JP4670076B2 - Method for producing Pt single crystal electrode thin film for oxide thin film - Google Patents

Method for producing Pt single crystal electrode thin film for oxide thin film Download PDF

Info

Publication number
JP4670076B2
JP4670076B2 JP2004261759A JP2004261759A JP4670076B2 JP 4670076 B2 JP4670076 B2 JP 4670076B2 JP 2004261759 A JP2004261759 A JP 2004261759A JP 2004261759 A JP2004261759 A JP 2004261759A JP 4670076 B2 JP4670076 B2 JP 4670076B2
Authority
JP
Japan
Prior art keywords
thin film
ion
producing
single crystal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004261759A
Other languages
Japanese (ja)
Other versions
JP2006076821A (en
Inventor
俊一 菱田
肇 羽田
直樹 大橋
勳 坂口
紀子 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004261759A priority Critical patent/JP4670076B2/en
Publication of JP2006076821A publication Critical patent/JP2006076821A/en
Application granted granted Critical
Publication of JP4670076B2 publication Critical patent/JP4670076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、非晶質であるシリカガラス上に高結晶性の酸化物薄膜をエピタキシャル成長させるための下地及び電極となるPt単結晶薄膜の製造方法に関する。更に詳しくは、シリカ絶縁膜(シリカガラス)を有するシリコン素子の、シリカ絶縁膜上に電子デバイス、光デバイス、集積回路などの高結晶性酸化物薄膜電子素子をエピタキシャル成長させるための下地となり、かつその電子素子の電極として用いることのできる薄膜の形成法に関する。
The present invention relates to a method for producing a Pt single crystal thin film that serves as a base and an electrode for epitaxially growing a highly crystalline oxide thin film on amorphous silica glass. More specifically, a silicon element having a silica insulating film (silica glass) serves as a base for epitaxial growth of a high crystalline oxide thin film electronic element such as an electronic device, an optical device, or an integrated circuit on the silica insulating film, and The present invention relates to a method for forming a thin film that can be used as an electrode of an electronic element.

シリコン半導体技術では、機器、デバイスの小型化への要請に伴い素子の微細化・高密
度化が推し進められてきた。その結果、1素子構造あたりの面積はミクロンオーダーから
サブミクロンの領域となり、すでに物質性能を発揮する限界領域まで微細化されてきてい
る。そのため更なる微細化のために素子の3次元構造設計が進められている。
In the silicon semiconductor technology, the miniaturization and high density of elements have been promoted in accordance with the demand for miniaturization of devices and devices. As a result, the area per element structure is in the micron order to sub-micron region, and has already been miniaturized to a limit region that exhibits material performance. Therefore, the three-dimensional structure design of the element is being advanced for further miniaturization.

さらに、3次元構造素子では機能の多様化のために、非シリコン系の薄膜材料を集積化
することが求められている。通常、シリコン基素子では絶縁材料として酸化シリコン(シ
リカ)が用いられている。3次元集積化のためにはシリカの上に薄膜材料を堆積しなけれ
ばならないが、このシリカ材料は非晶質(シリカガラス)であるために、堆積された薄膜
材料の結晶性が悪く、薄膜材料本来の特性を発揮することが困難であった。
Furthermore, in order to diversify the functions of the three-dimensional structure element, it is required to integrate non-silicon-based thin film materials. Usually, silicon oxide (silica) is used as an insulating material in a silicon-based element. For three-dimensional integration, a thin film material must be deposited on silica. However, since this silica material is amorphous (silica glass), the deposited thin film material has poor crystallinity, and the thin film material is thin. It was difficult to demonstrate the original characteristics of the material.

一方、3次元集積化素子として考えられている構造では、例えば、パソコン並みの機能
を持つICカード(カードコンピュータ、容量8Mb)の実現に対して要求される大容量
強誘電体メモリの場合、シリコントランジスターセルのシリカ絶縁膜(シリカガラス)上
に形成された電極上に、サイズが粒径400nm程度の酸化物強誘電体薄膜を作成するこ
とが必要と予測されている。粒径400nmは容量8Mbを達成するに必要なセル密度と
セル1個あたりの電荷蓄積量から計算されている。そのため、高結晶性の酸化物強誘電体
膜を作成するためには粒径400nmサイズの基板単結晶薄膜をシリカ絶縁膜上に形成す
ることが必要となる。
On the other hand, in the structure considered as a three-dimensional integrated device, for example, in the case of a large-capacity ferroelectric memory required for realizing an IC card (card computer, capacity 8 Mb) having a function similar to that of a personal computer, silicon It is predicted that it is necessary to form an oxide ferroelectric thin film having a particle size of about 400 nm on an electrode formed on a silica insulating film (silica glass) of a transistor cell. The particle size of 400 nm is calculated from the cell density required to achieve a capacity of 8 Mb and the charge accumulation amount per cell. Therefore, in order to produce a highly crystalline oxide ferroelectric film, it is necessary to form a substrate single crystal thin film having a particle size of 400 nm on the silica insulating film.

シリカガラス上での単結晶膜作成に関しては、Neビーム照射によるSi単結晶膜作成
(特許文献1)、マイクロチャネルエピタキシーによるSi単結晶膜の作成(特許文献2
)がある。これらの手法は、Siに対してのみ有効であり、またSi基板では酸化物を直
接成長させ、かつ電極として用いることはできない。
Regarding the preparation of a single crystal film on silica glass, a Si single crystal film is formed by Ne beam irradiation (Patent Document 1), and a Si single crystal film is formed by microchannel epitaxy (Patent Document 2).
) These methods are effective only for Si, and oxide cannot be directly grown on a Si substrate and cannot be used as an electrode.

さらに蒸着法によるシリカガラス上でのSn単結晶膜の作成(非特許文献1)もあるが
、Snの融点は232℃であり、高結晶性の酸化物薄膜の作成に必要な基板加熱温度(通
常300℃以上)では、Sn薄膜のみでは粒子の形状を保つことはできない。
Furthermore, although there is the preparation of Sn single crystal film on silica glass by vapor deposition (Non-Patent Document 1), the melting point of Sn is 232 ° C., and the substrate heating temperature necessary for the preparation of a highly crystalline oxide thin film ( Usually, the shape of the particles cannot be maintained with the Sn thin film alone.

電極としてPt配向薄膜を作製する技術としては、例えば特許文献3がある。酸素と加
熱処理を施すことにより、90%以上の(200)配向を達成しているが、(111)配
向粒子が残っていることから、単結晶薄膜とはなっていない。粒子径も400nm未満で
ある。
As a technique for producing a Pt-oriented thin film as an electrode, there is, for example, Patent Document 3. By applying heat treatment with oxygen, 90% or more of the (200) orientation is achieved, but since the (111) oriented particles remain, it is not a single crystal thin film. The particle diameter is also less than 400 nm.

また、シリカガラス上でのPt薄膜の作成についても報告されている(非特許文献2)
。しかし、この手法では、完全(111)配向は示すもののその粒子サイズは加熱温度が
800℃でも400nm未満であり、さらに温度を上昇した場合は、粒子サイズは大きく
なるであろうが、平板粒子ではなく凹凸の大きな表面となって成長することを指摘してい
る。凹凸の大きな表面は、Pt電極上に形成する酸化物強誘電体薄膜の不均一性、漏洩電
流の増加、回路の断絶を招くため避けなければならない。そのため電極としては面粗さが
10nm(自乗平均粗さ)以下、望ましくは2〜3nm程度が要求される。(面粗さが10
nmより大きいものは平板状粒子と呼ばないこととする。)
In addition, the production of Pt thin films on silica glass has also been reported (Non-Patent Document 2).
. However, in this method, although the complete (111) orientation is exhibited, the grain size is less than 400 nm even at a heating temperature of 800 ° C., and when the temperature is further increased, the grain size will increase. It has been pointed out that it grows as a large uneven surface. A large uneven surface must be avoided because it causes non-uniformity of the oxide ferroelectric thin film formed on the Pt electrode, an increase in leakage current, and circuit breakage. Therefore, the electrode is required to have a surface roughness of 10 nm (root mean square roughness) or less, preferably about 2 to 3 nm. (Surface roughness is 10
Those larger than nm are not called tabular grains. )

特開平8−208382号公報JP-A-8-208382 特開2000−247798号公報JP 2000-247798 A 特許2916116号公報Japanese Patent No. 2916116 Thin Solid Films、Vol.464−465C (2004)146−149.Thin Solid Films, Vol. 464-465C (2004) 146-149. Physical Review B,Vol.58 (1998) 3605−3608.Physical Review B, Vol. 58 (1998) 3605-3608.

以上のように、シリカガラス上に酸化物薄膜成長用の平板粒子からなる結晶電極薄膜を作成できなかった。
As described above, a polycrystalline electrode thin film made of tabular grains for growing an oxide thin film could not be formed on silica glass.

本発明者らは、Ptが酸化物薄膜の成長に必要な温度でも安定である高い融点を持つこ
と、酸化物薄膜成長に必要な高酸化性雰囲気でも安定であること、また軸配向性を持つこ
とから、Ptを用いることにより、非晶質であるシリカガラス上に電極として機能し、かつ
酸化物薄膜成長用基板となる方位の揃った粒子からなる薄膜を作成することが可能である
こと、またイオン照射と加熱処理を交互に利用することによりPt単結晶粒子を粒径400
nm以上の平板粒子として成長させうることを見出した。これらの知見に基づき本発明を
完成した。
The inventors have a high melting point where Pt is stable even at a temperature necessary for the growth of an oxide thin film, is stable in a highly oxidizing atmosphere necessary for the growth of an oxide thin film, and has an axial orientation. Therefore, by using Pt, it is possible to create a thin film made of particles with uniform orientation that functions as an electrode on silica glass that is amorphous and becomes a substrate for growing an oxide thin film. Further, by alternately using ion irradiation and heat treatment, the Pt single crystal particles are made to have a particle size of 400.
It has been found that it can be grown as tabular grains of nm or more. The present invention has been completed based on these findings.

すなわち、本発明は、シリカガラス基板上に形成されたPt薄膜にイオン照射と加熱処理を交互に繰り返すことにより、シリカガラス上に粒径400nm以上の粒子からなるPt結晶薄膜を製造する方法である。
That is, the present invention is, by repeating the silica glass substrate to formed Pt thin film and heat treatment ion irradiation are alternately in a manner to produce a Pt polycrystalline thin film consisting of a particle diameter 400nm or more particles on the silica glass is there.

本発明により、非晶質シリカガラス上に高結晶性の酸化物薄膜を成長させ、カードコンピュータとして容量8Mbを達成するに必要な粒径400nm以上の結晶電極薄膜の製造方法を容易に提供することが可能となった。
According to the present invention, a highly crystalline oxide thin film is grown on amorphous silica glass, and a method for producing a polycrystalline electrode thin film having a particle size of 400 nm or more necessary for achieving a capacity of 8 Mb as a card computer is easily provided. It became possible.

本発明の製造方法において使用する非晶質シリカガラス表面にはあらかじめPt薄膜を
形成しておく。Pt薄膜は蒸着法、スパッタ法、CVD法、Pt塩溶液の塗布・分解等に
より形成可能である。一般的にはスパッタ法がもっとも簡便であるが、これに限定するも
のではない。Pt薄膜中のPt粒子サイズに制限はない。Pt薄膜の厚さは、10nm以
上であることが必要である。10nm未満では、Pt単結晶粒子は400nm以上の平板粒
子に成長可能であるが、粒子間に亀裂が形成し、電極として用いるための連続性を保てな
くなる。膜厚の上限に制限はないが、本発明の目的である3次元集積素子としての有用性
である高集積性を損なわないためには、1000nmより薄い方が好ましい。
A Pt thin film is formed in advance on the surface of the amorphous silica glass used in the production method of the present invention. The Pt thin film can be formed by vapor deposition, sputtering, CVD, coating / decomposition of a Pt salt solution, or the like. In general, the sputtering method is the simplest, but is not limited thereto. There is no limitation on the Pt particle size in the Pt thin film. The thickness of the Pt thin film needs to be 10 nm or more. If it is less than 10 nm, the Pt single crystal grains can grow into tabular grains having a diameter of 400 nm or more, but cracks are formed between the grains, and continuity for use as an electrode cannot be maintained. The upper limit of the film thickness is not limited, but it is preferably thinner than 1000 nm in order not to impair high integration, which is useful as a three-dimensional integrated device that is the object of the present invention.

イオン照射は通常のイオン注入機により行う。Pt薄膜を形成した非晶質シリカガラス基
板をイオン注入機の真空槽中に設置する。イオン種としては、希ガス、酸素、シリコン、
白金、金、銀、銅、またはパラジウムのイオンのうち1種類を選び、Pt薄膜の膜厚に応じ
てイオン照射エネルギー及びイオン照射量を計算する。計算は公知のTRIM計算方法(例え
ば、The stopping and range of ions in soli
d”, Pergamon press, New York, 1985参照)により
行う。
Ion irradiation is performed by a normal ion implanter. An amorphous silica glass substrate on which a Pt thin film is formed is placed in a vacuum chamber of an ion implanter. Ion species include noble gases, oxygen, silicon,
One kind of ion of platinum, gold, silver, copper, or palladium is selected, and ion irradiation energy and ion irradiation amount are calculated according to the film thickness of the Pt thin film. The calculation is performed using a known TRIM calculation method (for example, the stopping and range ofions in soli).
d ", Pergamon press, New York, 1985).

第1回のイオン照射はPt薄膜/非晶質シリカ基板の界面に到達するイオン照射量が10 22 /m以上、10 28 /m以下となる様に行う。第1回のイオン照射はPt単結晶成長のための成長核の数を制御するために行う。通常のPt薄膜では、Pt粒子の粒子径は10nmのオーダーであり、基板界面にある全ての粒子が粒成長核として作用し、単結晶粒子として400nm以上に成長できない。第一回のイオン照射は、イオンの持つ運動エネルギーにより、界面にあるPt粒子を破壊し、基板のシリカ分子とミキシングすることにより、成長核となる粒子数を制御する。
The first ion irradiation is performed so that the ion irradiation amount reaching the interface of the Pt thin film / amorphous silica substrate is 10 22 / m 3 or more and 10 28 / m 3 or less. The first ion irradiation is performed to control the number of growth nuclei for the Pt single crystal growth. In a normal Pt thin film, the particle diameter of Pt particles is on the order of 10 nm, and all particles at the substrate interface act as grain growth nuclei and cannot grow as single crystal particles to 400 nm or more. In the first ion irradiation, the number of particles serving as growth nuclei is controlled by breaking Pt particles at the interface by the kinetic energy of ions and mixing with the silica molecules of the substrate.

イオン照射量が10 22 /m未満では界面でのPtとシリカのミキシングが十分でなく、Pt単結晶成長の成長核が多量に残存して、400nm以下のPt単結晶粒子が成長する。10 28 /mより多い場合にはミキシングにより白金シリサイドが形成され、Pt単結晶の成長を阻害する。
If the ion irradiation amount is less than 10 22 / m 3 , the mixing of Pt and silica at the interface is not sufficient, and a large amount of growth nuclei for Pt single crystal growth remain, and Pt single crystal particles of 400 nm or less grow. When it is more than 10 28 / m 3 , platinum silicide is formed by mixing and inhibits the growth of the Pt single crystal.

イオン照射後の加熱処理は、通常の加熱炉にて行う。加熱処理温度は500℃以上、1
000℃未満とする。500℃未満ではPt粒子は400nm以上に成長しない。100
0℃以上では粒子間に亀裂が生じ、電極として使用不可能となる。第1回の加熱処理では
Pt粒子は400nm以上に成長するが、表面粗さを10nm以下にすることは困難であ
る。これはPt薄膜形成直後のPt粒子が10nmのオーダーの粒子であり、その粒径オ
ーダーの表面粗さを持っている。第1回の加熱処理ではこの粗さを取り除けないためであ
る。そのために第2回目以降のイオン照射を行う。
The heat treatment after ion irradiation is performed in a normal heating furnace. Heat treatment temperature is 500 ° C. or higher, 1
The temperature is less than 000 ° C. Below 500 ° C., Pt particles do not grow to 400 nm or more. 100
Above 0 ° C., cracks occur between the particles and the electrode cannot be used. In the first heat treatment, the Pt particles grow to 400 nm or more, but it is difficult to make the surface roughness 10 nm or less. This is because the Pt particles immediately after the formation of the Pt thin film are particles of the order of 10 nm, and have a surface roughness of the particle size order. This is because the roughness cannot be removed by the first heat treatment. Therefore, the second and subsequent ion irradiations are performed.

イオン照射の第2回目以降のうち少なくとも1回は、Pt薄膜表面から10nmの深さの領域で停止するイオン量が10 22 /m以上、10 29 /m以下となる様に行う。2回目以降のイオン照射は、第1回のイオン照射・加熱処理では処理できなかったPt粒子の表面を平板化にするために行う。
At least one of the second and subsequent ion irradiations is performed so that the amount of ions stopping in a region having a depth of 10 nm from the surface of the Pt thin film is 10 22 / m 3 or more and 10 29 / m 3 or less. The second and subsequent ion irradiations are performed to flatten the surface of the Pt particles that could not be processed by the first ion irradiation / heat treatment.

第2回目以降のイオン照射では、イオンの持つ運動エネルギーによりPt原子の再配列が起きる。照射イオン量が10 22 /m未満では再配列するPt原子数が少なく、10nm以下の表面粗さが達成できない。10 29 /mより多い場合には、再配列過程でPt薄膜の表面からスパッタ放出されるPt原子数が多くなり、表面粗さが増加する。
In the second and subsequent ion irradiations, rearrangement of Pt atoms occurs due to the kinetic energy of ions. When the amount of irradiated ions is less than 10 22 / m 3 , the number of Pt atoms to be rearranged is small, and a surface roughness of 10 nm or less cannot be achieved. When it is more than 10 29 / m 3 , the number of Pt atoms sputtered from the surface of the Pt thin film in the rearrangement process increases, and the surface roughness increases.

2回目以降の加熱処理も、通常の加熱炉にて行う。加熱処理温度は500℃以上、10
00℃未満とする。500℃未満ではPt原子の再配列に伴い導入された格子欠陥をアニ
ールできず単結晶としての結晶性に劣る。1000℃以上では粒子間に亀裂が生じ、電極
として使用不可能となる。
The second and subsequent heat treatments are also performed in a normal heating furnace. Heat treatment temperature is 500 ° C. or higher, 10
Set to less than 00 ° C. If it is less than 500 ° C., the lattice defects introduced with the rearrangement of Pt atoms cannot be annealed, and the crystallinity as a single crystal is poor. When the temperature is 1000 ° C. or higher, cracks occur between the particles and the electrode cannot be used.

シリカガラス基板上に、RFマグネトロンスパッタ法により、膜厚150nmのPt薄
膜を形成した。スパッタターゲットにはPt板を用い、スパッタガスとしてArガス0.
5Pa、スパッタ出力10W、基板温度600℃でPt膜を形成した。Pt膜は粒径50
nm、(111)配向度約50%であった。(配向度はXRDにおける(200)面から
の強度I(200)と(111)面からの強度I(111)の比を無配向時の強度比と比
較することにより計算した。)
A 150-nm-thick Pt thin film was formed on a silica glass substrate by RF magnetron sputtering. A Pt plate is used as the sputtering target, and Ar gas is used as the sputtering gas.
A Pt film was formed at 5 Pa, sputtering output 10 W, and substrate temperature 600 ° C. Pt film has a particle size of 50
nm, the degree of (111) orientation was about 50%. (The degree of orientation was calculated by comparing the ratio of the intensity I (200) from the (200) plane to the intensity I (111) from the (111) plane in XRD with the intensity ratio in the non-oriented state.)

第1回のイオン照射として、550keVのアルゴンイオンを10 20 ions/mをPt薄膜に照射した。このときPt/シリカガラス界面には10 26 ions/mのアルゴンイオンが到達している。その後760℃で1時間加熱処理を行った。このPt薄膜のAFMによる表面観察から粒径800nm以上の表面粗さ17nmの粒子が形成されていた。図1に、そのAFM像を示す。図の1辺は2μmである。
As the first ion irradiation, a Pt thin film was irradiated with 10 20 ions / m 2 of argon ions of 550 keV. At this time, 10 26 ions / m 3 of argon ions have reached the Pt / silica glass interface. Thereafter, heat treatment was performed at 760 ° C. for 1 hour. From observation of the surface of this Pt thin film by AFM, particles having a particle size of 800 nm or more and a surface roughness of 17 nm were formed. FIG. 1 shows the AFM image. One side of the figure is 2 μm.

第2回目のイオン照射として、50keVのCuイオンを10 20 ions/m照射した。このときPt薄膜表面から10nmの深さの領域で停止するCuイオン量は4×10 27 /mである。第2回目の加熱処理として760℃で1時間加熱した。このPt薄膜はAFMによる表面観察から粒径800nm以上の平板状Pt単結晶粒子(表面粗さ1.7nm)で構成されていた。図2に、そのAFM像を示す。第2回目のイオン照射・加熱処理により粒子表面が平板状に変化したことがわかる。図2の一辺は4μmである。図3に、そのX線回折図を示す。薄膜が基板に垂直に<111>軸を立てた単結晶であることがわかる。


As the second ion irradiation, 50 keV Cu ions were irradiated at 10 20 ions / m 2 . At this time, the amount of Cu ions that stops at a depth of 10 nm from the surface of the Pt thin film is 4 × 10 27 / m 3 . As the second heat treatment, heating was performed at 760 ° C. for 1 hour. This Pt thin film was composed of tabular Pt single crystal grains having a particle size of 800 nm or more (surface roughness of 1.7 nm) from surface observation by AFM. FIG. 2 shows the AFM image. It turns out that the particle | grain surface changed to flat form by the 2nd ion irradiation and heat processing. One side of FIG. 2 is 4 μm. FIG. 3 shows the X-ray diffraction pattern. It can be seen that the thin film is a single crystal with a <111> axis perpendicular to the substrate.


(比較例1)
シリカガラス基板上にRFマグネトロンスパッタ法により、膜厚150nmのPt薄膜を
形成した。この薄膜にイオン照射を行わずに、760℃で2時間の加熱処理を行った。こ
のPt薄膜は粒径300nm以下の多面体状Pt単結晶粒子で構成されていた。図4に、その
AFM像を示す。図の一辺は2μmである。粒子が300nm以下の多面体状結晶である
ことが分かる。
(Comparative Example 1)
A 150 nm thick Pt thin film was formed on a silica glass substrate by RF magnetron sputtering. The thin film was heat-treated at 760 ° C. for 2 hours without ion irradiation. This Pt thin film was composed of polyhedral Pt single crystal particles having a particle size of 300 nm or less. FIG. 4 shows the AFM image. One side of the figure is 2 μm. It can be seen that the particles are polyhedral crystals of 300 nm or less.

(比較例2)
シリカガラス基板上にRFマグネトロンスパッタ法により、膜厚150nmのPt薄膜を
形成した。この薄膜にイオン照射を行わずに、900℃で2時間の加熱処理を行った。こ
のPt薄膜は粒径800nm以上のPt単結晶粒子で構成されていたが、表面の凹凸が大きく
、1部にシリカガラス基板の表面が観測された。図5に、そのAFM像を示す。図の一辺
は2μmである。大きな凹凸の中にシリカガラス基板表面が見えるのが分かる。
(Comparative Example 2)
A 150 nm thick Pt thin film was formed on a silica glass substrate by RF magnetron sputtering. The thin film was subjected to heat treatment at 900 ° C. for 2 hours without ion irradiation. This Pt thin film was composed of Pt single crystal particles having a particle size of 800 nm or more, but the surface was largely uneven, and the surface of the silica glass substrate was observed in one part. FIG. 5 shows the AFM image. One side of the figure is 2 μm. It can be seen that the silica glass substrate surface can be seen in the large irregularities.

本発明の製造方法で得られるPt薄膜を用いることにより、非晶質であるシリカガラス上
に高結晶性の酸化物薄膜をエピタキシャル成長させることが可能となることから、シリカ
絶縁膜を有するシリコン素子のシリカ絶縁膜上に電子デバイス、光デバイス、集積回路な
どの高結晶性酸化物薄膜素子をエピタキシャル成長させるための下地でありかつ電極とし
て有用である。
By using the Pt thin film obtained by the manufacturing method of the present invention, it becomes possible to epitaxially grow a highly crystalline oxide thin film on amorphous silica glass. It is a base for epitaxially growing a highly crystalline oxide thin film element such as an electronic device, an optical device, an integrated circuit or the like on a silica insulating film and is useful as an electrode.

実施例1の第1回のイオン照射・加熱処理により製造されたPt薄膜のAFM像を示す図面代用写真である。図の1辺は2μmである。6 is a drawing-substituting photograph showing an AFM image of a Pt thin film produced by the first ion irradiation / heat treatment of Example 1. FIG. One side of the figure is 2 μm. 実施例1で製造されたPt薄膜のAFM像を示す図面代用写真である。図の1辺は4μmである。3 is a drawing-substituting photograph showing an AFM image of the Pt thin film produced in Example 1. FIG. One side of the figure is 4 μm. 実施例1で製造したPt薄膜のX線回折図である。2 is an X-ray diffraction pattern of a Pt thin film manufactured in Example 1. FIG. 比較例1で製造したPt薄膜のAFM像を示す図面代用写真である。図の1辺は2μmである。6 is a drawing-substituting photograph showing an AFM image of a Pt thin film produced in Comparative Example 1. FIG. One side of the figure is 2 μm. 比較例2で製造したPt薄膜のAFM像を示す図面代用写真である。図の1辺は2μmである。6 is a drawing-substituting photograph showing an AFM image of a Pt thin film produced in Comparative Example 2. FIG. One side of the figure is 2 μm.

Claims (7)

非晶質シリカ基板上に形成されたPt薄膜にイオン照射と加熱処理を交互に繰り返すことにより、基板上に粒径400nm以上の大きさを持つ平板状Pt単結晶を形成することを特徴とするPt結晶薄膜の製造方法。 A flat Pt single crystal having a particle size of 400 nm or more is formed on a substrate by alternately repeating ion irradiation and heat treatment on a Pt thin film formed on an amorphous silica substrate. method for producing a Pt polycrystal thin film. 非晶質シリカ基板が、シリカガラスまたはシリコン上の非晶質シリカ絶縁膜である請求項1のPt結晶薄膜の製造方法。 Amorphous silica substrate, a manufacturing method of Pt polycrystalline thin film according to claim 1 which is amorphous silica insulating film on silica glass or silicon. イオン照射に用いるイオン種が、希ガス、酸素、シリコン、白金、金、銀、銅、パラジウムのいずれかのイオンであることを特徴とする請求項1のPt結晶薄膜の製造方法。 Ion species used in the ion irradiation, a rare gas, oxygen, silicon, platinum, gold, silver, copper, a manufacturing method of Pt polycrystalline thin film according to claim 1, characterized in that any ions palladium. 加熱処理温度が500℃以上、1000℃未満である請求項1のPt結晶薄膜の製造方法。 Heat treatment temperature is 500 ° C. or higher, the production method of Pt polycrystalline thin film according to claim 1 is less than 1000 ° C.. イオン照射と加熱処理の繰り返し回数が2回以上である請求項1のPt結晶薄膜の製造方法。 Method for producing a Pt polycrystalline thin film according to claim 1 the number of repetitions of heating and ion irradiation is not less than 2 times. イオン照射の第1回は、Pt薄膜/非晶質シリカ基板界面に到達するイオン量が10 22 /m以上、10 28 /m以下となる、イオン加速エネルギー及びイオン照射量である請求項1のPt結晶薄膜の製造方法。 The first ion irradiation is an ion acceleration energy and an ion irradiation amount at which the amount of ions reaching the Pt thin film / amorphous silica substrate interface is 10 22 / m 3 or more and 10 28 / m 3 or less. 1 Pt method for producing a polycrystalline thin film. イオン照射の第2回目以降のうち少なくとも1回は、Pt薄膜表面から10nmの深さの領域で停止するイオン量が10 22 /m以上、10 29 /m以下となる、イオン加速エネルギー及びイオン照射量である請求項1のPt結晶薄膜の製造方法。
In at least one of the second and subsequent ion irradiations, the ion acceleration energy and the amount of ions stopping at a depth of 10 nm from the surface of the Pt thin film are 10 22 / m 3 or more and 10 29 / m 3 or less. method for producing a Pt polycrystalline thin film according to claim 1 is an ion dose.
JP2004261759A 2004-09-09 2004-09-09 Method for producing Pt single crystal electrode thin film for oxide thin film Expired - Fee Related JP4670076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261759A JP4670076B2 (en) 2004-09-09 2004-09-09 Method for producing Pt single crystal electrode thin film for oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261759A JP4670076B2 (en) 2004-09-09 2004-09-09 Method for producing Pt single crystal electrode thin film for oxide thin film

Publications (2)

Publication Number Publication Date
JP2006076821A JP2006076821A (en) 2006-03-23
JP4670076B2 true JP4670076B2 (en) 2011-04-13

Family

ID=36156592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261759A Expired - Fee Related JP4670076B2 (en) 2004-09-09 2004-09-09 Method for producing Pt single crystal electrode thin film for oxide thin film

Country Status (1)

Country Link
JP (1) JP4670076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375026B2 (en) * 2008-10-27 2013-12-25 日産自動車株式会社 Epitaxial thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279597A (en) * 1989-04-18 1990-11-15 Sumitomo Cement Co Ltd Formation of oxide superconducting polycrystal thin film
JPH059099A (en) * 1991-06-28 1993-01-19 Canon Inc Method for growing crystal
JPH1084086A (en) * 1996-03-21 1998-03-31 Toyo Cement Kk Method of forming platinum thin film, substrate manufactured by the method, electronic element using the substrate, and method of manufacturing the electronic element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279597A (en) * 1989-04-18 1990-11-15 Sumitomo Cement Co Ltd Formation of oxide superconducting polycrystal thin film
JPH059099A (en) * 1991-06-28 1993-01-19 Canon Inc Method for growing crystal
JPH1084086A (en) * 1996-03-21 1998-03-31 Toyo Cement Kk Method of forming platinum thin film, substrate manufactured by the method, electronic element using the substrate, and method of manufacturing the electronic element

Also Published As

Publication number Publication date
JP2006076821A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
KR101767242B1 (en) Single crystalline metal films containing hydrogen atom or hydrogen ion and manufacturing method thereof
CN106058039B (en) A kind of lead zirconate titanate/ruthenic acid strontium ferroelectric superlattice material and preparation method thereof
Palkar et al. Ferroelectric thin films of PbTiO3 on silicon
JP4670076B2 (en) Method for producing Pt single crystal electrode thin film for oxide thin film
KR100422333B1 (en) Method for manufacturing a metal film having giant single crystals and the metal film
WO2001081650A1 (en) Sputter target, barrier film and electronic component
TWI455186B (en) Fabrication of metal - induced crystals by ion implantation
Pinizzotto et al. Cross-sectional TEM studies of barium strontium titanate deposited on silicon by pulsed laser ablation
JP2006263712A (en) Laminated structure of nanoparticles and method for producing it
KR20090011331A (en) Method for making metal nano particle
JP3950970B2 (en) Method for producing Sn single crystal thin film
JPH02191321A (en) Method of forming crystal
KR102312729B1 (en) Preparation method of single crystal metal film by seed solid crystal growth, and single crystal metal film prepared thereby
JPS6130018B2 (en)
KR100781202B1 (en) Method of solid-phase flux epitaxy growth
JP3229749B2 (en) Method for manufacturing polycrystalline semiconductor thin film and photovoltaic device
JPS6244403B2 (en)
CN115424920A (en) High-crystallization barium titanate film, preparation method and application
JP4441605B2 (en) Semiconductor substrate and manufacturing method thereof
JP2000031401A (en) Manufacture of ferroelectric element and semiconductor memory device
TW202414518A (en) Highly crystalline barium titanate film, preparation method and application
JP4360598B2 (en) Method for producing CrB2 single crystal and substrate for semiconductor film
JPH09252095A (en) Thin film capacitor and semiconductor device
CN117552095A (en) Uranium triruthenate superconducting single crystal film and preparation method and application thereof
JP2677056B2 (en) Capacitor electrode and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees