JP4668563B2 - Vehicle driving force distribution control device - Google Patents

Vehicle driving force distribution control device Download PDF

Info

Publication number
JP4668563B2
JP4668563B2 JP2004228431A JP2004228431A JP4668563B2 JP 4668563 B2 JP4668563 B2 JP 4668563B2 JP 2004228431 A JP2004228431 A JP 2004228431A JP 2004228431 A JP2004228431 A JP 2004228431A JP 4668563 B2 JP4668563 B2 JP 4668563B2
Authority
JP
Japan
Prior art keywords
driving force
force distribution
wheel
distribution ratio
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004228431A
Other languages
Japanese (ja)
Other versions
JP2006044464A (en
Inventor
裕一郎 塚崎
勝 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2004228431A priority Critical patent/JP4668563B2/en
Priority to US11/196,167 priority patent/US7890230B2/en
Publication of JP2006044464A publication Critical patent/JP2006044464A/en
Priority to US13/012,927 priority patent/US8165750B2/en
Application granted granted Critical
Publication of JP4668563B2 publication Critical patent/JP4668563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、駆動輪に作用する力に基づいて駆動力配分比を制御する車両の駆動力配分制御装置に関する。   The present invention relates to a vehicle driving force distribution control device that controls a driving force distribution ratio based on a force acting on driving wheels.

従来より、駆動輪に実際に作用する力に応じて駆動力配分比を制御する技術として、例えば特許文献1には、各種センサによって各輪の前後力Fx、横力Fy及び上下力Fzをそれぞれ検出し、前後力Fxと横力Fyとの合力を上下力Fzで割り算することによって各輪の実際の摩擦力利用率を取得し、その摩擦力利用率が全輪間で互いに一致するように各輪のブレーキ圧を制御する技術が開示されている。
特許第3132190号公報
Conventionally, as a technique for controlling a driving force distribution ratio according to a force actually acting on a driving wheel, for example, Patent Document 1 discloses a longitudinal force Fx, a lateral force Fy, and a vertical force Fz of each wheel by various sensors. By detecting and dividing the resultant force of the longitudinal force Fx and the lateral force Fy by the vertical force Fz, the actual frictional force utilization factor of each wheel is obtained, and the frictional force utilization factor is mutually consistent among all the wheels. A technique for controlling the brake pressure of each wheel is disclosed.
Japanese Patent No. 3132190

しかしながら、上述の技術は、駆動力の効率的な使用を優先的に考慮した技術であり、安定性や応答性等が十分に考慮されているとは言い難い。従って、特に、旋回時に各輪の車輪摩擦力使用率を限界近くにまで制御すると、外輪のタイヤグリップを大きく使用する制御となり、例えば、路面摩擦係数の急変等の外乱に対して安定性に欠ける等の欠点がある。   However, the above-described technique is a technique that gives priority to efficient use of driving force, and it is difficult to say that stability, responsiveness, and the like are sufficiently considered. Therefore, in particular, if the wheel frictional force utilization rate of each wheel is controlled to the limit when turning, it will be a control that uses the tire grip of the outer wheel greatly, and, for example, lacks stability against disturbances such as sudden changes in the road surface friction coefficient. There are disadvantages such as.

本発明は上記事情に鑑みてなされたもので、タイヤグリップの効率的な活用を行いつつ、安定性や応答性に優れた駆動力配分制御を実現することができる車両の駆動力配分制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a vehicle driving force distribution control device capable of realizing driving force distribution control excellent in stability and responsiveness while efficiently using tire grips. The purpose is to provide.

本発明は、可変設定される駆動力配分比で駆動力を一方の駆動軸と他方の駆動軸とに伝達する駆動力配分手段と、駆動輪に作用する力を検出する力検出手段と、前後輪それぞれに実際に生じることが推定され得るコーナリングパワを、コーナリングフォースの横すべり角に対する変化量が線形となる線形項と、少なくとも上記駆動輪に作用する力の検出値と上記各駆動軸に配分される上記駆動力とを用いた非線形項とで表現した場合の、上記非線形項を最小とする上記各駆動軸への駆動力配分比を演算し、当該駆動力配分比を上記駆動力配分手段の駆動力配分比として設定する駆動力配分比設定手段とを備え、上記駆動力配分比設定手段は、右輪駆動軸と左輪駆動軸への駆動力配分比を設定することを特徴とする。 The present invention includes a driving force distribution means for transmitting a drive force to one of the drive shaft and the other drive shaft by the driving force distribution ratio is variably set, and force detection means for detecting a force acting on the driving wheels, front and rear The cornering power that can be estimated to actually occur in each wheel is distributed to the linear term in which the amount of change with respect to the side slip angle of the cornering force is linear , at least the detected value of the force acting on the drive wheel, and each drive shaft. When the driving force distribution ratio is expressed by a nonlinear term using the driving force, the driving force distribution ratio to each driving shaft that minimizes the nonlinear term is calculated, and the driving force distribution ratio is calculated by the driving force distribution means. Driving force distribution ratio setting means for setting as a driving force distribution ratio, wherein the driving force distribution ratio setting means sets the driving force distribution ratio to the right wheel drive shaft and the left wheel drive shaft.

本発明の車両の駆動力配分制御装置によれば、タイヤグリップの効率的な活用を行いつつ、安定性や応答性に優れた駆動力配分制御を実現することができる。   According to the vehicle driving force distribution control device of the present invention, it is possible to realize driving force distribution control excellent in stability and responsiveness while efficiently using tire grips.

以下、図面を参照して本発明の形態を説明する。図面は本発明の第1の形態に係わり、図1は駆動力配分制御装置の概略構成図、図2は前輪終減速装置の概略構成を示すスケルトン図、図3は4輪車の等価的な2輪車モデルを示す説明図、図4は車両運動モデルの状態運動方程式を機能的に示す説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings relate to a first embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a driving force distribution control device, FIG. 2 is a skeleton diagram showing a schematic configuration of a front wheel final reduction device, and FIG. 3 is an equivalent of a four-wheeled vehicle. FIG. 4 is an explanatory diagram functionally showing a state motion equation of the vehicle motion model.

図1において、符号1は自動車等の車両を示す。本形態において、車両1は前輪駆動車であり、この車両1のエンジン2による駆動力は、トルクコンバータ3、変速装置4を経て、トランスミッション出力軸4aに伝達される。さらに、トランスミッション出力軸4aに伝達された駆動力は、リダクションギヤ列5を介して、ドライブ軸(フロントドライブ軸)9に伝達され、前輪終減速装置10に入力されるよう構成されている。また、前輪終減速装置10に入力された駆動力は、駆動軸としての前輪左右アクスル軸11fl,11frを経て駆動輪としての左右前輪12fl,12frに伝達される。   In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile. In this embodiment, the vehicle 1 is a front-wheel drive vehicle, and the driving force of the engine 1 of the vehicle 1 is transmitted to the transmission output shaft 4a through the torque converter 3 and the transmission 4. Further, the driving force transmitted to the transmission output shaft 4 a is transmitted to the drive shaft (front drive shaft) 9 via the reduction gear train 5 and input to the front wheel final reduction device 10. The driving force input to the front wheel final reduction gear 10 is transmitted to the left and right front wheels 12fl and 12fr as driving wheels through the front wheel left and right axle shafts 11fl and 11fr as driving shafts.

ここで、前輪終減速装置10は、左右前輪12fl,12frに伝達する駆動力の配分比を可変に制御可能な構成となっている。   Here, the front wheel final reduction gear 10 is configured to be able to variably control the distribution ratio of the driving force transmitted to the left and right front wheels 12fl, 12fr.

具体的に説明すると、例えば、図2に示すように、前輪終減速装置10は、差動機構部20と、歯車機構部21と、クラッチ機構部22とを有して構成されている。   More specifically, for example, as shown in FIG. 2, the front wheel final reduction gear device 10 includes a differential mechanism portion 20, a gear mechanism portion 21, and a clutch mechanism portion 22.

差動機構部20は、例えば、ベベルギヤ式の差動機構部(ディファレンシャル装置)で構成され、当該差動機構部20のディファレンシャルケース25には、フロントドライブ軸9のドライブピニオン9aに噛合するファイナルギヤ26が周設されている。また、ディファレンシャルケース25内には、一対のディファレンシャルピニオン27が回動自在に軸支されており、これらに噛合する左右のサイドギヤ28l,28rに、左右のアクスル軸11fl,11frが連結されている。   The differential mechanism section 20 is configured by, for example, a bevel gear type differential mechanism section (differential device), and a differential gear 25 meshes with a drive pinion 9a of the front drive shaft 9 in a differential case 25 of the differential mechanism section 20. 26 is provided around. A pair of differential pinions 27 are rotatably supported in the differential case 25, and left and right axle shafts 11fl and 11fr are connected to left and right side gears 28l and 28r engaged therewith.

また、歯車機構部21は、前輪右アクスル軸11frに固設する第1,第2の歯車30,31と、前輪左アクスル軸11flに固設する第3,第4の歯車32,33と、これらにそれぞれ噛合する第5〜第8の歯車34〜37とを有して構成されている。本形態において、第2の歯車31は第1の歯車30よりも大径の歯車で構成され、その歯数z2は、第1の歯車30の歯数z1よりも大きく設定されている。また、第3の歯車32は、第1の歯車30と同径の歯車(歯数z3=z1)で構成され、第4の歯車33は、第2の歯車31と同径の歯車(歯数z4=z2)で構成されている。また、第5〜第8の歯車34〜37は、アクスル軸11fl,11frと平行な同一回転軸心上に配列されている。第5の歯車34は、第1の歯車30との噛合によって第1の歯車列を構成するもので、その歯数z5は、第1の歯車列のギヤ比(z5/z1)を例えば”1.0”とするよう設定されている。また、第6の歯車35は、第2の歯車31との噛合によって第2の歯車列を構成するもので、その歯数z6は、第2の歯車列のギヤ比(z6/z2)を例えば”0.9”とするよう設定されている。また、第7の歯車36は、第3の歯車32との噛合によって第3の歯車列を構成するもので、その歯数z7は、第3の歯車列のギヤ比(z7/z3)を例えば”1.0”とするよう設定されている。また、第8の歯車37は、第4の歯車33との間に第4の歯車列を構成するもので、その歯数z8は、第4の歯車列のギヤ比(z8/z4)を例えば”0.9”とするよう設定されている。   The gear mechanism section 21 includes first and second gears 30 and 31 fixed to the front wheel right axle shaft 11fr, third and fourth gears 32 and 33 fixed to the front wheel left axle shaft 11fl, It has the 5th-8th gearwheels 34-37 which respectively mesh | engage with these. In the present embodiment, the second gear 31 is configured with a gear having a diameter larger than that of the first gear 30, and the number of teeth z <b> 2 is set larger than the number of teeth z <b> 1 of the first gear 30. The third gear 32 is configured with a gear having the same diameter as the first gear 30 (number of teeth z3 = z1), and the fourth gear 33 is a gear having the same diameter as the second gear 31 (number of teeth). z4 = z2). The fifth to eighth gears 34 to 37 are arranged on the same rotational axis parallel to the axle shafts 11fl and 11fr. The fifth gear 34 constitutes the first gear train by meshing with the first gear 30. The number of teeth z5 is the gear ratio (z5 / z1) of the first gear train, for example, “1”. .0 ". The sixth gear 35 constitutes the second gear train by meshing with the second gear 31, and the number of teeth z6 is the gear ratio (z6 / z2) of the second gear train, for example. It is set to “0.9”. The seventh gear 36 constitutes the third gear train by meshing with the third gear 32, and the number of teeth z7 is the gear ratio (z7 / z3) of the third gear train, for example. “1.0” is set. The eighth gear 37 constitutes a fourth gear train with the fourth gear 33, and the number of teeth z8 is the gear ratio (z8 / z4) of the fourth gear train, for example. It is set to “0.9”.

クラッチ機構部22は、第5の歯車34と第8の歯車37との間を接離自在に締結する第1の油圧多板クラッチ38と、第6の歯車35と第7の歯車36との間を接離自在に締結する第2の油圧多板クラッチ39とを有して構成されている。各油圧多板クラッチ38,39の油圧室(図示せず)には油圧駆動制御部51(図1参照)が接続されており、油圧駆動制御部51から供給される油圧によって、第1の油圧多板クラッチ38が締結すると左アクスル軸11flに駆動力が多く配分され、一方、第2の油圧多板クラッチ39が締結すると右アクスル軸11frに駆動力が多く配分される。   The clutch mechanism 22 includes a first hydraulic multi-plate clutch 38 that fastens and detachably connects the fifth gear 34 and the eighth gear 37, and a sixth gear 35 and a seventh gear 36. And a second hydraulic multi-plate clutch 39 that is detachably fastened. A hydraulic drive control unit 51 (see FIG. 1) is connected to a hydraulic chamber (not shown) of each hydraulic multi-plate clutch 38, 39, and the first hydraulic pressure is supplied by the hydraulic pressure supplied from the hydraulic drive control unit 51. When the multi-plate clutch 38 is engaged, a large amount of driving force is distributed to the left axle shaft 11fl. On the other hand, when the second hydraulic multi-plate clutch 39 is engaged, a large amount of driving force is distributed to the right axle shaft 11fr.

ここで、各油圧多板クラッチ38,39を締結させるための油圧値は、駆動力配分比設定手段としての駆動力配分比設定部50(後述する)で設定される左右前輪12fl,12frの駆動力配分比に応じて油圧駆動制御部51で演算される値であり、この油圧値の大小によってトルク配分量(駆動力の配分量)が可変される。すなわち、油圧駆動制御部51は、前輪終減速装置10とともに駆動力配分手段としての機能を実現する。なお、この種の終減速装置の構成については、例えば、特開平11−263140号公報に詳述されている、本形態で説明した構成に限定されるものではない。   Here, the hydraulic values for engaging the hydraulic multi-plate clutches 38 and 39 are the driving forces of the left and right front wheels 12fl and 12fr set by a driving force distribution ratio setting unit 50 (to be described later) as driving force distribution ratio setting means. This value is calculated by the hydraulic drive control unit 51 in accordance with the force distribution ratio, and the torque distribution amount (drive force distribution amount) is varied depending on the magnitude of the hydraulic pressure value. That is, the hydraulic drive control unit 51 realizes a function as a driving force distribution unit together with the front wheel final reduction gear 10. In addition, about the structure of this kind of final reduction gear, it is not limited to the structure demonstrated in detail in Unexamined-Japanese-Patent No. 11-263140, for example, and demonstrated in this form.

図1に示すように、駆動力配分比設定部50には、駆動輪(左右前輪12fl,12fr)に作用する力を検出する力検出手段としての力検出センサ14fl,14frと、路面摩擦係数推定部53と、前後駆動力演算部54とが接続されている。   As shown in FIG. 1, the driving force distribution ratio setting unit 50 includes force detection sensors 14fl and 14fr as force detecting means for detecting forces acting on the driving wheels (left and right front wheels 12fl and 12fr), and road surface friction coefficient estimation. The part 53 and the front-rear driving force calculation part 54 are connected.

本形態において、力検出センサ14fl,14frは、左右前輪12fl,12frのアクスルハウジング13fl,13frに埋設されており、少なくとも、各輪12fl,12frにそれぞれ作用する横方向の力(前輪横力Ffl_y,Ffr_y)及び上下方向の力(前輪上下力Ffl_z,Ffr_z)を、アクスルハウジング13fl,13frに生じる変位量に基づいて検出する。   In this embodiment, the force detection sensors 14fl and 14fr are embedded in the axle housings 13fl and 13fr of the left and right front wheels 12fl and 12fr, and at least lateral forces acting on the wheels 12fl and 12fr (front wheel lateral forces Ffl_y, Ffr_y) and vertical forces (front wheel vertical forces Ffl_z, Ffr_z) are detected based on displacements generated in the axle housings 13fl, 13fr.

路面摩擦係数推定部53は、例えばABS制御ユニットで構成され、路面摩擦係数μ(以下、路面μともいう)を、例えば、本出願人が特開平8−2274号公報で提案した推定方法で演算する。この路面摩擦係数推定部53は、舵角センサ60、車速センサ61、ヨーレートセンサ62から入力される前輪舵角δf、車速V、実ヨーレート(dφ/dt)を用い、車両の横運動の運動方程式に基づき前後輪のコーナリングパワを非線形域に拡張して推定し、高μ路(μ=1.0)での前後輪の等価コーナリングパワに対する推定した前後輪のコーナリングパワの比から路面μを推定する。なお、路面μの推定方法は、もちろん、他の方法、例えば本出願人の特開2000−71968号公報で開示する方法等で求めても良い。   The road surface friction coefficient estimator 53 is composed of, for example, an ABS control unit, and calculates the road surface friction coefficient μ (hereinafter also referred to as road surface μ) by, for example, the estimation method proposed by the present applicant in Japanese Patent Laid-Open No. 8-2274. To do. The road surface friction coefficient estimating unit 53 uses the front wheel steering angle δf, the vehicle speed V, and the actual yaw rate (dφ / dt) input from the steering angle sensor 60, the vehicle speed sensor 61, and the yaw rate sensor 62, and the equation of motion of the lateral movement of the vehicle. Based on the above, the cornering power of the front and rear wheels is extended to a non-linear range, and the road surface μ is estimated from the ratio of the estimated cornering power of the front and rear wheels to the equivalent cornering power of the front and rear wheels on a high μ road (μ = 1.0). To do. Of course, the estimation method of the road surface μ may be obtained by other methods such as the method disclosed in Japanese Patent Application Laid-Open No. 2000-71968 of the present applicant.

前後駆動力演算部54は、例えばエンジン制御ユニットで構成され、前後駆動力(ドライバ要求駆動力)Fxとして例えばエンジン駆動力Feを演算する。すなわち、前後駆動力演算部54には、エンジン回転数センサ63、タービン回転数センサ64、スロットル開度センサ65からエンジン回転数Ne、タービン回転数N1、スロットル開度θthが入力されるとともに、例えばトランスミッション制御ユニット66から現在のミッションギヤ比rgが入力され、これらに基づいてエンジン駆動力Feが(1)式により演算される。
Fe=(Tt・rf)/Rw …(1)
ここで、rfはファイナルギヤ比であり、Rwはタイヤ有効半径である。また、Ttはミッションギヤ後のトルクであり、エンジントルクをTe、トルクコンバータのトルコン比をtconv、動力伝達効率をηとすると、(2)式で求められる。
Tt=Te・rg・tconv・η …(2)
この際、エンジントルクTeは、エンジン回転数Neとスロットル開度θthに基づいて予め設定されたマップから求められ、トルコン比tconvは、トルクコンバータの変速比rv(=Nt/Ne)を基に予め設定されたマップから求められる。
The front / rear driving force calculation unit 54 is constituted by, for example, an engine control unit, and calculates, for example, the engine driving force Fe as the front / rear driving force (driver required driving force) Fx. In other words, the engine rotational speed Ne, the turbine rotational speed N1, and the throttle opening θth are input from the engine rotational speed sensor 63, the turbine rotational speed sensor 64, and the throttle opening sensor 65 to the front / rear driving force calculation unit 54. The current transmission gear ratio rg is input from the transmission control unit 66, and the engine driving force Fe is calculated based on these based on the equation (1).
Fe = (Tt · rf) / Rw (1)
Here, rf is the final gear ratio, and Rw is the tire effective radius. Further, Tt is the torque after the transmission gear, and is obtained by the equation (2) where Te is the engine torque, tconv is the torque converter ratio of the torque converter, and η is the power transmission efficiency.
Tt = Te · rg · tconv · η (2)
At this time, the engine torque Te is obtained from a map set in advance based on the engine speed Ne and the throttle opening θth, and the torque converter ratio tconv is determined in advance based on the speed ratio rv (= Nt / Ne) of the torque converter. It is obtained from the set map.

ところで、図3の車両運動モデルにおいて、車両横方向の並進運動に関する運動方程式は、前後輪のコーナリングフォース(1輪)をFf,Fr、車体質量をM、横加速度を(d2y/dt2)として、
M・(d2y/dt2)=2・Ff+2・Fr …(3)
で与えられる。
By the way, in the vehicle motion model of FIG. 3, the equation of motion relating to the translational motion in the lateral direction of the vehicle is Ff, Fr for the cornering force (one wheel) of the front and rear wheels, M for the vehicle body mass, and (d 2 y / dt 2 As
M · (d 2 y / dt 2 ) = 2 · Ff + 2 · Fr (3)
Given in.

一方、重心点まわりの回転運動に関する運動方程式は、重心から前後輪軸までの距離をlf,lr、車体のヨーイング慣性モーメントをIz、ヨー角加速度を(d2φ/dt2)として、
Iz・(d2φ/dt2)=2・Ff・lf−2・Fr・lr …(4)
で示される。
On the other hand, the equation of motion related to the rotational movement around the center of gravity is expressed as follows: the distance from the center of gravity to the front and rear wheel axes is lf, rr, the yaw moment of inertia of the vehicle body is Iz, and the yaw angular acceleration is (d 2 φ / dt 2 ).
Iz · (d 2 φ / dt 2 ) = 2 · Ff · lf-2 · Fr · lr (4)
Indicated by

また、車体すべり角をβ、車体すべり角速度を(dβ/dt)とすると、横加速度(d2y/dt2)は、
(d2y/dt2)=V・((dβ/dt)+(dφ/dt)) …(5)
で表される。
Further, when the vehicle slip angle is β and the vehicle slip angular velocity is (dβ / dt), the lateral acceleration (d 2 y / dt 2 ) is
(D 2 y / dt 2 ) = V · ((dβ / dt) + (dφ / dt)) (5)
It is represented by

前後輪の平均コーナリングフォースFf_y,Fr_yは、前後輪の等価コーナリングパワをKf,Kr、前後輪の横すべり角をβf,βrとすると、
Ff_y=Kf・βf−(Kf2・βf2)/(4・Ff_yMAX) …(6)
Fr_y=Kr・βr−(Kr2・βr2)/(4・Fr_yMAX) …(7)
で表される。
The average cornering forces Ff_y and Fr_y of the front and rear wheels are as follows. The equivalent cornering powers of the front and rear wheels are Kf and Kr, and the side slip angles of the front and rear wheels are βf and βr.
Ff_y = Kf · βf- (Kf 2 · βf 2) / (4 · Ff_yMAX) ... (6)
Fr_y = Kr · βr− (Kr 2 · βr 2 ) / (4 · Fr_yMAX) (7)
It is represented by

このとき、実際の前後輪コーナリングパワKf_a,Kr_aは次式で表される。
Kf_a=(∂Ff_y/∂βf)=Kf−(Kf2・|βf|)/(2・Ff_yMAX) …(8)
Kr_a=(∂Fr_y/∂βr)=Kr−(Kr2・|βr|)/(2・Fr_yMAX) …(9)
ここで、前後輪の平均前後力をFf_x,Fr_x、前後輪の平均上下力をFf_z,Fr_zとすると、
Ff_yMAX=(μ2・Ff_z2−Ff_x21/2 …(10)
Fr_yMAX=(μ2・Fr_z2−Fr_x21/2 …(11)
また、前後輪の横すべり角βf,βrは、前輪舵角をδfとして以下のように簡略化できる。
βf=β+lf・(dφ/dt)/V−δf …(12)
βr=β+lr・(dφ/dt)/V …(13)
以上の運動方程式をまとめると、以下のように、舵角δfを入力として車体すべり角β、ヨーレート(dφ/dt)を求める状態運動方程式が得られる。

Figure 0004668563
At this time, the actual front and rear wheel cornering powers Kf_a and Kr_a are expressed by the following equations.
Kf_a = (∂Ff_y / ∂βf) = Kf- (Kf 2 · | βf |) / (2 · Ff_yMAX) ... (8)
Kr_a = (∂Fr_y / ∂βr) = Kr- (Kr 2 · | βr |) / (2 · Fr_yMAX) ... (9)
Here, if the average longitudinal force of the front and rear wheels is Ff_x, Fr_x, and the average vertical force of the front and rear wheels is Ff_z, Fr_z,
Ff_yMAX = (μ 2 · Ff_z 2 −Ff_x 2 ) 1/2 (10)
Fr_yMAX = (μ 2 · Fr_z 2 −Fr_x 2 ) 1/2 (11)
Further, the side slip angles βf and βr of the front and rear wheels can be simplified as follows with the front wheel rudder angle as δf.
βf = β + lf · (dφ / dt) / V−δf (12)
βr = β + lr · (dφ / dt) / V (13)
Summarizing the above equation of motion, a state equation of motion for obtaining the vehicle body slip angle β and yaw rate (dφ / dt) with the steering angle δf as input is obtained as follows.
Figure 0004668563

a11=2・(kf_a+kr_a)/(M・V) …(15)
a12=1+2・(lf・kf_a−lr・kr_a)/(M・V2) …(16)
a21=2・(lf・kf_a−lr・kr_a)/(Iz・V) …(17)
a22=2・(lf2・kf_a−lr2・kr_a)/(Iz・V) …(18)
b1=2・kf_a/(M・V) …(19)
b2=2・lf・kf_a/Iz …(20)
なお、これらの関係を図4において機能的に表す。
a11 = 2 · (kf_a + kr_a) / (M · V) (15)
a12 = 1 + 2 · (lf · kf_a−lr · kr_a) / (M · V 2 ) (16)
a21 = 2 · (lf · kf_a−lr · kr_a) / (Iz · V) (17)
a22 = 2 · (lf 2 · kf_a−lr 2 · kr_a) / (Iz · V) (18)
b1 = 2 · kf_a / (MV) (19)
b2 = 2 · lf · kf_a / Iz (20)
These relationships are functionally represented in FIG.

ここで、(14)式において、a11の項は車体すべり角の収束性に寄与することが知られており、この項が線形的に変化する程、車両の安定性が向上するとともに、応答性がドライバのフィーリングに沿ったものとなる。左前輪前後力をFfl_x、右前輪前後力をFfr_x、左後輪前後力をFrl_x、右後輪前後力をFrr_x、左前輪上下力をFfl_z、右前輪上下力をFfr_z、左後輪上下力をFrl_z、右後輪上下力をFrr_zとし、(15)式に示すa11の項を(8)〜(11)式を用いて、各輪のコーナリングパワkfl_a,kfr_a,krl_a,krr_aで展開すると、
a11=(kfl_a+kfr_a+krl_a+krr_a)/(M・V)
=(1/(M・V))・[2・(Kf+Kr)
−(1/2)・〔Kf2/(μfl2・Ffl_z2−Ffl_x21/2
+Kf2/(μfr2・Ffr_z2−Ffr_x21/2〕・|βf|
−(1/2)・〔Kr2/(μrl2・Frl_z2−Frl_x21/2
+(Kr2/(μrr2・Frr_z2−Frr_x21/2)・|βr|] …(21)
ここで、前後輪横すべり角βf,βrが十分小さいとき、Kf・|βf|=|Ffl_y|=|Ffr_y|(但し、Ffl_yは左前輪横力、Ffr_yは右前輪横力)、Kr・|βr|=|Frl_y|=|Frr_y|(但し、Frl_yは左後輪横力、Frr_yは右後輪横力)であると近似し、これらで(21)式を変形すると、
a11=1/(M・V))・[2・(Kf+Kr)
−(1/2)・〔Kf・|Ffl_y|/(μfl2・Ffl_z2−Ffl_x21/2
+Kf・|Ffr_y|/(μfr2・Ffr_z2−Ffr_x21/2
−(1/2)・〔Kr・|Frl_y|/(μrl2・Frl_z2−Frl_x21/2
+Kr・|Frr_y|/(μrr2・Frr_z2−Frr_x21/2〕] …(22)
となる。
Here, in the equation (14), it is known that the term a11 contributes to the convergence property of the vehicle slip angle. As the term changes linearly, the stability of the vehicle is improved and the responsiveness is improved. Is in line with the driver's feeling. Left front wheel longitudinal force Ffl_x, right front wheel longitudinal force Ffr_x, left rear wheel longitudinal force Frl_x, right rear wheel longitudinal force Frr_x, left front wheel vertical force Ffl_z, right front wheel vertical force Ffr_z, left rear wheel vertical force Frl_z, the right rear wheel vertical force is Frr_z, and the terms a11 shown in the equation (15) are expanded by the cornering power kfl_a, kfr_a, krl_a, krr_a of each wheel using the equations (8) to (11).
a11 = (kfl_a + kfr_a + krl_a + krr_a) / (MV)
= (1 / (M ・ V)) ・ [2 ・ (Kf + Kr)
− (1/2) · [Kf 2 / (μfl 2 · Ffl_z 2 −Ffl_x 2 ) 1/2
+ Kf 2 / (μfr 2 · Ffr_z 2 −Ffr_x 2 ) 1/2 ] · | βf |
− (1/2) · [Kr 2 / (μrl 2 · Frl_z 2 −Frl_x 2 ) 1/2
+ (Kr 2 / (μrr 2 · Frr_z 2 −Frr_x 2 ) 1/2 ) · | βr |] (21)
Here, when the front and rear wheel side slip angles βf and βr are sufficiently small, Kf · | βf | = | Ffl_y | = | Ffr_y | (where Ffl_y is the left front wheel lateral force and Ffr_y is the right front wheel lateral force), Kr · | βr | = | Frl_y | = | Frr_y | (where Frl_y is the left rear wheel lateral force and Frr_y is the right rear wheel lateral force).
a11 = 1 / (M · V)) · [2 · (Kf + Kr)
− (1/2) · [Kf · | Ffl_y | / (μfl 2 · Ffl_z 2 −Ffl_x 2 ) 1/2
+ Kf · | Ffr_y | / (μfr 2 · Ffr_z 2 −Ffr_x 2 ) 1/2 ]
− (1/2) · [Kr · | Frl_y | / (μrl 2 · Frl_z 2 −Frl_x 2 ) 1/2
+ Kr · | Frr_y | / (μrr 2 · Frr_z 2 −Frr_x 2 ) 1/2 ]] (22)
It becomes.

ここで、前後駆動力配分比をa(但し、0≦a≦1)、右左前輪駆動力配分比をb(但し、0≦b≦1)、右左後輪駆動力配分比をc(但し、0≦c≦1)とし、各輪12fl,12fr,12rl,12rrの駆動力をFfl_x,Ffr_x,Frl_x,Frr_xをドライバ要求駆動力Fxで表すと、
Ffl_x=a・b・Fx …(23)
Ffr_x=a・(1−b)・Fx …(24)
Frl_x=(1−a)・c・Fx …(25)
Frl_x=(1−a)・(1−c)・Fx …(26)
となり、これらを(22)式に代入すると、
a11=(1/(M・V))・[2・(Kf+Kr)
−(1/2)・〔Kf・|Ffl_y|/(μfl2・Ffl_z2−a2・b2・Fx21/2
+Kf・|Ffr_y|/(μfr2・Ffr_z2−a2・(1−b)2・Fx21/2
−(1/2)・〔Kr・|Frl_y|/(μrl2・Frl_z2−(1−a)2・c2・Fx21/2
+Kr・|Frr_y|/(μrr2・Frr_z2−(1−a)2(1−c)2・Fx21/2〕] …(27)
となる。(27)式において[ ]内の要素は前後輪のコーナリングパワKf_a,Kr_aからなり、
2・Ff_x=a・Fx …(28)
2・Fr_x=(1−a)・Fx …(29)
として、(27)式から前後輪コーナリングパワKf_a,Kr_aの要素をそれぞれ抽出すると、
Kf_a
=Kf−(Kf・|Ffl_y|)/(4・(μfl2・Ffl_z2−a2・b2・Fx21/2
−(Kf・|Ffr_y|)/(4・(μfr2・Ffr_z2−a2・(1−b)2・Fx21/2
=Kf−(Kf・|Ffl_y|)/(4・(μfl2・Ffl_z2−4・b2・Ff_x21/2
−(Kf・|Ffr_y|)/(4・(μfr2・Ffr_z2−4・(1−b)2・Ff_x21/2) …(30)
Kr_a
=Kr−(Kr・|Frl_y|)/(4・(μrl2・Frl_z2−(1−a)2・c2・Fx21/2
−(Kr・|Frr_y|)/(4・(μrr2・Frr_z2−(1−a)2・(1−c)2・Fx21/2
=Kr−(Kr・|Frl_y|)/(4・(μrl2・Frl_z2−4・c2・Fr_x21/2
−(Kr・|Frr_y|)/(4・(μrr2・Frr_z2−4・(1−c)2・F_x21/2) …(31)
となる。
Here, the front / rear driving force distribution ratio is a (where 0 ≦ a ≦ 1), the right and left front wheel driving force distribution ratio is b (where 0 ≦ b ≦ 1), and the right and left rear wheel driving force distribution ratio is c (where 0 ≦ c ≦ 1), and the driving force of each of the wheels 12fl, 12fr, 12rl, 12rr is expressed as Ffl_x, Ffr_x, Frl_x, Frr_x by the driver required driving force Fx,
Ffl_x = a · b · Fx (23)
Ffr_x = a. (1-b) .Fx (24)
Frl_x = (1-a) · c · Fx (25)
Frl_x = (1-a). (1-c) .Fx (26)
And substituting these into equation (22),
a11 = (1 / (M · V)) · [2 · (Kf + Kr)
− (1/2) · [Kf · | Ffl_y | / (μfl 2 · Ffl_z 2 −a 2 · b 2 · Fx 2 ) 1/2
+ Kf · | Ffr_y | / (μfr 2 · Ffr_z 2 -a 2 · (1-b) 2 · Fx 2 ) 1/2 ]
− (1/2) · [Kr · | Frl_y | / (μrl 2 · Frl_z 2 − (1-a) 2 · c 2 · Fx 2 ) 1/2
+ Kr · | Frr_y | / (μrr 2 · Frr_z 2- (1-a) 2 (1-c) 2 · Fx 2 ) 1/2 ]] (27)
It becomes. In the equation (27), the elements in [] consist of cornering powers Kf_a and Kr_a of the front and rear wheels.
2 · Ff_x = a · Fx (28)
2 · Fr_x = (1-a) · Fx (29)
If the elements of the front and rear wheel cornering powers Kf_a and Kr_a are extracted from the equation (27),
Kf_a
= Kf− (Kf · | Ffl_y |) / (4 · (μfl 2 · Ffl_z 2 −a 2 · b 2 · Fx 2 ) 1/2 )
-(Kf · | Ffr_y |) / (4 · (μfr 2 · Ffr_z 2 -a 2 · (1-b) 2 · Fx 2 ) 1/2 )
= Kf− (Kf · | Ffl_y |) / (4 · (μfl 2 · Ffl_z 2 −4 · b 2 · Ff_x 2 ) 1/2 )
− (Kf · | Ffr_y |) / (4 · (μfr 2 · Ffr_z 2 −4 · (1-b) 2 · Ff_x 2 ) 1/2 ) (30)
Kr_a
= Kr− (Kr · | Frl_y |) / (4 · (μrl 2 · Frl_z 2 − (1-a) 2 · c 2 · Fx 2 ) 1/2 )
-(Kr · | Frr_y |) / (4 · (μrr 2 · Frr_z 2- (1-a) 2 · (1-c) 2 · Fx 2 ) 1/2 )
= Kr− (Kr · | Frl_y |) / (4 · (μrl 2 · Frl_z 2 −4 · c 2 · Fr_x 2 ) 1/2 )
− (Kr · | Frr_y |) / (4 · (μrr 2 · Frr_z 2 -4 · (1-c) 2 · F_x 2 ) 1/2 ) (31)
It becomes.

(30)、(31)式からも明らかなように、前後駆動力配分比a=1の前輪駆動車においては、前輪コーナリングパワKf_aの非線形項を最小とする前輪駆動力配分比を設定することで、(14)式中a11の非線形項を最小とすることができる。   As is clear from the equations (30) and (31), in the front-wheel drive vehicle having the front-rear driving force distribution ratio a = 1, the front-wheel driving force distribution ratio that minimizes the nonlinear term of the front-wheel cornering power Kf_a is set. Thus, the nonlinear term a11 in the equation (14) can be minimized.

この点を考慮し、駆動力配分比設定部50では、線形項と非線形項とで表現される前輪コーナリングパワKf_aの非線形項、すなわち、(30)式の
非線形項=
(Kf・|Ffl_y|)/(4・(μfl2・Ffl_z2−4・b2・Ff_x21/2
+(Kf・|Ffr_y|)/(4・(μfr2・Ffr_z2−4・(1−b)2・Ff_x21/2) …(32)
を最小とする駆動力配分比bを演算し、これを、駆動力2・Ff_x(a・Fx)を前輪終減速装置10から前輪の左右アクスル軸11fl,11frに伝達する際の配分比の制御値として設定する。
Considering this point, in the driving force distribution ratio setting unit 50, the non-linear term of the front wheel cornering power Kf_a expressed by the linear term and the non-linear term, that is, the non-linear term of Equation (30) =
(Kf · | Ffl_y |) / (4 · (μfl 2 · Ffl_z 2 -4 · b 2 · Ff_x 2 ) 1/2 )
+ (Kf · | Ffr_y |) / (4 · (μfr 2 · Ffr_z 2 -4 · (1-b) 2 · Ff_x 2 ) 1/2 ) (32)
Is calculated, and the control of the distribution ratio when transmitting the driving force 2 · Ff_x (a · Fx) from the front wheel final reduction gear 10 to the left and right axle shafts 11fl and 11fr of the front wheels is calculated. Set as a value.

具体的には、駆動力配分比設定部50は、力検出センサ14flで検出される前輪横力Ffl_y及び前輪上下力Ffl_zを(32)式中のFfl_y及びFfl_zに代入するとともに、力検出センサ14frで検出される前輪横力Ffr_y及び前輪上下力Ffr_zを(32)式中のFfr_y及びFfr_zに代入する。また、各輪に作用する路面μが等しいと仮定して路面摩擦係数推定部53で推定される路面μを(32)式中のμfl,μfrに代入するとともに、前後駆動力演算部54で演算される駆動力Fxを(32)式中のFf_x(=Fx/2)に代入する。   Specifically, the driving force distribution ratio setting unit 50 substitutes the front wheel lateral force Ffl_y and the front wheel vertical force Ffl_z detected by the force detection sensor 14fl for Ffl_y and Ffl_z in the equation (32), and the force detection sensor 14fr. The front wheel lateral force Ffr_y and the front wheel vertical force Ffr_z detected in step (2) are substituted into Ffr_y and Ffr_z in the equation (32). Further, assuming that the road surface μ acting on each wheel is equal, the road surface μ estimated by the road surface friction coefficient estimating unit 53 is substituted into μfl and μfr in the equation (32), and calculated by the front / rear driving force calculating unit 54. The driven driving force Fx is substituted into Ff_x (= Fx / 2) in the equation (32).

そして、駆動力配分比設定部50は、(32)式中のbに、例えば、b=0.0,0.1,…,0.9,1.0を順次代入することで、前輪コーナリングパワKf_aの非線形項を最小とする駆動力配分比bを求める。   Then, the driving force distribution ratio setting unit 50 sequentially substitutes, for example, b = 0.0, 0.1,..., 0.9, 1.0 into b in the equation (32), so that the front wheel cornering is performed. A driving force distribution ratio b that minimizes the nonlinear term of the power Kf_a is obtained.

このような形態によれば、車輪に実際に生じることが推定されるコーナリングパワの非線形項を最小とする駆動力配分比を設定することにより、タイヤグリップの効率的な活用を行いつつ、外乱に対する安定性に優れた駆動力配分比を設定することができる。   According to such a configuration, by setting the driving force distribution ratio that minimizes the nonlinear term of the cornering power that is estimated to actually occur in the wheel, the tire grip is efficiently utilized and the disturbance is prevented. A driving force distribution ratio with excellent stability can be set.

また、車輪に発生するコーナリングパワの変化を駆動力配分制御によって線形変化に近づけるので、応答性を向上することができ、タイヤが非線形領域に近づいても通常の領域での感覚に近いイメージで操縦できる。   In addition, since the change in cornering power generated on the wheels is brought closer to a linear change by driving force distribution control, the responsiveness can be improved, and even if the tire approaches the non-linear region, it can be operated with an image close to that in the normal region. it can.

また、コーナリングパワの推定に力検出センサから直接的に求められる駆動輪の横力及び上下力を用いるので、実際の車両挙動に応じた精度の良い駆動力配分制御を実現することができる。   In addition, since the lateral force and vertical force of the drive wheels directly obtained from the force detection sensor are used for the estimation of cornering power, it is possible to realize accurate drive force distribution control according to actual vehicle behavior.

次に、図5は本発明の第2の形態に係わり、図5は駆動力配分制御装置の概略構成図である。ここで、本形態では、駆動力配分比設定部50で、左右後輪間の駆動力配分比cを設定する場合について説明する。なお、上述の第1の形態と同様の構成については、同符号を付して説明を省略する。   Next, FIG. 5 relates to a second embodiment of the present invention, and FIG. 5 is a schematic configuration diagram of the driving force distribution control device. Here, in this embodiment, a case where the driving force distribution ratio setting unit 50 sets the driving force distribution ratio c between the left and right rear wheels will be described. In addition, about the structure similar to the above-mentioned 1st form, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図5に示すように、本形態において、エンジン2による駆動力は、トルクコンバータ3、変速装置4を経て、トランスミッション出力軸4aに伝達される。さらに、トランスミッション出力軸4aに伝達された駆動力は、プロペラシャフト16を介してドライブピニオン軸17に伝達され、後輪終減速装置18に入力されるよう構成されている。また、後輪終減速装置18に入力された駆動力は、駆動軸としての後輪左右アクスル軸11rl,11rrを経て駆動輪としての左右後輪12rl.12rrに伝達される。   As shown in FIG. 5, in this embodiment, the driving force by the engine 2 is transmitted to the transmission output shaft 4a via the torque converter 3 and the transmission 4. Further, the driving force transmitted to the transmission output shaft 4 a is transmitted to the drive pinion shaft 17 via the propeller shaft 16 and input to the rear wheel final reduction gear 18. The driving force input to the rear wheel final reduction gear 18 passes through the rear wheel left and right axle shafts 11rl and 11rr as drive shafts and the left and right rear wheels 12rl. 12rr.

ここで、後輪終減速装置18は、左右後輪12rl,12rrに伝達する駆動力の配分比を可変に制御可能な構成となっている。具体的には、後輪終減速装置18は、例えば、上述の第1の形態の図2に示した前輪終減速装置10と略同様の構成となっている。この場合、後輪終減速装置18では、ドライブピニオン軸17が図2に示したフロントドライブ軸9に相当し、後輪左右アクスル軸11rl,11rrが図2に示した前輪左右アクスル軸11fl,11frに相当する。   Here, the rear wheel final reduction gear 18 is configured to be able to variably control the distribution ratio of the driving force transmitted to the left and right rear wheels 12rl, 12rr. Specifically, the rear wheel final reduction gear 18 has substantially the same configuration as the front wheel final reduction gear 10 shown in FIG. 2 of the first embodiment described above, for example. In this case, in the rear wheel final reduction gear 18, the drive pinion shaft 17 corresponds to the front drive shaft 9 shown in FIG. 2, and the rear wheel left and right axle shafts 11rl and 11rr are the front wheel left and right axle shafts 11fl and 11fr shown in FIG. It corresponds to.

ここで、後輪終減速装置18において、各油圧多板クラッチ38,39を締結させるための油圧値は、駆動力配分比設定部50で設定される左右後輪12rl,12rrの駆動力配分比に応じて油圧駆動制御部51で演算される値であり、この油圧値の大小によって駆動力の配分量が変化される。すなわち、油圧駆動制御部51は、後輪終減速装置18とともに駆動力配分手段としての機能を実現する。   Here, in the rear wheel final reduction gear 18, the hydraulic pressure values for engaging the hydraulic multi-plate clutches 38 and 39 are the driving force distribution ratios of the left and right rear wheels 12 rl and 12 rr set by the driving force distribution ratio setting unit 50. Is a value calculated by the hydraulic drive control unit 51, and the distribution amount of the driving force is changed depending on the hydraulic value. That is, the hydraulic drive control unit 51 realizes a function as a driving force distribution means together with the rear wheel final reduction gear 18.

図示のように、駆動力配分比設定部50には、駆動輪(左右後輪12rl,12rr)に作用する力を検出する力検出手段としての力検出センサ14rl,14rrが接続されている。本形態において、力検出センサ14rl,14rrは、左右後輪12rl,12rrのアクスルハウジング13rl,13rrに埋設されており、少なくとも、各輪12rl,12rrにそれぞれ作用する横方向の力(前輪横力Frl_y,Frr_y)及び上下方向の力(前輪上下力Frl_z,Frr_z)を、アクスルハウジング13rl,13rrに生じる変位量に基づいて検出する。   As shown in the figure, the driving force distribution ratio setting unit 50 is connected to force detection sensors 14rl and 14rr as force detecting means for detecting forces acting on the driving wheels (left and right rear wheels 12rl and 12rr). In this embodiment, the force detection sensors 14rl and 14rr are embedded in the axle housings 13rl and 13rr of the left and right rear wheels 12rl and 12rr, and at least a lateral force acting on each of the wheels 12rl and 12rr (front wheel lateral force Frl_y). , Frr_y) and vertical forces (front wheel vertical forces Frl_z, Frr_z) are detected based on the amount of displacement generated in the axle housings 13rl, 13rr.

上述の第1の形態で示した(30)、(31)式からも明らかなように、前後駆動力配分比a=0の後輪駆動車においては、後輪コーナリングパワKr_aの非線形項を最小とする後輪駆動力配分比を設定することで(14)式中a11の非線形項を最小とすることができる。   As is clear from the expressions (30) and (31) shown in the first embodiment, in the rear wheel drive vehicle with the front / rear driving force distribution ratio a = 0, the nonlinear term of the rear wheel cornering power Kr_a is minimized. By setting the rear wheel driving force distribution ratio as follows, the nonlinear term of a11 in the equation (14) can be minimized.

この点を考慮し、駆動力配分比設定部50では、線形項と非線形項とで表現される後輪コーナリングパワKr_aの非線形項、すなわち、(31)式の
非線形項=
(Kr・|Frl_y|)/(4・(μrl2・Frl_z2−4・c2・Fr_x21/2
+(Kf・|Frr_y|)/(4・(μrr2・Frr_z2−4・(1−c)2・Fr_x21/2) …(33)
を最小とする駆動力配分比cを演算し、これを、駆動力2・Ff_x(=(1−a)・Fx)を後輪終減速装置18から後輪の左右アクスル軸11rl,11rrに伝達する際の配分比の制御値として設定する。
Considering this point, in the driving force distribution ratio setting unit 50, the non-linear term of the rear wheel cornering power Kr_a expressed by the linear term and the non-linear term, that is, the non-linear term of Equation (31) =
(Kr · | Frl_y |) / (4 · (μrl 2 · Frl_z 2 -4 · c 2 · Fr_x 2 ) 1/2 )
+ (Kf · | Frr_y |) / (4 · (μrr 2 · Frr_z 2 -4 · (1-c) 2 · Fr_x 2 ) 1/2 ) (33)
Is calculated from the rear wheel final reduction gear 18 to the left and right axle shafts 11 rl and 11 rr of the rear wheels. It is set as the control value of the distribution ratio when

具体的には、駆動力配分比設定部50は、力検出センサ14rlで検出される前輪横力Frl_y及び前輪上下力Frl_zを(33)式中のFrl_y及びFrl_zに代入するとともに、力検出センサ14rrで検出される前輪横力Frr_y及び前輪上下力Frr_zを(33)式中のFrr_y及びFrr_zに代入する。また、各輪に作用する路面μが等しいと仮定して路面摩擦係数推定部53で推定される路面μを(33)式中のμrl,μrrに代入するとともに、前後駆動力演算部54で演算される駆動力Fxを(33)式中のFf_x(=Fx/2)に代入する。   Specifically, the driving force distribution ratio setting unit 50 substitutes the front wheel lateral force Frl_y and the front wheel vertical force Frl_z detected by the force detection sensor 14rl into Frl_y and Frl_z in the equation (33), and the force detection sensor 14rr. The front wheel lateral force Frr_y and the front wheel vertical force Frr_z detected in step (3) are substituted into Frr_y and Frr_z in the equation (33). Further, assuming that the road surface μ acting on each wheel is equal, the road surface μ estimated by the road surface friction coefficient estimating unit 53 is substituted into μrl and μrr in the equation (33), and calculated by the front / rear driving force calculating unit 54. The driven driving force Fx is substituted into Ff_x (= Fx / 2) in the equation (33).

そして、駆動力配分比設定部50は、(33)式中のcに、例えば、c=0.0,0.1,0.2,…,0.9,1.0を順次代入することで、前輪コーナリングパワKr_aの非線形項を最小とする駆動力配分比cを求める。   Then, the driving force distribution ratio setting unit 50 sequentially substitutes, for example, c = 0.0, 0.1, 0.2,..., 0.9, 1.0 into c in the equation (33). Thus, the driving force distribution ratio c that minimizes the nonlinear term of the front wheel cornering power Kr_a is obtained.

このような形態によれば、後輪の駆動力配分制御について、も上述の第1の形態と略同様の効果を奏することができる。   According to such a configuration, it is possible to achieve substantially the same effect as that of the first embodiment described above with respect to the driving force distribution control of the rear wheels.

次に、図6は本発明の第3の形態に係わり、図6は駆動力配分制御装置の概略構成図である。なお、本形態では、駆動力配分比設定部50で前後輪間の駆動力配分比aを設定する場合について説明する。なお、上述の第1,第2の形態と同様の構成については、同符号を付して説明を省略する。   Next, FIG. 6 relates to a third embodiment of the present invention, and FIG. 6 is a schematic configuration diagram of the driving force distribution control device. In this embodiment, a case where the driving force distribution ratio setting unit 50 sets the driving force distribution ratio a between the front and rear wheels will be described. In addition, about the structure similar to the above-mentioned 1st, 2nd form, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図6に示すように、本形態において、エンジン2による駆動力は、トルクコンバータ3、変速装置4を経て、トランスミッション出力軸4aからセンターディファレンシャル装置19に伝達される。さらに、センターディファレンシャル装置19に伝達された駆動力は、リヤドライブ軸15、プロペラシャフト16、ドライブピニオン軸17を介して後輪終減速装置18に入力される一方、フロントドライブ軸9を介して前輪終減速装置10に伝達されるよう構成されている。   As shown in FIG. 6, in this embodiment, the driving force from the engine 2 is transmitted from the transmission output shaft 4 a to the center differential device 19 via the torque converter 3 and the transmission 4. Further, the driving force transmitted to the center differential device 19 is input to the rear wheel final reduction device 18 via the rear drive shaft 15, the propeller shaft 16, and the drive pinion shaft 17, while the front wheel via the front drive shaft 9. It is configured to be transmitted to the final reduction gear 10.

ここで、センターディファレンシャル装置19は、駆動軸としてのフロントドライブ軸9及びリヤドライブ軸15に伝達する駆動力の配分比を可変に制御可能な構成となっている。具体的には、センターディファレンシャル装置19は、例えば、上述の第1の形態の図2に示した前輪終減速装置10と略同様の構成となっている。この場合、センターディファレンシャル装置19では、トランスミッション出力軸4aが図2に示したフロントドライブ軸9に相当し、フロントドライブ軸9が図2に示した前輪右アクスル軸11frに相当し、リヤドライブ軸15が図2に示した前輪左アクスル軸11flに相当する。   Here, the center differential device 19 is configured to variably control the distribution ratio of the driving force transmitted to the front drive shaft 9 and the rear drive shaft 15 as drive shafts. Specifically, the center differential device 19 has substantially the same configuration as the front wheel final reduction device 10 shown in FIG. 2 of the first embodiment described above, for example. In this case, in the center differential device 19, the transmission output shaft 4a corresponds to the front drive shaft 9 shown in FIG. 2, the front drive shaft 9 corresponds to the front wheel right axle shaft 11fr shown in FIG. Corresponds to the front wheel left axle shaft 11fl shown in FIG.

ここで、センターディファレンシャル装置19において、各油圧多板クラッチ38,39を締結させるための油圧値は、駆動力配分比設定部50で設定される前後輪の駆動力配分比に応じて油圧駆動制御部51で演算される値であり、この油圧値の大小によって駆動力の配分量が変化される。すなわち、油圧駆動制御部51は、センターディファレンシャル装置19とともに駆動力配分手段としての機能を実現する。   Here, in the center differential device 19, the hydraulic pressure value for engaging the hydraulic multi-plate clutches 38 and 39 is hydraulic drive control according to the driving force distribution ratio of the front and rear wheels set by the driving force distribution ratio setting unit 50. This value is calculated by the unit 51, and the amount of distribution of the driving force is changed depending on the hydraulic value. That is, the hydraulic drive control unit 51 realizes a function as a driving force distribution means together with the center differential device 19.

図示のように、駆動力配分比設定部50には、駆動輪(左右前輪12fl,12fr及び左右後輪12rl,12rr)に作用する力を検出する力検出手段としての力検出センサ14fl,14fr,14rl,14rrが接続されている。   As shown in the figure, the driving force distribution ratio setting unit 50 includes force detection sensors 14fl, 14fr as force detecting means for detecting forces acting on the driving wheels (the left and right front wheels 12fl, 12fr and the left and right rear wheels 12rl, 12rr). 14rl and 14rr are connected.

本形態では、駆動力配分比b=c=1/2と仮定して(30)式及び(31)式の非線形項を最小とする前後輪の駆動力配分比aを求める。すなわち、線形項と非線形項とで表現される4輪コーナリングパワKfr_a(=Kf_a+Kr_a)の非線形項は、
前輪平均横力をFf_y(=(Ffl_y+Ffr_y)/2)、
後輪平均横力をFr_y(=(Frl_y+Frr_y)/2)、
前輪平均上下力をFf_z(=(Ffl_z+Ffr_z)/2)、
後輪平均上下力をFr_z(=(Frl_z+Frr_z)/2)とすると、
非線形項
=(Kf・|Ffl_y|)/(4・(μfl2・Ffl_z2−a2・Fx2/4)1/2
+(Kf・|Ffr_y|)/(4・(μfr2・Ffr_z2−a2・Fx2/4)1/2
+(Kr・|Frl_y|)/(4・(μrl2・Frl_z2−(1−a)2・Fx2/4)1/2
+(Kr・|Frr_y|)/(4・(μrr2・Frr_z2−(1−a)2・Fx2/4)1/2

≒Kf・|Ff_y|/(2・(μf2・Ff_z2−a2・Fx2/4)1/2
+Kr・|Fr_y|/(2・(μr2・Fr_z2−(1−a)2・Fx2/4)1/2) …(34)

但し、Ffl_y≒Ffr_y≒Ff_y、Frl_y≒Frr_y≒Fr_y
Ffl_z≒Ffr_z≒Ff_z、Frl_z≒Frr_z≒Fr_z
と表すことができる。駆動力配分比設定部50では、上述の第1,第2の形態と略同様の処理によって、この(34)式を最小とする駆動力配分比aを演算し、これを、駆動力Fxをセンターディファレンシャル装置19からフロントドライブ軸9とリヤドライブ軸15に伝達する際の配分比の制御値として設定する。
In the present embodiment, the driving force distribution ratio a of the front and rear wheels that minimizes the nonlinear term in the equations (30) and (31) is obtained assuming that the driving force distribution ratio b = c = 1/2. That is, the nonlinear term of the four-wheel cornering power Kfr_a (= Kf_a + Kr_a) expressed by a linear term and a nonlinear term is
The front wheel average lateral force is Ff_y (= (Ffl_y + Ffr_y) / 2),
The rear wheel average lateral force is Fr_y (= (Frl_y + Frr_y) / 2),
The front wheel average vertical force is Ff_z (= (Ffl_z + Ffr_z) / 2),
If the rear wheel average vertical force is Fr_z (= (Frl_z + Frr_z) / 2),
= Nonlinear term (Kf · | Ffl_y |) / (4 · (μfl 2 · Ffl_z 2 -a 2 · Fx 2/4) 1/2)
+ (Kf · | Ffr_y |) / (4 · (μfr 2 · Ffr_z 2 -a 2 · Fx 2/4) 1/2)
+ (Kr · | Frl_y |) / (4 · (μrl 2 · Frl_z 2 - (1-a) 2 · Fx 2/4) 1/2)
+ (Kr · | Frr_y |) / (4 · (μrr 2 · Frr_z 2 - (1-a) 2 · Fx 2/4) 1/2)

≒ Kf · | Ff_y | / ( 2 · (μf 2 · Ff_z 2 -a 2 · Fx 2/4) 1/2)
+ Kr · | Fr_y | / ( 2 · (μr 2 · Fr_z 2 - (1-a) 2 · Fx 2/4) 1/2) ... (34)

However, Ffl_y ≒ Ffr_y ≒ Ff_y, Frl_y ≒ Frr_y ≒ Fr_y
Ffl_z ≒ Ffr_z ≒ Ff_z, Frl_z ≒ Frr_z ≒ Fr_z
It can be expressed as. The driving force distribution ratio setting unit 50 calculates a driving force distribution ratio a that minimizes the equation (34) by processing substantially similar to that in the first and second embodiments described above, and calculates the driving force Fx as the driving force Fx. It is set as a control value of the distribution ratio when transmitting from the center differential device 19 to the front drive shaft 9 and the rear drive shaft 15.

さらに、駆動力配分比設定部50では、設定した駆動力配分比aに基づく前輪駆動力Ff_x及び後輪駆動力Fr_xをそれぞれ用いて、前輪の左右駆動力配分比b及び後輪の左右駆動力配分比cを設定することが可能である。具体的には、第1の形態及び第2の形態では配分比を1又は0に設定していたが、これらの値を算出設定された値として前輪コーナリングパワKf_a又は後輪コーナリングパワKr_aの非線形項を最小する駆動力配分比を算出することで行われる。   Further, the driving force distribution ratio setting unit 50 uses the front wheel driving force Ff_x and the rear wheel driving force Fr_x based on the set driving force distribution ratio a, respectively, and the front wheel left / right driving force distribution ratio b and the rear wheel left / right driving force. It is possible to set the distribution ratio c. Specifically, in the first and second embodiments, the distribution ratio is set to 1 or 0, but these values are calculated and set as nonlinear values of the front wheel cornering power Kf_a or the rear wheel cornering power Kr_a. This is done by calculating the driving force distribution ratio that minimizes the term.

このような形態によれば、前後輪への駆動力配分制御を含む4輪全ての駆動力配分制御についても、上述の第1の形態と略同様の効果を奏することができる。なお、駆動力配分を決定する際に用いる非線形項には、タイヤの横力Ffl_y、Ffr_y、Frl_y、Frr_yの値を用いずに、以下のように、(12)(13)式から求められる前後輪のタイヤ滑り角βf、βrを使った式を用いてもよい。   According to such a form, substantially the same effects as those of the first form described above can be achieved with respect to the drive force distribution control of all four wheels including the drive force distribution control to the front and rear wheels. The nonlinear terms used when determining the driving force distribution do not use the values of the tire lateral forces Ffl_y, Ffr_y, Frl_y, and Frr_y, but before and after being obtained from equations (12) and (13) as follows: A formula using wheel tire slip angles βf and βr may be used.

非線形項=(Kf2・|βf|)/(4・(μfl2・Ffl_z2−4・b2・Ff_x21/2
+(Kf2・|βf|)/(4・(μfr2・Ffr_z2−4・(1−b)2・Ff_x21/2) …(32’)
非線形項=(Kr2・|βr|)/(4・(μrl2・Frl_z2−4・c2・Fr_x21/2
+(Kr2・|βr|)/(4・(μrr2・Frr_z2−4・(1−c)2・Fr_x21/2) …(33’)
非線形項=Kf2・|βf|/(2・(μf2・Ff_z2−a2・Fx2/4)1/2
+Kr2・|βr|/(2・(μr2・Fr_z2−(1−a)2・Fx2/4)1/2) …(34’)
なお、コーナリングパワを線形項と非線形項で示す各式、及び、その変形や近似等は、上述の各形態で示したものに限定されるものではないことは勿論である。
Nonlinear term = (Kf 2 · | βf |) / (4 · (μfl 2 · Ffl_z 2 -4 · b 2 · Ff_x 2 ) 1/2 )
+ (Kf 2 · | βf |) / (4 · (μfr 2 · Ffr_z 2 -4 · (1-b) 2 · Ff_x 2 ) 1/2 ) (32 ')
Nonlinear term = (Kr 2 · | βr |) / (4 · (μrl 2 · Frl_z 2 -4 · c 2 · Fr_x 2 ) 1/2 )
+ (Kr 2 · | βr |) / (4 · (μrr 2 · Frr_z 2 -4 · (1-c) 2 · Fr_x 2 ) 1/2 ) (33 ')
Nonlinear term = Kf 2 · | βf | / (2 · (μf 2 · Ff_z 2 -a 2 · Fx 2/4) 1/2)
+ Kr 2 · | βr | / (2 · (μr 2 · Fr_z 2 - (1-a) 2 · Fx 2/4) 1/2) ... (34 ')
Needless to say, each expression indicating the cornering power in terms of a linear term and a non-linear term, its deformation, approximation, and the like are not limited to those shown in the above embodiments.

更に、本実施の各形態では、FF車(Front engine-Front drive)、FR(Front engine-Rear drive)車、4輪駆動車を例に、左右駆動輪への駆動力配分する例で説明したが、これらに限定されるものではなく、4輪にモータを備え、各モータを制御することで駆動力を得る4輪独立モータ車両においても、左右輪のモータ駆動力、更には4輪のモータ駆動力を本発明により算出される駆動力配分に基づいて制御することで適用することができる。この場合においては、各輪に対する駆動力を算出及び制御するユニットが車両駆動力配分制御手段に該当する。   Furthermore, in each of the embodiments, an example in which driving force is distributed to the left and right driving wheels has been described by taking an FF vehicle (Front engine-Front drive), an FR (Front engine-Rear drive) vehicle, and a 4-wheel drive vehicle as an example. However, the present invention is not limited to these, and even in a four-wheel independent motor vehicle that includes a motor on four wheels and obtains a driving force by controlling each motor, the motor driving force on the left and right wheels, and further the four-wheel motor The present invention can be applied by controlling the driving force based on the driving force distribution calculated by the present invention. In this case, the unit for calculating and controlling the driving force for each wheel corresponds to the vehicle driving force distribution control means.

本発明の第1の形態に係わり、駆動力配分制御装置の概略構成図Schematic configuration diagram of a driving force distribution control device according to the first embodiment of the present invention. 同上、前輪終減速装置の概略構成を示すスケルトン図Same as above, skeleton diagram showing schematic configuration of front wheel final reduction gear 同上、4輪車の等価的な2輪車モデルを示す説明図As above, an explanatory diagram showing an equivalent two-wheeled vehicle model of a four-wheeled vehicle 同上、車両運動モデルの状態運動方程式を機能的に示す説明図Same as above, explanatory diagram functionally showing the state motion equation of the vehicle motion model 本発明の第2の形態に係わり、駆動力配分制御装置の概略構成図Schematic configuration diagram of a driving force distribution control device according to the second embodiment of the present invention. 本発明の第3の形態に係わり、駆動力配分制御装置の概略構成図Schematic configuration diagram of a driving force distribution control device according to the third embodiment of the present invention.

符号の説明Explanation of symbols

9 … フロントドライブ軸(駆動軸)
10 … 前輪終減速装置(駆動力配分手段)
11fl … 前輪左アクスル軸(駆動軸)
11fr … 前輪右アクスル軸(駆動軸)
11rl … 後輪左アクスル軸(駆動軸)
11rr … 後輪右アクスル軸(駆動軸)
12fl … 左前輪(駆動輪)
12fr … 右前輪(駆動輪)
12rl … 左後輪(駆動輪)
12rr … 右後輪(駆動輪)
14fl … 力検出センサ(力検出手段)
14fr … 力検出センサ(力検出手段)
14rl … 力検出センサ(力検出手段)
14rr … 力検出センサ(力検出手段)
15 … リヤドライブ軸(駆動軸)
18 … 後輪終減速装置(駆動力配分手段)
19 … センターディファレンシャル装置(駆動力配分手段)
50 … 駆動力配分比設定部(駆動力配分比設定手段)
51 … 油圧駆動制御部(駆動力配分手段)
代理人 弁理士 伊 藤 進
9 ... Front drive shaft (drive shaft)
10 ... Front wheel final reduction gear (drive force distribution means)
11fl: Front wheel left axle shaft (drive shaft)
11fr: Front wheel right axle shaft (drive shaft)
11rl ... Rear wheel left axle shaft (drive shaft)
11rr: Rear wheel right axle shaft (drive shaft)
12fl ... Left front wheel (drive wheel)
12fr ... Front right wheel (drive wheel)
12rl ... Left rear wheel (drive wheel)
12rr ... Right rear wheel (drive wheel)
14fl: Force detection sensor (force detection means)
14fr: Force detection sensor (force detection means)
14rl: Force detection sensor (force detection means)
14rr ... Force detection sensor (force detection means)
15 ... Rear drive shaft (drive shaft)
18 ... Rear wheel final reduction gear (drive force distribution means)
19 ... Center differential device (drive force distribution means)
50: Driving force distribution ratio setting unit (driving force distribution ratio setting means)
51... Hydraulic drive control unit (drive force distribution means)
Agent Patent Attorney Susumu Ito

Claims (5)

可変設定される駆動力配分比で駆動力を一方の駆動軸と他方の駆動軸とに伝達する駆動力配分手段と、
駆動輪に作用する力を検出する力検出手段と、
前後輪それぞれに実際に生じることが推定され得るコーナリングパワを、コーナリングフォースの横すべり角に対する変化量が線形となる線形項と、少なくとも上記駆動輪に作用する力の検出値と上記各駆動軸に配分される上記駆動力とを用いた非線形項とで表現した場合の、上記非線形項を最小とする上記各駆動軸への駆動力配分比を演算し、当該駆動力配分比を上記駆動力配分手段の駆動力配分比として設定する駆動力配分比設定手段とを備え、
上記駆動力配分比設定手段は、右輪駆動軸と左輪駆動軸への駆動力配分比を設定することを特徴とする車両の駆動力配分制御装置。
Drive force distribution means for transmitting drive force to one drive shaft and the other drive shaft at a variable drive force distribution ratio;
Force detecting means for detecting the force acting on the drive wheel;
The cornering power that can be estimated to actually occur on the front and rear wheels is distributed to the linear term in which the amount of change with respect to the side slip angle of the cornering force is linear , at least the detected value of the force acting on the drive wheels, and the drive shafts. When the driving force is expressed by a nonlinear term using the driving force, a driving force distribution ratio to each driving shaft that minimizes the nonlinear term is calculated, and the driving force distribution ratio is calculated as the driving force distribution means. Driving force distribution ratio setting means for setting as a driving force distribution ratio of
The driving force distribution control device for a vehicle, wherein the driving force distribution ratio setting means sets a driving force distribution ratio to the right wheel drive shaft and the left wheel drive shaft.
上記駆動力配分比設定手段は、前輪駆動軸と後輪駆動軸への駆動力配分比を設定し、該駆動力配分に基づき、前輪側又は後輪側の少なくとも一方の側の右輪駆動軸と左輪駆動軸への駆動力配分比を設定することを特徴とする請求項1記載の車両の駆動力配分制御装置。   The driving force distribution ratio setting means sets a driving force distribution ratio to the front wheel driving shaft and the rear wheel driving shaft, and based on the driving force distribution, the right wheel driving shaft on at least one side of the front wheel side or the rear wheel side. The drive force distribution control device for a vehicle according to claim 1, wherein a drive force distribution ratio to the left wheel drive shaft is set. 上記駆動力配分比設定手段は、前輪駆動軸への駆動力に基づき、前輪側の右輪駆動軸と左輪駆動軸への駆動力配分比を設定することを特徴とする請求項1記載の車両の駆動力配分制御装置。   2. The vehicle according to claim 1, wherein the driving force distribution ratio setting means sets a driving force distribution ratio to the right wheel driving shaft and the left wheel driving shaft on the front wheel side based on the driving force to the front wheel driving shaft. Driving force distribution control device. 上記駆動力配分比設定手段は、後輪駆動軸への駆動力に基づき、後輪側の右輪駆動軸と左輪駆動軸への駆動力配分比を設定することを特徴とする請求項1記載の車両の駆動力配分制御装置。   2. The driving force distribution ratio setting means sets the driving force distribution ratio to the right wheel driving shaft and the left wheel driving shaft on the rear wheel side based on the driving force to the rear wheel driving shaft. Vehicle driving force distribution control device. 駆動輪に作用する力を検出する力検出手段と、
前後輪それぞれに実際に生じることが推定され得るコーナリングパワを、コーナリングフォースの横すべり角に対する変化量が線形となる線形項と、少なくとも上記駆動輪に作用する力の検出値と上記各駆動輪が発生する上記駆動力とを用いた非線形項とで表現した場合の、上記非線形項を最小とする上記各駆動輪における駆動力配分比を演算し、当該駆動力配分比となるよう右輪と左輪の駆動力を制御することを特徴とする車両の駆動力配分制御装置。
Force detecting means for detecting the force acting on the drive wheel;
The cornering power that can be estimated to actually occur on the front and rear wheels is generated by a linear term in which the amount of change with respect to the side slip angle of the cornering force is linear , at least the detected value of the force acting on the driving wheel, and each driving wheel. When the driving force distribution ratio is expressed by a nonlinear term using the driving force, the driving force distribution ratio in each driving wheel that minimizes the nonlinear term is calculated, and the right wheel and the left wheel are calculated so as to be the driving force distribution ratio. A driving force distribution control device for a vehicle, wherein the driving force is controlled.
JP2004228431A 2004-08-04 2004-08-04 Vehicle driving force distribution control device Expired - Fee Related JP4668563B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004228431A JP4668563B2 (en) 2004-08-04 2004-08-04 Vehicle driving force distribution control device
US11/196,167 US7890230B2 (en) 2004-08-04 2005-08-03 Vehicle motion control device and method
US13/012,927 US8165750B2 (en) 2004-08-04 2011-01-25 Vehicle motion control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228431A JP4668563B2 (en) 2004-08-04 2004-08-04 Vehicle driving force distribution control device

Publications (2)

Publication Number Publication Date
JP2006044464A JP2006044464A (en) 2006-02-16
JP4668563B2 true JP4668563B2 (en) 2011-04-13

Family

ID=36023521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228431A Expired - Fee Related JP4668563B2 (en) 2004-08-04 2004-08-04 Vehicle driving force distribution control device

Country Status (1)

Country Link
JP (1) JP4668563B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267095B2 (en) 2008-12-11 2013-08-21 トヨタ自動車株式会社 Running condition evaluation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699796A (en) * 1992-09-17 1994-04-12 Toyota Motor Corp Vehicle control device
JPH082274A (en) * 1994-06-27 1996-01-09 Fuji Heavy Ind Ltd Torque distribution control device for vehicle
JP2002316634A (en) * 2001-04-20 2002-10-29 Fuji Heavy Ind Ltd Vehicle motion control device
JP2003165431A (en) * 2001-11-30 2003-06-10 Honda Motor Co Ltd Body slip angle estimating method
JP2004149107A (en) * 2002-09-04 2004-05-27 Fuji Heavy Ind Ltd Cornering power control device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699796A (en) * 1992-09-17 1994-04-12 Toyota Motor Corp Vehicle control device
JPH082274A (en) * 1994-06-27 1996-01-09 Fuji Heavy Ind Ltd Torque distribution control device for vehicle
JP2002316634A (en) * 2001-04-20 2002-10-29 Fuji Heavy Ind Ltd Vehicle motion control device
JP2003165431A (en) * 2001-11-30 2003-06-10 Honda Motor Co Ltd Body slip angle estimating method
JP2004149107A (en) * 2002-09-04 2004-05-27 Fuji Heavy Ind Ltd Cornering power control device and method

Also Published As

Publication number Publication date
JP2006044464A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
EP0963892B1 (en) Torque distribution control apparatus for 4 wheel driven vehicle
EP1650072B1 (en) Driving force distribution control apparatus of vehicle
US6094614A (en) Driving force distribution control system and road friction coefficient estimating apparatus
EP1203688B1 (en) Power distribution control system for a vehicle
US6564140B2 (en) Vehicle dynamics control system and vehicle having the vehicle dynamics control system
US7890230B2 (en) Vehicle motion control device and method
US6553303B2 (en) Driving force distribution control system and vehicle having the driving force distribution control system
EP1686031A2 (en) Control device for a four-wheel drive vehicle
US20080262692A1 (en) Road-surface friction-coefficient estimating device
US20060041364A1 (en) Vehicle behavior control device
JP5015632B2 (en) Vehicle braking force control device
JP2001287561A (en) Driving force control device for four-wheel drive vehicle
JP2007131062A (en) Vehicle behavior control unit
US10967735B2 (en) Control device for four-wheel drive vehicle
JP2008044555A (en) Yaw moment controller for vehicle
EP2241470A2 (en) Front and rear drive power distribution control device for vehicle
US8055420B2 (en) Vehicle control device
JP3827837B2 (en) Vehicle motion control device
EP1731349B1 (en) Front and rear drive power distribution control device for vehicle
JP4668563B2 (en) Vehicle driving force distribution control device
EP1522474B1 (en) Vehicle motion control device
JPH11115709A (en) Vehicle motion control device
JP5637695B2 (en) Control device for driving force distribution device
JP4781665B2 (en) Vehicle left / right driving force distribution control device
JP3612194B2 (en) Road surface friction coefficient detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees