JP4672895B2 - Power supply system for cathodic protection - Google Patents
Power supply system for cathodic protection Download PDFInfo
- Publication number
- JP4672895B2 JP4672895B2 JP2001110288A JP2001110288A JP4672895B2 JP 4672895 B2 JP4672895 B2 JP 4672895B2 JP 2001110288 A JP2001110288 A JP 2001110288A JP 2001110288 A JP2001110288 A JP 2001110288A JP 4672895 B2 JP4672895 B2 JP 4672895B2
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- anticorrosion
- protected
- water chamber
- supply system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、海水を冷却水とする熱交換器の水室、石油、ガス、水道管の埋設配管等の防食に用いられる外部電源方式の防食用電源装置を用いた電気防食用電源システムに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
一般に、海水を冷却水として使用する熱交換器の水室や管板の防食には流電陽極方式又は外部電源方式が用いられている。
【0003】
図3は、従来より用いられている外部電源方式の防食用電源装置の一例を示す概略図である。図3においては、被防食体、例えば水室に対向して配置された電極に対して直流出力を行い、電極より防食電流を発生させている。一方、水室近傍面には照合電極が配されており、水室の電位を一定にすべく、定電位自動制御回路によって電位を制御している。
【0004】
このような防食用電源装置においては、複数の被防食体に対して電気防食を行う場合には、その被防食体毎に防食用電源装置が必要となる。例えば3つの水室を有する熱交換器の水室を防食する場合には、3つの防食用電源装置が必要とされるため、経済性に極めて劣るものであった。
【0005】
このような問題を解決する手段として、図4に示すような防食用電源装置が提案されている。図4は、従来より用いられている外部電源方式の防食用電源装置の他の例を示す概略図である。図4に示される防食用電源装置においては、直流出力を分岐させ、1つの防食用電源装置によって複数の被防食体を防食することを可能にしたものである。
【0006】
図5に、上記のような防食用電源装置を用いて熱交換器の水室を防食する配置図を示す。この図5においては、直流出力を分岐させ、熱交換器の入口水室(No.1)、返し水室(No.2)及び出口水室(No.3)の各々の電極に直流電流を流し、防食電流を発生させ、各水室を防食している。
【0007】
しかし、このような防食用電源装置を用い場合には、各水室に近傍に設けられた照合電極が一つの定電位自動制御回路に接続しているため、実際には一つの照合電極しか作動することができなかった。例えば、入口水室(No.1)の照合電極を作動させて定電位自動制御した場合には、返し水室(No.2)及び出口水室(No.3)の電位も同様に自動制御されることになる。このように、図4に示される防食用電源装置を用いた場合には、各水室の電位を自動制御することは困難であった。すなわち、各水室毎の最適な電位に制御することはできず、制御状態においては防食電位を逸脱する場合も起こるという問題があった。
【0008】
従って、本発明の目的は、複数の被防食体の防食が可能で、かつ各被防食体の電位をそれぞれ自動制御することができ、しかも経済性に優れた外部電源方式の電気防食用電源システムを提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、検討の結果、防食用電源装置に、被防食体毎の制御回路を分岐して接続させることによって、上記目的が達成し得ることを知見した。
【0010】
本発明は、上記知見に基づいてなされたもので、防食用電源装置に、被防食体数に対応した複数の制御用回路を電気的に分岐して接続し、該制御用回路が各々の被防食体に対向して防食電流を発生する電極及び該被防食体の電位を測定する照合電極にそれぞれ接続していることを特徴とする電気防食用電源システムを提供するものである。
【0011】
【発明の実施の形態】
以下、本発明の電気防食用電源システムの実施形態について説明する。
【0012】
図1は、本発明の外部電源方式の電気防食用電源システムの一例を示す概略図である。図1において、防食用電源装置は、既存のものが使用可能であり、例えば図3に示されるような定電位自動制御回路を有する防食用電源装置を用いることができる。
【0013】
防食用電源装置には、被防食体数に対応した複数の制御用回路を電気的に分岐して接続されている。この制御用回路には、シリーズレギュレータを構成する付加回路を挿入し、定電位自動制御を行うことができる。すなわち、シリーズレギュレータを構成するトランジスターと被防食体に取付けられた電位制御用の照合電極により測定される電位を一定にするようにトランジスターのベース電圧を制御することにより定電位制御を行う。制御用回路の数は、特に制限されるものではなく、被防食体の数によって決定される。このようなシリーズレギュータ回路を用いるため、リップル率が少なく白金系の電極装置に適用した場合にも白金系電極の消耗率が少ない。
【0014】
図2に、上記外部電源方式の電気防食用電源システムを用いて熱交換器の水室を防食する配置図を示す。図2において、各制御用回路からの直流出力によって、個別に熱交換器の入口水室(No.1)、返し水室(No.2)及び出口水室(No.3)の各々の電極に直流電流を流し、防食電流を発生させ、各水室を防食している。
【0015】
一方、各制御用回路は、個別に熱交換器の入口水室(No.1)、返し水室(No.2)及び出口水室(No.3)の各々の照合電極と接続し、各制御用回路において、各水室毎の定電位自動制御を行う。このため、従来のように、各水室毎の最適な電位に制御することはできず、制御状態においては防食電位を逸脱する場合も起こるという問題は生じない。
【0016】
本発明の電気防食用電源システムによる防食の対象となる被防食体は、外部電源方式により防食可能な被防食体であれば特に制限されないが、防食電流が少ない複数の被防食体が望ましく、例えば、熱交換器の複数の水室、管板等が挙げられる。
【0017】
【発明の効果】
本発明の電気防食用電源システムにより下記のような効果を奏する。
(1)1つの防食用電源装置によって複数の被防食体の防食が可能であり、かつ各被防食体の電位をそれぞれ自動制御することができる。
(2)経済性に優れ、しかも既存の防食用電源装置をそのまま使用することができる。
(3)定電位制御の電位変動に対する応答性がよく、ノイズの不要輻射がない。
【図面の簡単な説明】
【図1】図1は、本発明の外部電源方式の電気防食用電源システムの一例を示す概略図である。
【図2】図2は、図1に示される外部電源方式の電気防食用電源システムを用いて熱交換器の水室を防食する配置図である。
【図3】図3は、従来より用いられている外部電源方式の防食用電源装置の一例を示す概略図である。
【図4】図4は、従来より用いられている外部電源方式の防食用電源装置の他の例を示す概略図である。
【図5】図5は、図4に示される外部電源方式の防食用電源装置を用いて熱交換器の水室を防食する配置図である。[0001]
[Industrial application fields]
The present invention relates to an anticorrosion power supply system using an external power supply type anticorrosion power supply device used for anticorrosion of a water chamber of a heat exchanger using seawater as cooling water, oil, gas, a buried pipe of a water pipe, and the like.
[0002]
[Prior art and problems to be solved by the invention]
In general, a galvanic anode method or an external power supply method is used for corrosion protection of water chambers and tube plates of heat exchangers that use seawater as cooling water.
[0003]
FIG. 3 is a schematic diagram showing an example of an external power supply type anticorrosion power supply device that has been conventionally used. In FIG. 3, a direct current output is performed with respect to a to-be-protected object, for example, the electrode arranged facing the water chamber, and a corrosion-proof current is generated from the electrode. On the other hand, a reference electrode is arranged on the surface near the water chamber, and the potential is controlled by a constant potential automatic control circuit so as to keep the potential of the water chamber constant.
[0004]
In such an anticorrosion power supply device, when performing anticorrosion on a plurality of corrosion-protected objects, an anticorrosion power supply device is required for each of the corrosion-protected objects. For example, when corrosion prevention is performed on a water chamber of a heat exchanger having three water chambers, three anticorrosion power supply devices are required, which is extremely inefficient.
[0005]
As means for solving such a problem, an anticorrosion power supply device as shown in FIG. 4 has been proposed. FIG. 4 is a schematic diagram showing another example of an anti-corrosion power supply device of an external power supply system that has been conventionally used. In the anticorrosion power supply device shown in FIG. 4, the direct current output is branched, and a plurality of anticorrosive bodies can be anticorrosive by one anticorrosion power supply device.
[0006]
FIG. 5 is a layout diagram for preventing corrosion of the water chamber of the heat exchanger using the anticorrosion power supply device as described above. In FIG. 5, the direct current output is branched, and direct current is applied to each electrode of the inlet water chamber (No. 1), the return water chamber (No. 2) and the outlet water chamber (No. 3) of the heat exchanger. The water chambers are eroded to generate anticorrosion currents, and each water chamber is anticorrosive.
[0007]
However, when using such an anticorrosion power supply device, the reference electrode provided in the vicinity of each water chamber is connected to one constant potential automatic control circuit, so that only one reference electrode actually operates. I couldn't. For example, when the reference electrode of the inlet water chamber (No. 1) is operated to automatically control the constant potential, the potentials of the return water chamber (No. 2) and the outlet water chamber (No. 3) are also automatically controlled. Will be. Thus, when the anticorrosion power supply device shown in FIG. 4 is used, it is difficult to automatically control the potential of each water chamber. That is, there is a problem in that it cannot be controlled to the optimum potential for each water chamber, and in the controlled state, it may deviate from the anticorrosion potential.
[0008]
Accordingly, an object of the present invention is to provide an anti-corrosion power supply system of an external power source system that can prevent corrosion of a plurality of protection objects and can automatically control the potential of each protection object and that is excellent in economy. Is to provide.
[0009]
[Means for Solving the Problems]
As a result of the study, the present inventor has found that the above object can be achieved by branching and connecting a control circuit for each of the objects to be protected to the anticorrosion power supply apparatus.
[0010]
The present invention has been made on the basis of the above knowledge. A plurality of control circuits corresponding to the number of objects to be protected are electrically branched and connected to the anticorrosion power supply apparatus, and the control circuit is connected to each of the objects to be protected. It is an object of the present invention to provide a power supply system for anticorrosion characterized by being connected to an electrode for generating an anticorrosion current facing the anticorrosive body and a reference electrode for measuring the potential of the anticorrosive body.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the power supply system for anticorrosion of the present invention will be described.
[0012]
FIG. 1 is a schematic view showing an example of an external anti-corrosion power supply system of the present invention. In FIG. 1, an existing anticorrosion power supply can be used. For example, an anticorrosion power supply having a constant potential automatic control circuit as shown in FIG. 3 can be used.
[0013]
A plurality of control circuits corresponding to the number of objects to be protected are electrically branched and connected to the anticorrosion power supply device. In this control circuit, an additional circuit constituting a series regulator can be inserted to perform constant potential automatic control. That is, constant potential control is performed by controlling the base voltage of the transistor so that the potential measured by the transistor constituting the series regulator and the reference electrode for potential control attached to the object to be protected is kept constant. The number of control circuits is not particularly limited, and is determined by the number of the objects to be protected. Since such a series regulator circuit is used, the ripple rate is small and the consumption rate of the platinum-based electrode is small even when applied to a platinum-based electrode device.
[0014]
FIG. 2 shows a layout diagram for preventing the water chamber of the heat exchanger from being corroded using the above-mentioned external power supply type anticorrosion power supply system. In FIG. 2, each electrode of the inlet water chamber (No. 1), the return water chamber (No. 2), and the outlet water chamber (No. 3) of the heat exchanger is individually generated by the direct current output from each control circuit. A direct current is passed through to generate an anti-corrosion current, and each water chamber is protected.
[0015]
On the other hand, each control circuit is individually connected to each reference electrode of the inlet water chamber (No. 1), the return water chamber (No. 2) and the outlet water chamber (No. 3) of the heat exchanger, In the control circuit, automatic constant potential control is performed for each water chamber. For this reason, unlike the conventional case, it is impossible to control to the optimum potential for each water chamber, and there is no problem that the anticorrosion potential may be deviated in the controlled state.
[0016]
The object to be protected by the power supply system for cathodic protection of the present invention is not particularly limited as long as it is an object to be protected by an external power supply system, but a plurality of objects to be protected having a small corrosion protection current are desirable. And a plurality of water chambers, tube sheets and the like of the heat exchanger.
[0017]
【The invention's effect】
The following effects are exhibited by the power supply system for anticorrosion of the present invention.
(1) Corrosion protection of a plurality of objects to be protected can be performed by one power supply device for corrosion protection, and the potential of each object to be protected can be automatically controlled.
(2) It is excellent in economic efficiency, and an existing anticorrosion power supply device can be used as it is.
(3) Responsiveness to potential fluctuations in constant potential control is good and there is no unnecessary radiation of noise.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an external anti-corrosion power supply system of the present invention.
FIG. 2 is a layout diagram in which the water chamber of the heat exchanger is protected from corrosion using the external power supply type anticorrosion power supply system shown in FIG. 1;
FIG. 3 is a schematic diagram showing an example of an external power supply type anticorrosion power supply device conventionally used.
FIG. 4 is a schematic view showing another example of an external power supply type anticorrosion power supply device that has been conventionally used.
FIG. 5 is a layout diagram in which the water chamber of the heat exchanger is protected from corrosion using the external power source anticorrosion power supply device shown in FIG.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001110288A JP4672895B2 (en) | 2001-04-09 | 2001-04-09 | Power supply system for cathodic protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001110288A JP4672895B2 (en) | 2001-04-09 | 2001-04-09 | Power supply system for cathodic protection |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002302782A JP2002302782A (en) | 2002-10-18 |
JP4672895B2 true JP4672895B2 (en) | 2011-04-20 |
Family
ID=18962090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001110288A Expired - Lifetime JP4672895B2 (en) | 2001-04-09 | 2001-04-09 | Power supply system for cathodic protection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4672895B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125568A (en) * | 1991-10-31 | 1993-05-21 | Tokyo Gas Co Ltd | Multipoint noblest value potential selector for corrosion prevention |
JPH062172A (en) * | 1992-06-22 | 1994-01-11 | Osaka Gas Co Ltd | Selective drainage for electric corrosion protection |
JPH06146030A (en) * | 1992-11-02 | 1994-05-27 | Nippon Boshoku Kogyo Kk | Direct-current power unit for electric anticorrosion |
JPH11158664A (en) * | 1997-12-01 | 1999-06-15 | Nippon Boshoku Kogyo Kk | Electrolytic protection method by potentiostatic external power source system |
JP2000192264A (en) * | 1998-12-25 | 2000-07-11 | Nkk Corp | Electrolytic protection management method |
-
2001
- 2001-04-09 JP JP2001110288A patent/JP4672895B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125568A (en) * | 1991-10-31 | 1993-05-21 | Tokyo Gas Co Ltd | Multipoint noblest value potential selector for corrosion prevention |
JPH062172A (en) * | 1992-06-22 | 1994-01-11 | Osaka Gas Co Ltd | Selective drainage for electric corrosion protection |
JPH06146030A (en) * | 1992-11-02 | 1994-05-27 | Nippon Boshoku Kogyo Kk | Direct-current power unit for electric anticorrosion |
JPH11158664A (en) * | 1997-12-01 | 1999-06-15 | Nippon Boshoku Kogyo Kk | Electrolytic protection method by potentiostatic external power source system |
JP2000192264A (en) * | 1998-12-25 | 2000-07-11 | Nkk Corp | Electrolytic protection management method |
Also Published As
Publication number | Publication date |
---|---|
JP2002302782A (en) | 2002-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102487288B1 (en) | Systems for applied current cathode protection | |
US20180216246A1 (en) | Method and system for applying superimposed time-varying frequency electromagnetic wave for corrosion protection of submerged and/or buried structures | |
KR100389446B1 (en) | Heat exchanger comprising soil resisting device | |
CN100595332C (en) | Method and device for protecting metal surface from corroding and scaling | |
US4381981A (en) | Sacrificial cathodic protection system | |
JP4672895B2 (en) | Power supply system for cathodic protection | |
JP6767275B2 (en) | Electrocorrosion protection system and constant current circuit | |
JP2002167725A (en) | Structure contacting with seawater and antifouling device for heat exchanger | |
JP6071053B2 (en) | Method and apparatus for cathodic protection of structural metal materials | |
RU2713898C1 (en) | Device for cathodic protection with autonomous power supply | |
US20190032226A1 (en) | Cathodic protection of copper plumbing system for prevention of corrosion | |
Mishra et al. | Design of a solar photovoltaic-powered mini cathodic protection system | |
JP4469050B2 (en) | Constant potential automatic control type cathodic protection system and equipment | |
KR100595391B1 (en) | Device of electricity anticorrosion | |
JPH1136088A (en) | Electrolytic corrosion protection method capable of executing sea water electrolytic fouling prevention and iron oxide film formation by generation of iron ion and apparatus therefor | |
KR100997500B1 (en) | Anticorrosion system | |
JP4059457B2 (en) | Antifouling and anticorrosion equipment for heat exchangers and seawater conduits | |
Khan et al. | Economic analysis of DC power sources used in impressed current cathodic protection of underground pipelines | |
JP3178398B2 (en) | Cathodic protection method using constant potential external power supply | |
JPH10306390A (en) | Method for electrolytically preventing seawater contamination as well as electric corrosion and device therefor | |
US4152236A (en) | Apparatus for controlled potential pitting corrosion protection of long, narrow stainless steel tubes | |
RU2550467C2 (en) | Adaptive active cathode protection | |
RU1067U1 (en) | Atmospheric corrosion cathodic protection | |
TR199902704A2 (en) | Absorbent liquid cooling device with anti-corrosion equipment. | |
JPH0196389A (en) | Composite electrolytic protection device for heat exchangers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110120 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4672895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |