JP4669990B2 - Lactic acid production method - Google Patents

Lactic acid production method Download PDF

Info

Publication number
JP4669990B2
JP4669990B2 JP2005049370A JP2005049370A JP4669990B2 JP 4669990 B2 JP4669990 B2 JP 4669990B2 JP 2005049370 A JP2005049370 A JP 2005049370A JP 2005049370 A JP2005049370 A JP 2005049370A JP 4669990 B2 JP4669990 B2 JP 4669990B2
Authority
JP
Japan
Prior art keywords
lactic acid
medium
acid bacteria
buffer
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005049370A
Other languages
Japanese (ja)
Other versions
JP2006230287A (en
Inventor
早苗 岡田
泰 内村
祐司 寺嶋
明仁 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture filed Critical Tokyo University of Agriculture
Priority to JP2005049370A priority Critical patent/JP4669990B2/en
Publication of JP2006230287A publication Critical patent/JP2006230287A/en
Application granted granted Critical
Publication of JP4669990B2 publication Critical patent/JP4669990B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は乳酸の生産方法に関し、詳細には、低コストで管理が容易な乳酸の生産方法に関する。   The present invention relates to a method for producing lactic acid, and more particularly to a method for producing lactic acid that is low-cost and easy to manage.

近年、環境への配慮から、従来のプラスッチクに代わるプラスチックとして、生分解性プラスチックが注目されている。ここで、「生分解性プラスチック」とは、従来のプラスチック製品と同じように使用でき、且つ使用後は、自然界の微生物や分解酵素によって、水と二酸化炭素に分解されていくプラスチックのことをいう。   In recent years, biodegradable plastics have attracted attention as plastics to replace conventional plastics in consideration of the environment. Here, the term “biodegradable plastic” refers to a plastic that can be used in the same way as a conventional plastic product and is decomposed into water and carbon dioxide by natural microorganisms and degrading enzymes after use. .

現在、生分解性プラスチックには微生物産生産高分子・合成高分子・天然分子の3つのタイプがあり、このうち、微生物産生産高分子タイプの原材料としてポリ乳酸が用いられている。そのため、乳酸菌を利用してポリ乳酸の製造が行われているが、乳酸菌は高栄養な環境でなければ増殖することが困難であるため、従来の乳酸菌の培地は、グルコースのほか、ビタミン類やアミノ酸類を含有する培養培地が必須である。特に、これらの供給源として入手しやすい酵母エキスとペプトンは高価な培地成分に属する。これらの培地成分は、工業的生産の場においてはコストの面から課題があるため、乳酸菌又は乳酸の工業的生産は採算に合わない。従って、これらに代わる供給源を検討しなければならないのが現状である。   Currently, there are three types of biodegradable plastics: microbially produced polymers, synthetic polymers, and natural molecules. Of these, polylactic acid is used as a raw material for microbially produced polymers. For this reason, polylactic acid is produced using lactic acid bacteria. However, since lactic acid bacteria are difficult to grow unless they are in a highly nutritious environment, conventional lactic acid bacteria culture media include vitamins, A culture medium containing amino acids is essential. In particular, yeast extract and peptone that are easily available as these sources belong to expensive medium components. Since these medium components have a problem in terms of cost in the field of industrial production, industrial production of lactic acid bacteria or lactic acid is not profitable. Therefore, the current situation is to consider alternative sources.

これに対し、酵母は比較的安い培地で培養することが可能であるため、乳酸を工業的に生産する方法として、酵母の培地に乳酸脱水素酵素を加えて乳酸を生産させることも提案されてきた。   On the other hand, since yeast can be cultured in a relatively inexpensive medium, it has been proposed to produce lactic acid by adding lactic acid dehydrogenase to the yeast medium as a method for industrially producing lactic acid. It was.

このような状況の中、乳酸菌による乳酸生産方法が種々検討されている。例えば、特許文献1には、乳酸菌が最高に増殖した時点で糖類及びタンパク質等の栄養源を追加して培養を継続させることにより、効率よく乳酸を生産することができる乳酸の生産方法が開示されている。
特開2004−65142号公報
Under such circumstances, various methods for producing lactic acid by lactic acid bacteria have been studied. For example, Patent Literature 1 discloses a method for producing lactic acid, which can efficiently produce lactic acid by adding nutrient sources such as sugars and proteins when lactic acid bacteria are maximally grown and continuing cultivation. ing.
JP 2004-65142 A

しかしながら、上記の従来技術では依然として培地コストの問題がある。また、乳酸生産過程においては、培養液中に増加する乳酸により培養液のpHが低下する。乳酸菌はpHが3.5以下になると自身が生産した乳酸により生育できなくなるため、効率よく乳酸を生産させるためには、乳酸発酵中に水酸化ナトリウムやアンモニア等の中和処理剤を添加して、pHの管理を行う必要がある。   However, the above prior art still has a medium cost problem. In addition, during the lactic acid production process, the pH of the culture solution decreases due to lactic acid increasing in the culture solution. Lactic acid bacteria cannot grow due to the lactic acid produced by the lactic acid bacterium when the pH is 3.5 or lower. Therefore, to efficiently produce lactic acid, a neutralizing agent such as sodium hydroxide or ammonia is added during lactic acid fermentation. It is necessary to manage the pH.

培養液中の乳酸は最終的に培養液から精製する必要がある。上述したように、乳酸菌は高栄養な培養液で培養するが、精製に要する労力及びコストに鑑みれば、培養液から乳酸を精製するには栄養成分は少ない方が好ましい。   The lactic acid in the culture solution needs to be finally purified from the culture solution. As described above, lactic acid bacteria are cultured in a highly nutritive culture solution. However, in view of the labor and cost required for purification, it is preferable that lactic acid bacteria have few nutrient components to purify lactic acid from the culture solution.

従って、本発明は、低コストで効率良く乳酸を生産する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for efficiently producing lactic acid at a low cost.

本発明は上記の課題を解決するため、低コストで効率良く乳酸を生産する方法について種々の検討を行った。その結果、乳酸菌が高濃度に増殖した状態のときに、糖を含む緩衝液で培養液を置換したところ、高栄養な培地で培養したときと同量の乳酸を生産するという知見を得た。   In order to solve the above-described problems, the present invention has been variously studied on a method for efficiently producing lactic acid at a low cost. As a result, when the lactic acid bacteria were grown at a high concentration, the culture solution was replaced with a sugar-containing buffer, and as a result, it was found that lactic acid was produced in the same amount as when cultured in a highly nutritious medium.

本発明はこのような知見に基づいてなされたものであり、糖類及びタンパク質を含有する乳酸菌増殖用培地で乳酸菌を培養する工程と、糖類を含有する緩衝液に、培養した乳酸菌を添加して乳酸を生産させる工程と、を備えた乳酸の生産方法を提供するものである。   The present invention has been made on the basis of such findings, and includes a step of cultivating lactic acid bacteria in a lactic acid bacteria growth medium containing saccharides and proteins, and adding cultivated lactic acid bacteria to a saccharide-containing buffer to produce lactic acid. And a process for producing lactic acid.

即ち、本発明においては、乳酸菌の増殖を目的とする培地と乳酸の生産を目的とする培地とを区別する。乳酸菌の増殖を目的とする培地においては、糖類、ビタミン類、アミノ酸類及びミネラルを含有する培地(以下、「高栄養培地」と称する)で、乳酸菌を所望の数だけ増殖させる。その後、乳酸菌増殖用培地を、乳酸の生産を目的とする培地、即ち、糖類を含有する緩衝液で置換すると、乳酸菌の増殖は認められないが、乳酸の生産量は増加する。   That is, in the present invention, a medium for the purpose of growing lactic acid bacteria is distinguished from a medium for the purpose of producing lactic acid. In a medium intended for the growth of lactic acid bacteria, a desired number of lactic acid bacteria are grown on a medium containing saccharides, vitamins, amino acids and minerals (hereinafter referred to as “high nutrient medium”). Thereafter, when the medium for growing lactic acid bacteria is replaced with a medium for producing lactic acid, ie, a buffer containing saccharides, the growth of lactic acid bacteria is not observed, but the amount of lactic acid produced increases.

従って、これまで乳酸の生産に用いられていた高栄養の培地の一部を低栄養の培地で代用することができ、培地コストを抑えることができる。また、緩衝液を用いるため、培養液中のpHの低下に対しても緩衝液の緩衝作用により急激なpHの変化を抑制できる結果、pHの管理が容易となる。さらに、乳酸菌増殖用培地と比べて糖類を含有する緩衝液はその組成がシンプルであるため、その後の乳酸の精製も容易である。   Therefore, a part of the high nutrient medium that has been used for the production of lactic acid can be replaced with a low nutrient medium, and the medium cost can be reduced. In addition, since a buffer solution is used, a rapid pH change can be suppressed by the buffering action of the buffer solution even when the pH in the culture solution is lowered, so that the pH can be easily managed. Furthermore, since the buffer solution containing saccharides has a simple composition as compared with the medium for growing lactic acid bacteria, subsequent purification of lactic acid is easy.

本発明によれば、糖類を含む緩衝液を用いて乳酸菌に乳酸を生産させることができるため、培地コストがかからず、pHの管理も容易で、かつ、乳酸の精製も容易となる。   According to the present invention, since lactic acid bacteria can produce lactic acid using a buffer containing saccharides, the medium cost is not high, the pH can be easily controlled, and the lactic acid can be easily purified.

次に、本発明の実施形態を詳細に説明する。本発明の乳酸の生産方法は、既述の通り、高栄養培地で乳酸菌を培養する工程と、糖類を含有する緩衝液に、培養した乳酸菌を添加して乳酸を生産させる工程と、を備える。   Next, embodiments of the present invention will be described in detail. As described above, the method for producing lactic acid of the present invention comprises a step of culturing lactic acid bacteria in a high nutrient medium and a step of producing lactic acid by adding the cultured lactic acid bacteria to a buffer containing saccharides.

まず、高栄養培地で乳酸菌を培養する工程について説明する。   First, the process of culturing lactic acid bacteria in a high nutrient medium will be described.

乳酸菌は、形態(桿菌/球菌)、生育最適温度(高温/中温)、生産される乳酸の旋光性(D形/L形/DL形)、生産される物質(ホモ型/ヘテロ型)等により各種の乳酸菌が分類されているが、いずれの乳酸菌も使用することができる。   Lactic acid bacteria, depending on the form (gonococcus / cocci), optimum temperature for growth (high temperature / medium temperature), optical rotation of produced lactic acid (D form / L form / DL form), produced substance (homo / hetero form), etc. Various lactic acid bacteria are classified, and any lactic acid bacteria can be used.

生分解性プラスチックの製造原料であるポリ乳酸としては、現在のところL形乳酸が利用されているため、かかる観点からはL形乳酸を多く生産する乳酸菌を用いることが好ましい。L形乳酸を多く生産する乳酸菌の具体例としては、例えば、ラクトバシルス・カゼイ(Lactobacillus casei)、ラクトバシルス・サケイ(Lactobacillus sakei)、エンテロコッカス(Enterococcus)属乳酸菌、バシラス・コアギュランス(Bacillus coagulans)等を挙げることができ、特に乳酸生産能が高いラクトバシルス・カゼイ(Lactobacillus casei)が好ましい。   As polylactic acid, which is a raw material for producing biodegradable plastics, L-type lactic acid is currently used. From this viewpoint, it is preferable to use a lactic acid bacterium that produces a large amount of L-type lactic acid. Specific examples of lactic acid bacteria that produce a large amount of L-form lactic acid include, for example, Lactobacillus casei, Lactobacillus sakei, Enterococcus lactic acid bacteria, Bacillus coagulans, and the like. In particular, Lactobacillus casei having a high ability to produce lactic acid is preferable.

乳酸菌増殖用培地としては、従来乳酸菌の増殖に用いられてきた培地を利用することができる。乳酸菌増殖用培地は乳酸菌を増殖させることが目的であるため、液体培地が好ましい。培地としては、例えば、GYP培地、MRS培地等を挙げることができる。また、その培養方法も、特に制限はなく、従来公知の乳酸菌培養法が利用できる。   As a medium for growing lactic acid bacteria, a medium conventionally used for growing lactic acid bacteria can be used. Since the lactic acid bacteria growth medium is intended to grow lactic acid bacteria, a liquid medium is preferred. Examples of the medium include GYP medium and MRS medium. The culture method is not particularly limited, and a conventionally known lactic acid bacteria culture method can be used.

次に、糖類を含有する緩衝液に、培養した乳酸菌を添加して乳酸を生産させる工程について説明する。   Next, the process of producing lactic acid by adding cultured lactic acid bacteria to a saccharide-containing buffer solution will be described.

本実施形態において「緩衝液」とは、溶液に酸または塩基を加えたときや希釈したときに、pHの変化を緩める作用(緩衝作用:buffer action)を有する溶液をいう。   In this embodiment, the “buffer solution” refers to a solution having an action (buffer action) for relaxing a change in pH when an acid or a base is added to the solution or diluted.

緩衝液は、乳酸を高濃度に生産させるためには、そのpKa値が5.0以上8.3未満であることが好ましく、5.5以上7.5未満であることがより好ましく、6.0以上6.8未満であることが更に好ましい。   In order to produce lactic acid at a high concentration, the buffer solution preferably has a pKa value of 5.0 or more and less than 8.3, more preferably 5.5 or more and less than 7.5. More preferably, it is 0 or more and less than 6.8.

また、緩衝液の濃度は、用いる乳酸菌の種類によって適宜変更し得るが、乳酸を高濃度に生産させるためには、200〜1000mMであることが好ましく、300〜800mMであることが好ましく、400〜500mMであることが更に好ましい。   Moreover, although the density | concentration of a buffer can be suitably changed with the kind of lactic acid bacteria to be used, in order to produce lactic acid at high concentration, it is preferable that it is 200-1000 mM, it is preferable that it is 300-800 mM, 400- More preferably, it is 500 mM.

緩衝液としては、具体的には、例えば、リン酸緩衝液(pKa値:2.15、7.21、12.33)、2−モルホリノエタンスルホン酸(MES)緩衝液(pKa値:6.15)、クエン酸−リン酸緩衝液(pKa値:3.13、4.76、6.40)、3−モルホリノプロパンスルホン酸(MOPS)緩衝液(pKa値:7.20)、N’−2−ヒドロキシエチルピペラジン−N’−2−エタンスルホン酸(HEPES)緩衝液(pKa値:7.55)、トリス酢酸緩衝液、酢酸ナトリウム緩衝液、クエン酸ナトリウム緩衝液等を挙げることができるが、コスト及び乳酸の精製工程を考慮すれば、特にリン酸緩衝液が好ましい。   Specific examples of the buffer solution include a phosphate buffer solution (pKa values: 2.15, 7.21, 12.33) and a 2-morpholinoethanesulfonic acid (MES) buffer solution (pKa value: 6. 15), citrate-phosphate buffer (pKa value: 3.13, 4.76, 6.40), 3-morpholinopropanesulfonic acid (MOPS) buffer (pKa value: 7.20), N′— Examples include 2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES) buffer (pKa value: 7.55), Tris acetate buffer, sodium acetate buffer, sodium citrate buffer, and the like. In view of the cost and the purification step of lactic acid, a phosphate buffer is particularly preferable.

糖類としては、乳酸菌が資化できる糖類であれば特に制限はないが、乳酸の生産効率及びコストを考慮すれば、グルコースであることが好ましい。   The saccharide is not particularly limited as long as it is a saccharide that can be assimilated by lactic acid bacteria, but glucose is preferable in view of production efficiency and cost of lactic acid.

糖類は、その濃度が10〜300g/lであることが好ましく、50〜250g/lであることがより好ましく、150〜200g/lであることが更に好ましい。   The concentration of the saccharide is preferably 10 to 300 g / l, more preferably 50 to 250 g / l, and still more preferably 150 to 200 g / l.

糖類を含有する緩衝液中の乳酸菌は、糖類を資化して乳酸を生産する。緩衝液中には乳酸菌の菌体を増殖させるための栄養分(タンパク質等)が存在しないため、緩衝液中での乳酸菌の増加は認められない。従って、緩衝液中の乳酸菌は、その菌体濃度が高いほど多くの乳酸を生産することができる。即ち、乳酸菌の菌体濃度は、乳酸菌の生育限界となる濃度(約1×109cells/ml)前後かそれ以上に分散させることが乳酸生産の観点から好ましい。 Lactic acid bacteria in the buffer containing saccharides assimilate the saccharides to produce lactic acid. Since there are no nutrients (proteins, etc.) for growing lactic acid bacteria in the buffer, no increase in lactic acid bacteria is observed in the buffer. Therefore, the lactic acid bacteria in the buffer solution can produce more lactic acid as the bacterial cell concentration is higher. That is, it is preferable from the viewpoint of lactic acid production that the concentration of lactic acid bacteria is dispersed around or above the concentration (about 1 × 10 9 cells / ml) that is the limit of growth of lactic acid bacteria.

具体的には、コストを考慮すれば、糖類を含有する緩衝液中の乳酸菌の菌体濃度は、1×108〜1×1010cells/mlであることが好ましく、5×108〜7×109cells/mlであることがより好ましく、1×109〜6×1010cells/mlであることが更に好ましい。 Specifically, considering the cost, cell concentration of lactic acid in a buffer containing a saccharide is preferably 1 × 10 8 ~1 × 10 10 cells / ml, 5 × 10 8 ~7 It is more preferably × 10 9 cells / ml, and further preferably 1 × 10 9 to 6 × 10 10 cells / ml.

乳酸の生産は30〜37℃、15〜120時間で行われる。乳酸を生産させる間、糖類を含有する緩衝液は静置でも、緩やかに撹拌してもよい。   Lactic acid is produced at 30 to 37 ° C. for 15 to 120 hours. During the production of lactic acid, the buffer containing saccharides may be left standing or gently stirred.

乳酸の回収は、乳酸の液−液抽出法、逆浸透膜法、乳酸エステル蒸留法、透析膜法、電気透析法等、従来公知の精製方法を利用することができる。   For the recovery of lactic acid, conventionally known purification methods such as lactic acid liquid-liquid extraction method, reverse osmosis membrane method, lactate ester distillation method, dialysis membrane method, electrodialysis method and the like can be used.

以上、本発明の実施形態につき、糖類を含有する緩衝液を用いた例を説明したが、これに限定されず、糖類を含有する緩衝液に代えて、コーンスティープリカー、廃糖蜜等を用いることも可能である。これらは低栄養培地でありながら糖類を含み、緩衝作用も有していると考えられるため、低コストの観点からは好適である。   As mentioned above, although the example using the buffer solution containing saccharides was described about the embodiment of the present invention, it is not limited to this, and it uses corn steep liquor, waste molasses, etc. instead of the buffer solution containing saccharides. Is also possible. Since these are low nutrient media, they contain saccharides and are considered to have a buffering action, which is preferable from the viewpoint of low cost.

また、乳酸の生産時に、アンモニア、水酸化ナトリウム等のアルカリを添加するいわゆる中和培養を行うことにより、さらに緩衝液中のpHが安定し、乳酸の生産量を高めることができる。   In addition, by performing so-called neutralization culture in which an alkali such as ammonia or sodium hydroxide is added during the production of lactic acid, the pH in the buffer solution is further stabilized, and the production amount of lactic acid can be increased.

(1)乳酸菌増殖用培地の調製
グルコース(5重量%)、酵母エキス(1重量%)、ペプトン(1重量%)、ミネラル(微量)、蒸留水(残量)からなる5%GYP培地を調製した後、pHを7.0に調節し、これを乳酸菌増殖用培地とした。
(1) Preparation of lactic acid bacteria growth medium Prepare 5% GYP medium consisting of glucose (5% by weight), yeast extract (1% by weight), peptone (1% by weight), mineral (trace amount) and distilled water (remaining amount). After that, the pH was adjusted to 7.0, which was used as a medium for growing lactic acid bacteria.

(2)乳酸菌の培養
乳酸菌として、ラクトバシルス・カゼイ(Lactobacillus casei)の一種であるラクトバシルス・カゼイ 1075(Lactobacillus casei 1075)を用いた。そして、上記(1)で調製した乳酸菌増殖用培地にラクトバシルス・カゼイ1075を接種し、緩やかな撹拌を行いつつ、30℃で、2日間培養した。
(2) Culture of lactic acid bacteria Lactobacillus casei 1075 (Lactobacillus casei 1075) which is a kind of Lactobacillus casei was used as a lactic acid bacterium. Then, Lactobacillus casei 1075 was inoculated into the medium for growing lactic acid bacteria prepared in (1) above, and cultured at 30 ° C. for 2 days while gently stirring.

2日間培養した後、遠心分離により菌体だけを残し、上清の培地に代えて、新たに上記(1)で調製した乳酸菌増殖用培地に分散させた。そして、引き続き、緩やかな撹拌を行いつつ、30℃で2日間培養した。   After culturing for 2 days, only the cells were left by centrifugation, and instead of the supernatant medium, the cells were newly dispersed in the lactic acid bacteria growth medium prepared in (1) above. Subsequently, the cells were cultured at 30 ° C. for 2 days with gentle stirring.

(3)乳酸の生産
培養を終えた乳酸菌を遠心分離により集菌し、これに、グルコース5重量%を含む200mMリン酸緩衝液(以下、「乳酸生産用培地」と称する)を添加した。なお、この乳酸生産用培地中の乳酸菌は、3.0×109cells/mlであった。そして、緩やかな撹拌を行いつつ、30℃で、5日間培養した。
(3) Production of lactic acid Lactic acid bacteria that had been cultured were collected by centrifugation, and a 200 mM phosphate buffer solution (hereinafter referred to as “lactic acid production medium”) containing 5% by weight of glucose was added thereto. Incidentally, the lactic acid bacteria in the lactic acid production medium was 3.0 × 10 9 cells / ml. And it culture | cultivated for 5 days at 30 degreeC, performing a gentle stirring.

(4)乳酸の精製
乳酸生産用培地から乳酸を精製するため、以下の要領で乳酸の精製を行った。即ち、乳酸生産用培地より乳酸菌を含む固形分を除いた後、分離濃縮型イオン交換膜を使用した電気透析を行った。これにより得られた濃縮液をキレート樹脂と接触させた後、水分解膜(バイポーラ膜:トクヤマ社製)により電気透析を行い乳酸を分離した。
(4) Purification of lactic acid In order to purify lactic acid from the lactic acid production medium, lactic acid was purified as follows. That is, after removing solids containing lactic acid bacteria from the lactic acid production medium, electrodialysis using a separation-concentration type ion exchange membrane was performed. The concentrated solution thus obtained was brought into contact with a chelate resin, and then electrodialyzed with a water splitting membrane (bipolar membrane: manufactured by Tokuyama Corporation) to separate lactic acid.

[比較例1]
実施例1の(3)で使用した乳酸生産用培地に代えて、グルコース(5重量%)、酵母エキス(1重量%)、ペプトン(1重量%)、ミネラル(微量)、蒸留水(残量)からなる5%GYP培地を用いた以外は実施例1と同様の操作により乳酸の生産を行った。
[Comparative Example 1]
Instead of the lactic acid production medium used in (3) of Example 1, glucose (5% by weight), yeast extract (1% by weight), peptone (1% by weight), mineral (trace amount), distilled water (remaining amount) Lactic acid was produced in the same manner as in Example 1 except that a 5% GYP medium consisting of

[比較例2]
実施例1の(3)で使用した乳酸生産用培地のリン酸緩衝液に代えて、トリス塩酸緩衝液(pKa値:8.30)を用いた以外は実施例1と同様の操作により乳酸の生産を行った。
[Comparative Example 2]
In place of the phosphate buffer for the lactic acid production medium used in (3) of Example 1, tris-hydrochloric acid buffer (pKa value: 8.30) was used. Production was carried out.

[試験例1]乳酸量の測定
実施例1において乳酸生産用培地で5日間経過した後の培地を採取し、これをサンプルとして以下の要領で乳酸蓄積量を測定した。即ち、乳酸生産用培地の上澄み2mlに対し、0.1N NaOHを滴下し、その中和点の滴定値に基づき乳酸量を算出した。更に詳細については、高速液体クロマトグラフィー(HPLC)により、乳酸量を検量線から算出した。
[Test Example 1] Measurement of the amount of lactic acid In Example 1, the medium after lapse of 5 days in the medium for lactic acid production was collected, and this was used as a sample to measure the amount of lactic acid accumulated in the following manner. That is, 0.1 N NaOH was added dropwise to 2 ml of the supernatant for lactic acid production, and the amount of lactic acid was calculated based on the titration value at the neutralization point. For further details, the amount of lactic acid was calculated from a calibration curve by high performance liquid chromatography (HPLC).

なお、同様の要領で比較例1及び2において乳酸生産用培地で5日間経過した後の培地の乳酸蓄積量を測定した。また、乳酸生産用培地で5日間経過した後の培地中の乳酸菌の生菌数、乾燥菌体重量、pHを測定した。これらを併せて表1に示す。   In the same manner, the amount of lactic acid accumulated in the medium after 5 days in the lactic acid production medium in Comparative Examples 1 and 2 was measured. In addition, the number of viable lactic acid bacteria, the dry cell weight, and pH in the medium after 5 days in the lactic acid production medium were measured. These are shown together in Table 1.

表1に示すように、実施例1における乳酸生産用培地は、GYP培地(比較例1)で得られた乳酸とほぼ同量の乳酸を得ることができると判明した。また、乳酸生産用培地で5日間経過した後の培地中の乳酸菌の生菌数と乾燥菌体重量についても、実施例1と比較例1生菌数とでは有意差は認められなかった。   As shown in Table 1, the lactic acid production medium in Example 1 was found to be able to obtain approximately the same amount of lactic acid as that obtained in the GYP medium (Comparative Example 1). Also, no significant difference was observed between Example 1 and Comparative Example 1 viable cell counts regarding the viable cell count and dry cell weight of the lactic acid bacteria in the medium after 5 days in the lactic acid production medium.

一方、乳酸生産用培地としてトリス塩酸緩衝液(比較例2)を用いた場合は、生菌数や乾燥菌体重量に有意差は認められなかったものの、乳酸蓄積量が実施例1及び比較例2に比べて劣ることが判明した。   On the other hand, when Tris-HCl buffer (Comparative Example 2) was used as the medium for lactic acid production, no significant difference was observed in the viable cell count or dry cell weight, but the lactic acid accumulation amount was in Example 1 and Comparative Example. It turned out to be inferior to 2.

Figure 0004669990
Figure 0004669990

本発明の乳酸の生産方法は、低コストで効率良く乳酸を生産することができるため、乳酸の工業生産の場において利用することができる。   Since the lactic acid production method of the present invention can produce lactic acid efficiently at low cost, it can be used in the field of industrial production of lactic acid.

Claims (7)

糖類、ビタミン類、アミノ酸類及びミネラルを含有する乳酸菌増殖用培地で乳酸菌を培養する工程と、
培養した乳酸菌を集菌する工程と、
糖類を含有し、乳酸菌の菌体を増殖させるための栄養分を含有せず、pKa値が5.0以上8.3未満である緩衝液に、集菌した乳酸菌を添加して乳酸を生産させる工程と、
を備えた乳酸の生産方法。
Culturing lactic acid bacteria in a medium for growing lactic acid bacteria containing saccharides, vitamins, amino acids and minerals;
Collecting the cultured lactic acid bacteria;
A step of producing lactic acid by adding collected lactic acid bacteria to a buffer solution containing saccharides, not containing nutrients for growing lactic acid bacteria, and having a pKa value of 5.0 or more and less than 8.3 When,
A method for producing lactic acid.
前記糖類を含有する緩衝液中の前記乳酸菌は、その菌体濃度が、1×108〜1×1010cells/mlである請求項1記載の乳酸の生産方法。 The method for producing lactic acid according to claim 1, wherein the lactic acid bacteria in the buffer containing saccharides have a cell concentration of 1 × 10 8 to 1 × 10 10 cells / ml. 前記乳酸菌が、ラクトバシルス・カゼイ(Lactobacillus casei)である請求項1又は2記載の乳酸の生産方法。   The method for producing lactic acid according to claim 1 or 2, wherein the lactic acid bacterium is Lactobacillus casei. 前記糖類を含有する緩衝液は、その濃度が200〜1000mMである請求項1〜のいずれか1項記載の乳酸の生産方法。 The method for producing lactic acid according to any one of claims 1 to 3 , wherein the saccharide-containing buffer solution has a concentration of 200 to 1000 mM. 前記緩衝液が、リン酸緩衝液である請求項1〜のいずれか1項記載の乳酸の生産方法。 The buffer according to claim 1 the method of producing lactic acid according to any one of 4 is a phosphate buffer. 前記糖類が、グルコースである請求項1〜のいずれか1項記載の乳酸の生産方法。 The method for producing lactic acid according to any one of claims 1 to 5 , wherein the saccharide is glucose. 前記糖類は、その濃度が10〜300g/lである請求項1〜のいずれか1項記載の乳酸の生産方法。 The method for producing lactic acid according to any one of claims 1 to 6 , wherein the saccharide has a concentration of 10 to 300 g / l.
JP2005049370A 2005-02-24 2005-02-24 Lactic acid production method Expired - Fee Related JP4669990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049370A JP4669990B2 (en) 2005-02-24 2005-02-24 Lactic acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049370A JP4669990B2 (en) 2005-02-24 2005-02-24 Lactic acid production method

Publications (2)

Publication Number Publication Date
JP2006230287A JP2006230287A (en) 2006-09-07
JP4669990B2 true JP4669990B2 (en) 2011-04-13

Family

ID=37038610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049370A Expired - Fee Related JP4669990B2 (en) 2005-02-24 2005-02-24 Lactic acid production method

Country Status (1)

Country Link
JP (1) JP4669990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125771B2 (en) * 2012-07-31 2017-05-10 株式会社ゼンシン Cosmetic production method and cosmetics produced by the production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168389A (en) * 1992-10-07 1996-07-02 Agency Of Ind Science & Technol Production of material secreted by organic matter using blue-green alga
JPH11196887A (en) * 1998-01-16 1999-07-27 Mitsubishi Chemical Corp Production of organic acid by phosphoenolpyruvic acid carboxylase gene recombinant microbe
JP2004065142A (en) * 2002-08-08 2004-03-04 Kuraudo:Kk Method for forming lactic acid by using lactic acid bacterium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168389A (en) * 1992-10-07 1996-07-02 Agency Of Ind Science & Technol Production of material secreted by organic matter using blue-green alga
JPH11196887A (en) * 1998-01-16 1999-07-27 Mitsubishi Chemical Corp Production of organic acid by phosphoenolpyruvic acid carboxylase gene recombinant microbe
JP2004065142A (en) * 2002-08-08 2004-03-04 Kuraudo:Kk Method for forming lactic acid by using lactic acid bacterium

Also Published As

Publication number Publication date
JP2006230287A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
Niknezhad et al. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii
CN106244658B (en) Preparation method of sweet potato protein polypeptide
CN101912051A (en) Fermentation process of sea cucumber compound feed
BR112014014513B1 (en) method for the production of lactate and lactic acid from a plant extract by means of fermentation
Guha et al. Production of lactic acid from sweet meat industry waste by Lactobacillus delbruki
JP2010279332A (en) New d-lactic acid-producing microorganism and method for producing d-lactic acid
TW487733B (en) Process for preparing L-aspartic acid
JP2007215427A (en) Method for producing lactic acid
CN106164252A (en) The improvement microorganism produced for succinic acid
JP4669990B2 (en) Lactic acid production method
JP5217736B2 (en) Method for producing D-lactic acid
JP5119435B2 (en) Method for producing poly-γ-glutamic acid with high optical purity
US10883126B2 (en) Process for producing lactic acid or its salts from fermentation using thermotolerance Bacillus bacteria
JP2006262736A (en) Lactobacillus and method for producing lactic acid by using the same
KR20150004088A (en) A manufacturing methods of fermented soybean meal using lactic acid bacteria
Aboseidah et al. Optimization of lactic acid production by a novel strain, Enterococcus faecalis KY072975 isolated from infants stool in Egypt
JP4742475B2 (en) Method for producing D-lactic acid
US9096874B2 (en) Method for producing lactic acid under pressure that exceeds normal atmospheric pressure
JP2008167705A (en) Thermophilic l-lactic acid-producing microorganism and method for producing l-lactic acid solution
Jame et al. Carbon source utilization and hydrogen production by isolated anaerobic bacteria
JP4870442B2 (en) Method for producing lactic acid
JP2009106278A (en) Method for manufacturing d-lactic acid by fermentation
Aunstrup Industrial approach to enzyme production
JP2011092045A (en) Inexpensive method for producing lactic acid by fermentation method
KR0122436B1 (en) Method of lactic acid with yeast hydrolyzed material as nitrogen source

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees