfate and other ferrous salts to the Se and As-containing wastewater, react, add Ca (OH) 2 and / or CaO, react, and then separate the resulting treatment liquid into solid and liquid. Thus, both Se and As in the waste water can be removed with an extremely high removal rate.
[0013]
(2) Removal of Se, As and Sn by adding ferrous salt to waste water containing Se, As and Sn, and adding Ca (OH) 2 and CaO:
After adding ferrous salt such as ferrous sulfate to the wastewater containing Se, As and Sn and reacting them, adding Ca (OH) 2 and / or CaO and reacting them, the resulting treatment liquid is solid-liquid. By separating, not only Se and As but also Sn in the waste water can be removed with an extremely high removal rate.
[0014]
(3) Regulation of pH of treatment solution after addition of ferrous salt:
By controlling the pH of the treatment solution after addition of ferrous salt within the range of 4.0 to 6.5, both Se and As can be removed with a very high removal rate.
(4) Regulation of pH of treatment solution after addition of Ca (OH) 2 and CaO:
By controlling the pH of the treatment solution after adding Ca (OH) 2 and / or CaO within the range of 5.0 to 7.5, both Se and As can be removed with a very high removal rate.
[0015]
(5) The treatment method of Se and As-containing waste water as described in (1) to (4) above is the reduction of lead scrap and / or lead slag and roasted decalcified slime obtained in the process of electrolytic purification of crude copper. Smoke ash obtained by smelting and / or tangle (: slag) obtained by reductive smelting of roasted decalcified slime starch as raw materials. It is particularly preferably used as a method for treating Se and As-containing wastewater in the production process of electrolytic tin using a tin electrolytic cell as a post-process.
[0016]
Hereinafter, I. First invention, II. Second invention, III. Removal mechanism of Se, As and Sn, and IV. Preferred reaction conditions in the present invention will be described in this order.
[I. First invention:]
In the first invention, ferrous salt is added to wastewater containing Se and As, then Ca (OH) 2 and / or CaO is added and reacted, and the resulting treatment liquid is subjected to solid-liquid separation. This is a wastewater treatment method.
[0017]
In Table 1, an example of the process of the processing method of the Se and As containing waste water of this invention is shown with suitable reaction conditions.
FIG. 1 shows an example of the change over time of the pH of the treatment liquid when Se and As-containing wastewater is treated according to the steps shown in Table 1.
In addition, Table 2 shows the treatment conditions at this time and the compositions of Se and As-containing waste water (treatment liquid) before treatment and waste water after treatment (final treatment liquid).
[0018]
In addition, in the treatment of Se and As-containing wastewater shown in FIG. 1 and Table 2, tin electrolytic tail solution in copper smelting and lead smelting described later was used as Se and As-containing wastewater.
In addition, dilute sulfuric acid is used for pH adjustment, ferrous sulfate aqueous solution adjusted to pH: 1.5 with sulfuric acid to suppress oxidation, and hydrated lime is used as Ca (OH) 2 and / or CaO. Milk was used.
[0019]
As shown in Table 2, according to the method for treating Se and As-containing wastewater of the present invention using ferrous salt and Ca (OH) 2 and / or CaO, As and Se that have been difficult to remove conventionally Both 6+ can be removed with a high removal rate, and Sn can also be removed with a high removal rate.
[0020]
[Table 1]
Figure 0004673482
[0021]
[Table 2]
Figure 0004673482
[0022]
[II. Second invention:]
The second invention relates to lead scrap and / or lead soot, and (1) smoke ash obtained by reductive smelting of roasted product of decopper slime obtained in the electrolytic purification process of crude copper and / or (2) Electricity using slag (: slag) obtained by reduction smelting of roasted copper slime as a raw material and using a smelting furnace, a tin removal pan as a subsequent process, and a tin electrolytic cell as a subsequent process of the tin removal pan In the manufacturing process of tin, after adding ferrous salt to the waste water containing the electrolytic tail solution of the tin electrolyzer, Ca (OH) 2 and / or CaO is added and reacted, and the resulting treatment liquid is used. This is a method for treating wastewater containing Se and As for solid-liquid separation.
[0023]
FIG. 2 shows an example of a process diagram of copper smelting and lead smelting according to the present invention.
In copper smelting, in the electrolytic refining of crude copper, high purity copper is electrolytically deposited on the seed plate, using the crude copper produced by the converter, refining furnace and cast copper machine of the smelting plant as the anode, the seed plate as the cathode Produces staking electric copper.
In the above-described electrolytic purification of crude copper, a so-called starch (anode slime), which is a precipitate at the bottom of a copper electrolysis tank, is removed by sulfuric acid leaching in a copper removal tank, so-called decopperization obtained after copper removal. The slime is oxidized and roasted in a roasting furnace, and selenium dioxide produced as a gas is collected as selenous acid by a collection tower, scrubber or wet electric dust collector, and Se is recovered by reducing selenous acid.
[0024]
In addition, the roasted starch, which is a roasting residue in the roasting furnace, is mainly composed of PbSO 4 , and a reductive smelting (reducing smelting) is performed by adding a solvent in the melting furnace (smelting furnace) and Au and Ag is collected in precious lead and processed in a silver separation furnace to obtain crude silver.
On the other hand, Pb, Se, and As are also contained in smoke ash (melt slag) and entanglement (slag) generated when reductive smelting (reduction smelting) of the roasted starch in a melting furnace.
[0025]
For this reason, in the copper smelting process shown in FIG. 2, the above-described smoke ash (melted smoke ash) and entanglement (slag) are used as part of the raw material for lead smelting.
In other words, used lead storage batteries, lead scraps such as solder components and lead tube scraps, recycled raw materials such as lead soot generated in battery dismantling, etc., and the above-mentioned molten smoke ash and tangles are processed in a blast furnace to make crude lead .
[0026]
Since the recycle raw materials such as the solder components described above contain tin, crude lead is removed by a tin removal pan, and the lead content after the removal of tin is cast and electrolyzed to produce electrical lead.
In addition, so-called tin removal iron containing tin produced as a by-product in the tin removal pan is electrolyzed to produce electric tin.
[0027]
In the above-described tin electrolysis, the electrolytic tail solution (tin electrolytic tail solution) of the electrolytic cell contains Sn, Se and As, and it is necessary to remove these three components with a high removal rate from the viewpoint of drainage measures. .
According to the wastewater treatment method of the present invention, all of Sn, Se and As can be removed at a high removal rate, so the present invention treats the above-described tin electrolytic tail solution (Sn electrolytic tail solution). The method can be particularly preferably used.
[0028]
[III. Removal mechanism of Se, As and Sn:]
Next, the removal mechanism of Se, As and Sn in the present invention will be described.
The removal mechanism of Se, As, and Sn in the present invention is estimated as follows, for example, for the alkaline drainage that is the above-described Sn electrolytic tail solution.
(Se removal mechanism :)
Se in the wastewater is reduced to metallic Se according to the following reaction formulas (1) to (3) by addition of ferrous salt and Ca (OH) 2 .
[0029]
Na 2 SeO 4 + 9Fe (OH) 2 → Se + 3Fe 3 O 4 ↓ + 2NaOH + 8H 2 O ……………… (1)
Na 2 SeO 4 + 6Fe (OH) 2 → Se + 3Fe 2 O 3 ↓ + 2NaOH + 5H 2 O ……………… (2)
Na 2 SeO 4 + Fe 2+ + Fe (OH) 2 → Se + Fe 3 O 4 , FeOOH, Fe (OH) 3 ↓… (3)
The produced metallic Se and the intermediate product Sn 4+ co-precipitated with iron hydroxide and ferric arsenate produced in the reaction formula (4) to be described later. It is estimated that Se is removed with a high removal rate.
[0030]
(As removal mechanism :)
As in the wastewater, ferrous arsenate precipitates mainly according to the following reaction formula (4) by addition of ferrous salt, and at the time of addition of Ca (OH) 2 and / or CaO in the subsequent process, It is presumed that calcium arsenate is precipitated according to the following reaction formula (5), and as a result, As is removed at a high removal rate by solid-liquid separation.
[0031]
Fe 3+ + H 3 AsO 4 + mH 2 O = FeAsO 4・ mH 2 O ↓ + 3H + ………………… (4)
3Ca 2+ + 2H 3 AsO 4 + nH 2 O = Ca 3 (AsO 4 ) 2・ nH 2 O ↓ + 6H + ……… (5)
(Sn removal mechanism :)
Sn in the wastewater precipitates as tin hydroxide, and Sn is removed at a high removal rate by solid-liquid separation.
[0032]
[IV. Suitable reaction conditions in the present invention:]
Next, preferred reaction conditions in the present invention will be described.
(PH of treatment solution after addition of ferrous salt :)
The pH of the treatment liquid after addition of ferrous salt and before addition of Ca (OH) 2 and / or CaO (hereinafter referred to as treatment liquid after addition of ferrous salt) is preferably 4.0 to 6.5.
[0033]
Figure 3 shows the relationship between the pH of the treatment solution after addition of ferrous sulfate and the residual Se concentration and residual As concentration in the final treatment solution after solid-liquid separation when ferrous sulfate is used as the ferrous salt. Indicates.
In FIG. 3, T.Se indicates all Se.
As shown in Fig. 3, when the pH of the treatment solution after addition of ferrous salt exceeds 6.5, the removal rate of both Se and As decreases, and conversely, the pH of the treatment solution after addition of ferrous salt When is less than 4.0, the As removal rate decreases.
[0034]
[PH of treatment solution after addition of Ca (OH) 2 and CaO:]
The pH of the treatment liquid after adding Ca (OH) 2 and / or CaO is preferably 5.0 to 7.5.
FIG. 4 shows the relationship between the pH of the treatment liquid after addition of slaked lime for 1.5 hours and the residual Se concentration and residual As concentration in the final treatment liquid after solid-liquid separation.
[0035]
As shown in Fig. 4, the removal rate of As decreases when the pH of the treatment solution after addition of slaked lime exceeds 7.5, and conversely, the removal rate of As when the pH of the treatment solution after addition of slaked lime is less than 5.0. Decreases.
(Addition of ferrous salt :)
In the present invention, the addition amount of the ferrous salt is preferably 0.10 (mol / l-treatment liquid) or more, more preferably 0.10 to 1.0 (mol / l-treatment liquid).
[0036]
When the addition amount of ferrous salt is less than 0.10 (mol / l-treatment solution), the removal rate of Se and As decreases, and conversely, the addition amount of ferrous salt is 1.0 (mol / l-treatment solution). If it exceeds 1, the effect of addition of ferrous salt is practically saturated and is not economical.
(Temperature of treatment liquid after addition of ferrous salt :)
In this invention, it is preferable that the liquid temperature of the process liquid after ferrous salt addition is 75-95 degreeC.
[0037]
When the liquid temperature of the treatment liquid after the addition of ferrous salt is less than 75 ° C, the removal rate of Se and As decreases, and conversely, when the liquid temperature of the treatment liquid after the addition of ferrous salt exceeds 95 ° C, The effect of increasing the liquid temperature is practically saturated, and it is not economical in terms of energy consumption.
(Ferrous salt :)
The type of ferrous salt in the present invention is not particularly limited, but ferrous sulfate and / or ferrous chloride is used as the ferrous salt in terms of the removal rate of Se and As and the availability. It is preferable to use iron.
[0038]
(Ca (OH) 2 and CaO addition amount :)
In the present invention, the added amount of Ca (OH) 2 and / or CaO is preferably 2 (g / l-treatment liquid) or more in terms of the total amount in terms of Ca (OH) 2 , and more preferably 2 to 15 (g / l-treatment liquid).
When the added amount of Ca (OH) 2 and / or CaO is less than 2 (g / l-treatment liquid) in the above total amount, the removal rate of Se and As is lowered, and conversely, the total amount is 15 (g / l l-treatment liquid), the As removal rate decreases.
[0039]
(Process temperature after adding Ca (OH) 2 and CaO :)
In the present invention, the temperature of the treatment liquid after addition of Ca (OH) 2 and / or CaO is preferably 75 to 95 ° C.
When the solution temperature after adding Ca (OH) 2 and / or CaO is less than 75 ° C, the removal rate of Se and As decreases, and conversely, the solution after adding Ca (OH) 2 and / or CaO. When the liquid temperature exceeds 95 ° C, the effect of increasing the liquid temperature is practically saturated, and it is not economical from the viewpoint of energy consumption.
[0040]
Although it does not receive a restriction | limiting in particular as a reactor of the processing equipment in this invention, It is preferable to use a stirring reaction tank from the surface of industrial ease.
The solid-liquid separation device is not particularly limited, and as shown in FIG. 5 below, the reaction device may be used also as a sedimentation separation tank, or using a thickener, a centrifuge, a filter, or the like. Also good.
[0041]
In FIG. 5, an example of the processing equipment used suitably for this invention is shown.
In FIG. 5, 1 is a reaction tank (stirring reaction tank), 2 is a stirring apparatus, 3 is a reaction liquid heating apparatus such as a superheated steam circulation serpentine, 4 is a processing liquid extraction pipe, 5 is a sludge extraction pipe, and 6 is a filter. Press, 7 is a pH meter, 8 is a pump, 9 is a valve, 10 is a reaction liquid (processed liquid), 11 is raw water (Se, As-containing wastewater, liquid to be processed), 12 is an aqueous solution containing ferrous salt, 13 Denotes slaked lime milk, 14 denotes a pH adjusting agent such as dilute sulfuric acid, NaOH, 15 denotes a treatment liquid, and 16 denotes dehydrated sludge.
[0042]
In the treatment facility shown in FIG. 5, first, raw water (liquid to be treated) 11 which is Se and As-containing wastewater is supplied to the reaction tank 1, and a treatment liquid (reaction liquid) is added by adding a pH adjuster 14 as necessary. Then, the ferrous salt-containing aqueous solution 12 is added.
The pH of the treatment liquid (reaction liquid) after adding the ferrous salt-containing aqueous solution is preferably 4.0 to 6.5.
[0043]
After a predetermined time has elapsed, slaked lime milk 13 is added and adjusted under the stirring conditions of the treatment liquid (reaction liquid), preferably the liquid temperature: 75 to 95 ° C., and the pH of the treatment liquid (reaction liquid): 5.0 to 7.5. And react.
After a predetermined reaction time has elapsed, the treatment liquid is allowed to stand, and the solid liquid is precipitated and separated.
Next, the supernatant liquid (processing liquid) of the reaction tank 1 is extracted using the processing liquid extraction pipe 4.
[0044]
Next, the sludge settled on the bottom of the reaction tank 1 is extracted using the sludge extraction pipe 5 and fed to the filter press 6.
The treatment liquid separated by the filter press 6 is drained out of the system together with the treatment liquid obtained above, and the dewatered sludge 16 is reused.
[0045]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[Example 1] (Invention Example 1, Comparative Examples 1 and 2 , Reference Examples 1 and 2 )
In this example, the tin electrolytic tail solution produced in the lead smelting process shown in FIG. 2 was treated.
[0046]
As raw materials for lead smelting, (1) used lead-acid batteries, solder components, lead scrap such as lead pipe scraps, (2) lead slag, (3) roasted copper-free slime obtained in the electrolytic purification process of crude copper Smoke ash (melted ash) obtained by reduction smelting (reduction smelting) of baked starch and (4) Tangle (slag) obtained by reductive smelting (reduction smelting) of roasted delime copper slime Mixed raw materials were used.
[0047]
The treatment method followed the steps shown in Table 1 above.
In addition, dilute sulfuric acid was used for pH adjustment, ferrous sulfate aqueous solution adjusted to pH: 1.5 with sulfuric acid to suppress oxidation was used as ferrous salt, and slaked lime milk was used as Ca (OH) 2 .
Further, as the processing equipment, the processing equipment shown in FIG. 5 was used.
[0048]
That is, a stirred reaction tank was used as the reaction apparatus, and a sedimentation separation method was used as the solid-liquid separation method.
In addition, in the present Example, it experimented also about the case where slaked lime milk is not added.
Table 3 shows the processing conditions, the liquid composition to be processed, and the final liquid processing composition.
As shown in Table 3, according to the treatment method of the present invention, both Se and As and Sn can be removed at a high removal rate by addition of ferrous salt and addition of Ca (OH) 2. I understood that.
[0049]
In addition, by setting the pH of the liquid to be treated after addition of ferrous salt and the pH of the liquid to be treated after addition of Ca (OH) 2 within the preferred range of the present invention, both Se and As can be removed at a very high removal rate. Was found to be removable.
[0050]
[Table 3]
Figure 0004673482
[0051]
[Table 4]
Figure 0004673482
[0052]
[Example 2] (Invention Example 2 , Reference Example 3 )
The tin electrolytic tail solution was treated in the same manner as in Example 1 of the present invention in Example 1 described above.
In this example, in order to investigate the effects of addition of ferrous salt and Ca (OH) 2 , after adjusting the pH, 5 minutes after adding FeSO 4 and 1-5 hours after adding Ca (OH) 2, After extracting the portion and performing solid-liquid separation of the extracted liquid, the respective concentrations of Se, As and Sn in the liquid were examined.
[0053]
Table 4 shows the obtained results together with the processing conditions.
As shown in Table 4, the Se concentration decreased with time even after 1 hour of addition of Ca (OH) 2 and became less than 1 mg / l after 3 hours of addition.
From this, the reason why Se can be removed at a high removal rate is that metal Se produced according to the above reaction formulas (1) to (3) and Sn 4+ that is an intermediate product in the production of metal Se are iron hydroxide. It is presumed that it coprecipitates with ferric arsenate and, as a result, is removed at a high removal rate by solid-liquid separation.
[0054]
[Table 5]
Figure 0004673482
[0055]
[Example 3] (Invention Example 3 )
The tin electrolytic tail solution was treated in the same manner as in Example 1 of the present invention in Example 1 described above.
In this example, the treatment was performed under the same treatment conditions as in the present invention example 1 except that the ferrous chloride aqueous solution was used in place of the ferrous sulfate aqueous solution in the above-described inventive example 1.
[0056]
The addition amount of ferrous chloride was 0.15 (mol / l-treatment liquid).
As a result, the composition of the liquid to be treated; total Se concentration: 57 mg / l, As concentration: 3360 mg / l, Sn concentration: 2350 mg / l, the final treatment liquid composition is total Se concentration <1 mg / l, As concentration < 1 mg / l and Sn concentration <1 mg / l, and excellent Se, As and Sn removal effects were obtained in the same manner as Example 1 described above.
[0057]
Although the examples have been described above, in the present invention, Ca (OH) 2 and / or CaO or both of them are directly contained in the liquid to be treated instead of the slaked lime milk used in the examples. It can also be added.
[0058]
【The invention's effect】
According to the present invention, it is possible to remove both Se and As in waste water with a high removal rate, and the industrial significance thereof is great.
Furthermore, according to the present invention, wastewater containing the three of Se, As and Sn can be treated in an industrially simple manner, and wastewater in copper smelting and lead smelting can be treated very efficiently. It became possible to do.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of a change over time in pH of a processing solution during treatment of Se and As-containing wastewater.
FIG. 2 is a process diagram showing an example of copper smelting and lead smelting according to the present invention.
FIG. 3 is a graph showing the relationship between the treatment solution pH after addition of ferrous sulfate and the residual Se concentration and residual As concentration in the final treatment solution.
FIG. 4 is a graph showing the relationship between the treatment solution pH 1.5 hours after addition of slaked lime and the residual Se concentration and residual As concentration in the final treatment solution.
FIG. 5 is a flow sheet showing an example of Se and As-containing wastewater treatment equipment according to the present invention.
[Explanation of symbols]
1 reaction tank (stirring reaction tank)
2 Stirring device 3 Reaction liquid heating device (superheated steam circulation serpentine)
4 Treatment liquid extraction piping 5 Sludge extraction piping 6 Filter press 7 pH meter 8 Pump 9 Valve
10 Reaction liquid (treatment liquid)
11 Raw water (treated liquid)
12 Ferrous salt-containing aqueous solution
13 Slaked lime milk
14 pH adjuster
15 Treatment liquid
16 Dewatered sludge

Claims (5)

Se6+を1mg/l以上、Asを5mg/l以上含有するSe、As含有排水に第一鉄塩を0.10〜1.0(mol/l −処理液) 添加してpH4.0 〜6.5 、液温75〜95℃とした後、Ca(OH)2 および/またはCaO をCa(OH) 2 換算の合計量で2〜15(g/l−処理液) 添加してpH5.0 〜7.5 、液温75〜95℃で反応せしめ、得られた処理液を固液分離することを特徴とするSe、As含有排水の処理方法。Se containing 1 mg / l or more of Se 6+ and 5 mg / l or more of As, ferrous salt added to wastewater containing As 0.10 to 1.0 (mol / l-treatment solution) , pH 4.0 to 6.5, liquid temperature After adjusting to 75 to 95 ° C, add Ca (OH) 2 and / or CaO in a total amount of Ca (OH) 2 in the range of 2 to 15 (g / l-treatment solution) , pH 5.0 to 7.5 , solution temperature A method for treating Se and As-containing wastewater, characterized by reacting at 75 to 95 ° C. and solid-liquid separation of the resulting treatment liquid. 鉛スクラップおよび/または鉛滓と、粗銅の電解精製工程で得られる脱銅スライムの焙焼澱物の還元溶錬で得られる煙灰および/または前記脱銅スライムの焙焼澱物の還元溶錬で得られるからみを原料とし、熔鉱炉およびその後工程としての脱錫鍋および該脱錫鍋の後工程としての錫電解槽を用いる電気錫の製造工程において、前記錫電解槽のSe6+を1mg/l以上、Asを5mg/l以上含有する電解尾液を含有する排水に、第一鉄塩を0.10〜1.0(mol/l −処理液) 添加してpH4.0 〜6.5 、液温75〜95℃とした後、Ca(OH)2 および/またはCaO をCa(OH) 2 換算の合計量で2〜15(g/l−処理液) 添加してpH5.0 〜7.5 、液温75〜95℃で反応せしめ、得られた処理液を固液分離することを特徴とするSe、As含有排水の処理方法。In the reduction smelting of lead ash and / or lead slag and smoke ash obtained by reduction smelting of roasted starch of decoppered slime obtained in the process of electrolytic refining of crude copper and / or roasted starch of said decoppered slime In the manufacturing process of electrolytic tin using the obtained tangle as a raw material and using a blast furnace, a tin removal pan as a subsequent step and a tin electrolytic bath as a subsequent step of the tin removal pan, 1 mg of Se 6+ in the tin electrolytic bath is obtained. / l or more, ferrous salt 0.10 to 1.0 (mol / l-treatment solution) added to the waste water containing electrolytic tail solution containing 5 mg / l or more As, pH 4.0 to 6.5, liquid temperature 75 to After adjusting to 95 ° C. , Ca (OH) 2 and / or CaO is added in a total amount of Ca (OH) 2 in the range of 2 to 15 (g / l-treatment solution) , pH 5.0 to 7.5 , solution temperature 75 to A method for treating Se and As-containing wastewater, characterized by reacting at 95 ° C and solid-liquid separation of the resulting treatment liquid. 前記Se、As含有排水がさらにSnを含有することを特徴とする請求項1または2記載のSe、As含有排水の処理方法。  The method for treating Se and As-containing wastewater according to claim 1 or 2, wherein the Se and As-containing wastewater further contains Sn. 前記Se、As含有排水が、さらにSnを1mg/l以上含有することを特徴とする請求項1〜3いずれかに記載のSe、As含有排水の処理方法。  The method for treating Se and As-containing wastewater according to any one of claims 1 to 3, wherein the Se and As-containing wastewater further contains 1 mg / l or more of Sn. 前記したSe、As含有排水にpH調整剤を添加することによってpHを6〜8の範囲内に調整した後、前記第一鉄塩を添加することを特徴とする請求項1〜いずれかに記載のSe、As含有排水の処理方法 Wherein the Se, was adjusted to the range of 6-8 pH by adding a pH adjusting agent to As-containing wastewater, in any one of claims 1-4, characterized in that the addition of the ferrous salt Se according, processing method of As-containing wastewater.
JP2000399918A 2000-12-28 2000-12-28 Se and As-containing wastewater treatment methods Expired - Lifetime JP4673482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000399918A JP4673482B2 (en) 2000-12-28 2000-12-28 Se and As-containing wastewater treatment methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000399918A JP4673482B2 (en) 2000-12-28 2000-12-28 Se and As-containing wastewater treatment methods

Publications (2)

Publication Number Publication Date
JP2002192167A JP2002192167A (en) 2002-07-10
JP4673482B2 true JP4673482B2 (en) 2011-04-20

Family

ID=18864600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000399918A Expired - Lifetime JP4673482B2 (en) 2000-12-28 2000-12-28 Se and As-containing wastewater treatment methods

Country Status (1)

Country Link
JP (1) JP4673482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313071A (en) * 2017-06-06 2017-11-03 郴州市金贵银业股份有限公司 A kind of wet processing process containing lead oxidation slag

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882619A (en) * 2019-11-26 2020-03-17 华中科技大学 Alkali-based adsorbent for trapping selenium in coal-fired flue gas and preparation method thereof
CN115216633B (en) * 2022-08-30 2024-03-08 江西理工大学 Method for separating copper, arsenic and directly solidifying arsenic from black copper mud

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126759A (en) * 1974-08-30 1976-03-05 Hitachi Plant Eng & Constr Co Hisoganjuhaisui no shorihoho
JPS5228426A (en) * 1975-08-29 1977-03-03 Toyo Soda Mfg Co Ltd Method of separating cu or sn in acidic aqueous solution of hydrochlor ic acid
JPS5998795A (en) * 1982-11-30 1984-06-07 Sumitomo Metal Mining Co Ltd Treatment of alkaline electrolysis liquid waste containing arsenic
JPS6168191A (en) * 1984-09-11 1986-04-08 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing arsenic and organic material
JPH04267994A (en) * 1991-02-25 1992-09-24 Kurita Water Ind Ltd Metal-containing waste-water method
JPH0679286A (en) * 1992-07-17 1994-03-22 Mitsubishi Materials Corp Treatment of selenium-containing waste water
JPH08224586A (en) * 1995-02-22 1996-09-03 Kurita Water Ind Ltd Treatment of water containing selenium
JPH09249922A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Treatment of waste water containing selenium
JPH1034168A (en) * 1996-07-26 1998-02-10 Kurita Water Ind Ltd Method for treating water containing selenium
JPH1072629A (en) * 1996-09-02 1998-03-17 Kawasaki Steel Corp Treatment of formed sludge in tin electroplating
JPH10263557A (en) * 1997-03-25 1998-10-06 Nikko Kinzoku Kk Treatment of selenium-containing waste water
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2000246270A (en) * 1999-02-25 2000-09-12 Mitsui Mining & Smelting Co Ltd Waste water treatment method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126759A (en) * 1974-08-30 1976-03-05 Hitachi Plant Eng & Constr Co Hisoganjuhaisui no shorihoho
JPS5228426A (en) * 1975-08-29 1977-03-03 Toyo Soda Mfg Co Ltd Method of separating cu or sn in acidic aqueous solution of hydrochlor ic acid
JPS5998795A (en) * 1982-11-30 1984-06-07 Sumitomo Metal Mining Co Ltd Treatment of alkaline electrolysis liquid waste containing arsenic
JPS6168191A (en) * 1984-09-11 1986-04-08 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing arsenic and organic material
JPH04267994A (en) * 1991-02-25 1992-09-24 Kurita Water Ind Ltd Metal-containing waste-water method
JPH0679286A (en) * 1992-07-17 1994-03-22 Mitsubishi Materials Corp Treatment of selenium-containing waste water
JPH08224586A (en) * 1995-02-22 1996-09-03 Kurita Water Ind Ltd Treatment of water containing selenium
JPH09249922A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Treatment of waste water containing selenium
JPH1034168A (en) * 1996-07-26 1998-02-10 Kurita Water Ind Ltd Method for treating water containing selenium
JPH1072629A (en) * 1996-09-02 1998-03-17 Kawasaki Steel Corp Treatment of formed sludge in tin electroplating
JPH10263557A (en) * 1997-03-25 1998-10-06 Nikko Kinzoku Kk Treatment of selenium-containing waste water
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2000246270A (en) * 1999-02-25 2000-09-12 Mitsui Mining & Smelting Co Ltd Waste water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313071A (en) * 2017-06-06 2017-11-03 郴州市金贵银业股份有限公司 A kind of wet processing process containing lead oxidation slag
CN107313071B (en) * 2017-06-06 2019-04-12 郴州市金贵银业股份有限公司 A kind of wet processing process containing lead oxidation slag

Also Published As

Publication number Publication date
JP2002192167A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
CN110306060B (en) Method for comprehensively recovering valuable metals in lead-and zinc-containing waste residues by pyrogenic process-wet process parallel connection process
CN112981104B (en) Method for treating cadmium-containing waste residues and recycling metal cadmium
CN101519727A (en) Method for treating zinc smelting by-products
EP0802884A4 (en)
CN110643815B (en) Recycling harmless treatment method for black copper mud
JP5439997B2 (en) Method for recovering copper from copper-containing iron
CN103781923A (en) Process for purifying zinc oxide
CN112708777B (en) Method for recovering zinc sulfate from zinc-containing waste
JP5370777B2 (en) Method for recovering copper from copper sulfide
CN105200242B (en) A kind of method that cadmium is reclaimed from containing arsenic refining lead oxygen bottom blown furnace cigarette ash
CA1074727A (en) Process for recovering electrolytic copper of high purity by means of reduction electrolysis
CN110172583B (en) Method for efficiently treating arsenic-containing soot in reduction mode
JP2007191782A (en) Method for producing cadmium
JPH10509212A (en) Recovery of metal and chemical value
JPH0625763A (en) Treatment of intermediate product of smelting
JPH1072631A (en) Wet process metallurgical and electrochemical treatment of sulfur-antimony ore for forming electrolytic antimony and simple substance sulfur
JPH09241776A (en) Separation of arsenic container in smelting intermediate material and recovering method of arsenic
JP2010196140A (en) Method for recovering bismuth
CN111519213B (en) Electrolytic purification process for copper electrolyte
JP6233478B2 (en) Purification method of bismuth
CN105567996A (en) Method for removing fluorine and chlorine in zinc electrolyte through partial iron precipitation of goethite
WO2018138917A1 (en) Bismuth purification method
JP4673482B2 (en) Se and As-containing wastewater treatment methods
CN104120253A (en) Leaching method of complex zinc calcined ores
JP3945216B2 (en) Waste acid gypsum manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term