JP4668473B2 - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP4668473B2
JP4668473B2 JP2001225855A JP2001225855A JP4668473B2 JP 4668473 B2 JP4668473 B2 JP 4668473B2 JP 2001225855 A JP2001225855 A JP 2001225855A JP 2001225855 A JP2001225855 A JP 2001225855A JP 4668473 B2 JP4668473 B2 JP 4668473B2
Authority
JP
Japan
Prior art keywords
power supply
output
operational amplifier
resistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001225855A
Other languages
Japanese (ja)
Other versions
JP2003037974A (en
Inventor
直久 岡本
直哉 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2001225855A priority Critical patent/JP4668473B2/en
Publication of JP2003037974A publication Critical patent/JP2003037974A/en
Application granted granted Critical
Publication of JP4668473B2 publication Critical patent/JP4668473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング電源に関し、待機状態における省エネ対策として、スイッチング電源の待機電力を低減させる手段を備えたスイッチング電源に関するものである。
【0002】
【従来の技術】
この種のスイッチング電源として、図2のものが提案されている。IC3は、出力電圧検出用ICであり、出力電圧が定格電圧より上昇するとIC3に接続されたフォトカプラPC2のダイオードに流れる電流が増加して、フォトカプラPC2のトランジスタが接続されている、電源制御用IC(IC4)のフィードバック(FB)端子の電圧が下がり、下がる量に応じて一定周波数動作しているスイッチング素子Q1のオフ時間デューティが大きくなり、出力電圧を下げて定格電圧を安定供給することができる。
しかし、上記のスイッチング電源回路においては図4に示すように、スイッチング電源の動作状態にかかわらず、一定周波数でスイッチング素子Q1が動作しているため、スイッチングロスが常に発生し、スイッチング電源の待機電力を悪化させるという問題があった。
【0003】
【発明が解決しようとする課題】
上記のような問題があったため、スイッチング電源の待機状態において、スイッチングロスを大幅に減少させ、待機電力を低減することができる回路構成が要求されていた。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するもので、整流して得られる直流電圧を一次側のスイッチング素子Q1でオン/オフし、ダイオードと平滑コンデンサとを有する二次側の整流・平滑回路を介して電圧を安定供給するスイッチング電源において、スイッチング電源の(+)出力端子と(−)出力端子との間に第1の抵抗R1および第2の抵抗R2を直列接続し、第1の抵抗R1および第2の抵抗R2の接続点を第1のオペアンプIC1の(+)入力端子に接続し、第1のオペアンプIC1の(+)入力端子と出力端子とを第4の抵抗R4で接続し、第1のオペアンプIC1の出力端子と第2のオペアンプIC2の出力端子とを、直列接続した第1のフォトカプラPC1のダイオードと第3の抵抗R3で接続し、第1のオペアンプIC1の(−)入力端子をツェナーダイオードD1のカソードに接続し、該ツェナーダイオードD1のアノードをスイッチング電源の(−)出力端子に接続し、該ツェナーダイオードD1のカソード側と二次巻線側との間に第5の抵抗R5および第6の抵抗R6を直列接続し、第5の抵抗R5および第6の抵抗R6の接続点を第2のオペアンプIC2の(−)入力端子に接続し、第6の抵抗R6の二次巻線側と第2のオペアンプIC2の(+)入力端子との間に第7の抵抗R7を接続し、かつ第7の抵抗R7と第2のオペアンプIC2の(+)入力端子の接続点をスイッチング電源の(−)出力端子側に接続し、スイッチング電源の(+)出力端子と(−)出力端子から出力される出力電圧を検出する出力電圧検出用IC3に第2のフォトカプラPC2のダイオードを接続し、第2のフォトカプラPC2のトランジスタを一次側電源制御用IC4のフィードバック端子に接続し、第1のフォトカプラPC1のトランジスタを一次側電源制御用ICのON/OFF端子に接続して、最低出力電圧および出力電流の検出回路を構成し、該検出回路からの信号でスイッチング素子Q1の動作/停止を制御することを特徴とするスイッチング電源である。
【0005】
上記の検出回路で検出した出力電流が所定の値以下であり、かつ、検出した出力電圧が定格出力電圧から設定電圧に下がるまでの間、第1のフォトカプラを動作させ、一次側の電源制御用IC(IC4)のON/OFF端子に信号を伝え、スイッチング素子Q1を停止させる。
【0006】
そして、検出した出力電圧が設定電圧となった時、第1のフォトカプラを停止させてスイッチング素子Q1を動作させ、出力電圧が定格出力電圧とほぼ等しい電圧まで上昇させる。
検出回路で検出した出力電流が所定の値以下である間、上記動作を繰り返す。
【0007】
また、上記検出回路で検出した出力電流が所定の値より大きい時、第1のフォトカプラを動作停止させ、通常のスイッチング動作をさせる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。図1は本発明の実施形態が適用されるスイッチング電源の一例である。
この回路は、フライバックコンバータと呼ばれるものであり、図1はその回路構成を示したものである。Tは一次側に蓄積されたエネルギーを二次側へ伝達するためのコンバータトランス、Q1はスイッチング素子であるFET、C1は電源入力平滑用コンデンサ、R8は電源起動用抵抗、C2は二次側出力平滑用コンデンサであり、IC4はスイッチング電源制御用IC、IC3は出力電圧検出用ICであり、PC1は二次側回路に電圧を安定供給するための信号を一次側にフィードバックするフォトカプラ、R7は出力電流検出用抵抗、R5、R6は基準電圧を分圧する抵抗、IC2は出力電流が増加しR7の両端電圧が上昇したことを検出するオペアンプ、IC1およびR1、R2、R4は負荷側が許容できる最低出力電圧を検出するオペアンプと抵抗、D1はIC1とIC2の基準電圧となるツェナーダイオード、PC1は負荷側が許容できる最低出力電圧になるまでスイッチング素子Q1を停止させる信号を一次側にフィードバックするフォトカプラ、R3はフォトカプラの電流を制限する抵抗である。
【0009】
出力電圧が定格電圧より上昇すると、出力電圧検出用IC3に接続されたフォトカプラPC2のダイオードに流れる電流が増加して、フォトカプラPC2のトランジスタが接続されている電源制御用IC(IC4)のフィードバック(FB)端子電圧が下がり、下がる量に応じて一定周波数動作しているスイッチング素子Q1のオフ時間デューティが大きくなり、出力電圧を下げて定格電圧を安定供給することができる。
負荷側が待機状態となり、電源の出力電流が非常に小さくなると、抵抗R7の両端電圧と基準電圧となるツェナーダイオードD1の電圧を抵抗R5とR6で分圧して得られる電圧を比較し、R7の両端電圧が低くなるとオペアンプIC2の出力はLレベルとなる。
二次側出力平滑用コンデンサC2の両端電圧は安定化出力電圧になっており、抵抗R1、R2、およびR4で分圧し得られたR2両端電圧と、基準電圧となるツェナーダイオードD2の電圧を比較し、R2両端電圧が高くなっている間、オペアンプIC1の出力はHレベルとなり、オペアンプIC1の出力端子から電流がフォトカプラPC1のダイオード、抵抗R3、LレベルとなっているオペアンプIC2の出力端子に流れ込み、フォトカプラPC1のトランジスタ側がオンとなり、電源制御用IC(IC4)のON/OFF端子がLレベルとなり、電源制御用IC(IC4)はON/OFF端子がLレベルになると発振停止となる機能を有しているため、スイッチング素子Q1は停止する。
二次側出力平滑用コンデンサC2の両端電圧は、微小待機負荷電流とC2に接続されている電源内部回路で消費される微小電流によって徐々に放電され、負荷側が許容できる最低出力電圧に達すると、抵抗R2の両端電圧が基準電圧であるD1の電圧より低くなるため、オペアンプIC1の出力端子はLレベルとなり、フォトカプラPC1のダイオードに電流が流れなくなり、フォトカプラPC1のトランジスタ側がオフし、電源制御用IC(IC4)のON/OFF端子がHレベルになるので、スイッチング素子Q1は動作を開始する。
【0010】
図3は電源の動作状態と時間との関係を示した図である。
負荷側が待機状態の間は、図3のA部分に示すように、定格出力電圧と負荷側が許容できる最低出力電圧の間になるようにスイッチング素子Q1はオン/オフを繰り返す。図3のA部分のタイムチャートから分かるように、停止時間が動作時間に対して非常に長く、停止中はスイッチングロスがゼロになるので、電源の待機電力を低減することができる。
待機状態から電源の出力電流を若干増加させると、図3のB部分に示すように、増加させた電流に応じて出力平滑コンデンサC2の放電される時間が短くなり、上記スイッチング素子Q1の停止時間が短くなる。
さらに電源の出力電流を増加させ、抵抗R7の両端電圧が抵抗R5とR6で分圧して得られる電圧に対して高くなると、オペアンプIC2の出力はHレベルとなり、今までオペアンプIC1の出力端子からフォトカプラPC1のダイオード、抵抗R3、オペアンプIC2の出力端子へ流れていた電流が流れなくなり、スイッチング素子Q1のオフ信号が一次側にフィードバックできなくなるため、電源の動作状態は本来の一定周波数動作に移行する(図3のC部分)。
上記したように、負荷側が待機状態の時、定格出力電圧と負荷側が許容できる最低出力電圧の間になるようにスイッチング素子Q1はオン/オフ動作を繰り返し、停止時間が動作時間に対して非常に長く、停止中はスイッチングロスがゼロになるので、電源の待機電力が低減される。
ところが、従来例では図4に示すように、スイッチング電源の動作状態にかかわらず、一定周波数でスイッチング素子Q1が動作しているため、スイッチングロスが常に発生する。
実施例と従来例とで、待機電力を比較した結果を表1に示す。
【0011】
【表1】

Figure 0004668473
【0012】
入力電圧AC100V、定格出力電圧13V、負荷側が許容できる最低出力電圧10V、コンデンサC2の容量3000μF、発振周波数70kHz、待機負荷2mAの場合、従来回路方式では入力電力が0.3Wに対して、本回路方式ではスイッチング素子Q1のオフ時間が1.5秒、スイッチング素子Q1のオン時間が100msecで、入力電力は0.072Wと従来例の24%にまで低減することができた。
【0013】
【発明の効果】
以上説明したように、本発明によれば、負荷側が待機状態の時、定格出力電圧と負荷側が許容できる最低出力電圧の間で、スイッチング素子がオン/オフを繰り返し、停止時間を動作時間に対して長くとることができ、この間はスイッチングロスがゼロになるので、電源の待機電力が低減でき、待機時の省エネに貢献することができる。
【図面の簡単な説明】
【図1】本発明の実施例によるスイッチング電源の回路図である。
【図2】従来のスイッチング電源の回路図である。
【図3】図1の実施例による電源の動作状態を示すタイムチャートである。
【図4】図2の従来例による電源の動作状態を示すタイムチャートである。
【符号の説明】
Q1 スイッチング素子(FET)
IC1 第1のオペアンプ(最低出力電圧検出用)
IC2 第2のオペアンプ(出力電流検出用)
IC3 出力電圧検出用IC
IC4 電源制御用IC
PC1 第1のフォトカプラ(電源停止信号フィードバック用)
PC2 第2のフォトカプラ(出力電圧検出信号フィードバック用)
C1 平滑コンデンサ(電源入力平滑用)
C2 平滑コンデンサ(出力平滑用)
R1 第1の抵抗(最低出力電圧検出用)
R2 第2の抵抗(最低出力電圧検出用)
R3 第3の抵抗(電流制限用)
R4 第4の抵抗(最低出力電圧検出用)
R5 第5の抵抗(基準電圧分圧用)
R6 第6の抵抗(基準電圧分圧用)
R7 第7の抵抗(出力電流検出用)
R8 第8の抵抗(電源起動用)
T コンバータトランス
D1 ツェナーダイオード(基準電圧設定用)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switching power supply, and relates to a switching power supply provided with means for reducing standby power of the switching power supply as an energy saving measure in a standby state.
[0002]
[Prior art]
FIG. 2 has been proposed as this type of switching power supply. IC3 is an output voltage detection IC. When the output voltage rises above the rated voltage, the current flowing through the diode of the photocoupler PC2 connected to the IC3 increases and the transistor of the photocoupler PC2 is connected. The voltage at the feedback (FB) terminal of the IC for IC (IC4) decreases, and the off-time duty of the switching element Q1 operating at a constant frequency increases according to the amount to decrease, and the rated voltage is stably supplied by decreasing the output voltage. Can do.
However, in the above switching power supply circuit, as shown in FIG. 4, the switching element Q1 operates at a constant frequency regardless of the operating state of the switching power supply. There was a problem of worsening.
[0003]
[Problems to be solved by the invention]
Because of the above problems, a circuit configuration that can significantly reduce the switching loss and reduce the standby power in the standby state of the switching power supply has been required.
[0004]
[Means for Solving the Problems]
The present invention solves the above-described problem, and a DC voltage obtained by rectification is turned on / off by a switching element Q1 on the primary side, via a rectification / smoothing circuit on the secondary side having a diode and a smoothing capacitor. In a switching power supply that stably supplies a voltage, a first resistor R1 and a second resistor R2 are connected in series between a (+) output terminal and a (−) output terminal of the switching power supply, and the first resistor R1 and the first resistor R1 The connection point of the two resistors R2 is connected to the (+) input terminal of the first operational amplifier IC1, the (+) input terminal and the output terminal of the first operational amplifier IC1 are connected by the fourth resistor R4, and the first the output terminal of the operational amplifier IC1 and the output terminal of the second operational amplifier IC 2, connected by a first photocoupler PC1 diode and a third resistor R3 connected in series, the first operational amplifier IC1 (-) input Connects the terminal to the cathode of the Zener diode D1, the anode of the Zener diode D1 of the switching power supply (-) connected to the output terminal, between the cathode side and the secondary winding side of the Zener diode D1 of the fifth The resistor R5 and the sixth resistor R6 are connected in series, the connection point of the fifth resistor R5 and the sixth resistor R6 is connected to the (−) input terminal of the second operational amplifier IC2, and two resistors of the sixth resistor R6 are connected. A seventh resistor R7 is connected between the next winding side and the (+) input terminal of the second operational amplifier IC2, and a connection point between the seventh resistor R7 and the (+) input terminal of the second operational amplifier IC2 Is connected to the (−) output terminal side of the switching power supply, and the output voltage detection IC 3 for detecting the output voltage output from the (+) output terminal and the (−) output terminal of the switching power supply is connected to the second photocoupler PC2. Daio Connect the de, the transistor of the second photocoupler PC2 connected to the feedback terminal of the primary power supply control IC 4, connects the transistor of the first photo coupler PC1 to ON / OFF terminal of the primary-side power supply control IC 4 The switching power supply is configured to constitute a detection circuit for the minimum output voltage and output current, and to control the operation / stop of the switching element Q1 by a signal from the detection circuit.
[0005]
While the output current detected by the detection circuit is below a predetermined value and the detected output voltage falls from the rated output voltage to the set voltage, the first photocoupler is operated to control the power supply on the primary side. A signal is transmitted to the ON / OFF terminal of the IC (IC4), and the switching element Q1 is stopped.
[0006]
When the detected output voltage becomes the set voltage, the first photocoupler is stopped to operate the switching element Q1, and the output voltage is increased to a voltage substantially equal to the rated output voltage.
The above operation is repeated while the output current detected by the detection circuit is below a predetermined value.
[0007]
When the output current detected by the detection circuit is larger than a predetermined value, the first photocoupler is stopped and a normal switching operation is performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an example of a switching power supply to which an embodiment of the present invention is applied.
This circuit is called a flyback converter, and FIG. 1 shows its circuit configuration. T is a converter transformer for transmitting energy accumulated on the primary side to the secondary side, Q1 is an FET as a switching element, C1 is a power input smoothing capacitor, R8 is a power source starting resistor, and C2 is a secondary side output. A smoothing capacitor, IC4 is a switching power supply control IC, IC3 is an output voltage detection IC, PC1 is a photocoupler that feeds back a signal for stably supplying a voltage to the secondary side circuit, and R7 is Output current detection resistors, R5 and R6 are resistors that divide the reference voltage, IC2 is an operational amplifier that detects that the output current has increased and the voltage across R7 has increased, and IC1 and R1, R2, and R4 are the lowest allowable on the load side Operational amplifier and resistor for detecting output voltage, D1 is a Zener diode that serves as a reference voltage for IC1 and IC2, and PC1 is allowed on the load side Optocoupler feeding back a signal to stop the switching element Q1 to a minimum output voltage that can on the primary side, R3 is a resistor for limiting the current of the photo coupler.
[0009]
When the output voltage rises above the rated voltage, the current flowing through the diode of the photocoupler PC2 connected to the output voltage detection IC3 increases, and feedback of the power supply control IC (IC4) to which the transistor of the photocoupler PC2 is connected. (FB) The off-time duty of the switching element Q1 operating at a constant frequency increases according to the amount that the terminal voltage decreases and decreases, and the rated voltage can be stably supplied by decreasing the output voltage.
When the load side is in a standby state and the output current of the power supply becomes very small, the voltage obtained by dividing the voltage across the resistor R7 and the voltage of the Zener diode D1 serving as the reference voltage by the resistors R5 and R6 is compared. When the voltage is lowered, the output of the operational amplifier IC2 becomes L level.
The voltage across the secondary output smoothing capacitor C2 is a stabilized output voltage, and the voltage across the R2 obtained by dividing by the resistors R1, R2, and R4 is compared with the voltage of the Zener diode D2 serving as the reference voltage. While the voltage across R2 is high, the output of the operational amplifier IC1 is at the H level, and the current from the output terminal of the operational amplifier IC1 goes to the diode of the photocoupler PC1, the resistor R3, and the output terminal of the operational amplifier IC2 at the L level. When the transistor side of the photocoupler PC1 is turned on, the ON / OFF terminal of the power supply control IC (IC4) becomes L level, and the power supply control IC (IC4) stops oscillation when the ON / OFF terminal becomes L level. Therefore, the switching element Q1 stops.
When the voltage across the secondary side output smoothing capacitor C2 is gradually discharged by the minute standby load current and the minute current consumed by the power supply internal circuit connected to C2, and reaches the minimum output voltage that the load side can tolerate, Since the voltage across the resistor R2 is lower than the reference voltage D1, the output terminal of the operational amplifier IC1 becomes L level, no current flows through the diode of the photocoupler PC1, the transistor side of the photocoupler PC1 is turned off, and the power supply control Since the ON / OFF terminal of the IC for IC (IC4) becomes H level, the switching element Q1 starts its operation.
[0010]
FIG. 3 is a diagram showing the relationship between the operating state of the power supply and time.
While the load side is in the standby state, as shown in part A of FIG. 3, the switching element Q1 is repeatedly turned on / off so as to be between the rated output voltage and the minimum output voltage allowable on the load side. As can be seen from the time chart of part A in FIG. 3, the stop time is very long with respect to the operation time, and the switching loss becomes zero during the stop, so that the standby power of the power source can be reduced.
When the output current of the power supply is slightly increased from the standby state, the time during which the output smoothing capacitor C2 is discharged becomes shorter according to the increased current, as shown in part B of FIG. Becomes shorter.
When the output current of the power supply is further increased and the voltage across the resistor R7 becomes higher than the voltage obtained by dividing by the resistors R5 and R6, the output of the operational amplifier IC2 becomes H level, so far from the output terminal of the operational amplifier IC1 to the photo Since the current flowing to the diode of the coupler PC1, the resistor R3, and the output terminal of the operational amplifier IC2 does not flow, and the OFF signal of the switching element Q1 cannot be fed back to the primary side, the operating state of the power supply shifts to the original constant frequency operation. (C part of FIG. 3).
As described above, when the load side is in the standby state, the switching element Q1 repeats the on / off operation so that it is between the rated output voltage and the allowable minimum output voltage on the load side, and the stop time is very large with respect to the operation time. Since the switching loss is zero during a long stop, the standby power of the power source is reduced.
However, in the conventional example, as shown in FIG. 4, the switching element Q1 operates at a constant frequency regardless of the operating state of the switching power supply, and therefore a switching loss always occurs.
Table 1 shows the result of comparison of standby power between the example and the conventional example.
[0011]
[Table 1]
Figure 0004668473
[0012]
When the input voltage is AC100V, the rated output voltage is 13V, the minimum output voltage is 10V that the load side can accept, the capacity of the capacitor C2 is 3000μF, the oscillation frequency is 70kHz, and the standby load is 2mA. In the system, the off time of the switching element Q1 is 1.5 seconds, the on time of the switching element Q1 is 100 msec, and the input power can be reduced to 0.072 W, which is 24% of the conventional example.
[0013]
【The invention's effect】
As described above, according to the present invention, when the load side is in a standby state, the switching element is repeatedly turned on / off between the rated output voltage and the minimum output voltage allowable on the load side. Since the switching loss is zero during this period, the standby power of the power source can be reduced, contributing to energy saving during standby.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a switching power supply according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of a conventional switching power supply.
FIG. 3 is a time chart showing an operation state of a power supply according to the embodiment of FIG. 1;
4 is a time chart showing an operation state of a power supply according to the conventional example of FIG. 2;
[Explanation of symbols]
Q1 Switching element (FET)
IC1 1st operational amplifier (for minimum output voltage detection)
IC2 Second operational amplifier (for output current detection)
IC3 Output voltage detection IC
IC4 Power control IC
PC1 1st photocoupler (for power stop signal feedback)
PC2 Second photocoupler (for output voltage detection signal feedback)
C1 smoothing capacitor (for power input smoothing)
C2 smoothing capacitor (for output smoothing)
R1 first resistor (for minimum output voltage detection)
R2 2nd resistor (for minimum output voltage detection)
R3 3rd resistor (for current limiting)
R4 4th resistor (for minimum output voltage detection)
R5 5th resistor (for reference voltage division)
R6 6th resistor (for reference voltage division)
R7 7th resistor (for output current detection)
R8 8th resistor (for power activation)
T converter transformer D1 Zener diode (for reference voltage setting)

Claims (1)

整流して得られる直流電圧を一次側のスイッチング素子でオン/オフし、ダイオードと平滑コンデンサとを有する二次側の整流・平滑回路を介して電圧を安定供給するスイッチング電源において、
スイッチング電源の(+)出力端子と(−)出力端子との間に第1および第2の抵抗を直列接続し、第1および第2の抵抗の接続点を第1のオペアンプの(+)入力端子に接続し、第1のオペアンプの(+)入力端子と出力端子とを第4の抵抗で接続し、第1のオペアンプの出力端子と第2のオペアンプの出力端子とを直列接続した第1のフォトカプラのダイオードと第3の抵抗で接続し、第1のオペアンプの(−)入力端子をツェナーダイオードのカソードに接続し、該ツェナーダイオードのアノードをスイッチング電源の(−)出力端子に接続し、該ツェナーダイオードのカソード側と二次巻線側との間に第5および第6の抵抗を直列接続し、第5および第6の抵抗の接続点を第2のオペアンプの(−)入力端子に接続し、第6の抵抗の二次巻線側と第2のオペアンプの(+)入力端子との間に第7の抵抗を接続し、かつ第7の抵抗と第2のオペアンプの(+)入力端子の接続点をスイッチング電源の(−)出力端子側に接続し、スイッチング電源の(+)出力端子と(−)出力端子から出力される出力電圧を検出する出力電圧検出用ICに第2のフォトカプラのダイオードを接続し、第2のフォトカプラのトランジスタを一次側電源制御用ICのフィードバック端子に接続し、第1のフォトカプラのトランジスタを一次側電源制御用ICのON/OFF端子に接続して、最低出力電圧および出力電流の検出回路を構成し、該検出回路からの信号でスイッチング素子の動作/停止を制御することを特徴とするスイッチング電源。
In a switching power supply that stably supplies a voltage via a secondary side rectification / smoothing circuit that turns on / off a DC voltage obtained by rectification by a primary side switching element, and has a diode and a smoothing capacitor.
The first and second resistors are connected in series between the (+) output terminal and the (−) output terminal of the switching power supply, and the connection point of the first and second resistors is the (+) input of the first operational amplifier. The first operational amplifier's (+) input terminal and the output terminal are connected by a fourth resistor, and the first operational amplifier's output terminal and the second operational amplifier's output terminal are connected in series . The photocoupler diode is connected with a third resistor, the (−) input terminal of the first operational amplifier is connected to the cathode of the Zener diode , and the anode of the Zener diode is connected to the (−) output terminal of the switching power supply. The fifth and sixth resistors are connected in series between the cathode side and the secondary winding side of the Zener diode , and the connection point of the fifth and sixth resistors is the (−) input terminal of the second operational amplifier. Connected to the sixth resistor A seventh resistor is connected between the winding side and the (+) input terminal of the second operational amplifier, and the connection point of the seventh resistor and the (+) input terminal of the second operational amplifier is connected to the switching power supply ( −) Connect to the output terminal side, connect the diode of the second photocoupler to the output voltage detection IC that detects the output voltage output from the (+) output terminal and the (−) output terminal of the switching power supply, The photocoupler transistor of No. 2 is connected to the feedback terminal of the primary side power supply control IC, the transistor of the first photocoupler is connected to the ON / OFF terminal of the primary side power supply control IC, and the minimum output voltage and output current are connected. A switching power supply comprising: a detection circuit configured to control an operation / stop of a switching element by a signal from the detection circuit.
JP2001225855A 2001-07-26 2001-07-26 Switching power supply Expired - Fee Related JP4668473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225855A JP4668473B2 (en) 2001-07-26 2001-07-26 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225855A JP4668473B2 (en) 2001-07-26 2001-07-26 Switching power supply

Publications (2)

Publication Number Publication Date
JP2003037974A JP2003037974A (en) 2003-02-07
JP4668473B2 true JP4668473B2 (en) 2011-04-13

Family

ID=19058777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225855A Expired - Fee Related JP4668473B2 (en) 2001-07-26 2001-07-26 Switching power supply

Country Status (1)

Country Link
JP (1) JP4668473B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859207B2 (en) * 2006-02-28 2012-01-25 キヤノン株式会社 Switching power supply
JP2012130123A (en) * 2010-12-14 2012-07-05 Makita Corp Charger
JP6146812B2 (en) * 2013-10-09 2017-06-14 ニチコン株式会社 Switching power supply
CN115296528B (en) * 2022-09-30 2023-03-24 广东东菱电源科技有限公司 Circuit for improving wide input and output voltage LLC topological efficiency
CN116418249B (en) * 2023-06-08 2023-10-10 深圳市斯康达电子有限公司 AC/DC bidirectional conversion circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044942A (en) * 2000-07-19 2002-02-08 Nichicon Corp Switching power source
JP2003033020A (en) * 2001-07-19 2003-01-31 Nichicon Corp Switching power supply

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235036A (en) * 1998-02-09 1999-08-27 Murata Mfg Co Ltd Self-excited oscillation switching powder supply
JP3497075B2 (en) * 1998-03-20 2004-02-16 シャープ株式会社 Switching power supply circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044942A (en) * 2000-07-19 2002-02-08 Nichicon Corp Switching power source
JP2003033020A (en) * 2001-07-19 2003-01-31 Nichicon Corp Switching power supply

Also Published As

Publication number Publication date
JP2003037974A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
KR101030920B1 (en) Switching power supply
KR101168588B1 (en) Power supply apparatus and image forming apparatus
US7012818B2 (en) Switching power supply device
KR100422764B1 (en) Switching power supply device
US5633787A (en) Switch-mode power supply with control of output supply voltage and overcurrent
US6671193B1 (en) Power source and arrangement for restricting the short-circuit current or rectifier
US20060092671A1 (en) Semiconductor device for controlling switching power supply and switching power supply unit using the same
JP3465673B2 (en) Switching power supply
JP3766627B2 (en) Switching power supply
JP3475904B2 (en) Switching power supply
JP4668473B2 (en) Switching power supply
JP4653350B2 (en) Switching power supply
JP3740325B2 (en) Self-excited switching power supply
JP2004289981A (en) Switching power supply
JPH10304658A (en) Switching power supply
JP4386384B2 (en) Switching power supply
JP3409287B2 (en) Self-excited switching power supply circuit
JP2004015993A (en) Power saving power supply under no load
JPH11122920A (en) Switching power unit
JP6682930B2 (en) Power supply
JP2003143843A (en) Switching regulator
JP5010012B2 (en) Power consumption reduction circuit
JP3171068B2 (en) Switching power supply
JP2002199613A (en) Charging circuit for secondary battery
JP2004328948A (en) Switching power circuit and switching regulator equipped with the switching power circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees