JP4669134B2 - Flaw detection method for open rack type vaporizer - Google Patents

Flaw detection method for open rack type vaporizer Download PDF

Info

Publication number
JP4669134B2
JP4669134B2 JP2001036385A JP2001036385A JP4669134B2 JP 4669134 B2 JP4669134 B2 JP 4669134B2 JP 2001036385 A JP2001036385 A JP 2001036385A JP 2001036385 A JP2001036385 A JP 2001036385A JP 4669134 B2 JP4669134 B2 JP 4669134B2
Authority
JP
Japan
Prior art keywords
flaw detection
heat exchange
rack type
detection method
fin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001036385A
Other languages
Japanese (ja)
Other versions
JP2002243666A (en
Inventor
仁延 庄谷
実 平木
芳丸 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Non Destructive Inspection Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2001036385A priority Critical patent/JP4669134B2/en
Publication of JP2002243666A publication Critical patent/JP2002243666A/en
Application granted granted Critical
Publication of JP4669134B2 publication Critical patent/JP4669134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、オープンラック型気化装置のごとく大型で解体や抜取りの困難な既設装置における探傷方法に係り、既設現場で焦点寸法が数μmのX線を用いて被検査部位の透過X線を高感度イメージングプレートに拡大結像させ、これをレーザ走査して鮮鋭なデジタル画像化し、現場で容易に視認可能な解析像を得ることを特徴とする既設装置における探傷方法、特に前記オープンラック型気化装置における探傷方法に関する。
【0002】
【従来の技術】
液化天然ガス(以下LNGという)などを気化させるためのオープンラック型気化装置(ORV)は、例えば、直径方向に一対のフィンを突出させたフィンチューブをフィン方向に配列して一枚のパネル状となし、その上下端部にヘッダータンクを設けて熱交換パネルを形成し、該パネルを複数連立配置して、熱交換パネルの上方に配設した散水用トラフより、熱媒体の海水を熱交換パネル面に流下させフィンチューブ内をアップフローするLNGと熱交換させる構成である。
【0003】
上述の如く単管式ORVは構造が簡単で製造が容易であるが、熱媒体である海水と極低温のLNGとが熱交換用パネルの単管壁を介して直接熱交換するため、管外、すなわち熱交換用パネル表面に氷着が発生し増大する問題がある。
【0004】
また、ORVのアップフローにおいて、下部ヘッダータンクは、そのタンク下部側は超低温の液体であるのに対して、タンク上部側は熱源の散水による入熱を受けるために下部に比べ高温となり、タンクの上部、下部間に温度差が生じて弓なりとなるボウイング現象を生じるなど、ORVの起動・停止に際して熱応力が作用している。
【0005】
【発明が解決しようとする課題】
ORVのフィンチューブを抜管して余寿命診断を実施したところ、フィンチューブ下端内面のU字溝に沿った縦割れを発見した。そこで熱応力解析を実施した結果、ORV起動停止時の下部ヘッダー熱変形に基づく熱疲労割れであることが判明した。
【0006】
前記縦割れの発生部位は、フィンチューブがヘッダータンク内に埋設されて溶接肉盛りされたところであり、外側からは複数の金属材料が交錯しているように見える箇所である。
【0007】
従って該傷は、既設位置で実施可能な超音波CT(コンピューテッド・トモグラフィ)法、X線CT法などの公知の探傷方法では検出不能な割れであり、前記の抜管による調査しかなく、ORVの装置の余寿命診断を非破壊で実施することができなかった。
【0008】
この発明は、上述のORVの事例のごとく、公知の非破壊による探傷方法では検出不能、あるいは例えば抜管が困難など容易には探傷できない位置にあるなど、従来既設装置を現場でかつ非破壊で探傷が可能で、また現場で探傷・解析が可能で割れなどの発生位置を特定でき、さらにはこれら一連の探傷・解析が遠隔操作も可能な既設装置における探傷方法、特に前記ORVの事例としてあげた縦割れを抜管なしに検出するORVにおける探傷方法の提供を目的としている。
【0009】
【課題を解決するための手段】
発明者らは、既設装置の所要部位を現場でかつ非破壊でその探傷が可能となる探傷方法を目的にX線や解析方法などについて種々検討した結果、既設現場で焦点寸法が数μmのX線を用いて被検査部位の透過X線を高感度イメージングプレートに拡大結像させ、これをレーザ走査して鮮鋭なデジタル画像化することにより、現場で容易に視認可能な解析像を得ることかできることを知見し、この発明を完成した。
【0010】
すなわち、この発明は、フィンチューブをフィン方向に配列して一枚のパネル状となし、その上下端部にヘッダータンクを設けて熱交換パネルを形成し、熱交換パネルの上方に配設した散水用トラフより、熱媒体を熱交換パネル面に流下させることにより、フィンチューブ内をアップフローするLNGと熱交換させるオープンラック型気化装置における探傷方法であって、フィンチューブが下部ヘッダータンク内に埋設されて溶接肉盛りされた部分の内面にU字溝に沿って発生する縦割れを、下記の工程(1)〜(3)を用いて非破壊検査するオープンラック型気化装置における探傷方法。
(1)マイクロフォーカスX線を溶接肉盛りされた部分へ、前記熱交換パネルのパネル面に対向する側から照射する工程
(2)溶接肉盛りされた部分を透過したマイクロフォーカスX線をイメージングプレートに拡大結像させる工程。
(3)拡大結像させたイメージングプレートをレーザ走査してデジタル画像化する工程。
【0011】
また、この発明は、上記構成の方法において、縦割れが発生する箇所を、当該オープンラック型気化装置の起動停止回数及び低負荷運転回数の合計回数と、ヘッダー材質及びフィンチューブ材質、これらの嵌合形状及びその方法並びにフィンチューブの断面形状により得られた発生パターンとに基づき予め特定して非破壊検査する方法、マイクロフォーカスX線を溶接肉盛りされた部分に照射する際、熱交換パネルの垂直方向からの照射と、垂直方向を中心にした両側±30度以内の傾斜方向からの照射とを組み合わせた3方向照射を行う法、を併せて提案する。
【0012】
【発明の実施の形態】
この発明は、オープンラック型気化装置の既設現場で焦点寸法が数μmのマイクロフォーカスX線を用いて被検査部位の透過X線を高感度イメージングプレートに拡大結像させ、これをレーザ走査して鮮鋭なデジタル画像化することにより、公知の探傷方法では検出不能な、フィンチューブ下端内面のU字溝に沿った縦割れを目視確認可能な検査画像として得ることを目的としている。
【0013】
この発明において、X線発生手段には、焦点寸法が8μm以下、好ましくは5〜7μmと極めて小さい、マイクロフォーカスX線発生装置を採用する。例えば、管電圧50kV〜100kV、管電流0〜0.25mA程度の装置を採用でき、焦点寸法が5μm×5μmの場合は、後述の実施例のごとく400倍の拡大画像を得ることができる。
【0014】
マイクロフォーカスX線の照射条件は、被検査対象点に垂直方向から照射するが、割れなどの傷の識別性は、X線の照射方向に大きく影響する。発明者らは、装置に回頭手段を付与してX線の照射角度を中心から±40度(角度がふれる可能な範囲)にして、割れの識別性の確認を行ったところ、±30度程度以上となると割れの識別性が大きく低下するため、好ましくは照射方向を中心及び±20度程度の3方向照射を実施することにより、傷の検出性は大きく向上できることが確認できた。
【0015】
この発明において、X線画像形成手段には、X線感光板としてX線フィルムではなく、これより数十倍の感度を有する輝尽性蛍光体を用いた感光板、いわゆる高感度イメージングプレートを採用することが好ましい。すなわち、高感度ゆえに照射時間の大幅な短縮が可能となる。
【0016】
高感度X線感光板の保持方法は、被検査対象点からの距離を正確に設定できることが必要であり、X線焦点位置、被検査対象の欠陥位置、感光板位置のこれらの間隔距離の設定で拡大率が決定される。
【0017】
この発明において、画像解析手段には、高感度X線感光板をレーザ走査する手段、レーザ走査した被検査対象画像をコンピューテッド・ラジオグラフィ(CR)法にて画像処理を行う手段を採用する。レーザ走査手段や画像のCR法処理には、可搬性のある公知のいずれの装置、方法をも採用できる。
【0018】
また、走査した被検査対象画像を公知のデジタル画像処理、CT法などを併用して画像の拡大、鮮明化したり、画像の2次元・3次元化を図り、あるいは画像データー出力、保存することも好ましい。さらに、他の温度センサーからの情報などを併せて前記画像における部位や欠陥の識別化を図ることも好ましい。
【0019】
以上の画像解析手段により、マイクロフォーカスX線検査による撮影後、現場で画像処理・観察・評価が可能となり、また、画像保存・記録再生が容易にできる。すなわち、X線検査による撮影の確認に要する時間も短縮され、作業の効率化及び検査工程の大幅な短縮化が可能となる。
【0020】
この発明は、従来、既設装置の探傷が現場でかつ非破壊で実施できないような特定の条件下を想定しており、例えば被検査対象点に欠陥などが発生しているか予測できない場合もある。そこで、検査作業の効率化を図るため、コンピュータにて2次元並びに3次元解析モデル法を用いた構造解析法にて予め被検査対象物に対して、構造、応力、熱応力などの種々解析を行っておき、欠陥や傷発生が予測された部位を予め設定し、その部位のX線検査のシミュレーションを行っておくことができる。
【0021】
【実施例】
実施例1
図1Aに示すごとく、LNG運転圧力が0.8331MPaで稼働中である、1パネルあたり150本のフィンチューブ2を有するORV熱交換パネルについて、フィンチューブ2が下部ヘッダータンク1内に埋設されて溶接肉盛りされた位置におけるフィンチューブ2内面フィンのU字溝に縦割れが発生しているかを検査した。
【0022】
検査方法は、稼働中の熱交換パネルを既設現場にて、この発明のマイクロフォーカスX線透過による探傷方法を実施して、各フィンチューブ2に対して内面フィンのU字溝内の縦割れの有無、欠陥位置、縦割れ高さ寸法を測定した。
【0023】
X線発生装置4には、L7902(浜松ホトニクス社製)を用い、最大管電圧100kV、管電流0.1mA、焦点寸法5μm×5μmで作動させた。高感度X線感光板には、富士写真フィルム社製の高感度イメージングプレート3を用いて、図1Cに示すごとくフィンチューブ2中心とX線発生装置4との距離L1、フィンチューブ2中心と高感度イメージングプレート3との距離L2を適宜選定して幾何学的拡大率を8倍、照射時間を30秒に設定してX線透過撮影を行った。
【0024】
X線発生装置4は図示しない5軸遠隔操作可能なマニュプレーターに登載して、図2に示すごとくX線は照射方向を中心及び±20度の3方向照射を実施し、高感度イメージングプレート3に感光させた。その後、高感度イメージングプレート3をレーザー走査してデジタル画像化し、さらにCR操作にて拡大、鮮鋭化を図ることにより、CRT画面に200〜400倍の拡大画像を適宜得ることができた。
【0025】
さらに、被検査対象の熱交換パネルの運転を止めて解体し、抜き取った各フィンチューブについて検査室において、超音波CT法、X線CT法、並びにこの発明の高解像度X線透過による方法にてそれぞれ詳細に探傷検査した。先にX線透過による探傷方法にて縦割れを検出したフィンチューブについて検査した後、さらに縦割れを検出しなかったフィンチューブ全量についても検査した。
【0026】
この発明のマイクロフォーカスX線透過による探傷方法を実施して検出したフィンチューブの縦割れの欠陥の位置、縦割れ高さ寸法は、検査室における破壊検査の結果と完全に一致した。
【0027】
実施例2
実施例1で検出したチューブ内面フィンのU字溝に発生していた縦割れは、従来未知の欠陥であり、発明者らはその発生原因を調査した。手法としては、2次元解析モデルによる内面フィン谷底部応力集中係数の算定、3次元解析モデルによる縦割れの原因究明、特に前記モデルの温度分布の解析、モデルの熱応力値の解析をそれぞれ行い、さらにフィンチューブ材質の疲労曲線、当該ORVの起動停止回数履歴を勘案して傷発生のシミュレーションを行った。
【0028】
前記シミュレーションの結果、この欠陥は、低サイクル疲労による縦割れであり、当該機の起動停止回数及び頻繁な20%以下の低負荷運転回数の合計回数と整合することを知見した。また、ヘッダーやフィンチューブ材質、これらの嵌合形状とその方法並びにフィンチューブの断面形状等によって、前記縦割れの発生しやすい箇所やその発生形態が種々異なり、発生をパターン化できることを知見した。
【0029】
そこで、実施例1とは異なるORV熱交換パネルに対して、実施例1の条件でこの発明による探傷方法を実施したところ、X線透過撮影箇所を前記のごとく特定して実施することが可能なため、作業時間を実施例1の1/2に短縮することができた。
【0030】
【発明の効果】
この発明は、実施例に示すごとく、公知の非破壊による探傷方法では検出不能なオープンラック型気化装置におけるフィンチューブと下部ヘッダータンクの肉盛り溶接部内面のU字溝に沿った縦割れを、現場でかつ非破壊で探傷が可能で、また現場で探傷・解析が可能で割れなどの発生位置を特定でき、さらにはこれら一連の探傷・解析が遠隔操作も可能となる。
【図面の簡単な説明】
【図1】実施例に使用したORV熱交換パネルの下部ヘッダータンク近傍の構成と、この発明のマイクロフォーカスX線の照射方法を示す説明図であり、Aは熱交換パネル、BはA図のa−a矢視図、CはA図のb−b矢視図である。
【図2】この発明のマイクロフォーカスX線の照射方法を、高感度イメージングプレートに位置について示す説明図であり、フィンチューブの軸方向から見た上面説明図である。
【符号の説明】
1 下部ヘッダータンク
2 フィンチューブ
3 高感度イメージングプレート
4 X線発生装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flaw detection method in an existing apparatus that is large and difficult to disassemble or remove, such as an open rack type vaporizer, and enhances transmitted X-rays at a site to be inspected using X-rays having a focal size of several μm. A method for flaw detection in an existing apparatus , particularly the open rack type vaporizing apparatus , characterized in that an enlarged image is formed on a sensitivity imaging plate, and this is scanned with a laser to form a sharp digital image to obtain an analytical image that can be easily viewed on site. The present invention relates to a flaw detection method .
[0002]
[Prior art]
An open rack type vaporizer (ORV) for vaporizing liquefied natural gas (hereinafter referred to as LNG) is, for example, a single panel having fin tubes with a pair of fins protruding in the diameter direction in the fin direction. A heat exchange panel is formed by providing header tanks at the upper and lower ends, and a plurality of such panels are arranged in a row, and heat is exchanged for seawater as a heat medium from a watering trough disposed above the heat exchange panel. The heat exchange is performed with the LNG that flows down to the panel surface and flows up in the fin tube.
[0003]
As described above, the single tube ORV has a simple structure and is easy to manufacture. However, since the heat medium seawater and the cryogenic LNG exchange heat directly through the single tube wall of the heat exchange panel, That is, there is a problem that ice adhesion occurs and increases on the surface of the heat exchange panel.
[0004]
In addition, in the ORV upflow, the lower header tank is an ultra-low temperature liquid on the lower side of the tank, whereas the upper side of the tank is heated higher than the lower part because it receives heat input from the water spray from the heat source. Thermal stress acts upon the start / stop of the ORV, such as a bowing phenomenon in which a temperature difference occurs between the upper part and the lower part, resulting in a bowing phenomenon.
[0005]
[Problems to be solved by the invention]
When the ORV fin tube was pulled out and the remaining life was diagnosed, a vertical crack was found along the U-shaped groove on the inner surface of the lower end of the fin tube. As a result of thermal stress analysis, it was found that the thermal fatigue crack was based on the thermal deformation of the lower header when the ORV was started and stopped.
[0006]
The occurrence site of the vertical crack is a place where the fin tube is embedded in the header tank and welded, and from the outside, a plurality of metal materials appear to be interlaced.
[0007]
Therefore, the flaw is a crack that cannot be detected by a known flaw detection method such as an ultrasonic CT (Computed Tomography) method and an X-ray CT method that can be performed at an existing position, and is only investigated by the above-described extubation, The remaining life diagnosis of the ORV device could not be performed non-destructively.
[0008]
In the present invention, as in the case of the ORV described above, it is impossible to detect by a known nondestructive flaw detection method, or it is in a position where it is difficult to flawlessly, for example, it is difficult to extubate. It is possible to perform flaw detection / analysis on site, identify the location of occurrence of cracks, etc. Furthermore, these flaw detection / analysis methods can be remotely controlled in existing equipment , especially the ORV example above An object of the present invention is to provide a method for flaw detection in ORV that detects vertical cracks without extubation .
[0009]
[Means for Solving the Problems]
As a result of various examinations on X-rays and analysis methods for the purpose of a flaw detection method that enables non-destructive inspection of a required part of an existing apparatus on site, the inventors have found that the focal spot size is several μm at the existing site. Is it possible to obtain an analytical image that can be easily seen in the field by enlarging the transmitted X-ray of the site to be inspected on the high-sensitivity imaging plate using a line, and scanning this with a sharp digital image? We have found out that this is possible and have completed the present invention.
[0010]
That is, in the present invention, the fin tubes are arranged in the fin direction to form a single panel, and a heat exchange panel is formed by providing header tanks at the upper and lower end portions thereof, and a water spray disposed above the heat exchange panel. This is a flaw detection method in an open rack type vaporizer that exchanges heat with LNG that flows up in the fin tube by allowing the heat medium to flow down from the trough to the heat exchange panel surface, and the fin tube is embedded in the lower header tank. A flaw detection method in an open rack type vaporizer that non-destructively inspects the vertical cracks generated along the U-shaped groove on the inner surface of the welded and welded portion using the following steps (1) to (3) .
(1) A step of irradiating a portion of the welded overlay with microfocus X-rays from the side facing the panel surface of the heat exchange panel .
(2) A step of enlarging an image of the microfocus X-ray that has passed through the welded portion on the imaging plate.
(3) A step of forming a digital image by laser scanning the enlarged imaging plate.
[0011]
Further, according to the present invention, in the method having the above-described configuration, the location where the vertical crack is generated is defined as the total number of start / stop times and low load operation times of the open rack type vaporizer, the header material, the fin tube material, and the fitting of these. Based on the shape and its method, and the generation pattern obtained by the cross-sectional shape of the fin tube, a method for non-destructive inspection specified in advance, when irradiating the welded portion of the microfocus X-ray, and irradiation from the vertical direction, how to perform the three-way radiation that combines the radiation from the slope directions within opposite sides ± 30 ° centered on the vertical direction, is proposed together.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention uses a microfocus X-ray with a focal size of several μm at an existing site of an open rack type vaporizer to form an enlarged image of transmitted X-rays at a site to be inspected on a high-sensitivity imaging plate, and scan this with a laser. An object is to obtain a vertical crack along the U-shaped groove on the inner surface of the lower end of the fin tube as an inspection image that can be visually confirmed by forming a sharp digital image.
[0013]
In the present invention, as the X-ray generation means, a microfocus X-ray generator having a very small focal size of 8 μm or less, preferably 5 to 7 μm is employed. For example, an apparatus having a tube voltage of 50 kV to 100 kV and a tube current of about 0 to 0.25 mA can be employed. When the focal size is 5 μm × 5 μm, an enlarged image of 400 times can be obtained as in the examples described later.
[0014]
Microfocus X-ray irradiation conditions irradiate a point to be inspected from the vertical direction, but the discrimination of scratches such as cracks greatly affects the X-ray irradiation direction. The inventors provided a turning means to the apparatus to set the X-ray irradiation angle to ± 40 degrees from the center (a range in which the angle can be changed), and confirmed the distinguishability of cracks. About ± 30 degrees Since the discriminability of cracks greatly decreases when the above is reached, it has been confirmed that the flaw detectability can be greatly improved, preferably by performing three-way irradiation with the irradiation direction at the center and about ± 20 degrees.
[0015]
In this invention, the X-ray image forming means is not an X-ray film as an X-ray photosensitive plate, but a photosensitive plate using a stimulable phosphor having a sensitivity several tens of times higher than this, a so-called high-sensitivity imaging plate. It is preferable to do. That is, because of the high sensitivity, the irradiation time can be greatly shortened.
[0016]
The method for holding the high-sensitivity X-ray photosensitive plate needs to be able to accurately set the distance from the point to be inspected, and to set the distance between the X-ray focal point position, the defect position of the subject to be inspected, and the photosensitive plate position. The enlargement ratio is determined.
[0017]
In the present invention, as the image analysis means, means for laser scanning a high-sensitivity X-ray photosensitive plate and means for performing image processing on the laser-scanned image to be inspected by the computed radiography (CR) method are adopted. . Any known portable device and method can be employed for the laser scanning means and the CR processing of images.
[0018]
In addition, the scanned image to be inspected may be combined with known digital image processing, CT method, etc. to enlarge and sharpen the image, to make the image two-dimensional or three-dimensional, or to output and save the image data. preferable. Furthermore, it is also preferable to identify a part or a defect in the image together with information from other temperature sensors.
[0019]
By the above image analysis means, it is possible to perform image processing / observation / evaluation in the field after imaging by microfocus X-ray inspection, and it is easy to store / record / reproduce images. That is, the time required for confirmation of imaging by X-ray inspection is shortened, and the work efficiency and the inspection process can be greatly shortened.
[0020]
Conventionally, the present invention assumes a specific condition in which flaw detection of an existing apparatus cannot be carried out on site and nondestructively. For example, it may be impossible to predict whether a defect or the like has occurred at a point to be inspected. Therefore, in order to improve the efficiency of inspection work, various analyzes such as structure, stress, thermal stress, etc. are performed on the object to be inspected in advance by a structural analysis method using a two-dimensional and three-dimensional analysis model method on a computer. It is possible to set a part where a defect or a flaw is predicted in advance and perform a simulation of the X-ray inspection of the part.
[0021]
【Example】
Example 1
As shown in FIG. 1A, for an ORV heat exchange panel having 150 fin tubes 2 per panel that is operating at an LNG operating pressure of 0.8331 MPa, the fin tubes 2 are embedded in the lower header tank 1 and welded. It was inspected whether vertical cracking occurred in the U-shaped groove of the fin on the inner surface of the fin tube 2 at the overlaid position.
[0022]
As for the inspection method, the flaw detection method by microfocus X-ray transmission of the present invention is carried out at the existing site of the heat exchange panel in operation, and the vertical cracks in the U-shaped grooves of the inner surface fins are inspected for each fin tube 2. Presence / absence, defect position, and vertical crack height were measured.
[0023]
L7902 (manufactured by Hamamatsu Photonics) was used as the X-ray generator 4 and operated at a maximum tube voltage of 100 kV, a tube current of 0.1 mA, and a focal size of 5 μm × 5 μm. As the high-sensitivity X-ray photosensitive plate, a high-sensitivity imaging plate 3 manufactured by Fuji Photo Film Co., Ltd. is used. As shown in FIG. 1C, the distance L 1 between the fin tube 2 center and the X-ray generator 4, the fin tube 2 center, X-ray transmission imaging was performed by appropriately selecting the distance L 2 from the high-sensitivity imaging plate 3 and setting the geometric magnification ratio to 8 times and the irradiation time to 30 seconds.
[0024]
The X-ray generator 4 is mounted on a manipulator (not shown) that can be remotely controlled. As shown in FIG. 2, the X-ray is irradiated in three directions with the irradiation direction at the center and ± 20 degrees. 3 was exposed. Thereafter, the high-sensitivity imaging plate 3 was scanned with a laser to form a digital image, and further enlarged and sharpened by CR operation, whereby a 200-400 times magnified image could be appropriately obtained on the CRT screen.
[0025]
Furthermore, the operation of the heat exchange panel to be inspected is stopped, disassembled, and the extracted fin tubes are subjected to the ultrasonic CT method, the X-ray CT method, and the high resolution X-ray transmission method of the present invention in the examination room. Each was inspected in detail. After inspecting the fin tube in which the vertical crack was detected by the flaw detection method using X-ray transmission, the entire amount of the fin tube in which the vertical crack was not detected was also inspected.
[0026]
The position of the vertical crack in the fin tube and the height of the vertical crack detected by carrying out the flaw detection method using microfocus X-ray transmission according to the present invention completely coincided with the result of the destructive inspection in the laboratory.
[0027]
Example 2
The vertical crack generated in the U-shaped groove of the tube inner fin detected in Example 1 is a conventionally unknown defect, and the inventors investigated the cause of the occurrence. As a method, calculation of stress concentration factor of inner fin valley bottom by 2D analysis model, investigation of cause of vertical crack by 3D analysis model, especially analysis of temperature distribution of said model, analysis of thermal stress value of model, Further, the occurrence of flaws was simulated in consideration of the fatigue curve of the fin tube material and the history of the number of start and stop times of the ORV.
[0028]
As a result of the simulation, it has been found that this defect is a vertical crack due to low cycle fatigue, and is consistent with the total number of times of start and stop of the machine and frequent low load operation times of 20% or less. Further, the present inventors have found that the locations where the vertical cracks are likely to occur and their forms vary depending on the header and fin tube materials, their fitting shapes and methods, the cross-sectional shape of the fin tubes, and the like, and the occurrence can be patterned.
[0029]
Therefore, when the flaw detection method according to the present invention was performed on the ORV heat exchange panel different from that in Example 1 under the conditions of Example 1, it was possible to specify and carry out the X-ray transmission imaging location as described above. Therefore, the working time could be shortened to 1/2 that of the first embodiment.
[0030]
【The invention's effect】
As shown in the embodiment, the present invention, as shown in the embodiment , a vertical crack along the U-shaped groove on the inner surface of the welded portion of the build-up welded portion of the fin tube and the lower header tank in the open rack type vaporizer that cannot be detected by a known nondestructive flaw detection method, In-situ and non-destructive flaw detection is possible. In addition, flaw detection and analysis can be performed on-site, and the occurrence position of cracks can be specified. Further, a series of flaw detection and analysis can be remotely controlled.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a configuration of an ORV heat exchange panel in the vicinity of a lower header tank used in an embodiment and a microfocus X-ray irradiation method according to the present invention, where A is a heat exchange panel and B is a diagram of FIG. aa arrow view, C is a bb arrow view of A figure.
FIG. 2 is an explanatory view showing the position of the microfocus X-ray irradiation method of the present invention on a high-sensitivity imaging plate, and is an upper surface explanatory view seen from the axial direction of the fin tube.
[Explanation of symbols]
1 Lower header tank 2 Fin tube 3 High sensitivity imaging plate 4 X-ray generator

Claims (3)

フィンチューブをフィン方向に配列して一枚のパネル状となし、その上下端部にヘッダータンクを設けて熱交換パネルを形成し、熱交換パネルの上方に配設した散水用トラフより、熱媒体を熱交換パネル面に流下させることにより、フィンチューブ内をアップフローするLNGと熱交換させるオープンラック型気化装置における探傷方法であって、フィンチューブが下部ヘッダータンク内に埋設されて溶接肉盛りされた部分の内面にU字溝に沿って発生する縦割れを、下記の工程(1)〜(3)を用いて非破壊検査するオープンラック型気化装置における探傷方法。
(1)マイクロフォーカスX線を溶接肉盛りされた部分へ、前記熱交換パネルのパネル面に対向する側から照射する工程
(2)溶接肉盛りされた部分を透過したマイクロフォーカスX線をイメージングプレートに拡大結像させる工程。
(3)拡大結像させたイメージングプレートをレーザ走査してデジタル画像化する工程。
A fin tube is arranged in the fin direction to form a single panel, and a heat exchange panel is formed by providing header tanks at the upper and lower ends, and a heat medium is formed from a watering trough disposed above the heat exchange panel. Is a flaw detection method in an open rack type vaporizer that exchanges heat with LNG that flows up in the fin tube by flowing down the heat exchange panel surface, and the fin tube is embedded in the lower header tank and welded Flaw detection method in an open rack type vaporizer that non-destructively inspects vertical cracks that occur along the U-shaped groove on the inner surface of the portion using the following steps (1) to (3) .
(1) A step of irradiating a portion of the welded overlay with microfocus X-rays from the side facing the panel surface of the heat exchange panel .
(2) A step of enlarging an image of the microfocus X-ray that has passed through the welded portion on the imaging plate.
(3) A step of forming a digital image by laser scanning the enlarged imaging plate.
縦割れが発生する箇所を、当該オープンラック型気化装置の起動停止回数及び低負荷運転回数の合計回数と、ヘッダー材質及びフィンチューブ材質、これらの嵌合形状及びその方法並びにフィンチューブの断面形状により得られた発生パターンとに基づき予め特定して非破壊検査する請求項1に記載のオープンラック型気化装置における探傷方法。 The location where vertical cracking occurs depends on the total number of start / stop operations and low load operation times of the open rack type vaporizer, header material and fin tube material, their fitting shape and method, and fin tube cross-sectional shape. The flaw detection method in the open rack type vaporizer according to claim 1, wherein nondestructive inspection is performed by specifying in advance based on the obtained generation pattern . マイクロフォーカスX線を溶接肉盛りされた部分に照射する際、熱交換パネルの垂直方向からの照射と、垂直方向を中心にした両側±30度以内の傾斜方向からの照射とを組み合わせた3方向照射を行う請求項1又は2に記載のオープンラック型気化装置における探傷方法。 Three directions combining irradiation from the vertical direction of the heat exchange panel and irradiation from an inclination direction within ± 30 degrees on both sides centering on the vertical direction when irradiating the welded part with microfocus X-rays The flaw detection method in the open rack type vaporization apparatus of Claim 1 or 2 which performs irradiation .
JP2001036385A 2001-02-14 2001-02-14 Flaw detection method for open rack type vaporizer Expired - Fee Related JP4669134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036385A JP4669134B2 (en) 2001-02-14 2001-02-14 Flaw detection method for open rack type vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036385A JP4669134B2 (en) 2001-02-14 2001-02-14 Flaw detection method for open rack type vaporizer

Publications (2)

Publication Number Publication Date
JP2002243666A JP2002243666A (en) 2002-08-28
JP4669134B2 true JP4669134B2 (en) 2011-04-13

Family

ID=18899664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036385A Expired - Fee Related JP4669134B2 (en) 2001-02-14 2001-02-14 Flaw detection method for open rack type vaporizer

Country Status (1)

Country Link
JP (1) JP4669134B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321790B1 (en) * 2009-08-29 2013-11-04 국제비파괴검사(주) Crack Detection vehicle for railway
JP5783437B2 (en) * 2010-09-30 2015-09-24 東京電力株式会社 LNG open rack type vaporizer heat transfer tube panel diagnostic method
CN107607561A (en) * 2017-10-17 2018-01-19 新余钢铁股份有限公司 A kind of detection means of hydrogen storage vessel workpiece hydrogen defect
CN110133008A (en) * 2019-05-10 2019-08-16 中集车辆(集团)股份有限公司 Seam inspection system for tank body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261145A (en) * 1987-04-20 1988-10-27 Hitachi Ltd X-ray tomographic apparatus
JPH06317543A (en) * 1993-05-07 1994-11-15 Kobe Steel Ltd Method and device for x-ray examination
JPH0989810A (en) * 1995-09-25 1997-04-04 Hihakai Kensa Kk Pipe inspecting device
JPH09166556A (en) * 1995-12-18 1997-06-24 Kobe Steel Ltd Data correcting method and device, for x-ray image recording and reproducing apparatus
JP2000275191A (en) * 1999-03-25 2000-10-06 Techno Enami:Kk X-ray inspecting method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261145A (en) * 1987-04-20 1988-10-27 Hitachi Ltd X-ray tomographic apparatus
JPH06317543A (en) * 1993-05-07 1994-11-15 Kobe Steel Ltd Method and device for x-ray examination
JPH0989810A (en) * 1995-09-25 1997-04-04 Hihakai Kensa Kk Pipe inspecting device
JPH09166556A (en) * 1995-12-18 1997-06-24 Kobe Steel Ltd Data correcting method and device, for x-ray image recording and reproducing apparatus
JP2000275191A (en) * 1999-03-25 2000-10-06 Techno Enami:Kk X-ray inspecting method and apparatus

Also Published As

Publication number Publication date
JP2002243666A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
US6925145B2 (en) High speed digital radiographic inspection of piping
Consonni et al. Manufacturing of welded joints with realistic defects
Evans et al. Comparison of X-ray and neutron tomographic imaging to qualify manufacturing of a fusion divertor tungsten monoblock
JP4669134B2 (en) Flaw detection method for open rack type vaporizer
JP3853751B2 (en) Nondestructive inspection system
Selby et al. Non-destructive examination of diffusion-bonded compact heat exchangers
Fuller et al. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction
JP4676300B2 (en) RT three-dimensional sizing device
Roccella et al. Development of an ultrasonic test method for the non-destructive examination of ITER divertor components
Gratton et al. Application of computed tomography for the examination of pressure retaining nuclear plant components
Foucher et al. New possibilities of simulation tools for NDT and applications
Peng et al. Detection of brazing defects in stainless steel core plate using the first peak value of pulsed eddy current testing signals
Woolstenhulme et al. Nondestructive examination of fuel plates for the RERTR fuel development experiments
Watkins et al. Eddy current examination of spent nuclear fuel canister closure welds
Ghandourah et al. Evaluation of Welding Defects with X-ray Digital Laminography for NDT inspection of Carbon Steel Plate
Surin et al. Justification of Scanning Contact Potentiometry Applicability to Test NPP Equipment during Its Manufacture
Fernandez et al. New applications of the NDT Simulation Platform CIVA
Das et al. Application of Advanced NDE for Health & Life Assessment of Power Plant Components-Some Case Studies
Babu et al. Development of Phased Array Ultrasonic Technique for AA2219 Friction Stir Weld of Propellant Tank and Characterization of Defects
Baqué et al. Inspection specifications leading to extended ASTRID Design rules
El Mountassir et al. A novel approach to enhance defect detection in wire arc additive manufacturing parts using radiographic testing without surface milling
Tiseanu et al. Assessment of the structural integrity of a prototypical instrumented IFMIF high flux test module rig by fully 3D X-ray microtomography
Thirunavukkarasu et al. Nondestructive Evaluation for Detection of Voids in Sodium-Bonded Metallic Fuel Pins
Ewert et al. Mobile Computed Tomography for Inspection of Welded Pipes
Van den Bos et al. Inspection of Friction Stir Welds using Triple Array Methods

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20051021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees