JP4670819B2 - Exhaust system valve structure - Google Patents

Exhaust system valve structure Download PDF

Info

Publication number
JP4670819B2
JP4670819B2 JP2007033057A JP2007033057A JP4670819B2 JP 4670819 B2 JP4670819 B2 JP 4670819B2 JP 2007033057 A JP2007033057 A JP 2007033057A JP 2007033057 A JP2007033057 A JP 2007033057A JP 4670819 B2 JP4670819 B2 JP 4670819B2
Authority
JP
Japan
Prior art keywords
exhaust system
valve body
frictional force
valve
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007033057A
Other languages
Japanese (ja)
Other versions
JP2008196405A (en
Inventor
登志朗 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007033057A priority Critical patent/JP4670819B2/en
Publication of JP2008196405A publication Critical patent/JP2008196405A/en
Application granted granted Critical
Publication of JP4670819B2 publication Critical patent/JP4670819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車等の排気ガスを排出するための排気系に適用される排気系弁構造に関する。   The present invention relates to an exhaust system valve structure applied to an exhaust system for exhausting exhaust gas from, for example, an automobile.

自動車用排気消音装置に排気圧力に応動して排気流路を切り替えるバルブを設けた構成において、バルブを閉方向に付勢するリターンスプリングの見かけのばね定数を、バルブの回動角が所定の値を超えた場合に減少させるようにしたものが知られている(例えば、特許文献1参照)。
特開平8−109815号公報
In an automobile exhaust silencer with a valve that switches the exhaust flow path in response to the exhaust pressure, the apparent spring constant of the return spring that urges the valve in the closing direction is set to a predetermined value. What is made to reduce when exceeding is known (for example, refer patent document 1).
JP-A-8-109815

しかしながら、上記の如き従来の技術では、主にリターンスプリングの付勢力でバルブを閉止姿勢に保持する構造であるため、リターンスプリングのばね定数が大きく、このリターンスプリングの強度確保や高温の排気ガスの曝露によるヘタリ(永久変形)防止のために、大型のリターンプスリングを用いなければならない問題があった。   However, in the conventional technology as described above, since the valve is held in the closed position mainly by the urging force of the return spring, the spring constant of the return spring is large, so that the strength of the return spring is ensured and high-temperature exhaust gas is discharged. In order to prevent settling (permanent deformation) due to exposure, there was a problem that a large return push ring had to be used.

本発明は、上記事実を考慮して、付勢手段の付勢力を軽減することができる排気系弁構造を得ることが目的である。   In view of the above fact, an object of the present invention is to obtain an exhaust system valve structure that can reduce the urging force of the urging means.

請求項1記載の発明に係る排気系弁構造は、排気ガスの流路を形成する筒状部材と、前記筒状部材に設けられた弁座部に当接して前記流路を閉止し、前記排気ガスの圧力によって前記弁座部から離間して前記流路を開放する弁体と、前記弁体を前記閉止姿勢側に偏倚させるための付勢力を該弁体に付与する付勢手段と、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲で、前記弁体による前記流路の開度が前記所定の開度を超える開度範囲よりも、前記弁体を駆動するのに伴って生じる摩擦力を大とするための摩擦力付与手段と、を備えている。   The exhaust system valve structure according to the first aspect of the present invention is a tubular member that forms a flow path of exhaust gas, and a valve seat provided in the tubular member to close the flow path, A valve body that opens away from the valve seat portion by the pressure of exhaust gas, and a biasing means that imparts a biasing force to the valve body to bias the valve body toward the closing posture; In a separate predetermined opening range in which the opening of the flow path by the valve body is equal to or less than a predetermined opening, than the opening range in which the opening of the flow path by the valve body exceeds the predetermined opening, And a frictional force applying means for increasing the frictional force generated when the valve body is driven.

請求項1記載の排気系弁構造では、排気ガスの圧力が低い場合には、付勢手段の付勢力によって弁体が弁座部に当接し、排気ガスの流路が閉止される。付勢手段は、例えば、ばね等の弾性部材の復元力を利用するものであっても良く、重力を利用して弁体を弁座部に押し付ける構造(配置)であっても良い。排気ガスの圧力が高くなると、弁体は、付勢手段の付勢力に抗して弁座部から離間し、排気ガスの流路は排気ガスの圧力(流量)に応じた開度で開放される。   In the exhaust system valve structure according to the first aspect, when the pressure of the exhaust gas is low, the valve body comes into contact with the valve seat portion by the biasing force of the biasing means, and the exhaust gas flow path is closed. The biasing means may use, for example, a restoring force of an elastic member such as a spring, or may have a structure (arrangement) that presses the valve body against the valve seat portion using gravity. When the pressure of the exhaust gas increases, the valve body moves away from the valve seat against the urging force of the urging means, and the exhaust gas flow path is opened at an opening degree corresponding to the pressure (flow rate) of the exhaust gas. The

この動作に伴って、弁体には摩擦力付与手段による摩擦力が作用する。すなわち、弁体は、所定開度以下の開度範囲内における別途所定の開度範囲(所定開度以下の開度範囲の一部又は全部)において、摩擦抵抗を受ける。これにより、弁体を流路の開放側に移動する初期領域で、排気ガスの圧力による弁体の動作の抵抗を大きくすることができ、付勢手段の付勢力を軽減することができる。また、弁体による流路の開度が所定開度を超えると摩擦力が相対的に小さくなるので、排気ガスの圧力によって弁体を所要の開度となる位置まで駆動することができる。   Along with this operation, a frictional force by the frictional force applying means acts on the valve body. That is, the valve body receives a frictional resistance in a predetermined opening range (part or all of the opening range of the predetermined opening or less) within the opening range of the predetermined opening or less. Thereby, in the initial region where the valve body is moved to the open side of the flow path, the resistance of the operation of the valve body due to the pressure of the exhaust gas can be increased, and the urging force of the urging means can be reduced. Further, since the frictional force becomes relatively small when the opening degree of the flow path by the valve body exceeds a predetermined opening degree, the valve body can be driven to a position where the required opening degree is obtained by the pressure of the exhaust gas.

このように、請求項1記載の排気系弁構造では、付勢手段の付勢力を軽減することができる。なお、別途所定の開度範囲は、所定の開度以下の範囲内にあれば足り、所定の開度以下の全範囲と一致しても良い。   Thus, in the exhaust system valve structure according to claim 1, the urging force of the urging means can be reduced. In addition, it is sufficient that the predetermined opening range is within a range below the predetermined opening, and it may coincide with the entire range below the predetermined opening.

請求項2記載の発明に係る排気系弁構造は、請求項1記載の排気系弁構造において、前記弁体は、回動軸廻りに回動して前記流路の開度を変化させるように、該回動軸を介して前記筒状部材に支持されており、前記摩擦力付与手段は、前記回動軸と前記筒状部材との間、又は前記弁体と前記回動軸との間に設けられている。   An exhaust system valve structure according to a second aspect of the present invention is the exhaust system valve structure according to the first aspect of the present invention, wherein the valve body is rotated about a rotation axis to change the opening degree of the flow path. The frictional force applying means is supported between the rotating shaft and the cylindrical member, or between the valve body and the rotating shaft. Is provided.

請求項2記載の排気系弁構造では、回動軸と弁体又は筒状部材との相対角変位に伴って摩擦力が生じる。例えば回動軸が弁体と一体に回動する構成では、筒状部材における回動軸の支持部と回動軸(弁体の被支持部)との間で摩擦力が生じ、また例えば弁体が回動軸に回転自在に支持された構成では、該弁体の回動軸による被支持部と回動軸(筒状部材)との間で摩擦力が生じる。このように、摩擦力付与手段は、弁座部に対し接離する弁体の被支持部(被ガイド部)と筒状部材との間で摩擦力を生じるので、コンパクトに構成することができる。   In the exhaust system valve structure according to the second aspect, a frictional force is generated with a relative angular displacement between the rotating shaft and the valve body or the cylindrical member. For example, in a configuration in which the rotation shaft rotates integrally with the valve body, a frictional force is generated between the support portion of the rotation shaft and the rotation shaft (supported portion of the valve body) in the cylindrical member. In the configuration in which the body is rotatably supported by the rotation shaft, a frictional force is generated between the supported portion by the rotation shaft of the valve body and the rotation shaft (tubular member). Thus, the frictional force applying means generates a frictional force between the supported portion (guided portion) of the valve body that contacts and separates from the valve seat portion and the cylindrical member, and thus can be configured compactly. .

請求項3記載の発明に係る排気系弁構造は、請求項2記載の排気系弁構造において、前記摩擦力付与手段は、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲において、前記筒状部材又は前記弁体に設けられた軸受と該軸受に支持された前記回動軸とをスラスト方向に当接させることで前記弁体の駆動に伴う摩擦力を生じさせるようになっている。   An exhaust system valve structure according to a third aspect of the present invention is the exhaust system valve structure according to the second aspect, wherein the opening of the flow path by the valve body is equal to or less than a predetermined opening degree. In addition, in a predetermined opening range, friction caused by driving the valve body by bringing a bearing provided on the cylindrical member or the valve body and the rotating shaft supported by the bearing in contact in the thrust direction. It is designed to generate power.

請求項3記載の排気系弁構造では、例えば筒状部材に設けられた軸受と回動軸(弁体の被支持部)とがスラスト方向に当接して相対角変位に伴う摩擦力が生じ、また例えば弁体に設けられた軸受と回動軸(筒状部材)とがスラスト方向に当接して相対角変位に伴う摩擦力が生じる。このため、本排気系弁構造では、軸受と回動軸とのスラスト方向の相対位置に応じて摩擦力の大きい状態と小さい状態とを切り替えることができる。   In the exhaust system valve structure according to claim 3, for example, a bearing provided on the cylindrical member and a rotation shaft (supported portion of the valve body) abut in the thrust direction to generate a frictional force accompanying a relative angular displacement, Further, for example, a bearing provided on the valve body and a rotating shaft (cylindrical member) abut on each other in the thrust direction, and a frictional force accompanying relative angular displacement is generated. For this reason, in this exhaust system valve structure, the state with a large frictional force and the state with a small frictional force can be switched according to the relative position of the bearing and the rotating shaft in the thrust direction.

請求項4記載の発明に係る排気系弁構造は、請求項3記載の排気系弁構造において、前記摩擦力付与手段は、前記筒状部材に設けられ前記回動軸を少なくともラジアル方向に支持する軸受の軸線方向端面、及び前記回動軸から張り出され該回動軸を少なくともラジアル方向に支持する軸受の軸線方向端面と対向する対向部の何れか一方に、周方向の一方側が他方側よりもスラスト方向に突出するように形成された段差部と、前記軸受の軸線方向端面及び前記回動軸の対向部の他方に設けられ、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲の少なくとも一部において、前記軸受の端面又は前記回動軸の対向部における前記段差部に対する周方向一方側の範囲に当接する当接部と、を含んで構成されている。   The exhaust system valve structure according to a fourth aspect of the present invention is the exhaust system valve structure according to the third aspect, wherein the frictional force applying means is provided on the cylindrical member and supports the rotating shaft at least in a radial direction. One end in the circumferential direction from the other end of the bearing in the axial direction end face and the facing portion that protrudes from the rotating shaft and supports the rotating shaft at least in the radial direction. Is provided on the other of the stepped portion formed so as to protrude in the thrust direction, the axial end surface of the bearing and the opposed portion of the rotating shaft, and the opening degree of the flow path by the valve body is a predetermined opening degree. A contact portion that contacts a range on one side in the circumferential direction with respect to the stepped portion of the end surface of the bearing or the facing portion of the rotating shaft in at least a part of a predetermined opening range that is the following. Has been.

請求項4記載の排気系弁構造では、軸受の端面又は回動軸の対向部のうち段差部が形成された方は、スラスト方向において、段差部を境に周方向の一方側が回動軸の当接部に近接し、周方向の他方側が回動軸の当接部から離間している。そして、弁体による流路の開度が所定の開度以下である別途所定の開度範囲の少なくとも一部では、軸受の端面又は回動軸の対向部に設けられた当接部が、対向部又は軸受端面における段差部に対する周方向の一方側に当接しているので、例えば当接部が軸受端面又は対向部における段差部に対する周方向の他方側に対向又は接触する開度範囲よりも大きな摩擦力が得られる。   In the exhaust system valve structure according to claim 4, the one where the stepped portion is formed in the end face of the bearing or the opposed portion of the rotating shaft has a rotating shaft on one side in the circumferential direction with the stepped portion as a boundary in the thrust direction. Close to the contact portion, the other side in the circumferential direction is separated from the contact portion of the rotating shaft. Then, in at least a part of the predetermined opening range where the opening degree of the flow path by the valve body is equal to or less than the predetermined opening degree, the contact part provided on the end face of the bearing or the opposing part of the rotating shaft is opposed. Since the abutting portion is in contact with one side in the circumferential direction with respect to the stepped portion on the bearing portion or the bearing end surface, for example, the contact opening portion is larger than the opening range in which the other end in the circumferential direction with respect to the stepped portion on the bearing end surface or the facing portion A frictional force is obtained.

請求項5記載の発明に係る排気系弁構造は、請求項4記載の排気系弁構造において、前記段差部は、少なくとも周方向の一部が、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲の少なくとも一部において、前記当接部と当接し得る傾斜面とされている。   The exhaust system valve structure according to a fifth aspect of the present invention is the exhaust system valve structure according to the fourth aspect, wherein at least a part of the stepped portion in the circumferential direction has a predetermined opening degree of the flow path by the valve body. It is set as the inclined surface which can contact | abut the said contact part in at least one part of the separately predetermined opening range which is below this opening degree.

請求項5記載の排気系弁構造では、傾斜面である段差部を当接部が当接しつつ開方向に通過(摺動)する開度範囲で、摩擦力が徐々に減じられる。すなわち、摩擦力の急変が防止される。また、弁体が所定開度を超える開度範囲から閉止側に復帰する際に、段差部と当接部との干渉が防止される。   In the exhaust system valve structure according to the fifth aspect, the frictional force is gradually reduced in an opening range in which the contact portion passes (slids) in the opening direction while the contact portion contacts the stepped portion which is an inclined surface. That is, a sudden change in the frictional force is prevented. Further, when the valve body returns from the opening range exceeding the predetermined opening to the closing side, interference between the stepped portion and the contact portion is prevented.

請求項6記載の発明に係る排気系弁構造は、請求項3記載の排気系弁構造において、前記摩擦力付与手段は、前記バルブと一体的に回動するように設けられた前記回動軸を、自軸廻りの回動に伴ってスラスト方向に移動させる変位方向変換手段と、前記筒状部材に設けられ前記回動軸を少なくともラジアル方向に支持する軸受に設けられ、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲において、前記回動軸がスラスト方向に当接する被当接部と、を含んで構成されている。   An exhaust system valve structure according to a sixth aspect of the present invention is the exhaust system valve structure according to the third aspect, wherein the frictional force applying means is provided so as to rotate integrally with the valve. Displacement direction converting means for moving in the thrust direction with rotation about its own axis, and a bearing provided on the cylindrical member for supporting the rotation shaft at least in the radial direction, The rotating shaft is configured to include a contacted portion in which the rotation shaft contacts in the thrust direction in a separately predetermined opening range where the opening of the flow path is equal to or less than the predetermined opening.

請求項6記載の排気系弁構造では、排気圧力(の変動)によって弁体が回動軸廻りに回動すると、変位方向変換手段によって回動軸がスラスト方向に変位する。そして、弁体による流路の開度が所定の開度以下である別途所定の開度範囲では、軸受の被当接部に回動軸が当接しているので、例えば該被当接部と回動軸とが離間する開度範囲よりも大きな摩擦力が得られる。   In the exhaust system valve structure according to the sixth aspect, when the valve body is rotated around the rotation shaft by the exhaust pressure (variation thereof), the rotation shaft is displaced in the thrust direction by the displacement direction converting means. Then, in a separate predetermined opening range where the opening of the flow path by the valve body is equal to or less than the predetermined opening, the rotating shaft is in contact with the contacted portion of the bearing. A friction force larger than the opening range in which the rotating shaft is separated can be obtained.

請求項7記載の発明に係る排気系弁構造は、請求項6記載の排気系弁構造において、前記変位方向変換手段は、前記回動軸の外周面及び前記軸受の内周面の何れか一方に形成されたカム溝と、前記回動軸の外周面及び前記軸受の内周面の他方から突出されて前記カム溝に入り込む突起とを含んで構成されている。   An exhaust system valve structure according to a seventh aspect of the present invention is the exhaust system valve structure according to the sixth aspect, wherein the displacement direction converting means is one of an outer peripheral surface of the rotating shaft and an inner peripheral surface of the bearing. And a projection that protrudes from the other of the outer peripheral surface of the rotating shaft and the inner peripheral surface of the bearing and enters the cam groove.

請求項7記載の排気系弁構造では、回動軸及び軸受の何れか一方に設けられたカム溝と他方に設けられた突起とで変位方向変換手段が構成されているので、簡単な構造で回動軸をスラスト方向に変位させることができる。   In the exhaust system valve structure according to the seventh aspect, since the displacement direction converting means is constituted by the cam groove provided on one of the rotating shaft and the bearing and the projection provided on the other, the structure is simple. The rotating shaft can be displaced in the thrust direction.

請求項8記載の発明に係る排気系弁構造は、請求項1乃至請求項7の何れか1項記載の排気系弁構造において、前記摩擦力付与手段は、前記弁体による前記流路の開度が所定の開度以下である範囲における前記別途所定の開度範囲が前記弁体による前記流路を全閉する開度を含まず、かつ、前記弁体による前記流路を全閉する開度から前記別途所定の開度範囲の下限までの開度範囲で、該別途所定の開度範囲よりも、前記弁体を駆動するのに伴って生じる摩擦力を小とするように構成されている。   An exhaust system valve structure according to an eighth aspect of the present invention is the exhaust system valve structure according to any one of the first to seventh aspects, wherein the frictional force applying means is configured to open the flow path by the valve body. In the range where the degree is equal to or less than the predetermined opening, the separately predetermined opening range does not include an opening degree that fully closes the flow path by the valve body, and an opening that fully closes the flow path by the valve body. The frictional force generated when the valve body is driven is smaller than the separate predetermined opening range in the opening range from the degree to the lower limit of the separately predetermined opening range. Yes.

請求項8記載の排気系弁構造では、弁体は、流路を閉止する位置から別途所定の開度範囲の下限に至るまでは摩擦力が小さく、別途所定の開度範囲では摩擦力が大きく、所定の開度範囲の上限(別途所定の開度範囲の上限と一致しても良い)を超える開度範囲では摩擦力が小さくなる。弁体による流路の閉止位置(開度0)で摩擦力(静止摩擦)が小さくなる構成であるため、弁体と筒状部材(回動軸と軸受)との固着等が防止されやすい。   In the exhaust system valve structure according to claim 8, the valve body has a small frictional force from the position where the flow path is closed to the lower limit of the predetermined opening range, and the frictional force is large in the separate predetermined opening range. The frictional force is reduced in the opening range exceeding the upper limit of the predetermined opening range (which may separately coincide with the upper limit of the predetermined opening range). Since the frictional force (static friction) is reduced at the closed position (opening degree 0) of the flow path by the valve body, sticking between the valve body and the cylindrical member (rotating shaft and bearing) is easily prevented.

請求項9記載の発明に係る排気系弁構造は、排気ガスの流路を形成する筒状部材と、前記筒状部材に設けられた環状の弁座部に当接して前記流路を閉止し、前記排気ガスの圧力によって前記弁座部から離間して前記流路を開放する弁体と、前記弁体を前記閉止姿勢側に偏倚させるための付勢力を生じる付勢手段と、前記弁体による前記流路の開閉動作によって一方と他方とが摺動するように、前記一方が前記筒状部材側に設けられると共に前記他方が前記弁体側に設けられて構成され、かつ前記排気ガスによって加熱された場合に熱膨脹差で前記摺動方向との交差方向に互いに離間する摩擦力付与手段と、を備えている。   The exhaust system valve structure according to the ninth aspect of the invention closes the flow path by contacting a tubular member that forms an exhaust gas flow path and an annular valve seat provided in the tubular member. A valve body that is spaced apart from the valve seat portion by the pressure of the exhaust gas and opens the flow path; a biasing means that generates a biasing force for biasing the valve body toward the closed posture; and the valve body The one side is provided on the cylindrical member side and the other side is provided on the valve body side so that the one and the other slide by the opening / closing operation of the flow path by the heating, and heated by the exhaust gas. And a frictional force applying means that separates each other in a direction intersecting the sliding direction due to a difference in thermal expansion.

請求項9記載の排気系弁構造では、例えば内燃機関の始動直後等の排気系の温度が低い場合、排気ガスの圧力で弁体が駆動される際には、摩擦力付与手段の一方と他方とが摺動して大きな摩擦力が生じる。一方、排気ガスによる加熱により排気系の温度が上昇すると、摩擦力付与手段の一方と他方とが互いの熱膨張差によって離間し、これらの間には摩擦力が作用しなくなる。これにより、弁体と弁座部とでチャタリングを生じやすい排気系の低温時に、付勢手段の付勢力に頼ることなく摩擦力付与手段によりチャタリングを抑制することができる。したがって、付勢手段の付勢力を軽減することができる。一方、排気系の高温時には、弁体の動作に伴う摩擦力を低減して、所要の弁開度を確保することができる。   In the exhaust system valve structure according to claim 9, when the temperature of the exhaust system is low, for example, immediately after starting the internal combustion engine, when the valve body is driven by the pressure of the exhaust gas, one and the other of the frictional force applying means Slides and generates a large frictional force. On the other hand, when the temperature of the exhaust system rises due to the heating by the exhaust gas, one of the frictional force applying means and the other are separated by the difference in thermal expansion between each other, and the frictional force does not act between them. Thus, chattering can be suppressed by the frictional force applying means without relying on the urging force of the urging means at a low temperature of the exhaust system in which chattering is likely to occur between the valve body and the valve seat portion. Therefore, the urging force of the urging means can be reduced. On the other hand, when the exhaust system is at a high temperature, it is possible to reduce the frictional force accompanying the operation of the valve body and ensure the required valve opening.

このように、請求項9記載の排気系弁構造では、付勢手段の付勢力を軽減することができる。しかも、摩擦力付与手段を、可動部分を設けることなく構成することができる。   Thus, in the exhaust system valve structure according to the ninth aspect, the urging force of the urging means can be reduced. Moreover, the frictional force applying means can be configured without providing a movable part.

請求項10記載の発明に係る排気系弁構造は、請求項9記載の排気系弁構造において、前記弁体は、回動軸廻りに回動して前記流路の開度を変化させるように、該回動軸を介して前記筒状部材に支持されており、前記摩擦力付与手段は、前記回動軸と前記筒状部材との間、又は前記弁体と前記回動軸との間に設けられている。   An exhaust system valve structure according to a tenth aspect of the present invention is the exhaust system valve structure according to the ninth aspect, wherein the valve body is rotated about a rotation axis to change the opening degree of the flow path. The frictional force applying means is supported between the rotating shaft and the cylindrical member, or between the valve body and the rotating shaft. Is provided.

請求項10記載の排気系弁構造では、回動軸と弁体又は筒状部材との相対角変位に伴って摩擦力が生じる。例えば回動軸が弁体と一体に回動する構成では、筒状部材における回動軸の支持部と回動軸(弁体の被支持部)との間で摩擦力が生じ、また例えば弁体が回動軸に回転自在に支持された構成では、該弁体の回動軸による被支持部と回動軸(筒状部材)との間で摩擦力が生じる。このように、摩擦力付与手段は、弁座部に対し接離する弁体の被支持部(被ガイド部)と筒状部材との間で摩擦力を生じるので、コンパクトに構成することができる。   In the exhaust system valve structure according to the tenth aspect, a frictional force is generated along with the relative angular displacement between the rotating shaft and the valve body or the cylindrical member. For example, in a configuration in which the rotation shaft rotates integrally with the valve body, a frictional force is generated between the support portion of the rotation shaft and the rotation shaft (supported portion of the valve body) in the cylindrical member. In the configuration in which the body is rotatably supported by the rotation shaft, a frictional force is generated between the supported portion by the rotation shaft of the valve body and the rotation shaft (tubular member). Thus, the frictional force applying means generates a frictional force between the supported portion (guided portion) of the valve body that contacts and separates from the valve seat portion and the cylindrical member, and thus can be configured compactly. .

請求項11記載の発明に係る排気系弁構造は、請求項10記載の排気系弁構造において、前記摩擦力付与手段は、前記回動軸と前記筒状部材又は前記弁体に設けられた軸受とをスラスト方向に当接させることで前記弁体の駆動に伴う摩擦力を生じさせるようになっている。   An exhaust system valve structure according to an eleventh aspect of the present invention is the exhaust system valve structure according to the tenth aspect, wherein the frictional force applying means is a bearing provided on the rotating shaft and the cylindrical member or the valve body. Are brought into contact with each other in the thrust direction to generate a frictional force accompanying the driving of the valve body.

請求項11記載の排気系弁構造では、回動軸は、温度に応じて軸線方向に伸縮する(長手方向の伸縮量が最も大きくなる)ようになっており、軸線方向に伸張して軸受に対しスラスト方向に離間する。このため、本排気系弁構造では、可動部分を設けることなく比較的大きな相対変位を創出し、摩擦力の大きい状態と小さい状態とを切り替えることができる。   In the exhaust system valve structure according to the eleventh aspect, the rotating shaft expands and contracts in the axial direction according to temperature (the amount of expansion and contraction in the longitudinal direction becomes the largest), and extends in the axial direction to become a bearing. Separated in the thrust direction. For this reason, in this exhaust system valve structure, it is possible to create a relatively large relative displacement without providing a movable part, and to switch between a state where the frictional force is large and a state where the frictional force is small.

以上説明したように本発明に係る排気系弁構造は、付勢手段の付勢力を軽減することができるという優れた効果を有する。   As described above, the exhaust system valve structure according to the present invention has an excellent effect that the urging force of the urging means can be reduced.

本発明の第1の実施形態に係る排気系弁構造が適用された排気系バルブ装置10について、図1乃至図3に基づいて説明する。なお、以下の説明で、単に上流・下流の語を用いるときは、排気ガスの流れ方向の上流・下流を示すものとする。   An exhaust system valve device 10 to which an exhaust system valve structure according to a first embodiment of the present invention is applied will be described with reference to FIGS. 1 to 3. In the following description, when the terms upstream and downstream are simply used, they indicate upstream and downstream in the flow direction of the exhaust gas.

図2には、排気系バルブ装置10の全体構成が平面断面(側断面)図にて示されている。この図に示される如く、排気系バルブ装置10は、筒状部材としての排気管12と、排気管12の一方側開口端を開閉するための弁体としてのバルブ14とを主要構成要素としている。排気管12は、自動車のエンジン(内燃機関)が発生する排気ガスを排出するための排気ガス流路16を構成している。排気管12は、排気管自体であっても良く、排気管に取り付けられる別部材(バルブボディ)であっても良い。   FIG. 2 shows the overall configuration of the exhaust system valve device 10 in a plane cross-sectional (side cross-sectional) view. As shown in this figure, the exhaust system valve device 10 includes, as main components, an exhaust pipe 12 as a cylindrical member and a valve 14 as a valve body for opening and closing one side opening end of the exhaust pipe 12. . The exhaust pipe 12 constitutes an exhaust gas passage 16 for exhausting exhaust gas generated by an automobile engine (internal combustion engine). The exhaust pipe 12 may be the exhaust pipe itself or a separate member (valve body) attached to the exhaust pipe.

排気管12の開口端12Aの周縁には、弁座部としての弁座18が環状に形成されている。この実施形態では、弁座18は、排気管12の開口端12Aを下流に向けて拡径するテーパ状(コニカル状)に形成されている。バルブ14は、排気管12の内径に対応する円板状の弁本体14Aと、弁本体14Aの周縁部に形成された環状のシール部14Bとを有する。シール部14Bは、弁座18に対応したテーパ状に形成されており、排気管12の排気ガス流路16を閉止する全閉姿勢で該弁座18と略全面に亘り接触(面接触)する構成とされている。   A valve seat 18 as a valve seat portion is formed in an annular shape on the periphery of the open end 12 </ b> A of the exhaust pipe 12. In this embodiment, the valve seat 18 is formed in a tapered shape (conical shape) in which the diameter of the open end 12A of the exhaust pipe 12 is increased toward the downstream side. The valve 14 has a disc-shaped valve main body 14A corresponding to the inner diameter of the exhaust pipe 12, and an annular seal portion 14B formed on the peripheral edge of the valve main body 14A. The seal portion 14B is formed in a taper shape corresponding to the valve seat 18, and makes contact (surface contact) with the valve seat 18 over a substantially entire surface in a fully closed posture for closing the exhaust gas flow path 16 of the exhaust pipe 12. It is configured.

また、バルブ14には、シール部14Bの周方向の一部から径方向に延設された延設部14Cが形成されており、延設部14Cには回動軸20が固定的に設けられている。回動軸20は、軸線方向に長手の円柱状に形成されており、排気管12に対し回転自在に支持されている。具体的には、図1に示される如く、回動軸20は、長手方向の両端側がそれぞれ異なる軸受22、24に回転自在に支持されており、図2に示される如く、軸受22、24は、ブラケット26を介して排気管12に固定的に支持されている。   Further, the valve 14 is formed with an extending portion 14C extending in a radial direction from a part in the circumferential direction of the seal portion 14B, and the rotating shaft 20 is fixedly provided on the extending portion 14C. ing. The rotating shaft 20 is formed in a cylindrical shape that is long in the axial direction, and is supported rotatably with respect to the exhaust pipe 12. Specifically, as shown in FIG. 1, the rotary shaft 20 is rotatably supported by bearings 22 and 24 that are different at both ends in the longitudinal direction. As shown in FIG. 2, the bearings 22 and 24 are The exhaust pipe 12 is fixedly supported via the bracket 26.

また、図2に示される如く、排気系バルブ装置10は、バルブ14を閉止姿勢側に付勢する付勢手段、付勢部材としてのリターンスプリング28を備えている。この実施形態では、リターンスプリング28は、一端部28Aがブラケット26に係止されると共に他端部28Bがバルブ14に係止された捩りコイルばねとされており、その中間の環状部28Cには回動軸20が挿通されている。   In addition, as shown in FIG. 2, the exhaust system valve device 10 includes an urging means for urging the valve 14 toward the closing posture and a return spring 28 as an urging member. In this embodiment, the return spring 28 is a torsion coil spring in which one end portion 28A is locked to the bracket 26 and the other end portion 28B is locked to the valve 14, and an intermediate annular portion 28C includes The rotating shaft 20 is inserted.

以上説明した排気系バルブ装置10は、排気ガスの圧力が小さい場合はリターンスプリング28の付勢力にてバルブ14が全閉姿勢に保持され、排気ガスの圧力が上昇すると、バルブ14がリターンスプリング28の付勢力に抗して回動軸20廻りの矢印R方向に回動し、排気管12の排気ガス流路16が開放されるようになっている。図2に示される如く、バルブ14は、全閉姿勢から回動軸20廻りに矢印R方向に回動することで、排気ガス流路16を開放するようになっている。バルブ14は、少なくとも図2に想像線にて示す全開姿勢をとるまで回動軸20廻りに回動可能とされている。   In the exhaust system valve device 10 described above, when the pressure of the exhaust gas is small, the valve 14 is held in the fully closed position by the urging force of the return spring 28, and when the pressure of the exhaust gas rises, the valve 14 is returned to the return spring 28. The exhaust gas passage 16 of the exhaust pipe 12 is opened by rotating in the direction of the arrow R around the rotation shaft 20 against the urging force. As shown in FIG. 2, the valve 14 is configured to open the exhaust gas passage 16 by rotating in the direction of arrow R around the rotation shaft 20 from the fully closed posture. The valve 14 can be rotated about the rotation shaft 20 at least until the valve 14 is fully opened as shown by an imaginary line in FIG.

図1に示される如く、排気系バルブ装置10は、摩擦力付与手段としての摩擦力付与構造30を備えている。摩擦力付与構造30は、一方の軸受24における軸線方向の軸受22側の端面に形成された摩擦力調整面32と、該摩擦力調整面32に向けて回動軸20に設けられた当接部としての突起34とを含んで構成されている。この実施形態では、突起34は、回動軸20の外周から径方向外向きに張り出した円板状のフランジ36に、摩擦力調整面32に向けて突出するように設けられている。また、この実施形態では、軸受22は、回動軸20をラジアル方向及びスラスト方向に支持しており、軸受24は、回動軸20をラジアル方向にのみ支持している。   As shown in FIG. 1, the exhaust system valve device 10 includes a friction force applying structure 30 as a friction force applying means. The frictional force imparting structure 30 includes a frictional force adjusting surface 32 formed on an end surface of the one bearing 24 on the bearing 22 side in the axial direction, and a contact provided on the rotary shaft 20 toward the frictional force adjusting surface 32. And a projection 34 as a part. In this embodiment, the protrusion 34 is provided on a disc-like flange 36 projecting radially outward from the outer periphery of the rotating shaft 20 so as to protrude toward the friction force adjusting surface 32. In this embodiment, the bearing 22 supports the rotating shaft 20 in the radial direction and the thrust direction, and the bearing 24 supports the rotating shaft 20 only in the radial direction.

摩擦力調整面32は、周方向の所定部位に段差部32Aが形成されており、該段差部32Aに対する周方向の一方側が軸線方向に最も突出した高摩擦側摺動面32Bとされている。また、摩擦力調整面32における段差部32Aに対し高摩擦側摺動面32Bとは周方向の反対側部分は、軸線方向の突出量が最も小さい(突出量が0である)低摩擦側端面32Cとされている。この実施形態では、段差部32Aは、高摩擦側摺動面32Bから低摩擦側端面32Cに向けて連続的に突出量を減じるように傾斜された傾斜面とされている。   The frictional force adjusting surface 32 is formed with a stepped portion 32A at a predetermined portion in the circumferential direction, and one side in the circumferential direction with respect to the stepped portion 32A is a high friction side sliding surface 32B that protrudes most in the axial direction. Further, the portion of the frictional force adjusting surface 32 opposite to the stepped portion 32A in the circumferential direction opposite to the high friction side sliding surface 32B has the smallest amount of protrusion in the axial direction (the amount of protrusion is zero). 32C. In this embodiment, the stepped portion 32A is an inclined surface that is inclined so as to continuously reduce the protruding amount from the high friction side sliding surface 32B toward the low friction side end surface 32C.

そして、排気系バルブ装置10では、バルブ14が全閉姿勢をとる場合に、突起34が高摩擦側摺動面32Bに当接するようになっている。この実施形態では、突起34は、回動軸20の軸線方向に圧縮された状態(締まり嵌め状態)で高摩擦側摺動面32Bに当接する構成とされている。この突起34に作用するスラスト方向の力(主に弾性的な復元力)が突起34と高摩擦側摺動面32Bとの摺動に伴う摩擦の摩擦抗力となる。   In the exhaust system valve device 10, when the valve 14 is in the fully closed position, the protrusion 34 comes into contact with the high friction side sliding surface 32B. In this embodiment, the protrusion 34 is configured to abut on the high friction side sliding surface 32 </ b> B in a state compressed in the axial direction of the rotation shaft 20 (an interference fit state). A thrust force (mainly elastic restoring force) acting on the protrusion 34 becomes a frictional drag force of friction accompanying the sliding between the protrusion 34 and the high friction side sliding surface 32B.

また、排気系バルブ装置10では、バルブ14が矢印R方向に所定角度だけ回動する(所定開度に至る)と、突起34の摩擦力調整面32に対する相対角位置(範囲)が段差部32Aとなるようになっている。この所定角度は、バルブ14が全開位置まで至る場合の回動角(たとえば45°)と比較して十分に小さい角度(例えば5°)とされている。さらに、突起34は、段差部32Aの周方向における高摩擦側摺動面32B側の一部に対して、軸線(スラスト)方向に圧縮された状態(締まり嵌め状態)で当接するようになっている。バルブ14が矢印R方向にさらに回動すると、突起34の摩擦力調整面32に対する相対角位置が低摩擦側端面32Cとなるようになっている。この実施形態では、突起34は、低摩擦側端面32Cに対し非接触となる構成とされている。   Further, in the exhaust system valve device 10, when the valve 14 is rotated by a predetermined angle in the arrow R direction (reached to a predetermined opening), the relative angular position (range) of the protrusion 34 with respect to the frictional force adjusting surface 32 is the step portion 32A. It comes to become. This predetermined angle is an angle (for example, 5 °) that is sufficiently smaller than the rotation angle (for example, 45 °) when the valve 14 reaches the fully open position. Further, the protrusion 34 comes into contact with a part on the high friction side sliding surface 32B side in the circumferential direction of the stepped portion 32A in a compressed state (an interference fit state) in the axial direction (thrust) direction. Yes. When the valve 14 further rotates in the arrow R direction, the relative angular position of the protrusion 34 with respect to the friction force adjusting surface 32 becomes the low friction side end surface 32C. In this embodiment, the protrusion 34 is configured to be in non-contact with the low friction side end face 32C.

図3に示される如く、排気系バルブ装置10では、突起34が高摩擦側摺動面32Bに当接しているバルブ14の開度範囲Aでは、摩擦力が大きくかつ略一定であり、突起34が段差部32Aに当接しているバルブ14の開度範囲Bでは、摩擦力が漸減し、突起34が摩擦力調整面32に非接触であるバルブ14の開度範囲Cでは、摩擦力が小さくかつ略一定とされる。開度範囲Cでは、生じる摩擦力は、主に軸受22、軸受24の内周と回動軸20の外周との摩擦力となる。   As shown in FIG. 3, in the exhaust system valve device 10, the friction force is large and substantially constant in the opening range A of the valve 14 in which the protrusion 34 is in contact with the high friction side sliding surface 32 </ b> B. In the opening range B of the valve 14 in contact with the stepped portion 32A, the frictional force gradually decreases, and in the opening range C of the valve 14 in which the protrusion 34 is not in contact with the frictional force adjusting surface 32, the frictional force is small. And it is almost constant. In the opening range C, the generated frictional force is mainly the frictional force between the inner periphery of the bearings 22 and 24 and the outer periphery of the rotating shaft 20.

以上説明した排気系バルブ装置10は、排気系において、例えばマフラ(消音装置)内の排気系路を切り替えたり、単に直流状の排気経路を開閉したり(所定流量以上で排気ガスを流通させたり)、複数の触媒装置やバイパス流路を切り替えたり、排気系に並列に排気熱回収装置が設けられた構成において排気熱回収とバイパスとを切り替えたりする各種の用途に適用することができる。   In the exhaust system valve device 10 described above, in the exhaust system, for example, the exhaust system path in the muffler (silencer) is switched, or the DC exhaust path is simply opened and closed (exhaust gas is circulated at a predetermined flow rate or higher). ), Switching between a plurality of catalyst devices and bypass passages, or switching between exhaust heat recovery and bypass in a configuration in which an exhaust heat recovery device is provided in parallel to the exhaust system.

次に、本第1の実施形態の作用を説明する。   Next, the operation of the first embodiment will be described.

上記構成の排気系バルブ装置10では、排気ガスの圧力が低い場合には、リターンスプリング28の付勢力によってバルブ14が閉止姿勢をとることで、排気管12に形成された排気ガス流路16が閉止されている。排気ガスの圧力が上昇すると、バルブ14は、リターンスプリング28の付勢力、及び回動軸20と軸受22、24との摩擦力に抗して矢印R方向に回動する。これにより、排気ガス流路16(排気管12の開口端12A)が開放され、排気ガスは排気ガス流路16を流通する。   In the exhaust system valve device 10 configured as described above, when the pressure of the exhaust gas is low, the valve 14 is closed by the urging force of the return spring 28, so that the exhaust gas passage 16 formed in the exhaust pipe 12 is closed. It is closed. When the pressure of the exhaust gas rises, the valve 14 rotates in the arrow R direction against the urging force of the return spring 28 and the frictional force between the rotating shaft 20 and the bearings 22 and 24. As a result, the exhaust gas passage 16 (open end 12 </ b> A of the exhaust pipe 12) is opened, and the exhaust gas flows through the exhaust gas passage 16.

ここで、排気系バルブ装置10では、バルブ14の全閉から微小な所定開度(この実施形態では、一般にチャタリングを生じやすいとされる略5°の回動角に対応する開度)までの開度範囲Aにおいて、突起34と回動軸20の高摩擦側摺動面32Bとが当接しているため、バルブ14の矢印R方向、矢印Rとは反対方向の回動に伴って大きな摩擦力が作用する。この摩擦力は、排気管12に対するバルブ14の開閉方向の振動的な動きに対する減衰力(摩擦減衰)として作用するので、バルブ14の共振振動による異音(チャタリング)の発生が抑制又は防止される。すなわち、減衰比が大きいことにより、バルブ14の振幅が抑えられ、シール部14Bと弁座18との当接が抑制又は防止される。この効果は、実験的にも確かめられている。   Here, in the exhaust system valve device 10, the valve 14 is fully closed to a minute predetermined opening (in this embodiment, an opening corresponding to a rotation angle of approximately 5 °, which is generally considered to cause chattering). In the opening range A, the protrusion 34 and the high friction side sliding surface 32B of the rotation shaft 20 are in contact with each other, so that a large amount of friction is caused by the rotation of the valve 14 in the direction of the arrow R and in the direction opposite to the arrow R. Force acts. Since this frictional force acts as a damping force (frictional damping) against the vibration movement in the opening / closing direction of the valve 14 with respect to the exhaust pipe 12, occurrence of abnormal noise (chattering) due to resonance vibration of the valve 14 is suppressed or prevented. . That is, since the damping ratio is large, the amplitude of the valve 14 is suppressed, and the contact between the seal portion 14B and the valve seat 18 is suppressed or prevented. This effect has been confirmed experimentally.

これにより、摩擦力付与構造30を備える排気系バルブ装置10では、リターンスプリング28のばね定数すなわちリターンスプリング28の復元力に基づく付勢力を大きくすることなく、チャタリングを防止することができる。リターンスプリング28は、ばね定数が小さくされることで、強度や耐久性(耐ヘタリ性)に対する要求が緩和され、小型に構成することが可能になる。例えば、捩りコイルばねであるリターンスプリング28の場合、環状部28Cの巻き数を減らしたり、線径を小さくしたりすることができる。   Thereby, in the exhaust system valve device 10 including the frictional force applying structure 30, chattering can be prevented without increasing the biasing force based on the spring constant of the return spring 28, that is, the restoring force of the return spring 28. Since the return spring 28 has a small spring constant, demands on strength and durability (sag resistance) are alleviated, and the return spring 28 can be made compact. For example, in the case of the return spring 28 that is a torsion coil spring, the number of turns of the annular portion 28C can be reduced, or the wire diameter can be reduced.

一方、開度範囲Cでは、突起34と摩擦力調整面32(低摩擦側端面32C)とが非接触であり、回動軸20と軸受22、24との摩擦が低減されるため、排気ガスの圧力に対しバルブ14の開度が大きくなり、排気系の背圧の低減が図られる。特に、上記の如くリターンスプリング28のばね定数が小さくされると、バルブ14の開度を一層大きくすることができ、排気系の背圧を一層低減することができる。   On the other hand, in the opening range C, the protrusion 34 and the friction force adjusting surface 32 (low friction side end surface 32C) are not in contact with each other, and the friction between the rotating shaft 20 and the bearings 22 and 24 is reduced. The opening degree of the valve 14 is increased with respect to this pressure, and the back pressure of the exhaust system is reduced. In particular, when the spring constant of the return spring 28 is reduced as described above, the opening degree of the valve 14 can be further increased and the back pressure of the exhaust system can be further reduced.

以上により、排気系バルブ装置10は、チャタリング(異音)の防止と背圧低減の両立を図ることができる。   As described above, the exhaust system valve device 10 can achieve both prevention of chattering (abnormal noise) and reduction of back pressure.

また、排気系バルブ装置10では、上記の通り摩擦力付与構造30によってバルブ14の開度範囲Aで大きな摩擦力が作用するので、該開度範囲Aが維持される範囲で排気ガスの流量が同じであれば、バルブ14の開度は小さくなる。これにより、排気音の消音量が増す効果を得ることができる。   Further, in the exhaust system valve device 10, since a large frictional force acts in the opening range A of the valve 14 by the friction force applying structure 30 as described above, the flow rate of the exhaust gas is within a range in which the opening range A is maintained. If it is the same, the opening degree of the valve 14 becomes small. Thereby, the effect which the silence volume of exhaust sound increases can be acquired.

さらに、排気系バルブ装置10では、摩擦力調整面32の段差部32Aが傾斜面とされているため、バルブ14が開度範囲Cから開度範囲Aに移行する際に、突起34が段差部32Aに案内されて確実に高摩擦側摺動面32Bとの当接状態に復帰する。すなわち、段差部32Aと突起34との引っ掛かり(干渉)が防止される。また、排気系バルブ装置10では、段差部32Aが傾斜面であることにより、回動軸20と軸受22、24との摩擦力が徐々に変化する。このため、摩擦力が急変する構造のようにステップ入力に対する過渡応答のような振動的挙動が防止される。   Further, in the exhaust system valve device 10, since the stepped portion 32 </ b> A of the frictional force adjusting surface 32 is an inclined surface, when the valve 14 shifts from the opening range C to the opening range A, the protrusion 34 has a stepped portion. It is guided to 32A and reliably returns to the contact state with the high friction side sliding surface 32B. That is, the catch (interference) between the step portion 32A and the protrusion 34 is prevented. Moreover, in the exhaust system valve device 10, the frictional force between the rotating shaft 20 and the bearings 22 and 24 gradually changes due to the stepped portion 32A being an inclined surface. For this reason, the vibrational behavior such as the transient response to the step input is prevented like the structure in which the frictional force changes suddenly.

そして、排気系バルブ装置10では、回動軸20の円板状のフランジ36に設けた突起34と軸受24に設けた摩擦力調整面32とで摩擦力付与構造30が構成されているので、簡単な構造でリターンスプリング28の付勢力軽減、チャタリング防止等の上記した各効果を得ることができる。   In the exhaust system valve device 10, the friction force applying structure 30 is configured by the protrusion 34 provided on the disk-like flange 36 of the rotating shaft 20 and the friction force adjusting surface 32 provided on the bearing 24. The above-described effects such as reduction of the urging force of the return spring 28 and prevention of chattering can be obtained with a simple structure.

なお、排気系バルブ装置10では、段差部32Aが上記したチャタリングを生じやすいとされる回動角で略5°の範囲の外側に設定された例を示したが、本発明はこれに限定されず、傾斜面である段差部32A(における突起34が当接する範囲)の少なくとも一部を、略5°の範囲内(本発明における所定の開度以下の範囲内)に設定しても良い。この場合、段差部32Aの傾斜角によって、バルブ14の開度に応じた摩擦力を調整することができる。   In the exhaust system valve device 10, the example in which the step portion 32A is set outside the range of about 5 ° in the rotation angle that is likely to cause the above chattering is shown, but the present invention is not limited to this. Alternatively, at least a part of the stepped portion 32A that is an inclined surface (a range in which the projection 34 abuts) may be set within a range of approximately 5 ° (within a range of a predetermined opening or less in the present invention). In this case, the frictional force according to the opening degree of the valve 14 can be adjusted by the inclination angle of the stepped portion 32A.

また、排気系バルブ装置10では、回動軸20に当接部としての突起34を設けると共に、軸受24に段差部32Aを有する摩擦力調整面32を形成した例を示したが、本発明はこれに限定されず、例えば、回動軸20の円板状のフランジ36に摩擦力調整面32を設けると共に、軸受24の端面から突起34を突設させた構成としても良い。   Further, in the exhaust system valve device 10, the example in which the protrusion 34 as the contact portion is provided on the rotating shaft 20 and the friction force adjusting surface 32 having the stepped portion 32A is formed on the bearing 24 is shown. For example, the frictional force adjusting surface 32 may be provided on the disc-shaped flange 36 of the rotating shaft 20, and the protrusion 34 may be protruded from the end surface of the bearing 24.

次に、本発明の他の実施形態について説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品・部分については、上記第1の実施形態又は前出の構成と同一の符号を付して説明を省略し、図示を省略する場合がある。   Next, another embodiment of the present invention will be described. Note that parts and portions that are basically the same as those in the first embodiment or the previous configuration are denoted by the same reference numerals as those in the first embodiment or the previous configuration, and the description thereof is omitted. May be omitted.

(第2の実施形態)
図4には、本発明の第2の実施系に係る排気系バルブ装置40の要部が図1に対応する正面図にて示されている。この図に示される如く、排気系バルブ装置40は、回動軸20が実線にて示す位置から想像線にて示す位置まで軸線方向に移動することで、バルブ14の開度範囲に応じて摩擦力を異ならせるための摩擦力付与構造42を備える点で、第1の実施形態に係る排気系バルブ装置10とは異なる。以下、具体的に説明する。
(Second Embodiment)
The principal part of the exhaust system valve device 40 which concerns on the 2nd implementation type | system | group of this invention is shown by FIG. 4 with the front view corresponding to FIG. As shown in this figure, the exhaust system valve device 40 moves in the axial direction from the position indicated by the solid line to the position indicated by the imaginary line so that the friction is made according to the opening range of the valve 14. The exhaust system valve device 10 according to the first embodiment is different from the exhaust system valve device 10 in that a frictional force imparting structure 42 for different forces is provided. This will be specifically described below.

排気系バルブ装置40を構成する摩擦力付与構造42は、回動軸20に代えて、突起34及びフランジ36を有しない回動軸44を備えると共に、軸受24に代えて、摩擦力調整面32を有しない軸受46を備えている。軸受46の内周面からは、突起(接触子)48が突設されており、回動軸44の外周面には、突起48が入り込まされるカム溝50が形成されている。   The frictional force imparting structure 42 constituting the exhaust system valve device 40 includes a rotational shaft 44 that does not have the protrusion 34 and the flange 36 instead of the rotational shaft 20, and replaces the bearing 24 with the frictional force adjustment surface 32. A bearing 46 that does not have the A protrusion (contactor) 48 protrudes from the inner peripheral surface of the bearing 46, and a cam groove 50 into which the protrusion 48 is inserted is formed on the outer peripheral surface of the rotating shaft 44.

カム溝50は、回動軸44の周方向に沿って、バルブ14の全閉位置から全開位置までの全範囲で突起48が入り込んだ状態を維持するように形成されている。そして、カム溝50は、バルブ14の開度範囲Aで突起48が入り込む部分が、回動軸44の軸受22側の端面44Aから該回動軸44の軸線方向に最も離間した高摩擦用カム部50Aとされており、バルブ14の開度範囲Cで突起48が入り込む部分が、回動軸44の端面44Aから該回動軸44の軸線方向に最も近接した低摩擦用カム部50Bとされており、バルブ14の開度範囲B(開度範囲のCの一部を含む場合もある)で突起48が入り込む部分が、高摩擦用カム部50Aと低摩擦用カム部50Bとを滑らかに連続する切替カム部50Cとされている。   The cam groove 50 is formed so as to maintain the state in which the protrusion 48 enters in the entire range from the fully closed position to the fully open position of the valve 14 along the circumferential direction of the rotating shaft 44. The cam groove 50 is a high friction cam in which the projection 48 enters the opening range A of the valve 14 and is the farthest away from the end surface 44A on the bearing 22 side of the rotating shaft 44 in the axial direction of the rotating shaft 44. The portion where the projection 48 enters in the opening range C of the valve 14 is the low friction cam portion 50B closest to the end surface 44A of the rotating shaft 44 in the axial direction of the rotating shaft 44. The portion where the projection 48 enters in the opening range B of the valve 14 (which may include a part of the opening range C) smoothens the high friction cam portion 50A and the low friction cam portion 50B. It is set as the continuous switching cam part 50C.

そして、摩擦力付与構造42では、図4に実線にて示される如く、突起48が高摩擦用カム部50Aに入り込まされた状態で、回動軸44の端面44Aが軸受22における被当接部としてのスラスト受け面22Aに当接するようになっている。この状態では、回動軸44は軸線方向にわずかに圧縮されている。また、摩擦力付与構造42では、図4に想像線にて示される如く、突起48が低摩擦用カム部50Bに入り込まされた状態で、回動軸44の端面44Aが軸受22のスラスト受け面22Aから離間する(非接触とされる)ようになっている。また、突起48が切替カム部50Cにおける、回動軸44が上記した圧縮状態から開放されるまでの(高摩擦用カム部50A側の)一部に入り込んでいる状態では、回動軸44の端面44Aと軸受22のスラスト受け面22Aとの接触が維持されるようになっている。   In the frictional force imparting structure 42, as shown by the solid line in FIG. 4, the end surface 44 </ b> A of the rotation shaft 44 is in contact with the contacted portion of the bearing 22 in a state where the protrusion 48 is inserted into the high friction cam portion 50 </ b> A. It contacts the thrust receiving surface 22A. In this state, the rotation shaft 44 is slightly compressed in the axial direction. Further, in the frictional force imparting structure 42, as shown by an imaginary line in FIG. 4, the end surface 44 </ b> A of the rotating shaft 44 is the thrust receiving surface of the bearing 22 in a state where the protrusion 48 is inserted into the low friction cam portion 50 </ b> B. It is separated from 22A (not contacted). Further, in a state where the protrusion 48 enters a part (on the high friction cam portion 50A side) of the switching cam portion 50C until the rotation shaft 44 is released from the compressed state described above, the rotation shaft 44 Contact between the end surface 44A and the thrust receiving surface 22A of the bearing 22 is maintained.

したがって、排気系バルブ装置40では、図3に示される如く、突起48が高摩擦用カム部50Aに入り込んでいるバルブ14の開度範囲Aでは、摩擦力が大きくかつ略一定であり、突起48が切替カム部50Cの高摩擦用カム部50A側の一部に入り込んでいるバルブ14の開度範囲Bでは、摩擦力が漸減し、突起48が低摩擦用カム部50Bに入り込んでいるバルブ14の開度範囲Cでは、摩擦力が小さくかつ略一定とされる。開度範囲Cでは、生じる摩擦力は、主に軸受22、軸受46の内周と回動軸20の外周との摩擦力、突起48とカム溝50との摩擦力となる。   Therefore, in the exhaust system valve device 40, as shown in FIG. 3, in the opening range A of the valve 14 where the projection 48 enters the high friction cam portion 50A, the frictional force is large and substantially constant, and the projection 48 In the opening range B of the valve 14 that has entered a portion of the switching cam portion 50C on the high friction cam portion 50A side, the frictional force gradually decreases, and the valve 14 in which the protrusion 48 has entered the low friction cam portion 50B. In the opening range C, the frictional force is small and substantially constant. In the opening range C, the generated frictional force is mainly the frictional force between the inner periphery of the bearing 22 and the bearing 46 and the outer periphery of the rotating shaft 20 and the frictional force between the protrusion 48 and the cam groove 50.

本実施形態では、突起48とカム溝50とで、バルブ14の矢印R方向又は矢印Rと反対向きの回転方向を回動軸44の軸線方向の移動方向に変換する、変位方向変換手段を構成している。排気系バルブ装置40における他の構成は、図示しない部分も含め、排気系バルブ装置10の対応する構成と同じである。   In the present embodiment, the projection 48 and the cam groove 50 constitute a displacement direction conversion means for converting the direction of rotation of the valve 14 in the direction of arrow R or the direction opposite to the arrow R into the direction of movement of the rotation shaft 44 in the axial direction. is doing. Other configurations of the exhaust system valve device 40 are the same as the corresponding configurations of the exhaust system valve device 10, including portions not shown.

したがって、第2の実施形態に係る排気系バルブ装置40では、第1の実施形態に係る排気系バルブ装置10と基本的に同様の作用によって同様の効果を得ることができる。   Therefore, in the exhaust system valve device 40 according to the second embodiment, the same effect can be obtained by basically the same operation as the exhaust system valve device 10 according to the first embodiment.

(第3の実施形態)
図5には、本発明の第3の実施系に係る排気系バルブ装置55の要部が図1に対応する正面図にて示されている。この図に示される如く、排気系バルブ装置40は、バルブ14の開度範囲Aにおいて、回動軸44から径方向に延設されたフランジ56が、軸受22に代えて設けられた軸受58の端面56Aに当接されて摩擦力付与構造58が構成されている点で、第2の実施形態に係る排気系バルブ装置40とは異なる。
(Third embodiment)
The principal part of the exhaust system valve | bulb apparatus 55 which concerns on FIG. 5 at the 3rd implementation type | system | group of this invention is shown with the front view corresponding to FIG. As shown in this figure, the exhaust system valve device 40 includes a bearing 58 in which a flange 56 extending in the radial direction from the rotating shaft 44 is provided in place of the bearing 22 in the opening range A of the valve 14. The exhaust system valve device 40 according to the second embodiment is different from the exhaust system valve device 40 according to the second embodiment in that a frictional force imparting structure 58 is configured in contact with the end surface 56A.

排気系バルブ装置55の他の構成は、図示しない部分を含め、第2の実施形態に係る排気系バルブ装置40(排気系バルブ装置10)と同様である。   Other configurations of the exhaust system valve device 55 are the same as those of the exhaust system valve device 40 (exhaust system valve device 10) according to the second embodiment, including a portion not shown.

したがって、第2の実施形態に係る排気系バルブ装置40によっても、第2の実施形態に係る排気系バルブ装置40と基本的に同様の作用によって同様の効果を得ることができる。   Therefore, the exhaust system valve device 40 according to the second embodiment can obtain the same effect by basically the same operation as the exhaust system valve device 40 according to the second embodiment.

なお、第2及び第3の実施形態では、軸受46に突起48が設けられると共に回動軸44にカム溝50が設けられて摩擦力付与構造42、58が構成された例を示したが、本発明はこれに限定されず、例えば、カム溝50を軸受46の内周面に形成すると共に、回動軸44の外周面から突起48を突出した構成としても良い。   In the second and third embodiments, the example in which the protrusions 48 are provided on the bearing 46 and the cam grooves 50 are provided on the rotation shaft 44 to configure the frictional force applying structures 42 and 58 has been described. The present invention is not limited to this. For example, the cam groove 50 may be formed on the inner peripheral surface of the bearing 46, and the protrusion 48 may protrude from the outer peripheral surface of the rotating shaft 44.

また、第2及び第3の実施形態では、カム溝50が回動軸44の周方向に沿って長手とされると共に、突起48が周方向に短い例を示したが、本発明はこれに限定されず、例えば、突起48を回動軸44の外周又は軸受46の内周に周方向に沿って形成すると共に、該周方向に長手の突起48を軸方向に跨ぐ短いカム溝を軸受46の内周又は回動軸44の外周に設けるようにしても良い。   In the second and third embodiments, the cam groove 50 is elongated along the circumferential direction of the rotating shaft 44 and the projection 48 is short in the circumferential direction. For example, the protrusion 48 is formed along the circumferential direction on the outer periphery of the rotation shaft 44 or the inner periphery of the bearing 46, and a short cam groove that extends in the axial direction of the long protrusion 48 in the circumferential direction is formed on the bearing 46. May be provided on the inner periphery of the rotating shaft 44 or on the outer periphery of the rotating shaft 44.

(第4の実施形態)
図6には、本発明の第4の実施系に係る排気系バルブ装置60の要部が図1に対応する正面図にて示されている。この図に示される如く、排気系バルブ装置60は、軸受24の端面に、摩擦力調整面32に代えて、2つの段差部62A、62Bを有する摩擦力調整面62が形成されている摩擦力付与構造64を備える点で、第1の実施形態に係る排気系バルブ装置10とは異なる。
(Fourth embodiment)
The principal part of the exhaust system valve | bulb apparatus 60 which concerns on the 4th implementation type | system | group of this invention is shown by the front view corresponding to FIG. As shown in this figure, the exhaust system valve device 60 has a frictional force adjusting surface 62 having two step portions 62A and 62B formed on the end surface of the bearing 24 in place of the frictional force adjusting surface 32. The exhaust system valve device 10 according to the first embodiment is different from the exhaust system valve device 10 in that the provision structure 64 is provided.

摩擦力調整面62は、周方向の所定部位に段差部62Aが形成されており、該段差部62Aに対する周方向の一方側が軸線方向に最も突出した高摩擦側摺動面62Cとされている。また、摩擦力調整面62における段差部62Aに対し高摩擦側摺動面62Cとは周方向の反対側部分は、軸線方向の突出量が最も小さい(突出量が0である)低摩擦側端面62Dとされている。この実施形態では、段差部62Aは、高摩擦側摺動面62Cから低摩擦側端面62Dに向けて連続的に突出量を減じるように傾斜された傾斜面とされている。   The frictional force adjusting surface 62 is formed with a stepped portion 62A at a predetermined portion in the circumferential direction, and one side in the circumferential direction with respect to the stepped portion 62A is a high friction side sliding surface 62C that protrudes most in the axial direction. Further, the portion of the friction force adjustment surface 62 opposite to the stepped portion 62A in the circumferential direction opposite to the high friction side sliding surface 62C has the smallest axial projection amount (the projection amount is zero) and the low friction side end surface. 62D. In this embodiment, the stepped portion 62A is an inclined surface that is inclined so as to continuously reduce the protrusion amount from the high friction side sliding surface 62C toward the low friction side end surface 62D.

また、段差部62Bは、高摩擦側摺動面62Cに対し段差部62A側とは周方向の反対側に形成されている。段差部62Bに対する高摩擦側摺動面62Cとは周方向の反対側部分は、高摩擦側摺動面62Cよりも軸線方向の突出量が小さい低摩擦側端面62Eとされている。この実施形態では、低摩擦側端面62Eは、突起34側への突出量が低摩擦側端面62Dと同等(突出量が0)とされている。   Further, the stepped portion 62B is formed on the opposite side in the circumferential direction to the stepped portion 62A side with respect to the high friction side sliding surface 62C. A portion opposite to the high friction side sliding surface 62C in the circumferential direction with respect to the stepped portion 62B is a low friction side end surface 62E having a smaller amount of protrusion in the axial direction than the high friction side sliding surface 62C. In this embodiment, the low friction side end surface 62E has the same amount of protrusion toward the protrusion 34 as the low friction side end surface 62D (the amount of protrusion is 0).

そして、排気系バルブ装置40の摩擦力付与構造64では、バルブ14が全閉姿勢をとる場合に、突起34が低摩擦側端面62Eにおける段差部62Bの近傍部分に対向するようになっている。摩擦力付与構造64では、バルブ14が矢印R方向にわずかに回動すると、突起34が段差部62Bに当接し、該段差部62Bに案内されて高摩擦側摺動面62Cとの当接状態に至る構成とされている。この実施形態では、突起34が高摩擦側摺動面62Cと当接するまでの回動角が略1°に設定されている。   In the frictional force imparting structure 64 of the exhaust system valve device 40, when the valve 14 is in the fully closed posture, the protrusion 34 faces the vicinity of the stepped portion 62B on the low friction side end surface 62E. In the frictional force imparting structure 64, when the valve 14 is slightly rotated in the direction of the arrow R, the protrusion 34 comes into contact with the stepped portion 62B, and is guided by the stepped portion 62B to be in contact with the high friction side sliding surface 62C. It is set as the structure which leads to. In this embodiment, the rotation angle until the protrusion 34 comes into contact with the high friction side sliding surface 62C is set to approximately 1 °.

さらに、この実施形態では、バルブ14の開度と段差部62A(高摩擦側摺動面62Cの上限)、低摩擦側端面62Dの設定範囲は、排気系バルブ装置10(摩擦力付与構造30)におけるバルブ14の開度と段差部32A、低摩擦側端面62Dの設定範囲と同じに設定されている。すなわち、摩擦力付与構造64では、バルブ14の回動角が略1°〜略5°の範囲に対応して、高摩擦側摺動面62Cが形成されている。   Further, in this embodiment, the opening range of the valve 14, the stepped portion 62A (upper limit of the high friction side sliding surface 62C), and the setting range of the low friction side end surface 62D are the exhaust system valve device 10 (friction force applying structure 30). The opening degree of the valve 14 and the setting range of the step portion 32A and the low friction side end face 62D are set to be the same. That is, in the frictional force imparting structure 64, the high friction side sliding surface 62C is formed corresponding to the range in which the rotation angle of the valve 14 is approximately 1 ° to approximately 5 °.

したがって、図8に示される如く、排気系バルブ装置60では、突起34が高摩擦側摺動面62Cに当接しているバルブ14の開度範囲Aよりも全閉側に、該開度範囲Aにおける摩擦力よりも小さい摩擦力が生じる開度範囲Dが設定されている。この開度範囲Dすなわち回動角で1°以下に対応する微小開度では、開度範囲Aにおける摩擦力と比較して、全閉側の一部で摩擦力が小さく、途中から突起34と段差部62B(の一部)との摺動に伴い摩擦力が漸増する構成とされている。以上の開度範囲を排気系バルブ装置60の側断面図に示すと、図7の如くなる。   Therefore, as shown in FIG. 8, in the exhaust system valve device 60, the opening range A is more fully closed than the opening range A of the valve 14 in which the protrusion 34 is in contact with the high friction side sliding surface 62C. An opening range D in which a frictional force smaller than the frictional force is generated is set. In this opening range D, that is, a minute opening corresponding to a rotation angle of 1 ° or less, the frictional force is small at a part of the fully closed side compared with the frictional force in the opening range A, and the projection 34 The frictional force gradually increases with sliding with the stepped portion 62B (a part thereof). The above opening range is shown in a side sectional view of the exhaust system valve device 60 as shown in FIG.

排気系バルブ装置60の他の構成は、排気系バルブ装置10の対応する構成と同じである。   Other configurations of the exhaust system valve device 60 are the same as the corresponding configurations of the exhaust system valve device 10.

したがって、第4の実施形態に係る排気系バルブ装置60では、基本的に排気系バルブ装置10と同様の作用によって同様の効果を得ることができる。また、排気系バルブ装置60では、バルブ14の回動角が1°以下の微小開度で摩擦力が小さいため、この実施形態においては全閉状態で摩擦力調整面62と34とが非接触であるため、軸受24と回動軸20との固着が防止される。すなわち、これらの固着対策を不要にすることができる。   Therefore, in the exhaust system valve device 60 according to the fourth embodiment, basically the same effect can be obtained by the same operation as the exhaust system valve device 10. Further, in the exhaust system valve device 60, since the frictional force is small with a small opening degree of the valve 14 of 1 ° or less, in this embodiment, the frictional force adjusting surfaces 62 and 34 are not in contact with each other in the fully closed state. Therefore, the bearing 24 and the rotating shaft 20 are prevented from sticking. That is, these countermeasures for sticking can be made unnecessary.

一方、1°以下の回動角に対応する微小開度では、シール部14Bが弁座18に当接しても異音の発生が抑制され、それ以上の開度に至れば摩擦力が増大するので、チャタリングの抑制又は防止性能が悪化することもない。   On the other hand, at a minute opening corresponding to a rotation angle of 1 ° or less, the generation of noise is suppressed even when the seal portion 14B comes into contact with the valve seat 18, and the frictional force increases when the opening exceeds the opening. Therefore, chattering suppression or prevention performance is not deteriorated.

(第5の実施形態)
図9には、本発明の第5の実施系に係る排気系バルブ装置70の要部が図6に対応する正面図にて示されている。この図に示される如く、排気系バルブ装置70は、摩擦力付与構造30に似た構造の排気系バルブ装置40の摩擦力付与構造64に代えて、摩擦力付与構造42に似た構造の摩擦力付与構造72によって、図8に示す開度と摩擦力との関係を得るように構成されている点で、第4の実施形態に係る60とは異なる。
(Fifth embodiment)
FIG. 9 shows a main part of an exhaust system valve device 70 according to the fifth embodiment of the present invention in a front view corresponding to FIG. As shown in this figure, the exhaust system valve device 70 has a structure similar to the frictional force applying structure 42 instead of the frictional force applying structure 64 of the exhaust system valve device 40 having a structure similar to the frictional force applying structure 30. It differs from 60 which concerns on 4th Embodiment by the point comprised so that the relationship between the opening degree shown in FIG.

摩擦力付与構造72は、回動軸44の外周部に突起48が入り込むカム溝74を形成して構成されている。カム溝74は、高摩擦用カム部50A、低摩擦用カム部50B、切替カム部50Cに対応する高摩擦用カム部74A、低摩擦用カム部74B、切替カム部74Cの他に、高摩擦用カム部74Aに対する全閉側に形成された低摩擦用カム部74D、及び低摩擦用カム部74Dと高摩擦用カム部74Aとを滑らかに連続する切替カム部74Eを有して構成されている。   The frictional force imparting structure 72 is configured by forming a cam groove 74 into which the protrusion 48 enters the outer peripheral portion of the rotating shaft 44. The cam groove 74 includes a high friction cam portion 50A, a low friction cam portion 50B, a high friction cam portion 74A corresponding to the switching cam portion 50C, a low friction cam portion 74B, and a switching cam portion 74C. Low friction cam portion 74D formed on the fully closed side with respect to cam portion 74A, and switching cam portion 74E smoothly connecting low friction cam portion 74D and high friction cam portion 74A. Yes.

摩擦力付与構造72では、突起48が低摩擦用カム部74Dに入り込む領域が、回動軸44の端面44Aが軸受22のスラスト受け面22Aに対し軸線方向に離間しており、突起48が高摩擦用カム部74Aに入り込む開度範囲Aと比較して摩擦力が小さくなる開度範囲Dとされる。したがって、摩擦力付与構造72を備えた排気系バルブ装置70によって、図8に示される開度と摩擦力との関係を得ることができる。   In the frictional force imparting structure 72, the region where the projection 48 enters the low friction cam portion 74D is such that the end surface 44A of the rotating shaft 44 is spaced apart from the thrust receiving surface 22A of the bearing 22 in the axial direction. The opening range D is such that the frictional force is smaller than the opening range A entering the friction cam portion 74A. Therefore, the relationship between the opening degree and the frictional force shown in FIG. 8 can be obtained by the exhaust system valve device 70 provided with the frictional force imparting structure 72.

排気系バルブ装置70の他の構成は、排気系バルブ装置60の対応する構成と同じである。   Other configurations of the exhaust system valve device 70 are the same as the corresponding configurations of the exhaust system valve device 60.

したがって、第5の実施形態に係る排気系バルブ装置70では、基本的に排気系バルブ装置60と同様の作用によって同様の効果を得ることができる。また、排気系バルブ装置60では、バルブ14の回動角が1°以下に対応する微小開度で摩擦力が小さいため、この実施形態においては全閉状態で回動軸44の端面44Aと軸受22のスラスト受け面22Aとが非接触であるため、軸受24と回動軸20との固着が防止される。すなわち、これらの固着対策を不要にすることができる。   Therefore, in the exhaust system valve device 70 according to the fifth embodiment, basically the same effect can be obtained by the same operation as the exhaust system valve device 60. Further, in the exhaust system valve device 60, since the frictional force is small with a very small opening corresponding to the rotation angle of the valve 14 of 1 ° or less, in this embodiment, the end surface 44A of the rotation shaft 44 and the bearing are fully closed. Since the thrust receiving surface 22A of 22 is not in contact, the bearing 24 and the rotating shaft 20 are prevented from sticking to each other. That is, these countermeasures for sticking can be made unnecessary.

(第6の実施形態)
図10には、本発明の第6の実施系に係る排気系バルブ装置80の要部が図1に対応する正面図にて示されている。この図に示される如く、排気系バルブ装置80は、摩擦力付与構造30に代えて、摩擦力発生構造82を備える点で、第1の実施形態に係る排気系バルブ装置10とは異なる。
(Sixth embodiment)
FIG. 10 shows a main part of an exhaust system valve device 80 according to the sixth embodiment of the present invention in a front view corresponding to FIG. As shown in this figure, the exhaust system valve device 80 is different from the exhaust system valve device 10 according to the first embodiment in that a friction force generation structure 82 is provided instead of the friction force application structure 30.

摩擦力発生構造82は、回動軸20に代えてバルブ14と一体に回動するように設けられた回動軸84をラジアル方向に支持する軸受86、88に、回動軸84から径方向外側に延設された一対のフランジ90をそれぞれ摺動可能に接触させることで構成されている。ここで、各フランジ90は、常温において、対応する軸受86、88における回動軸84の長手方向端部側の端面86A、88Aに接触されている。   The frictional force generating structure 82 is provided in the radial direction from the rotary shaft 84 to the bearings 86 and 88 that support the rotary shaft 84 provided in the radial direction instead of the rotary shaft 20. A pair of flanges 90 extending outward are slidably brought into contact with each other. Here, each flange 90 is in contact with the end surfaces 86A and 88A on the end side in the longitudinal direction of the rotation shaft 84 of the corresponding bearings 86 and 88 at normal temperature.

これにより、摩擦力発生構造82を備えた排気系バルブ装置80では、排気ガス流路16を排気ガス流通して各部の温度が上昇すると、回動軸84が軸線方向に熱膨張し、この熱膨張量が軸受86、88を離間させる方向のブラケット26の熱膨張量よりも大きくなる構成とされている。したがって、排気系バルブ装置80では、回動軸84とブラケット26(排気管12)との熱膨張差によって、フランジ90が軸受86、88の端面86A、88Aから軸線方向に離間するようになっている。   Thereby, in the exhaust system valve device 80 provided with the frictional force generating structure 82, when the exhaust gas flows through the exhaust gas passage 16 and the temperature of each part rises, the rotating shaft 84 thermally expands in the axial direction, and this heat The amount of expansion is larger than the amount of thermal expansion of the bracket 26 in the direction in which the bearings 86 and 88 are separated. Therefore, in the exhaust system valve device 80, the flange 90 is separated from the end surfaces 86A and 88A of the bearings 86 and 88 in the axial direction due to a difference in thermal expansion between the rotating shaft 84 and the bracket 26 (exhaust pipe 12). Yes.

以上説明した排気系バルブ装置80では、常温においては、図11(A)にも示される如く、バルブ14が矢印R方向に回動する動作に伴って各フランジ90が軸受86、88の端面86A、88Aと摺動することで、これが摺動しない場合と比較して大きな摩擦力が生じる構成とされている。一方、高温時には、図11(B)に示される如く、フランジ90が軸受86、88の端面86A、88Aから軸線方向に離間するので、該フランジ90と軸受86、88との摩擦に伴い摩擦力が発生しなくなり、常温時と比較してバルブ14を駆動することに伴う摩擦力が低減される。排気系バルブ装置80における他の構成は、図示しない部分も含め、排気系バルブ装置10の対応する構成と同じである。   In the exhaust system valve device 80 described above, at normal temperature, as shown in FIG. 11A, each flange 90 is connected to the end face 86A of the bearings 86, 88 as the valve 14 rotates in the direction of the arrow R. , 88A, a larger frictional force is generated as compared with the case where it does not slide. On the other hand, when the temperature is high, as shown in FIG. 11B, the flange 90 is axially separated from the end faces 86A and 88A of the bearings 86 and 88, so that frictional force is generated along with the friction between the flange 90 and the bearings 86 and 88. Is not generated, and the frictional force associated with driving the valve 14 is reduced as compared with normal temperature. Other configurations of the exhaust system valve device 80 are the same as the corresponding configurations of the exhaust system valve device 10 including a portion not shown.

次に、本第6の実施形態の作用を説明する。   Next, the operation of the sixth embodiment will be described.

上記構成の排気系バルブ装置80では、排気ガスの圧力が低い場合には、リターンスプリング28の付勢力によってバルブ14が閉止姿勢をとることで、排気管12に形成された排気ガス流路16が閉止されている。排気ガスの圧力が上昇すると、バルブ14は、リターンスプリング28の付勢力、及び回動軸20と軸受22、24との摩擦力に抗して矢印R方向に回動する。これにより、排気ガス流路16(排気管12の開口端12A)が開放され、排気ガスは排気ガス流路16を流通する。   In the exhaust system valve device 80 configured as described above, when the pressure of the exhaust gas is low, the valve 14 is closed by the urging force of the return spring 28 so that the exhaust gas passage 16 formed in the exhaust pipe 12 is closed. It is closed. When the pressure of the exhaust gas rises, the valve 14 rotates in the arrow R direction against the urging force of the return spring 28 and the frictional force between the rotating shaft 20 and the bearings 22 and 24. As a result, the exhaust gas passage 16 (open end 12 </ b> A of the exhaust pipe 12) is opened, and the exhaust gas flows through the exhaust gas passage 16.

ここで、排気系バルブ装置10では、例えばエンジンの始動直後のよう排気系の温度が低い場合には、摩擦力発生構造82のフランジ90が軸受86、88の端面86A、88Aに接触しており、バルブ14の開閉動作に伴って大きな摩擦力が作用する。このため、排気脈動が不安定になりやすい(衝撃波に成長しやすい)エンジンの始動直後に、大きな摩擦減衰を作用させることができ、バルブ14の共振振動による異音(チャタリング)の発生が抑制又は防止される。すなわち、減衰比が大きいことにより、バルブ14の振幅が抑えられ、シール部14Bと弁座18との当接が抑制又は防止される。この効果は、実験的にも確かめられている。   Here, in the exhaust system valve device 10, when the temperature of the exhaust system is low, for example, immediately after the engine is started, the flange 90 of the frictional force generating structure 82 is in contact with the end faces 86A, 88A of the bearings 86, 88. A large frictional force acts with the opening / closing operation of the valve 14. For this reason, the exhaust pulsation is likely to be unstable (it is easy to grow into a shock wave) immediately after the start of the engine, a large frictional damping can be applied, and the generation of abnormal noise (chattering) due to the resonance vibration of the valve 14 is suppressed or Is prevented. That is, since the damping ratio is large, the amplitude of the valve 14 is suppressed, and the contact between the seal portion 14B and the valve seat 18 is suppressed or prevented. This effect has been confirmed experimentally.

これにより、摩擦力発生構造82を備える排気系バルブ装置10では、リターンスプリング28のばね定数すなわちリターンスプリング28の復元力に基づく付勢力を大きくすることなく、エンジン始動直後に発生しやすいチャタリングを防止することができる。リターンスプリング28は、ばね定数が小さくされることで、強度や耐久性(耐ヘタリ性)に対する要求が緩和され、小型に構成することが可能になる。例えば、捩りコイルばねであるリターンスプリング28の場合、環状部28Cの巻き数を減らしたり、線径を小さくしたりすることができる。   As a result, the exhaust system valve device 10 having the frictional force generating structure 82 prevents chattering that is likely to occur immediately after the engine is started without increasing the biasing force based on the spring constant of the return spring 28, that is, the restoring force of the return spring 28. can do. Since the return spring 28 has a small spring constant, demands on strength and durability (sag resistance) are alleviated, and the return spring 28 can be made compact. For example, in the case of the return spring 28 that is a torsion coil spring, the number of turns of the annular portion 28C can be reduced, or the wire diameter can be reduced.

一方、排気系の温度が上昇した後(エンジンの暖機完了後)は、排気脈動が安定してチャタリングが生じ難く、フランジ90が軸受86、88から離間してバルブ14の開閉動作に伴う摩擦力が低減してもチャタリングが問題になることがない。そして、バルブ14の開閉動作に伴う摩擦力が低減されるので、排気ガスの圧力に対しバルブ14の開度が大きくなり、排気系の背圧の低減が図られる。特に、上記の如くリターンスプリング28のばね定数が小さくされると、バルブ14の開度を一層大きくすることができ、排気系の背圧を一層低減することができる。   On the other hand, after the temperature of the exhaust system rises (after completion of engine warm-up), the exhaust pulsation is stable and chattering is difficult to occur, and the flange 90 is separated from the bearings 86 and 88 and the friction accompanying the opening / closing operation of the valve 14 occurs. Even if the force is reduced, chattering does not become a problem. And since the frictional force accompanying the opening / closing operation | movement of the valve 14 is reduced, the opening degree of the valve 14 becomes large with respect to the pressure of exhaust gas, and reduction of the back pressure of an exhaust system is achieved. In particular, when the spring constant of the return spring 28 is reduced as described above, the opening degree of the valve 14 can be further increased and the back pressure of the exhaust system can be further reduced.

なお、上記した各実施形態では、摩擦力付与構造30、42、58、64、72、82が回動軸20、44、84(突起34、フランジ90)と軸受24、22、86、88との間で摩擦力を生じる例を示したが、本発明はこれに限定されず、バルブ14側の何れの部分と排気管12側の何れの部分とで、バルブ14の開閉動作に伴い摩擦力を生じるようにしても良い。   In each of the above-described embodiments, the frictional force imparting structures 30, 42, 58, 64, 72, 82 are the rotation shafts 20, 44, 84 (projections 34, flange 90) and the bearings 24, 22, 86, 88. However, the present invention is not limited to this, and the frictional force generated by the opening / closing operation of the valve 14 in any part on the valve 14 side and any part on the exhaust pipe 12 side is shown. May be generated.

また、上記した各実施形態では、回動軸20、44、84がバルブ14と一体に回動するように設けられると共に、回動軸20、44、84がブラケット26に支持された軸受24、22、86、88にて排気管12に対し回動自在に支持された例を示したが、本発明はこれに限定されず、例えば、回動軸20等を排気管12側に固定的に設けると共に、バルブ14が延設部14Cに設けられた軸受22(単なる支持孔でも良い)に回動軸20を挿通させることで、排気管12に対し回動自在に支持される構成であっても良い。さらに、バルブ14は、回動軸20廻りに回動して排気ガス流路16を開閉する構成に限定されることはない。   Further, in each of the above-described embodiments, the rotation shafts 20, 44, 84 are provided so as to rotate integrally with the valve 14, and the rotation shafts 20, 44, 84 are supported by the bracket 26, In the example shown in FIGS. 22, 86, and 88, the exhaust pipe 12 is rotatably supported. However, the present invention is not limited to this, and for example, the rotary shaft 20 or the like is fixed to the exhaust pipe 12 side. In addition, the valve 14 is rotatably supported with respect to the exhaust pipe 12 by inserting the rotating shaft 20 through a bearing 22 (which may be a simple support hole) provided in the extending portion 14C. Also good. Further, the valve 14 is not limited to a configuration that rotates around the rotation shaft 20 to open and close the exhaust gas passage 16.

さらに、第4及び第5の各実施形態では、バルブ14の全閉状態で、突起34と摩擦力調整面32とを離間させ、又は回動軸44の端面44Aと軸受22のスラスト受け面22Aとを離間させることで、これら接触(摺動)部の固着を防止する例を示したが、本発明はこれに限定されず、例えば、これらの接触部にワイヤメッシュや潤滑手段を設けることで固着を防止するようにしても良い。潤滑手段としては、例えば、ワイヤメッシュを埋め込んだ膨張黒鉛等の固体潤滑材を用いることができる。固体潤滑剤を用いることで、ワイヤメッシュのみを用いる場合と比較して、摺動音を低減することができる。   Further, in each of the fourth and fifth embodiments, the protrusion 34 and the frictional force adjusting surface 32 are separated from each other when the valve 14 is fully closed, or the end surface 44A of the rotating shaft 44 and the thrust receiving surface 22A of the bearing 22 are separated. However, the present invention is not limited to this, for example, by providing a wire mesh or lubricating means at these contact portions. You may make it prevent sticking. As the lubricating means, for example, a solid lubricant such as expanded graphite in which a wire mesh is embedded can be used. By using a solid lubricant, it is possible to reduce sliding noise as compared with the case of using only a wire mesh.

本発明の第1の実施形態に係る排気系バルブ装置の要部を示す正面図である。It is a front view which shows the principal part of the exhaust system valve | bulb apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る排気系バルブ装置の側断面図である。1 is a side sectional view of an exhaust system valve device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る排気バルブ装置の弁開度と摩擦力との関係を示す線図である。It is a diagram which shows the relationship between the valve opening degree and frictional force of the exhaust valve apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る排気系バルブ装置の要部を示す正面図である。It is a front view which shows the principal part of the exhaust system valve | bulb apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る排気系バルブ装置の要部を示す正面図である。It is a front view which shows the principal part of the exhaust system valve | bulb apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る排気系バルブ装置の要部を示す正面図である。It is a front view which shows the principal part of the exhaust system valve | bulb apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る排気系バルブ装置の側断面図である。It is a sectional side view of the exhaust system valve | bulb apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る排気バルブ装置の弁開度と摩擦力との関係を示す線図である。It is a diagram which shows the relationship between the valve opening degree and frictional force of the exhaust valve apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る排気系バルブ装置の要部を示す正面図である。It is a front view which shows the principal part of the exhaust system valve | bulb apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る排気系バルブ装置の要部を示す正面図である。It is a front view which shows the principal part of the exhaust system valve | bulb apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る排気系バルブ装置を構成する低温時摩擦力発生構造を示す図であって、(A)は常温時の状態を示す正面図、(B)は高温時の状態を示す正面図である。It is a figure which shows the low temperature friction force generation | occurrence | production structure which comprises the exhaust system valve | bulb apparatus which concerns on the 6th Embodiment of this invention, Comprising: (A) is a front view which shows the state at normal temperature, (B) is at the time of high temperature It is a front view which shows a state.

符号の説明Explanation of symbols

10 排気系バルブ装置(排気弁装置)
12 排気管(筒状部材)
14 バルブ(弁体)
16 排気ガス流路(流路)
18 弁座(弁座部)
20 回動軸
22 軸受
22A スラスト受け面(被当接部)
24 軸受
28 リターンスプリング(付勢手段)
30 摩擦力付与構造(摩擦力付与手段)
32 摩擦力調整面(軸受の端面)
32A 段差部
34 突起(当接部)
40・55・60・70・80 排気系バルブ装置(排気弁装置)
42・58・64・72・82 摩擦力付与構造(摩擦力付与手段)
44・84 回動軸
46・56・86 軸受
48 突起(変位方向変換手段)
50 カム溝(変位方向変換手段)
62 摩擦力調整面(軸受の端面)
62A 段差部
74 カム溝
84 回動軸
10 Exhaust system valve device (exhaust valve device)
12 Exhaust pipe (tubular member)
14 Valve (Valve)
16 Exhaust gas flow path (flow path)
18 Valve seat (valve seat)
20 Rotating shaft 22 Bearing 22A Thrust receiving surface (contacted part)
24 Bearing 28 Return spring (biasing means)
30 Friction force applying structure (friction force applying means)
32 Friction force adjustment surface (end surface of bearing)
32A Step part 34 Projection (contact part)
40, 55, 60, 70, 80 Exhaust valve device (exhaust valve device)
42, 58, 64, 72, 82 Friction force application structure (friction force application means)
44/84 Rotating shaft 46/56/86 Bearing 48 Protrusion (displacement direction conversion means)
50 Cam groove (displacement direction conversion means)
62 Friction force adjustment surface (end surface of bearing)
62A Stepped portion 74 Cam groove 84 Rotating shaft

Claims (11)

排気ガスの流路を形成する筒状部材と、
前記筒状部材に設けられた弁座部に当接して前記流路を閉止し、前記排気ガスの圧力によって前記弁座部から離間して前記流路を開放する弁体と、
前記弁体を前記閉止姿勢側に偏倚させるための付勢力を該弁体に付与する付勢手段と、
前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲で、前記弁体による前記流路の開度が前記所定の開度を超える開度範囲よりも、前記弁体を駆動するのに伴って生じる摩擦力を大とするための摩擦力付与手段と、
を備えた排気系弁構造。
A cylindrical member that forms a flow path for exhaust gas;
A valve body that abuts on a valve seat provided in the tubular member to close the flow path, and is separated from the valve seat by the pressure of the exhaust gas to open the flow path;
A biasing means for imparting a biasing force to the valve body for biasing the valve body toward the closing posture;
In a separate predetermined opening range in which the opening of the flow path by the valve body is equal to or less than a predetermined opening, than the opening range in which the opening of the flow path by the valve body exceeds the predetermined opening, Frictional force applying means for increasing the frictional force generated when the valve body is driven;
Exhaust system valve structure with
前記弁体は、回動軸廻りに回動して前記流路の開度を変化させるように、該回動軸を介して前記筒状部材に支持されており、
前記摩擦力付与手段は、前記回動軸と前記筒状部材との間、又は前記弁体と前記回動軸との間に設けられている請求項1記載の排気系弁構造。
The valve body is supported by the cylindrical member via the rotation shaft so as to rotate around the rotation shaft and change the opening of the flow path.
The exhaust system valve structure according to claim 1, wherein the frictional force applying means is provided between the rotating shaft and the cylindrical member, or between the valve body and the rotating shaft.
前記摩擦力付与手段は、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲において、前記筒状部材又は前記弁体に設けられた軸受と該軸受に支持された前記回動軸とをスラスト方向に当接させることで前記弁体の駆動に伴う摩擦力を生じさせるようになっている請求項2記載の排気系弁構造。   The frictional force applying means includes a bearing provided on the cylindrical member or the valve body and a bearing in the predetermined opening range in which the opening of the flow path by the valve body is equal to or less than a predetermined opening. The exhaust system valve structure according to claim 2, wherein a frictional force accompanying the driving of the valve body is generated by bringing the supported rotating shaft into contact in the thrust direction. 前記摩擦力付与手段は、
前記筒状部材に設けられ前記回動軸を少なくともラジアル方向に支持する軸受の軸線方向端面、及び前記回動軸から張り出され該回動軸を少なくともラジアル方向に支持する軸受の軸線方向端面と対向する対向部の何れか一方に、周方向の一方側が他方側よりもスラスト方向に突出するように形成された段差部と、
前記軸受の軸線方向端面及び前記回動軸の対向部の他方に設けられ、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲の少なくとも一部において、前記軸受の端面又は前記回動軸の対向部における前記段差部に対する周方向一方側の範囲に当接する当接部と、
を含んで構成されている請求項3記載の排気系弁構造。
The frictional force applying means is
An axial end surface of a bearing provided on the cylindrical member and supporting the rotating shaft at least in the radial direction; and an axial end surface of a bearing protruding from the rotating shaft and supporting the rotating shaft at least in the radial direction; A stepped portion formed so that one of the circumferential sides protrudes in the thrust direction more than the other side in any one of the opposed portions,
Provided on the other of the axial end face of the bearing and the opposed portion of the rotating shaft, and at least a part of a predetermined opening range where the opening of the flow path by the valve body is a predetermined opening or less, An abutting portion that abuts a range on one side in the circumferential direction with respect to the stepped portion at the end surface of the bearing or the facing portion of the rotating shaft;
The exhaust system valve structure according to claim 3, comprising:
前記段差部は、少なくとも周方向の一部が、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲の少なくとも一部において、前記当接部と当接し得る傾斜面とされている請求項4記載の排気系弁構造。   The stepped portion is in contact with the abutting portion at least in a circumferential direction at least in a part of a predetermined opening range in which the opening degree of the flow path by the valve body is equal to or less than a predetermined opening degree. The exhaust system valve structure according to claim 4, wherein the exhaust system valve structure is an obtained inclined surface. 前記摩擦力付与手段は、
前記バルブと一体的に回動するように設けられた前記回動軸を、自軸廻りの回動に伴ってスラスト方向に移動させる変位方向変換手段と、
前記筒状部材に設けられ前記回動軸を少なくともラジアル方向に支持する軸受に設けられ、前記弁体による前記流路の開度が所定の開度以下である別途所定の開度範囲において、前記回動軸がスラスト方向に当接する被当接部と、
を含んで構成されている請求項3記載の排気系弁構造。
The frictional force applying means is
A displacement direction conversion means for moving the rotation shaft provided to rotate integrally with the valve in a thrust direction along with rotation about the own axis;
In a separate predetermined opening range in which the opening of the flow path by the valve body is not more than a predetermined opening, provided in a bearing that is provided in the tubular member and supports the rotating shaft at least in a radial direction, A to-be-contacted portion with which the rotation shaft contacts in the thrust direction;
The exhaust system valve structure according to claim 3, comprising:
前記変位方向変換手段は、前記回動軸の外周面及び前記軸受の内周面の何れか一方に形成されたカム溝と、前記回動軸の外周面及び前記軸受の内周面の他方から突出されて前記カム溝に入り込む突起とを含んで構成されている請求項6記載の排気系弁構造。   The displacement direction converting means includes a cam groove formed on one of the outer peripheral surface of the rotating shaft and the inner peripheral surface of the bearing, and the other of the outer peripheral surface of the rotating shaft and the inner peripheral surface of the bearing. The exhaust system valve structure according to claim 6, wherein the exhaust system valve structure includes a protrusion protruding into the cam groove. 前記摩擦力付与手段は、前記弁体による前記流路の開度が所定の開度以下である範囲における前記別途所定の開度範囲が前記弁体による前記流路を全閉する開度を含まず、かつ、前記弁体による前記流路を全閉する開度から前記別途所定の開度範囲の下限までの開度範囲で、該別途所定の開度範囲よりも、前記弁体を駆動するのに伴って生じる摩擦力を小とするように構成されている請求項1乃至請求項7の何れか1項記載の排気系弁構造。   The frictional force applying means includes an opening degree at which the predetermined opening degree range in which the opening degree of the flow path by the valve body is equal to or less than a predetermined opening degree fully closes the flow path by the valve body. In addition, the valve body is driven more than the separately predetermined opening range in the opening range from the fully opening degree of the flow path by the valve body to the lower limit of the separately predetermined opening range. The exhaust system valve structure according to any one of claims 1 to 7, wherein the exhaust system valve structure is configured to reduce a frictional force generated along with the above. 排気ガスの流路を形成する筒状部材と、
前記筒状部材に設けられた環状の弁座部に当接して前記流路を閉止し、前記排気ガスの圧力によって前記弁座部から離間して前記流路を開放する弁体と、
前記弁体を前記閉止姿勢側に偏倚させるための付勢力を生じる付勢手段と、
前記弁体による前記流路の開閉動作によって一方と他方とが摺動するように、前記一方が前記筒状部材側に設けられると共に前記他方が前記弁体側に設けられて構成され、かつ前記排気ガスによって加熱された場合に熱膨脹差で前記摺動方向との交差方向に互いに離間する摩擦力付与手段と、
を備えた排気系弁構造。
A cylindrical member that forms a flow path for exhaust gas;
A valve body that abuts an annular valve seat provided in the tubular member to close the flow path, and that is separated from the valve seat part by the pressure of the exhaust gas and opens the flow path;
A biasing means for generating a biasing force for biasing the valve body toward the closing posture;
The one is provided on the cylindrical member side and the other is provided on the valve body side so that the one and the other slide by the opening and closing operation of the flow path by the valve body, and the exhaust Friction force applying means that are separated from each other in a direction intersecting the sliding direction due to a difference in thermal expansion when heated by gas;
Exhaust system valve structure with
前記弁体は、回動軸廻りに回動して前記流路の開度を変化させるように、該回動軸を介して前記筒状部材に支持されており、
前記摩擦力付与手段は、前記回動軸と前記筒状部材との間、又は前記弁体と前記回動軸との間に設けられている請求項9記載の排気系弁構造。
The valve body is supported by the cylindrical member via the rotation shaft so as to rotate around the rotation shaft and change the opening of the flow path.
The exhaust system valve structure according to claim 9, wherein the frictional force applying means is provided between the rotating shaft and the cylindrical member or between the valve body and the rotating shaft.
前記摩擦力付与手段は、前記回動軸と前記筒状部材又は前記弁体に設けられた軸受とをスラスト方向に当接させることで前記弁体の駆動に伴う摩擦力を生じさせるようになっている請求項10記載の排気系弁構造。   The frictional force applying means generates a frictional force accompanying the driving of the valve body by bringing the rotating shaft and a bearing provided on the tubular member or the valve body into contact in the thrust direction. The exhaust system valve structure according to claim 10.
JP2007033057A 2007-02-14 2007-02-14 Exhaust system valve structure Expired - Fee Related JP4670819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033057A JP4670819B2 (en) 2007-02-14 2007-02-14 Exhaust system valve structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033057A JP4670819B2 (en) 2007-02-14 2007-02-14 Exhaust system valve structure

Publications (2)

Publication Number Publication Date
JP2008196405A JP2008196405A (en) 2008-08-28
JP4670819B2 true JP4670819B2 (en) 2011-04-13

Family

ID=39755578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033057A Expired - Fee Related JP4670819B2 (en) 2007-02-14 2007-02-14 Exhaust system valve structure

Country Status (1)

Country Link
JP (1) JP4670819B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036887A (en) * 2010-07-13 2012-02-23 Calsonic Kansei Corp Exhaust control valve
US8677738B2 (en) 2011-09-08 2014-03-25 Tenneco Automotive Operating Company Inc. Pre-injection exhaust flow modifier
CN106103923B (en) * 2014-03-14 2020-05-12 佛吉亚排放控制技术美国有限公司 Exhaust system spring with torsional damping
CN109139949B (en) * 2018-10-30 2024-01-26 湖南金炉科技股份有限公司 Deflection type high-temperature exhaust valve for industrial kiln

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003820A (en) * 2001-06-22 2003-01-08 Futaba Industrial Co Ltd Muffler for internal combustion engine
JP2005194993A (en) * 2003-12-10 2005-07-21 Calsonic Kansei Corp Exhaust control valve
JP2006348822A (en) * 2005-06-15 2006-12-28 Nissan Motor Co Ltd Vehicular exhaust noise reducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003820A (en) * 2001-06-22 2003-01-08 Futaba Industrial Co Ltd Muffler for internal combustion engine
JP2005194993A (en) * 2003-12-10 2005-07-21 Calsonic Kansei Corp Exhaust control valve
JP2006348822A (en) * 2005-06-15 2006-12-28 Nissan Motor Co Ltd Vehicular exhaust noise reducing device

Also Published As

Publication number Publication date
JP2008196405A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
CN109812493B (en) Air foil radial bearing
JP5955176B2 (en) Self-regulating device for controlling a particularly radial gap between rotating and stationary components of a thermally loaded turbomachine
JP4648428B2 (en) Fluid power transmission device
JP5118767B1 (en) Turbocharger seal ring assembly method and turbocharger
JP4670819B2 (en) Exhaust system valve structure
FR2928682A1 (en) CONFIGURATION AND METHOD FOR SUPPORTING INNER ENVELOPE OF TURBINE.
WO2017077684A1 (en) Variable stator blade control device
JP4983693B2 (en) Turbocharger
JP2013511661A (en) Turbocharger
JP6459835B2 (en) Valve device
JP2012521511A (en) Axial turbomachine with axially displaceable guide vane carrier
WO2020008697A1 (en) Variable flow rate valve mechanism and supercharger
JP2011196464A (en) Ball valve type valve device
JP7127560B2 (en) butterfly valve
JP2007040119A (en) Fluid machine
JP6211901B2 (en) Exhaust flow path valve device
JP2013256963A (en) Fluid type power transmission device
JP2009270613A (en) Bearing structure of turbocharger
JP5956773B2 (en) Relief valve
JP2020159220A (en) Turbocharger
JP2012036887A (en) Exhaust control valve
JP7226351B2 (en) valve device
JP4816162B2 (en) Oil seal
JP2002106323A (en) Valve for control muffler
JP6629042B2 (en) Foil bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees