JP4667536B1 - Structure with internal reinforcement frame - Google Patents

Structure with internal reinforcement frame Download PDF

Info

Publication number
JP4667536B1
JP4667536B1 JP2010265961A JP2010265961A JP4667536B1 JP 4667536 B1 JP4667536 B1 JP 4667536B1 JP 2010265961 A JP2010265961 A JP 2010265961A JP 2010265961 A JP2010265961 A JP 2010265961A JP 4667536 B1 JP4667536 B1 JP 4667536B1
Authority
JP
Japan
Prior art keywords
corridor
seismic
frame
span
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010265961A
Other languages
Japanese (ja)
Other versions
JP2012117232A (en
Inventor
等 塩原
健治 横田
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kse Network
Original Assignee
Kse Network
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kse Network filed Critical Kse Network
Priority to JP2010265961A priority Critical patent/JP4667536B1/en
Application granted granted Critical
Publication of JP4667536B1 publication Critical patent/JP4667536B1/en
Publication of JP2012117232A publication Critical patent/JP2012117232A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

【課題】スパン方向と桁行方向のそれぞれの架構が柱・梁のフレームを有し、長辺方向(桁行方向)と短辺方向(スパン方向)の曲げ剛性に差があり得る既存の、あるいは新設の例えば鉄筋コンクリート造、鉄骨造等の構造物に対し、長辺方向(桁行方向)の構面の短辺方向(スパン方向)の曲げ剛性を高め、長辺方向の曲げ剛性との差を縮小させる。
【解決手段】スパン方向と桁行方向のそれぞれの架構が柱2と梁3のフレームを有し、スパン方向に配列する一部の柱2、2間に、桁行方向に連続する廊下4が配置されている複数層の構造物1の内部において、
桁行方向の柱2・梁3のフレームの内、少なくとも桁行方向中間部位置の柱2を通るスパン方向の柱2・梁3のフレームを構成し、廊下4を区画する、並列する柱2、2間にスパン方向を向く耐震要素5を少なくとも地下最下層以上の層に配置する。
【選択図】図1
[PROBLEMS] An existing or new structure in which each frame in the span direction and the beam direction has a column / beam frame, and there is a difference in bending rigidity between the long side direction (column direction) and the short side direction (span direction). For example, for reinforced concrete structures, steel structures, etc., the bending rigidity in the short side direction (span direction) of the long side direction (girder direction) is increased, and the difference from the bending rigidity in the long side direction is reduced. .
Each frame in the span direction and the column direction has a frame of columns 2 and beams 3, and a corridor 4 continuous in the column direction is arranged between some columns 2 and 2 arranged in the span direction. In the multi-layer structure 1
Among the frames of the column 2 and the beam 3 in the row direction, the columns 2 and 2 in parallel form the frame of the span 2 and the beam 3 passing through the column 2 at the middle position in the column direction and define the corridor 4. The seismic elements 5 facing in the span direction in between are arranged at least in the layer below the lowest underground layer.
[Selection] Figure 1

Description

本発明はスパン方向と桁行方向のそれぞれの架構が柱・梁のフレームを有する既存の、あるいは新設の例えば鉄筋コンクリート造、鉄骨造等の構造物の内部にスパン方向の耐震性を確保するための補強架構を配置した内部補強架構付き構造物に関するものである。   The present invention is a reinforcement for ensuring seismic resistance in the span direction in an existing or new structure such as a reinforced concrete structure or a steel frame structure in which each frame in the span direction and the beam direction has a column / beam frame. The present invention relates to a structure with an internal reinforcing frame in which the frame is arranged.

柱・梁のフレームを有する例えば既存の鉄筋コンクリート造躯体等の構造物に耐震性能、あるいは制震性能を付与しようとする場合、既存構造物は多くの場合、スパン方向である短辺方向と桁行方向である長辺方向を持つ平面形状をし、短辺方向(スパン方向)には連層の耐震壁(耐力壁)が配置されていることが多いため、構造物に耐震性能を付与するための(耐震)補強架構は桁行方向に配置(付加)されれば済むことが多い(特許文献1〜3参照)。   When trying to give seismic performance or seismic performance to a structure such as an existing reinforced concrete structure that has a pillar / beam frame, the existing structure often has a short side direction and a transverse direction that are span directions. It has a planar shape with a long side direction, and a multi-layer seismic wall (bearing wall) is often arranged in the short side direction (span direction). In many cases, the (earthquake-resistant) reinforcing frame only needs to be arranged (added) in the direction of the beam (see Patent Documents 1 to 3).

既存構造物が例えば長方形状である場合、構造物内部の短辺方向には長辺方向に間隔を置いて平行に配列する耐震壁(境界壁)を連層で配置することができている一方、短辺方向両側の構面には窓等の開口を確保する必要から、長辺方向には連続した耐震壁を配置することが難しいため、既存構造物に対して耐震補強架構を付加しようとすれば、長辺方向(桁行方向)に向けて配置する必然性が高いことによる。   For example, when the existing structure is rectangular, the earthquake-resistant walls (boundary walls) arranged in parallel with a gap in the long-side direction can be arranged in multiple layers in the short-side direction inside the structure. Because it is necessary to secure openings such as windows on the construction surface on both sides in the short side direction, it is difficult to place a continuous earthquake resistant wall in the long side direction. This is because there is a high inevitability in the arrangement in the long side direction (column direction).

短辺方向と長辺方向の長さの差が大きくない場合には、二方向に補強架構を配置することもある(特許文献1参照)。補強架構を構造物の内部に配置することもあるが、構造物が既存である場合には、構造物の内部に補強架構を付加することは通路等に利用されている開口を閉塞し、動線を犠牲にすることもあり、補強架構をスパン方向に向けて構造物の内部に配置することは通常、行われない(特許文献3、4参照)。   When the difference in length between the short side direction and the long side direction is not large, a reinforcing frame may be arranged in two directions (see Patent Document 1). In some cases, a reinforcing frame is placed inside the structure, but if the structure already exists, adding a reinforcing frame inside the structure closes the openings used for the passages, etc. Since the wire may be sacrificed, the reinforcing frame is usually not arranged in the structure in the span direction (see Patent Documents 3 and 4).

既存構造物に対し、桁行方向の補強架構の付加に伴い、スパン方向にも補強架構を配置することもあるが(特許文献5参照)、この場合のスパン方向の新設架構は桁行方向に補強架構を付加するために、既存構造物の桁行方向の構面から屋外側へ張り出す形で、増設で構築される増設梁であり、既存構造物の内部に配置される架構ではない。   Along with the addition of a reinforcing frame in the direction of the beam to the existing structure, a reinforcing frame may also be arranged in the span direction (see Patent Document 5). In this case, the newly installed frame in the span direction is a reinforcing frame in the direction of the beam. Therefore, it is an extension beam constructed by extension in the form of projecting to the outdoor side from the construction surface in the column direction of the existing structure, not a frame arranged inside the existing structure.

特開平9−203220号公報(請求項1、段落0017〜0024、図1、図2)JP-A-9-203220 (Claim 1, paragraphs 0017 to 0024, FIGS. 1 and 2) 特開2005−139770号公報(請求項1、図1、図3、図4)JP 2005-139770 A (Claim 1, FIG. 1, FIG. 3, FIG. 4) 特開平9−273317公報(請求項1、段落0014〜0036、図1〜図7)JP-A-9-273317 (Claim 1, paragraphs 0014 to 0036, FIGS. 1 to 7) 特開平9−310511公報(請求項1、段落0014〜0023、図1〜図3)JP-A-9-310511 (Claim 1, paragraphs 0014 to 0023, FIGS. 1 to 3) 特開平10−46834公報(請求項3、段落0018〜0026、図1〜図3)JP-A-10-46834 (Claim 3, paragraphs 0018 to 0026, FIGS. 1 to 3)

上記のように既存構造物においてはスパン方向(短辺方向)に配置されている連層の耐震壁がスパン方向の耐震性と剛性を確保することができているとしても、スパン方向の一部区間に桁行方向に連続する廊下が存在している場合には、その開口がスパン方向の耐震壁の耐力と剛性を低下させている可能性がある。   As mentioned above, even if the existing seismic walls in the span direction (short side direction) can secure the earthquake resistance and rigidity in the span direction in the existing structure, a part of the span direction If the section has a corridor that continues in the crossing direction, the opening may reduce the strength and rigidity of the span shear wall.

廊下はスパン方向に配列するいずれか一部の2本の柱間に配置され、そのスパン方向に形成される廊下の区間は構造物の高さ方向に統一されるため、構造物の内部を桁行方向に見たときには図2に示すように廊下の開口が高さ方向に連続的に配列する。図2は本発明のスパン方向の耐震要素が付加される前の、廊下の開口部が開放したままの状態にある既存構造物をスパン方向の断面を桁行方向に見たときの様子を示している。   The corridor is arranged between any two columns arranged in the span direction, and the section of the corridor formed in the span direction is unified in the height direction of the structure. When viewed in the direction, the hallway openings are continuously arranged in the height direction as shown in FIG. FIG. 2 shows a state in which a cross-section in the span direction is viewed in the direction of the row of an existing structure in which the opening of the corridor remains open before the span seismic element of the present invention is added. Yes.

上下に隣接する層の開口部間にはスパン方向の梁があるだけになり、仮に廊下のスパン方向両側に耐震壁が接続されていたとしても、スパン全体ではスパン方向の曲げ剛性、またはせん断剛性が極端に低下するため、地震時の水平力に対する十分な抵抗力を保有しているとは言えない状況にある。   Even if there are only beams in the span direction between the openings in the upper and lower adjacent layers, and the earthquake resistant walls are connected to both sides of the corridor in the span direction, the bending stiffness or shear stiffness in the span direction is assumed for the entire span. Is extremely low, so it cannot be said that it has sufficient resistance against horizontal force during an earthquake.

このように、仮に特許文献1〜5のように構造物の桁行方向(長辺方向)に補強架構を配置することで、その方向の耐力と剛性を確保することができるとしても、スパン方向(短辺方向)に長辺方向の補強架構に見合う十分な補強架構を配置できなければ、桁行方向を向くスパン方向両側の構面のスパン方向の曲げ剛性が相対的に低下するため、その構面が地震力により湾曲するような曲げ変形を起こし易くなる。   Thus, even if the proof frame and the rigidity in that direction can be secured by arranging the reinforcing frame in the direction of the structure (long side direction) as in Patent Documents 1 to 5, the span direction ( If sufficient reinforcement frames that match the reinforcement frame in the long side direction cannot be arranged in the short side direction), the bending rigidity in the span direction of the two sides in the span direction facing the beam direction will be relatively reduced. Tends to bend and bend due to seismic force.

本発明は上記背景より、長辺方向(桁行方向)と短辺方向(スパン方向)の曲げ剛性に差があり得る構造物に対し、長辺方向(桁行方向)の構面の短辺方向(スパン方向)の曲げ剛性を高め、長辺方向の曲げ剛性との差を縮小し得る内部補強架構付き構造物を提案するものである。   The present invention is based on the background described above, with respect to a structure in which there is a difference in bending rigidity between the long side direction (column direction) and the short side direction (span direction). The present invention proposes a structure with an internal reinforcement frame that can increase the bending rigidity in the span direction and reduce the difference from the bending rigidity in the long side direction.

請求項1に記載の発明の内部補強架構付き構造物は、スパン方向と桁行方向のそれぞれの架構が柱・梁のフレームを有し、スパン方向に配列する一部の柱間に、桁行方向に連続する廊下が配置されている複数層の構造物の内部において、
桁行方向の前記柱・梁のフレームの内、少なくとも桁行方向中間部位置の柱を通るスパン方向の前記柱・梁のフレームを構成し、前記廊下を区画する、並列する柱間にスパン方向を向く耐震要素が少なくとも地下最下層以上の層に配置されていることを構成要件とする。
According to the first aspect of the present invention, there is provided a structure with an internal reinforcing frame in which each frame in the span direction and the column direction has a column / beam frame, and between the columns arranged in the span direction, in the column direction. In a multi-layer structure where continuous corridors are arranged,
The column / beam frame in the span direction passing through at least the column at the middle position in the column direction is included in the column / beam frame in the column direction, and the span direction is defined between the parallel columns that define the corridor. It is a constituent requirement that the seismic elements are arranged at least in the layer below the lowest basement.

内部補強架構付き構造物は主に既存構造物が対象になるが、必ずしもその必要はなく、新設構造物で構築される場合もある。構造物はまた、スパン方向(短辺方向)と桁行方向(長辺方向)のそれぞれの架構が柱・梁のフレームを有する構造であればよいため、鉄筋コンクリート造、鉄骨造、鉄骨鉄筋コンクリート造の場合がある。コンクリート造にはプレキャストコンクリートとプレストレストコンクリートが含まれる。   The structure with an internal reinforcement frame is mainly an existing structure, but it is not always necessary, and it may be constructed with a new structure. The structure can be reinforced concrete, steel structure, or steel reinforced concrete structure, as long as each frame in the span direction (short side direction) and the crossing direction (long side direction) has a pillar / beam frame. There is. Concrete structures include precast concrete and prestressed concrete.

「架構が柱・梁のフレームを有する」とは、架構が柱・梁フレーム(骨組み)を基本構造として備えることの意味で、フレーム単体のみからなる場合と、フレームの内周に耐震壁(壁板)やブレース等の耐震要素が接続(配置)されることがあることを言う。架構がフレーム単体のみであるか、フレームに耐震要素が付属するかは各方向の柱間の区間毎に、あるいは層毎に異なることもある。   “The frame has a column / beam frame” means that the frame has a column / beam frame (framework) as a basic structure. This means that seismic elements such as plates and braces may be connected (arranged). Whether the frame is a single frame or an earthquake-resistant element is attached to the frame may differ for each section between columns in each direction or for each layer.

「桁行方向の柱・梁のフレームの内、桁行方向中間部位置の柱を通るスパン方向の柱・梁のフレーム」とは、桁行方向を向く柱・梁のフレーム(を含む架構)の内、桁行方向の中間部の位置に配置されているいずれかの柱を通り、スパン方向を向く柱・梁のフレームを含む架構(構面)を指す。「少なくとも」とは、耐震要素が配置されるスパン方向を向く架構(構面)が一枚あること、もしくは桁行方向に間隔を置いて複数枚、配列することを言う。   The column / beam frame in the span direction passing through the column in the middle of the column direction in the column / beam frame in the column direction is the column / beam frame (including the frame) facing in the column direction, This refers to a frame (frame) that includes a pillar / beam frame that passes through one of the columns arranged in the middle of the column direction and faces the span direction. “At least” means that there is one frame (surface) facing the span direction in which the seismic elements are arranged, or that a plurality of frames are arranged at intervals in the column direction.

スパン方向を向いて配置される耐震要素は構造物のスパン方向の耐力と剛性の向上に寄与するから、耐震要素が付加される構面の数は多い程、スパン方向の耐震性が向上するが、後述のように耐震要素が配置される構面(内部補強架構51)数が多ければ桁行方向の動線に影響し得るため、耐震要素が配置される構面の数は動線との関係で決められる。   The seismic elements arranged facing the span direction contribute to the improvement of the strength and rigidity in the span direction of the structure. Therefore, the greater the number of construction surfaces to which the seismic elements are added, the greater the earthquake resistance in the span direction. As will be described later, since the number of structural surfaces on which seismic elements are arranged (internal reinforcement frame 51) can affect the flow line in the direction of the beam, the number of structural surfaces on which the seismic elements are arranged is related to the flow line. It is decided by.

耐震要素は耐震壁(耐力壁)の場合とブレース等の場合があり、耐震壁は1枚の壁板のみの場合と、例えば厚さ方向に分離した壁板間に弾性体、粘弾性体等が介在した場合等がある。いずれの形式の場合も、耐震要素は面内方向の水平力に対する抵抗要素としての剛性を維持するため、面材として機能し、スパン方向の一構面に付き、複数個(複数枚)集合することで、耐震架構としての内部補強架構51を構成する。   The seismic element may be a seismic wall (bearing wall) or a brace. The seismic wall is composed of only one wall plate, for example, an elastic body or viscoelastic body between wall plates separated in the thickness direction. May intervene. In either case, the seismic element functions as a surface material to maintain rigidity as a resistance element against horizontal force in the in-plane direction, and a plurality (multiple sheets) are assembled on a single surface in the span direction. Thus, an internal reinforcing frame 51 as an earthquake resistant frame is configured.

内部補強架構51には廊下以外の区間のスパン方向の柱間に配置される付加耐震要素6(請求項4)が含まれる。付加耐震要素6は既存の構造物内に既に配置されている耐震要素である場合と、既存の構造物に新設で構築される耐震要素である場合、あるいは新設の構造物として新規に構築される耐震要素である場合がある。耐震要素は廊下を区画する、並列する柱間に配置されることで、基本的に廊下の開口部を閉塞するが、ブレースである場合には、完全には閉塞する状態にならないこともある。   The internal reinforcing frame 51 includes an additional seismic element 6 (claim 4) disposed between span columns in a section other than the corridor. The additional seismic element 6 is a seismic element already arranged in the existing structure, a seismic element newly constructed in the existing structure, or newly constructed as a new structure. It may be a seismic element. The seismic elements are arranged between the parallel columns that divide the corridor and basically close the opening of the corridor. However, in the case of a brace, the seismic element may not be completely closed.

「スパン方向を向く(廊下4の開口部を閉塞する)耐震要素が少なくとも地下最下層以上の層に配置されている」とは、地下層(地下階)が図10に示すように1層である場合には、地下最下層であるその少なくとも地下1層の廊下4の開口部に耐震要素5が配置されることを言い、地上層に耐震要素5が配置されるか否かを問わず、地上層に配置されることも含む趣旨である。地下層が複数層に亘る場合にも、少なくとも基礎寄りの地下最下層に耐震要素5が配置さればよく、地下最下層より上の地下層に配置されるか否かは問われない。   “The seismic elements facing in the span direction (blocking the opening of the corridor 4) are arranged in at least the layer below the lowest basement” means that the basement (basement) is a single layer as shown in FIG. In some cases, it is said that the seismic element 5 is arranged in the opening of the corridor 4 of the at least one underground layer which is the lowest underground layer, regardless of whether or not the seismic element 5 is arranged on the ground layer. It is intended to include being placed on the ground. Even when the underground layer extends over a plurality of layers, it is sufficient that the seismic element 5 is arranged at least in the lowermost underground layer near the foundation, and it is not asked whether or not it is arranged in the underground layer above the lowermost underground layer.

請求項1では廊下4の開口部を閉塞する耐震要素5が少なくとも地下最下層でよいことで、地上層(地上階)における廊下4の開口部が耐震要素5で閉塞されることがないため、地上層では廊下4の桁行方向の動線(連続性)を遮断させるか、迂回させる必要が生じない。このことは地上層のいずれかの層(階)の廊下4に耐震要素5を配置する場合(請求項2、請求項3)に、耐震要素5を配置しない層の廊下4にも言える。   In claim 1, since the seismic element 5 that closes the opening of the corridor 4 may be at least the lowermost underground layer, the opening of the corridor 4 in the ground layer (ground floor) is not blocked by the seismic element 5, In the ground layer, there is no need to block or bypass the flow line (continuity) in the direction of the column in the corridor 4. This also applies to the corridor 4 in the layer where the seismic element 5 is not disposed when the seismic element 5 is disposed in the corridor 4 in any layer (floor) of the ground layer (Claims 2 and 3).

耐震要素5が少なくとも地下最下層(最下階)に配置されればよい理由は、地下最下層で廊下4の開口部を閉塞する耐震要素5は基礎(フーチング)に接続し得ることから、スパン方向に配列する基礎(フーチング)7(11)、7(11)間に架設される地中梁8と耐震要素5が一体性を確保し、両者が一体となってスパン方向の構造物1の浮き上がりに抵抗する曲げ戻しモーメントを発揮することが期待されることにある。   The reason why the seismic element 5 should be disposed at least in the lowermost underground layer (lowermost floor) is that the seismic element 5 that closes the opening of the corridor 4 in the lowermost underground layer can be connected to the foundation (footing). The foundation beams (footings) 7 (11) and 7 (11) arranged in the direction ensure the integrity of the underground beam 8 and the seismic element 5 and the two are integrated to form the span-direction structure 1. It is expected to exhibit a bending back moment that resists lifting.

地下層の廊下4の開口部を閉塞する耐震要素5が地下最下層にのみ配置されていても、例えば図10に示すようにスパン方向に少なくとも廊下4の片側に既設の、もしくは新設の付加耐震要素6が配置されるか、廊下4以外の開口部に耐震要素5が配置されれば、廊下4の開口部を閉塞する耐震要素5とその少なくとも片側の付加耐震要素6や耐震要素5が内部補強架構51として一体となった状態になる。   Even if the seismic element 5 for closing the opening of the corridor 4 in the underground layer is arranged only in the lowermost basement, for example, as shown in FIG. If the element 6 is arranged or the seismic element 5 is arranged in an opening other than the corridor 4, the seismic element 5 that closes the opening of the corridor 4 and the additional seismic element 6 or the seismic element 5 on at least one side thereof The reinforcing frame 51 is integrated.

図10では地上層の下層寄りでは廊下4を挟んだ両側に付加耐震要素6が配置され、上層寄りでは廊下4を挟んだ一方側に付加耐震要素6が、他方側に耐震要素5が配置されている様子を示しているが、耐震要素5と付加耐震要素6が廊下4の片側に配置されるか、両側に配置されるかを含め、配置状態(組み合わせ)は任意である。   In FIG. 10, the additional seismic elements 6 are arranged on both sides of the corridor 4 near the lower layer of the ground layer, the additional seismic elements 6 are arranged on one side of the corridor 4 and the seismic element 5 is arranged on the other side of the upper layer. However, the arrangement state (combination) is arbitrary, including whether the seismic element 5 and the additional seismic element 6 are arranged on one side or both sides of the corridor 4.

付加耐震要素6や耐震要素5が内部補強架構51として一体になる結果、付加耐震要素6や耐震要素5が全スパンに亘る連続した耐震要素(内部補強架構51)を形成した状態で、地中梁8と共に曲げ戻しモーメントを発揮することが可能になるため、構造物1をスパン方向に転倒(浮き上がり)させようとする地震時の水平力(地震力)に対して十分な抵抗力を発揮することが期待される。   As a result of the additional seismic element 6 and seismic element 5 being integrated as an internal reinforcing frame 51, the additional seismic element 6 and seismic element 5 form a continuous seismic element (internal reinforcing frame 51) over the entire span. Since it is possible to exert a bending return moment together with the beam 8, it exerts sufficient resistance against the horizontal force (earthquake force) during an earthquake that attempts to cause the structure 1 to fall (raise) in the span direction. It is expected.

図10は図1と同様に、既存構造物の内部を示す図2に対し、廊下4の開口部を閉塞する耐震要素5を含む、上記スパン方向を向く耐震要素5と付加耐震要素6からなる内部補強架構51を付加した後の様子を示している。図2では既存構造物の内部に既に配置されている付加耐震要素6をハッチングで示し、図10では地下層の廊下4の開口部を含め、スパン方向に隣接する柱2、2間の空間を閉塞させている耐震要素5をハッチングで示している。図1、図2ではハッチングのない、交差した線で示した領域は耐震要素5と付加耐震要素6がなく、開放していることを示している。   FIG. 10, similar to FIG. 1, includes the seismic element 5 and the additional seismic element 6 facing the span direction, including the seismic element 5 that closes the opening of the corridor 4, with respect to FIG. 2 showing the inside of the existing structure. The state after adding the internal reinforcement frame 51 is shown. In FIG. 2, the additional seismic elements 6 already arranged inside the existing structure are shown by hatching, and in FIG. 10, the space between the columns 2 and 2 adjacent to each other in the span direction including the opening of the corridor 4 of the underground layer is shown. The seismic element 5 being closed is indicated by hatching. In FIG. 1 and FIG. 2, an area indicated by a crossed line without hatching indicates that the seismic element 5 and the additional seismic element 6 are not present and are open.

図10に示すように地上層の廊下4の開口部に耐震要素5が配置されず、開放したままの状態にあるとしても、スパン方向に少なくとも廊下4の片側に既設の、あるいは新設の付加耐震要素6が配置されていれば、構造物1の全体では付加耐震要素6、あるいは耐震要素5と付加耐震要素6からなる巨大な連層耐震要素(内部補強架構51)が形成されているに等しいと言えるため、地上層の廊下4の区間にのみ、高さ方向に連続した開口が存在していることが、耐震要素(内部補強架構51)としての剛性と耐力の低下を招く程の問題になることはない。   As shown in FIG. 10, even if the seismic element 5 is not arranged in the opening of the corridor 4 in the ground layer and is left open, the existing or newly added seismic resistance is provided at least on one side of the corridor 4 in the span direction. If the element 6 is disposed, the structure 1 as a whole is equivalent to the formation of the additional seismic element 6 or a huge multi-layer seismic element (internal reinforcing frame 51) composed of the seismic element 5 and the additional seismic element 6. Therefore, the presence of a continuous opening in the height direction only in the section of the corridor 4 on the ground layer is a problem that causes a decrease in rigidity and proof strength as the seismic element (internal reinforcing frame 51). Never become.

構造物1をスパン方向に転倒(浮き上がり)させようとする地震時の水平力(地震力)に対する抵抗力は図10に示すように構造物1のスパン方向外側に、桁行方向の構面に沿って構面外補強架構10が配置され、構面外補強架構10が間接的に廊下を閉塞した耐震要素5に連続していることにより(請求項5)、更には構面外補強架構10の基礎11がそれを除いた構造物1の基礎7と、地中梁8等によってスパン方向に連結されていることにより(請求項6)向上する。   As shown in FIG. 10, the resistance force against the horizontal force (earthquake force) that causes the structure 1 to fall (raise) in the span direction is on the outside of the structure 1 in the span direction, along the plane in the direction of the beam. The extra-structural reinforcement frame 10 is arranged, and the extra-structural reinforcement frame 10 is connected to the seismic element 5 that indirectly closes the corridor (Claim 5). This is improved by the foundation 11 being connected in the span direction by the foundation 7 of the structure 1 excluding the foundation 11 and the underground beam 8 or the like (Claim 6).

構造物1のスパン方向外側に構面外補強架構10が配置され、耐震要素5に連続すれば、構面外補強架構10を介して耐震要素5、あるいはそれを含む全スパンに亘る連続した耐震要素(内部補強架構51)と地中梁8等との一体性が確保されることに拠る。図10、図1では構面外補強架構10が構造物1のスパン方向両側に配置されているが、構造物1のスパン方向片側のみの場合もある。   If the out-of-plane reinforcing frame 10 is arranged outside the structure 1 in the span direction and continues to the seismic element 5, the seismic element 5 or the continuous seismic resistance over the entire span including the seismic element 5 via the out-of-plane reinforcing frame 10. This is because the integrity of the element (inner reinforcement frame 51) and the underground beam 8 and the like is ensured. In FIGS. 10 and 1, the out-of-plane reinforcing frame 10 is arranged on both sides in the span direction of the structure 1, but there are cases where the structure 1 is only on one side in the span direction.

廊下4の開口部を閉塞する耐震要素5が少なくとも地下最下層に配置されている内部補強架構付き構造物では(請求項1)、耐震要素5が地上層にも各層単位で配置され、この各層の耐震要素5が前記廊下4の開口部を構造物1の高さ方向に不連続状態にしていることで(請求項2)、構造物1内部でのスパン方向の耐震性が一層、向上する。「耐震要素5が地上層にも各層単位で配置され、廊下4の開口部を高さ方向に不連続状態にしていること」は請求項3の要件でもあるため、この要件の意義は以下のように請求項3の項目で説明する。   In the structure with an internal reinforcing frame in which the seismic element 5 that closes the opening of the corridor 4 is disposed at least in the lowermost underground layer (Claim 1), the seismic element 5 is also disposed on the ground layer in units of each layer. Since the seismic element 5 of the corridor 4 makes the opening of the corridor 4 discontinuous in the height direction of the structure 1 (Claim 2), the seismic resistance in the span direction inside the structure 1 is further improved. . “The seismic elements 5 are also arranged on the ground layer in units of layers, and the opening of the corridor 4 is discontinuous in the height direction” is also a requirement of claim 3, and the significance of this requirement is as follows. As will be described in the item of claim 3.

請求項3に記載の発明の内部補強架構付き構造物は、スパン方向と桁行方向のそれぞれの架構が柱・梁のフレームを有し、スパン方向に配列する一部の柱間に、桁行方向に連続する廊下が配置されている複数層の構造物の内部において、
桁行方向の前記柱・梁のフレームの内、少なくとも桁行方向中間部位置の柱を通るスパン方向の前記柱・梁のフレームを構成し、前記廊下を区画する、並列する柱間にスパン方向を向く耐震要素が各層単位で配置され、この各層の耐震要素が前記廊下の開口部を構造物の高さ方向に不連続状態にしていることを構成要件とする。
In the structure with an internal reinforcement frame of the invention according to claim 3, each frame in the span direction and the column direction has a column / beam frame, and between the columns arranged in the span direction, in the column direction. In a multi-layer structure where continuous corridors are arranged,
The column / beam frame in the span direction passing through at least the column at the middle position in the column direction is included in the column / beam frame in the column direction, and the span direction is defined between the parallel columns that define the corridor. The seismic elements are arranged in units of layers, and the seismic elements in the layers make the opening of the corridor discontinuous in the height direction of the structure.

請求項3においても内部補強架構付き構造物は主に既存構造物が対象になるが、必ずしもその必要はなく、新設構造物もあり、構造種別も問われない。「架構が柱・梁のフレームを有する」、「桁行方向の柱・梁のフレームの内、桁行方向中間部位置の柱を通るスパン方向の柱・梁のフレーム」、「内部補強架構」の意味は請求項1の項目で述べた通りであり、スパン方向を向いて配置される耐震要素5の配置の仕方と構成も請求項1の項目で述べた通りである。   In claim 3 as well, the structure with an internal reinforcing frame is mainly an existing structure, but it is not always necessary, there is a new structure, and the structure type is not questioned. Meaning of “frame has column / beam frame”, “spanwise column / beam frame passing through column at middle position in column direction”, “internal reinforcement frame” Is as described in the item of claim 1, and the arrangement and configuration of the seismic elements 5 arranged facing the span direction are also as described in the item of claim 1.

「耐震要素が各層単位で配置される」とは、廊下の開口部を閉塞する耐震要素が必ずしも高さ方向に連層で配置されるとは限らないことを言い、高さ方向に連層で配置されることで、連層耐震壁を構成することも含む。   “Seismic elements are arranged in units of layers” means that the seismic elements that block the corridor openings are not necessarily arranged in multiple layers in the height direction. It also includes configuring a multi-story earthquake-resistant wall by being arranged.

「各層の耐震要素が廊下の開口部を構造物の高さ方向に不連続状態にしている」とは、廊下の開口部を閉塞する各層の耐震要素が構造物の高さ方向に断続的に、または連続的に(連層で)配置されることで、廊下の区間でスパン方向に架設されている梁を挟んで高さ方向に連続的に存在している各層の廊下の連続状態を解除するように、耐震要素が各層の廊下の開口部を高さ方向に分断させることを言う。各層の耐震要素が最下層から最上層までの全廊下を区画する、並列する柱間に、高さ方向に連続して配置される場合に、その耐震要素は連層耐震壁を構成する。   “The seismic elements in each layer make the hallway openings discontinuous in the height direction of the structure” means that the seismic elements in each layer that block the hallway openings are intermittent in the height direction of the structure. Or, by arranging them continuously (in multiple layers), cancel the continuous state of the corridor of each layer that exists continuously in the height direction across the beam spanned in the span direction in the corridor section The seismic element means that the opening of the corridor of each layer is divided in the height direction. When the seismic elements of each layer are continuously arranged in the height direction between the parallel columns that define the entire corridor from the lowermost layer to the uppermost layer, the seismic elements constitute a multi-layer seismic wall.

スパン方向の梁のみで高さ方向に区画されている廊下の開口部は高さ方向に連続する開口部が線材で区画されている状態に等しく、線材にはその軸方向の剛性を期待することはできない。それに対し、線材に代わり、面材である耐震要素が上下に隣接する廊下の開口部を区画することで、開口部は高さ方向に分断されて不連続になると同時に、面材がその面内水平方向の剛性を持つため、廊下の開口部が存在した領域に剛性と耐力を付与する働きをする。廊下の開口部に線材に代わる面材が配置されることで、見かけ上は廊下を挟んで両側に位置する、例えば既存の連層耐震壁を含む巨大な耐震要素(耐震壁)の中に開口部が分散されて配置される形になる。   The opening in the corridor that is partitioned in the height direction by only the span direction beam is equivalent to the state in which the opening that continues in the height direction is partitioned by the wire, and the wire is expected to have axial rigidity. I can't. On the other hand, seismic elements that are face materials instead of wires partition the opening of the adjacent corridor so that the opening is divided in the height direction and becomes discontinuous. Since it has horizontal rigidity, it works to give rigidity and strength to the area where the corridor opening exists. The face material instead of the wire rod is arranged in the opening of the corridor, so that it appears in the huge seismic element (seismic wall) including, for example, existing multi-layer seismic walls located on both sides of the corridor. The parts are distributed and arranged.

廊下の開口部を閉塞する耐震要素は必ずしも連層で配置されなくても、面材であることで、廊下で分断されていた両側の連層耐震壁のスパン方向の連続性を高め、一体性を強める働きをし、廊下の存在によるスパン方向の剛性低下区間を解消させるか、低減させるため、スパン方向の地震力に対する抵抗力をスパン方向の構面に付与することができる。耐震要素が連層で配置される場合には、廊下で分断されているスパン方向両側の連層耐震壁が完全に連続し、一体化するため、スパン方向の剛性低下区間が完全になくなり、廊下を挟んだ両側の連層耐震壁の一体性が一層、強まる。   The seismic elements that block the opening in the corridor are not necessarily arranged in multiple layers, but by being a face material, the continuity in the span direction of the multi-layer earthquake resistant walls on both sides that have been divided in the corridor is improved and integrated. In order to eliminate or reduce the span stiffness reduction section due to the presence of the corridor, a resistance force against the seismic force in the span direction can be imparted to the span direction construction. When seismic elements are arranged in multiple layers, the multi-layer earthquake resistant walls on both sides in the span direction that are divided in the corridor are completely continuous and integrated, so the section of reduced rigidity in the span direction is completely eliminated, and the corridor The unity of the multi-layer earthquake-resistant walls on both sides of the wall is further strengthened.

廊下の区間が開放している状態は、複数層の構造物では上記のようにスパン方向に架設されている梁を挟んで構造物の高さ方向に連層で開放した状態であるため、スパン方向の剛性が廊下の区間で部分的に低下した状態にあると言える。この状態で、廊下への耐震要素の配置により廊下の開口部が高さ方向に閉塞し、開口部が不連続になることで、スパン方向の剛性低下区間がなくなるため、構造物はその方向の水平力に対する抵抗力を発揮し易くなる。   The state where the corridor section is open is a state in which a multi-layered structure is opened in multiple layers in the height direction of the structure across the beam spanned in the span direction as described above. It can be said that the direction stiffness is partially reduced in the hallway section. In this state, the opening of the hallway is blocked in the height direction due to the arrangement of the seismic elements in the hallway, and the opening becomes discontinuous, so that there is no section of reduced rigidity in the span direction. It becomes easier to exert resistance to horizontal force.

例えば一枚の鋼板に1個、もしくは複数個の細かい貫通孔が連続状態でなく、断続的に、あるいは部分的に分散して形成されていたとしても、その有孔鋼板の面内方向の剛性は貫通孔のない盲板状態での面内方向の剛性より極端に低下することはなく、貫通孔がスリット状に連続した形の開口を有する鋼板より高い剛性を維持することはできる。この例での有孔鋼板は本発明の廊下の開口部を閉塞する耐震要素が集合して構成される上記の内部補強架構51に相当する。   For example, even if one or more fine through-holes are not continuous but formed intermittently or partially dispersed in a single steel plate, the rigidity in the in-plane direction of the perforated steel plate Is not significantly lower than the rigidity in the in-plane direction in the state of a blind plate without a through-hole, and can maintain higher rigidity than a steel plate having openings in which the through-holes are continuous in a slit shape. The perforated steel plate in this example corresponds to the above-described internal reinforcing frame 51 configured by aggregating seismic elements that close the opening of the hallway of the present invention.

このことから、廊下を閉塞する耐震要素は下層から上層へかけて必ずしも連続して、すなわち連層で配置される必要がないことになり、一部の層の廊下を開放した状態のままにし、耐震要素が高さ方向に不連続に配置されていても、廊下が開放状態にある既存構造物のスパン方向の剛性と耐力を向上させることは可能である。この意味で、廊下を閉塞する耐震要素は廊下の開口部を構造物の高さ方向に不連続状態にしていればよく、必ずしも図1、図10に示すように高さ方向に連続して配置され、連層耐震壁を構成していなくてもよいことになる。   From this, the seismic elements that block the corridors do not have to be arranged continuously from the lower layer to the upper layer, that is, in multiple layers, leaving the corridors of some layers open, Even if the seismic elements are discontinuously arranged in the height direction, it is possible to improve the span direction rigidity and strength of the existing structure in which the corridor is open. In this sense, the seismic element that closes the corridor only needs to have the opening of the corridor discontinuous in the height direction of the structure, and is necessarily arranged continuously in the height direction as shown in FIGS. Therefore, it does not have to constitute a multistory shear wall.

前記のように廊下はスパン方向に配列するいずれか一部の2本の柱間に開口部として形成され、廊下を構成する開口部の区間は構造物の高さ方向に揃えられ、スパン方向の同一位置に配置される。この関係で、廊下(開口部)をその長さ方向(桁行方向)に見たときには、上記の通り、図2に示すように各層の開口部がスパン方向に架設される梁で区画されるものの、構造物全体では開口部が高さ方向に連続的に配列している。図2は廊下がスパン方向の中央部に位置する中廊下型の配置例を示しているが、スパン方向片側に寄った片廊下型の配置例の場合もある。   As described above, the corridor is formed as an opening between any two columns arranged in the span direction, and the section of the opening constituting the corridor is aligned in the height direction of the structure. Arranged at the same position. In this relationship, when the corridor (opening) is viewed in the length direction (column direction), as shown in FIG. 2, the openings of each layer are partitioned by beams spanned in the span direction as shown in FIG. In the entire structure, the openings are continuously arranged in the height direction. FIG. 2 shows an arrangement example of a middle corridor type in which the corridor is located in the center part in the span direction, but there is also a case of an arrangement example of a single corridor type approaching one side in the span direction.

図2は既存構造物の内部を桁行方向に見たときの、スパン方向に切断した縦断面図であり、図1、図10は図2に対し、廊下4の開口部を閉塞する耐震要素5を含む、上記スパン方向の内部補強架構51を付加した後の様子を示している。図10は請求項1に対応し、図1は請求項3に対応する。図2、図1では廊下4の開口部を含め、スパン方向に隣接する柱2、2間の空間を閉塞させている耐震要素5と前記した付加耐震要素6をハッチングで示している。既存構造物を示す図2ではハッチングのない、交差した線で示した領域は耐震要素5と付加耐震要素6がなく、開放していることを示している。   FIG. 2 is a longitudinal sectional view cut in the span direction when the inside of the existing structure is viewed in the direction of the rows, and FIGS. 1 and 10 are seismic elements 5 for closing the opening of the corridor 4 with respect to FIG. The state after adding the internal reinforcement frame 51 of the said span direction including is shown. FIG. 10 corresponds to claim 1, and FIG. 1 corresponds to claim 3. In FIG. 2 and FIG. 1, the seismic element 5 that closes the space between the columns 2 and 2 adjacent to each other in the span direction including the opening of the corridor 4 and the additional seismic element 6 are shown by hatching. In FIG. 2 which shows the existing structure, the area | region shown with the crossing line | wire without a hatching has shown that it does not have the seismic element 5 and the additional seismic element 6, and is open | released.

既存構造物の状態では図2に示すように全廊下4と、上層側における廊下4の片側の柱・梁の区間が開放し、それ以外の区間はハッチングで示すように閉塞している。廊下4の開口部を閉塞する耐震要素5の配置後には図1に示すように既存状態で開放していた少なくとも一部の廊下4の開口部と上層側の開口部を、耐震要素5と付加耐震要素6からなる内部補強架構51が閉塞している。図1では全廊下4の開口部に耐震要素5を配置し、全開口部を閉塞しているが、上記のように必ずしもその必要はなく、全開口部の内、一開口部置きに耐震要素5が配置されることもある。   In the state of the existing structure, as shown in FIG. 2, the entire hallway 4 and the column / beam section on one side of the upper hallway 4 are opened, and the other sections are closed as shown by hatching. After the arrangement of the seismic element 5 that closes the opening of the corridor 4, at least a part of the corridor 4 opening and the upper layer side opening that are open in the existing state are added to the seismic element 5 as shown in FIG. The internal reinforcing frame 51 composed of the earthquake-resistant element 6 is closed. In FIG. 1, the seismic elements 5 are arranged in the openings of the entire corridor 4 and the entire openings are closed. However, as described above, this is not always necessary. 5 may be arranged.

図2に示すように全廊下4の開口部が構造物の高さ方向に連続的に配列している状態では、前記のようにスパン方向を向く、付加耐震要素6からなる連層耐震壁が廊下4の開口部を挟んで分断され、分断された両側の連層耐震壁(付加耐震要素6、6)間に連層耐震壁程度の曲げ剛性とせん断剛性を持たない梁のみの空間が存在しているため、連層耐震壁(付加耐震要素6、6)は廊下4の片側単位で地震力に抵抗することになり、両側の連層耐震壁が一体となって抵抗することにはならない。結果としてスパン方向を向く連層耐震壁は地震時の水平力に対する十分な抵抗力を保有していない。   As shown in FIG. 2, in the state where the openings of all the corridors 4 are continuously arranged in the height direction of the structure, the multi-layer seismic wall composed of the additional seismic elements 6 is directed in the span direction as described above. It is divided across the opening of the corridor 4, and there is a space of only beams that do not have the bending rigidity and shear rigidity of the multi-layered shear walls (additional seismic elements 6, 6) on both sides. Therefore, the multi-story shear walls (additional seismic elements 6, 6) will resist the seismic force on one side of the corridor 4, and the multi-story shear walls on both sides will not resist together. . As a result, the multistory shear walls facing the span direction do not have sufficient resistance to horizontal force during earthquakes.

これに対し、請求項3では図2に示す既存構造物の廊下4の区間に、スパン方向の耐震要素5を付加した後の状態を示す図1に示すように廊下4の開口部を閉塞する耐震要素5が配置されることで、廊下4で分断されていた両側の連層耐震壁(付加耐震要素6、6)がスパン方向に連続し、一体化が強まるため、スパン方向の剛性低下区間がなくなるか、少なくなり、スパン方向の地震力に対する抵抗力を確保することになる。   On the other hand, in Claim 3, the opening part of the corridor 4 is obstruct | occluded as shown in FIG. 1 which shows the state after adding the seismic element 5 of the span direction to the area of the corridor 4 of the existing structure shown in FIG. Because the seismic elements 5 are arranged, the multi-layer seismic walls (additional seismic elements 6, 6) separated by the corridor 4 are continuous in the span direction, and the integration is strengthened. This means that the resistance to earthquake forces in the span direction will be secured.

図1では廊下4の開口部を全層に亘って新たな耐震要素5で閉塞しているが、新たな耐震要素5は上記のように高さ方向に不連続状態で配置されることもある。既存構造物に対する補強の場合には、少なくとも連層耐震壁(付加耐震要素6)が配置されている高さ方向の区間に耐震要素5が配置されれば、その既存の連層耐震壁の水平力に対する抵抗力を有効に発揮させることができるため、新たに付加される補強架構5の最上部の高さは既存の連層耐震壁の層に合わせればよい。   In FIG. 1, the opening of the corridor 4 is closed with a new seismic element 5 over the entire layer, but the new seismic element 5 may be discontinuously arranged in the height direction as described above. . In the case of reinforcement of an existing structure, if the seismic element 5 is arranged at least in the section in the height direction where the multistory seismic wall (additional seismic element 6) is arranged, the existing multistory seismic wall is horizontal. Since the resistance force to the force can be effectively exhibited, the height of the uppermost portion of the newly added reinforcing frame 5 may be adjusted to the layer of the existing multi-layer earthquake resistant wall.

また前記のように一枚の鋼板が貫通孔を有していたとしても、貫通孔が部分的であれば、その面内方向の剛性は貫通孔が連続する形の開口を有する鋼板の面内剛性よりは高い状態を維持することができる。このことから、図2に示すように廊下4以外の区間のスパン方向の柱間に付加耐震要素6が配置されている場合に、図1に示すように付加耐震要素6の一部に、廊下4の開口部に代わる壁内開口9が形成されていても(請求項4)、連層耐震壁(付加耐震要素6)の耐力と剛性が極端に低下することにはならない。   Further, even if a single steel plate has a through hole as described above, if the through hole is partial, the rigidity in the in-plane direction is in the plane of the steel plate having an opening in which the through hole is continuous. A state higher than the rigidity can be maintained. From this, when the additional seismic element 6 is arranged between the span direction pillars in the section other than the corridor 4 as shown in FIG. 2, a part of the additional seismic element 6 as shown in FIG. Even if the in-wall opening 9 instead of the opening 4 is formed (Claim 4), the proof stress and rigidity of the multi-layer earthquake-resistant wall (additional earthquake-resistant element 6) do not extremely decrease.

この場合、桁行方向(長さ方向)に連続する廊下4はその開口部を閉塞する耐震要素5の配置位置で不連続になり、動線が耐震要素5を迂回し、変則的になるが、経路が長くなる程度のことで済む。耐震要素5の配置前の状態ではスパン方向の剛性が乏しく、構面がその方向に変形し易い状況にあるから、耐震要素5の配置によって変形の可能性が低下し、居住性が格段に向上することとの対比では、動線の迂回が格別な不利益になることはない。   In this case, the corridor 4 continuous in the direction of the beam (length direction) becomes discontinuous at the arrangement position of the seismic element 5 closing the opening, and the flow line bypasses the seismic element 5 and becomes irregular. It only takes a long route. In the state before the seismic element 5 is arranged, the rigidity in the span direction is poor and the construction surface is easily deformed in that direction, so the possibility of deformation is reduced by the arrangement of the seismic element 5 and the comfortability is greatly improved. In contrast to doing, detouring the flow line is not a particular disadvantage.

請求項4では壁内開口9の形成によって部分的に剛性の低下が生じ得るものの、図1に示すように壁内開口9が高さ方向に1層置きに形成され、廊下4を挟んで千鳥状に配列すれば、高さ方向に連続しての開口部の形成が避けられるため、スパン方向の構面に曲げ変形を起こし、居住性に影響する程度の剛性低下を招くことはない。   According to claim 4, the formation of the opening 9 in the wall may cause a partial reduction in rigidity. However, as shown in FIG. 1, the opening 9 in the wall is formed in every other layer in the height direction. If they are arranged in a shape, the formation of openings continuously in the height direction can be avoided, so that bending deformation occurs in the spanwise construction surface, and the rigidity is not lowered to such an extent that the comfortability is affected.

図1は図2に示す既存の構造物に対し、全層の廊下4の開口部と、上層寄りの廊下4の片側の開口部を耐震要素5で閉塞した上で、下層から上層へかけ、1層毎に廊下を挟んで両側に交互に壁内開口9を形成した様子を示しているが、壁内開口9は高さ方向に連続していなければよいため、高さ方向への配列の仕方は任意であり、例えば2層毎に廊下4を挟んで交互に配置されることもある。   FIG. 1 shows the existing structure shown in FIG. 2 with the seismic element 5 closing the opening of the corridor 4 in all layers and the opening on one side of the corridor 4 near the upper layer, Although the state in which the openings 9 in the wall are alternately formed on both sides across the corridor for each layer is shown, the openings 9 in the wall need not be continuous in the height direction. The way is arbitrary, for example, it may be alternately arranged every two layers with the corridor 4 in between.

廊下4の開口部を有する構造物が既存構造物である場合、廊下4の開口部を閉塞する耐震要素5は既存構造物内の耐震要素(付加耐震要素6)と一体性を確保することで、構造物のスパン方向の全断面を閉塞する巨大な耐震要素(連層耐震壁)になるが、それだけの面積を持つ耐震要素がその方向(面内方向:スパン方向)の水平力(地震力)に十分に抵抗するだけの能力を持つには、その方向の水平力に対する基礎からの反力を期待する上で、スパン方向両側に、桁行方向の構面に沿って構面外補強架構10が配置されることが合理的である(請求項5)。   When the structure having the opening of the corridor 4 is an existing structure, the seismic element 5 that closes the opening of the corridor 4 ensures the integrity with the seismic element (additional seismic element 6) in the existing structure. A huge seismic element (multi-layer seismic wall) that closes the entire cross-section of the span direction of the structure, but the seismic element with that area is the horizontal force (seismic force) in that direction (in-plane direction: span direction) In order to have the ability to sufficiently resist the horizontal force in the direction, the reaction force from the foundation with respect to the horizontal force in that direction is expected. Is reasonable (claim 5).

構面外補強架構10は桁行方向の構面のスパン方向外側に配置(構築)されることで、原則的には桁行方向の構面1A(柱・梁のフレーム)から桁行方向の水平力を分担するため、構造物の桁行方向の耐震性を確保するが、スパン方向の柱・梁のフレームに接続されることで、スパン方向の耐震性の確保にも寄与する。構面外補強架構10はスパン方向の柱・梁のフレームに接続され、間接的に廊下4を閉塞した耐震要素5に連続させられることで(請求項5)、構造物のスパン方向の全断面を閉塞する、付加耐震要素6を含む巨大な耐震要素(連層耐震壁)との一体性を確保する。   The out-of-plane reinforcement frame 10 is arranged (constructed) on the outer side in the span direction of the cross-beam direction structure, so that in principle, horizontal force in the cross-beam direction can be generated from the cross-section 1A (column / beam frame). In order to share, the seismic resistance of the structure in the cross direction is ensured, but it is also connected to the span column / beam frame, which contributes to the seismic resistance in the span direction. The out-of-plane reinforcement frame 10 is connected to the frame of the column / beam in the span direction, and is connected to the seismic element 5 that indirectly blocks the corridor 4 (Claim 5), so that the entire cross section in the span direction of the structure To ensure the integrity with a huge seismic element (multi-layer seismic wall) including the additional seismic element 6.

構面外補強架構10はスパン方向の巨大な耐震要素と一体化することで、スパン方向の耐震要素5、6が単独でその方向の水平力に抵抗する場合より、負担が軽減されることに加え、水平力が構面外補強架構10を支持する基礎11に流れ、基礎11から地盤に伝達されるため、スパン方向の耐震要素5、6の抵抗力が増大し、それだけ水平力に対する剛性も増大することになる。   The out-of-plane reinforcing frame 10 is integrated with a huge span seismic element, so that the load is reduced compared to the case where the span seismic elements 5 and 6 alone resist the horizontal force in that direction. In addition, since the horizontal force flows to the foundation 11 that supports the out-of-plane reinforcing frame 10 and is transmitted from the foundation 11 to the ground, the resistance force of the seismic elements 5 and 6 in the span direction is increased, and the rigidity against the horizontal force is also increased accordingly. Will increase.

この場合、構面外補強架構10の基礎11が既存構造物の基礎7と分離しているとすれば、構造物1の浮き上がりに抵抗する曲げ戻しモーメントを発揮する地中梁8の境界梁として抵抗可能な長さが短いため、基礎7、11での十分な浮き上がり防止効果を期待することが難しくなることが想定される。   In this case, if the foundation 11 of the out-of-plane reinforcing frame 10 is separated from the foundation 7 of the existing structure, it is a boundary beam of the underground beam 8 that exhibits a bending back moment that resists the lifting of the structure 1. Since the length that can be resisted is short, it is assumed that it is difficult to expect a sufficient lifting prevention effect on the foundations 7 and 11.

このことから、構面外補強架構10の基礎11がそれを除いた構造物1の基礎7と、地中梁8等によってスパン方向に連結されていることで(請求項6)、境界梁として曲げ戻しモーメントを発揮する区間が長くなるため、構面外補強架構10にスパン方向の地震力に対する抵抗力を有効に発揮させることが可能になり、結果的に、構造物1がスパン方向の水平力に対する反力を構面外補強架構10から得ることができる。   From this, the foundation 11 of the off-surface reinforcement frame 10 is connected in the span direction by the foundation 7 of the structure 1 excluding it and the underground beam 8 or the like (Claim 6). Since the section in which the bending return moment is exerted becomes long, it becomes possible to cause the out-of-plane reinforcing frame 10 to effectively exert the resistance force against the seismic force in the span direction, and as a result, the structure 1 becomes horizontal in the span direction. A reaction force against the force can be obtained from the out-of-plane reinforcing frame 10.

桁行方向の柱・梁のフレームの内、少なくとも桁行方向中間部位置の柱を通るスパン方向の柱・梁のフレームを構成し、廊下を区画する、並列する柱間にスパン方向を向く面材である耐震要素を各層単位で配置し、各層の耐震要素によって廊下の開口部を構造物の高さ方向に不連続状態にしているため、見かけ上は耐震要素が廊下を挟んで両側に位置する連層耐震壁と共に巨大な耐震要素(連層耐震壁)を構成することができる。   A spanning column / beam frame that passes through at least the column in the middle of the column direction and the frame of the column / beam in the column direction, and divides the corridor. A certain seismic element is arranged in each layer unit, and the opening of the corridor is discontinuous in the height direction of the structure by the seismic element of each layer, so that the seismic element is apparently located on both sides of the corridor. A huge seismic element (multi-story seismic wall) can be constructed together with the layer seismic wall.

この結果、廊下で分断されていた両側の連層耐震壁のスパン方向の連続性を高め、一体性を強めることができるため、廊下の存在によるスパン方向の剛性低下区間を解消させるか、低減させることができ、スパン方向の地震力に対する抵抗力をスパン方向の構面に付与することができる。
As a result, the continuity in the span direction of the multi-story shear walls that were divided in the corridor can be enhanced and the unity can be strengthened, eliminating or reducing the spanwise rigidity reduction section due to the presence of the corridor. In addition, a resistance force against the seismic force in the span direction can be applied to the surface in the span direction.

図2に示す、廊下の開口部が開放している既存の構造物に対し、耐震要素を付加して廊下の開口部を閉塞すると共に、スパン方向両側の構面の外側に構面外補強架構を配置した後の様子を示した、構造物を桁行方向に見た縦断面図である。For the existing structure shown in FIG. 2 where the corridor opening is open, an anti-seismic element is added to close the corridor opening, and the extra-structural reinforcement frame is placed outside the construction surface on both sides in the span direction. It is the longitudinal cross-sectional view which looked at the structure after arrange | positioning, and looked at the structure in the column direction. 廊下の開口部が開放し、廊下を挟んだ両側に連層耐震壁が配置されている既存構造物を示した、構造物を桁行方向に見た縦断面図である。It is the longitudinal cross-sectional view which looked at the structure in the crossing direction which showed the existing structure where the opening part of the corridor opened and the multistory earthquake-resistant wall is arrange | positioned on both sides on both sides of the corridor. 図1に示す耐震要素を付加する前の、図2に示す既存構造物を示した基礎(地下階)における平面図である。It is a top view in the foundation (basement floor) which showed the existing structure shown in FIG. 2 before adding the seismic element shown in FIG. 図2に示す既存構造物に対して廊下の開口部を閉塞する耐震要素と構面外補強架構を付加(配置)した後の様子を示した図1の基礎(地下階)における平面図である。It is a top view in the foundation (basement floor) of FIG. 1 which showed the mode after adding the seismic element and the off-plane reinforcement frame which block | close the opening part of a corridor with respect to the existing structure shown in FIG. . 図1に示す耐震要素を付加する前の、図2に示す既存構造物を示した1階における平面図である。It is a top view in the 1st floor which showed the existing structure shown in FIG. 2 before adding the seismic element shown in FIG. 図2に示す既存構造物に対して廊下の開口部を閉塞する耐震要素と構面外補強架構を付加(配置)した後の様子を示した図1の1階における平面図である。It is the top view in the 1st floor of FIG. 1 which showed the mode after adding the seismic element which closes the opening part of a corridor, and an off-structure reinforcement frame with respect to the existing structure shown in FIG. 図1に示す耐震要素を付加する前の、図2に示す既存構造物を示した基準階における平面図である。It is a top view in the standard floor which showed the existing structure shown in FIG. 2 before adding the seismic element shown in FIG. 図2に示す既存構造物に対して廊下の開口部を閉塞する耐震要素と構面外補強架構を付加(配置)した後の様子を示した図1の基準階における平面図である。It is a top view in the standard floor of FIG. 1 which showed the mode after adding the seismic element which closes the opening part of a corridor, and an off-plane reinforcement frame | frame with respect to the existing structure shown in FIG. 構面外補強架構の構成例と桁行方向の構面との関係を示した図1の側面図である。It is the side view of FIG. 1 which showed the relationship between the structural example of a structure outer reinforcement frame, and the structural surface of a row direction. 廊下の開口部を閉塞する耐震要素が少なくとも地下最下層以上の層に配置されている場合の図1の変形例を示した、構造物を桁行方向に見た縦断面図である。It is the longitudinal cross-sectional view which looked at the structure in the row direction which showed the modification of FIG. 1 in case the seismic element which obstruct | occludes the opening part of a corridor is arrange | positioned at least in the layer below the lowest underground layer.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1はスパン方向と桁行方向のそれぞれの架構が柱2と梁3のフレームを有し、スパン方向に配列する一部の柱2、2間に、桁行方向に連続する廊下4が配置されている複数層の構造物において、前記廊下4を区画する、並列する柱2、2間にスパン方向を向く耐震壁、ブレース等の耐震要素5が各層単位で配置された内部補強架構51付き構造物(以下、構造物)1の具体例を示す。   In FIG. 1, each frame in the span direction and the column direction has a frame of columns 2 and beams 3, and a corridor 4 continuous in the column direction is arranged between some columns 2 and 2 arranged in the span direction. A structure with an internal reinforcing frame 51 in which seismic elements 5 such as seismic walls, braces and the like are arranged in units of layers between the parallel columns 2 and 2 that divide the corridor 4 and divide the corridor 4. A specific example of (hereinafter referred to as structure) 1 is shown.

図1は図2に示す既存構造物に対して耐震要素5を付加した場合の例を示しているが、構造物1は耐震要素5を有する新設構造物として構築されることもある。内部補強架構51は後述のように桁行方向中間部の、ある柱2を通るスパン方向の構面内単位で、複数の耐震要素5が集合することにより構成される。   FIG. 1 shows an example in which the seismic element 5 is added to the existing structure shown in FIG. 2, but the structure 1 may be constructed as a new structure having the seismic element 5. As will be described later, the internal reinforcing frame 51 is constituted by a plurality of seismic elements 5 that are aggregated in the spanwise direction in the span direction passing through a column 2 at the intermediate portion in the direction of the beam.

図3は図2における基礎(フーチング)7の平面を、図4は図2に耐震要素5を付加した後の図1における基礎(フーチング)7の平面を示している。同様に図5は図2における地上1階の平面を、図6は図2に耐震要素5を付加した後の図1における地上1階の平面を、図7は図2における地上基準階(2階以上)の平面を、図8は図2に耐震要素5を付加した後の図1における地上基準階(2階以上)の平面を示している。   3 shows the plane of the foundation (footing) 7 in FIG. 2, and FIG. 4 shows the plane of the foundation (footing) 7 in FIG. 1 after adding the seismic element 5 to FIG. Similarly, FIG. 5 shows the plane of the first floor in FIG. 2, FIG. 6 shows the plane of the first floor in FIG. 1 after adding the seismic element 5 to FIG. 2, and FIG. 7 shows the ground reference floor (2 in FIG. FIG. 8 shows the plane of the ground standard floor (2 floors or more) in FIG. 1 after adding the seismic element 5 to FIG.

図4、図6、図8ではそれぞれ図3、図5、図7に示す既存状態の基礎(フーチング)7に対して付加された箇所を実線で、既存の部分を破線で示している。以下では、図2に示す既存構造物に耐震要素5を付加することにより図1に示す構造物1を完成させる場合の例を用いて実施形態を説明する。図1に示す構造物1は請求項3に記載の発明の実施形態に相当する。   4, 6, and 8, the portions added to the foundation (footing) 7 in the existing state shown in FIGS. 3, 5, and 7 are indicated by solid lines and the existing portions are indicated by broken lines. Hereinafter, the embodiment will be described using an example in the case where the structure 1 shown in FIG. 1 is completed by adding the seismic element 5 to the existing structure shown in FIG. 2. A structure 1 shown in FIG. 1 corresponds to an embodiment of the invention described in claim 3.

図2は地下1階、地上8階建ての、スパン方向の中間部に廊下4が配置されている既存構造物を示している。図2においてハッチングを入れた領域は柱2、2と梁3、3とで区画された開口部が耐震壁やブレース等の付加耐震要素6で閉塞されていることを示している。図2は既存構造物を示しているから、付加耐震要素6は既存の耐震要素である。   FIG. 2 shows an existing structure in which a corridor 4 is arranged in an intermediate part in the span direction, which has one floor underground and eight floors above ground. The hatched area in FIG. 2 indicates that the opening defined by the columns 2 and 2 and the beams 3 and 3 is closed by an additional earthquake-resistant element 6 such as a earthquake-resistant wall or brace. Since FIG. 2 shows an existing structure, the additional seismic element 6 is an existing seismic element.

「付加耐震要素6」は図2に示す既存構造物における柱・梁の開口部に既存状態で配置されているか、内部補強架構51の付加時に新規に配置される耐震要素を指す。「耐震要素5」は構造物1が既存構造物であるか新設構造物であるかを問わずに、また対象となる開口部が廊下4であるか否かを問わずに新規に配置される耐震要素を指す。   The “additional seismic element 6” refers to a seismic element that is disposed in the existing state in the opening of the column / beam in the existing structure shown in FIG. 2 or is newly disposed when the internal reinforcing frame 51 is added. The “seismic element 5” is newly arranged regardless of whether the structure 1 is an existing structure or a new structure, and whether the target opening is the corridor 4 or not. Refers to seismic elements.

柱2、2と梁3、3の開口部内に交差する直線を入れた領域はその開口部が開放した状態にあることを示している。スパン方向中間部の開口部は廊下4であるから、地下階を含め、最下階から最上階まで開放した状態にあるが、廊下4以外の開口部が開放しているか、閉塞しているかは任意であり、特定されていない。図2の状態では構造物1の上層寄り4層における廊下4の片側の空間には付加耐震要素6が配置されていないから、図1ではこの既存状態で開放している廊下4の片側の開口部に新規に耐震要素5を配置している様子を示している。   A region in which straight lines intersecting the openings of the pillars 2 and 2 and the beams 3 and 3 are in an open state. Since the opening in the span direction middle part is the hallway 4, it is in a state of being open from the lowest floor to the top floor including the basement floor, but whether the opening other than the hallway 4 is open or closed It is optional and not specified. In the state of FIG. 2, the additional seismic element 6 is not arranged in the space on one side of the hallway 4 in the upper four layers of the structure 1. Therefore, in FIG. 1, the opening on one side of the hallway 4 opened in this existing state. The state which has newly arranged the earthquake-resistant element 5 in the part is shown.

図2に示す既存構造物の地上層はスパン方向には3空間に区分され、中間に廊下4が位置し、両側に居室が配置されている場合の例(中廊下型)を示しているが、廊下4はスパン方向片側に位置している場合(片廊下型)もある。スパン方向両側の桁行方向を向く構面1A、1A下の基礎7はスパン方向の地震力(水平力)に対する抵抗力としての曲げ戻しモーメントを発揮し得るよう、図2、図3に示すようにスパン方向の地中梁8で連結されている。桁行方向の構面1Aはその方向に配列する柱2と梁3(桁)からなるフレームを基本構造とし、このフレームに腰壁、垂れ壁、袖壁等の非構造部材が接続されることもある。   Although the ground layer of the existing structure shown in FIG. 2 is divided into three spaces in the span direction, a corridor 4 is located in the middle, and an example is shown (inside corridor type) where rooms are arranged on both sides. The corridor 4 may be located on one side in the span direction (one-corridor type). As shown in FIGS. 2 and 3, the foundation 7 under the structural surfaces 1 </ b> A and 1 </ b> A facing the beam direction on both sides of the span direction can exhibit a bending back moment as a resistance force against the seismic force (horizontal force) in the span direction. They are connected by underground beams 8 in the span direction. The structural surface 1A in the direction of the spar has a basic structure consisting of a column 2 and a beam 3 (girder) arranged in that direction, and non-structural members such as a waist wall, a hanging wall, and a sleeve wall may be connected to this frame. is there.

スパン方向を向く耐震要素5が配置される、廊下4を構成する、並列する柱2、2間は桁行方向の柱2・梁3のフレームの内、少なくとも桁行方向中間部位置の柱2を通るスパン方向の柱2・梁3のフレームを構成する。各層に配置された、廊下4の開口部を閉塞する耐震要素5はその配置前の状態である図2に示すようにスパン方向の梁3を挟んで構造物1の高さ方向に連続している廊下4の開口部を実質的に閉塞することで、廊下4の開口部を高さ方向に不連続状態にする。耐震要素5は耐震壁の他、ブレースの場合もあるため、「実質的に閉塞」とは、開口部を完全に閉塞する場合と、一部に開口を形成可能な程度に開口部を閉塞する場合を含む趣旨である。   The seismic elements 5 facing the span direction are arranged, and the parallel columns 2 and 2 constituting the corridor 4 pass through at least the column 2 in the column direction intermediate portion of the frames of the column 2 and the beam 3 in the column direction. A frame of columns 2 and beams 3 in the span direction is formed. The seismic elements 5 that close the openings of the corridor 4 arranged in each layer are continuously in the height direction of the structure 1 with the span 3 beams 3 sandwiched between them as shown in FIG. The opening of the corridor 4 is substantially closed, thereby making the opening of the corridor 4 discontinuous in the height direction. Since the seismic element 5 may be a brace in addition to a seismic wall, “substantially occluded” means that the opening is completely occluded and that the opening is occluded to the extent that an opening can be formed in part. The purpose is to include cases.

耐震要素5はそれが配置されるスパン方向の構面内で複数個(複数枚)、集合することにより、付加耐震要素6と共に構造物1の内部を耐震補強する内部補強架構51を構成する。「スパン方向の構面」は桁行方向に配列するいずれかの柱2を通るスパン方向のフレームを含む構面を指す。図面では図6に示すように内部補強架構51を構造物1の桁行方向の中央部、もしくはその付近に1枚、配置した場合を示しているが、内部補強架構51が配置されるスパン方向の構面は桁行方向に1枚とは限らず、内部補強架構51は桁行方向に複数枚、配置されることもある。   A plurality (a plurality) of the seismic elements 5 are assembled in the span direction construction surface to form an internal reinforcing frame 51 that seismically reinforces the interior of the structure 1 together with the additional seismic elements 6. “Span direction composition” refers to a composition including a span direction frame passing through one of the columns 2 arranged in the column direction. In the drawing, as shown in FIG. 6, the case where one internal reinforcing frame 51 is arranged in the center of the structure 1 in the row direction or in the vicinity thereof is shown, but in the span direction where the internal reinforcing frame 51 is arranged. The construction surface is not limited to one in the column direction, and a plurality of internal reinforcing frames 51 may be arranged in the column direction.

内部補強架構51はスパン方向両側に位置する桁行方向の構面1Aの構面外方向(スパン方向)の曲げ剛性を補い、桁行方向の構面1Aが面外方向に曲げ変形しないように拘束する働きをするため、桁行方向に1枚、配置されるとすれば、図6に示すように桁行方向の中央部に配置されることが適切である。但し、桁行方向の構面1Aを曲げ変形に対して補強する上では、内部補強架構51は多い方がよく、その場合、複数枚の内部補強架構51は桁行方向に分散して配置され、その場合は必ずしも桁行方向の中央部に配置される必要はない。   The internal reinforcing frame 51 supplements the bending rigidity in the outer surface direction (span direction) of the structural surface 1A in the row direction located on both sides of the span direction, and restrains the structural surface 1A in the row direction from bending and deforming in the out-of-plane direction. In order to work, if one sheet is arranged in the column direction, it is appropriate to arrange it at the center in the column direction as shown in FIG. However, in order to reinforce the structural surface 1A in the row direction against bending deformation, it is better that the number of internal reinforcing frames 51 is large. In that case, a plurality of internal reinforcing frames 51 are arranged dispersed in the direction of the row, In the case, it is not always necessary to arrange the central part in the column direction.

図1は耐震要素5が全層の廊下4の開口部に配置され、既存構造物の全廊下4を耐震要素5で閉塞している場合の例を示しているが、必ずしも全廊下4に耐震要素5が配置される必要はない。廊下4の開口部を閉塞する耐震要素5は廊下4に面するスパン方向の梁3を挟んで連続する状態にある開口部を分断させ、不連続にすればよいため、1層置き、あるいは複数層置きに配置されることもある。   FIG. 1 shows an example in which the seismic elements 5 are arranged in the openings of all levels of the corridors 4 and all the corridors 4 of the existing structure are closed by the seismic elements 5. Element 5 need not be placed. The seismic element 5 that closes the opening of the corridor 4 divides the continuous opening across the span beam 3 facing the corridor 4 so that it is discontinuous. Sometimes placed in layers.

図1ではまた、既存状態で付加耐震要素6によって閉塞されている開口部以外の、廊下4を含む全開口部、すなわち廊下4の開口部と、図2に示す既存状態で付加耐震要素6が配置されていない全開口部に耐震要素5を配置している様子を示している。但し、廊下4以外の全開口部、すなわち付加耐震要素6が配置されていない開口部にも必ずしも耐震要素5が配置される必要はなく、付加耐震要素6が配置されていない一部の開口部にのみ、耐震要素5が新たに配置されることもある。   In FIG. 1, all the openings including the corridor 4 other than the openings blocked by the additional seismic element 6 in the existing state, that is, the opening of the corridor 4, and the additional seismic element 6 in the existing state shown in FIG. 2. A mode that the seismic element 5 is arrange | positioned to all the opening parts which are not arrange | positioned is shown. However, the seismic elements 5 do not necessarily have to be disposed in all openings other than the corridor 4, that is, the openings in which the additional seismic elements 6 are not disposed, and some openings in which the additional seismic elements 6 are not disposed. Only the seismic element 5 may be newly arranged.

図1は内部補強架構51が配置されるスパン方向の構面内の全開口部に耐震要素5が配置されることで、内部補強架構51として想定される耐力と剛性が最も高くなる場合の例を示している。廊下4の開口部に耐震要素5が配置された層(階)では、廊下4が閉塞されることで、桁行方向に連続している廊下4の空間が不連続になり、動線が途切れるため、廊下4の不連続状態を解消するために、廊下4のいずれか片側に隣接する柱2・梁3からなるフレーム内に廊下4の開口部に代わる開口部が新たに形成されるか、フレーム内の既存の開口が開口部として使用される。   FIG. 1 shows an example in which the proof strength and the rigidity assumed as the internal reinforcement frame 51 are the highest when the seismic elements 5 are arranged in all the openings in the spanwise plane where the internal reinforcement frame 51 is arranged. Is shown. In the layer (floor) where the seismic element 5 is arranged in the opening of the corridor 4, the corridor 4 is closed, so that the space of the corridor 4 that is continuous in the direction of the beam is discontinuous and the flow line is interrupted. In order to eliminate the discontinuous state of the corridor 4, an opening instead of the opening of the corridor 4 is newly formed in the frame composed of the pillar 2 and the beam 3 adjacent to one side of the corridor 4, or the frame The existing opening inside is used as the opening.

廊下4の開口部に代わる開口部は廊下4のいずれか片側の柱2・梁3からなるフレームが開放したままの状態にある場合には、その開口部が廊下4の開口部に代わる開口部として利用されればよいが、図2、図1に示すように廊下4の両側のフレームに付加耐震要素6、もしくは耐震要素5が配置され、廊下4の両側のフレームがいずれも閉塞している場合には、図1に示すように廊下4の開口部に代わる開口部として壁内開口9が付加耐震要素6、もしくは耐震要素5の一部に形成される。廊下4のいずれか片側のフレームは廊下4の開口部を構成している柱2を含む柱2・梁3のフレームを指す。   The opening instead of the opening of the corridor 4 is an opening that replaces the opening of the corridor 4 when the frame composed of the pillars 2 and beams 3 on either side of the corridor 4 is left open. As shown in FIGS. 2 and 1, the additional seismic element 6 or the seismic element 5 is arranged on the frames on both sides of the hallway 4, and the frames on both sides of the hallway 4 are closed. In this case, as shown in FIG. 1, an in-wall opening 9 is formed in the additional seismic element 6 or a part of the seismic element 5 as an opening instead of the opening of the corridor 4. The frame on one side of the hallway 4 indicates the frame of the pillar 2 and the beam 3 including the pillar 2 constituting the opening of the hallway 4.

壁内開口9は廊下4の開口部に代わる開口部であり、廊下4の動線を迂回させる経路を構成するから、廊下4の開口部を構成している柱2を含む柱2・梁3のフレーム内に形成される。   The opening 9 in the wall is an opening that replaces the opening of the corridor 4, and forms a path that bypasses the flow line of the corridor 4. Therefore, the pillar 2 and the beam 3 including the pillar 2 that constitutes the opening of the corridor 4. Formed in the frame.

図1に示すように廊下4の両側のフレームが全層に亘って付加耐震要素6、もしくは耐震要素5によって閉塞している場合には、廊下4の両側の内、いずれか片側のフレームに壁内開口9が形成される。壁内開口9の形成によって桁行方向を向く廊下4を通る動線は平面では図6、図8に示すように廊下4から一旦、その片側の居室内に入り込み、付加耐震要素6、もしくは耐震要素5に形成されている壁内開口9を通過した後、再度、廊下4に戻る経路を辿ることになる。   As shown in FIG. 1, when the frames on both sides of the corridor 4 are blocked by the additional seismic elements 6 or the seismic elements 5 over the entire layer, the walls are placed on either one of the both sides of the corridor 4. An inner opening 9 is formed. As shown in FIGS. 6 and 8, the flow line passing through the corridor 4 facing in the direction of the beam due to the formation of the opening 9 in the wall once enters the living room on one side of the corridor 4 as shown in FIG. 6 and FIG. After passing through the in-wall opening 9 formed in 5, the route returning to the corridor 4 is followed again.

ここで、各層の壁内開口9が高さ方向に廊下4のいずれか片側に偏って形成されるとすれば、内部補強架構51としての剛性と耐力がスパン方向片側に偏り、剛性と耐力の低下部分が生じ得るため、図1では内部補強架構51の剛性と耐力が廊下4を挟んで均等になるよう、下層(上層)から上層(下層)へかけて廊下4を挟んで交互に壁内開口9を配置している。   Here, if the inner wall opening 9 of each layer is formed to be biased to one side of the corridor 4 in the height direction, the rigidity and proof stress as the internal reinforcing frame 51 are biased to one side in the span direction, and the rigidity and proof strength are Since a lowered portion may occur, in FIG. 1, the inner reinforcement frame 51 is alternately placed in the wall with the corridor 4 sandwiched from the lower layer (upper layer) to the upper layer (lower layer) so that the rigidity and proof stress of the internal reinforcing frame 51 are equalized with the corridor 4 interposed. An opening 9 is arranged.

図1に示すように下層から上層へかけて廊下4を挟んで交互に壁内開口9を配置すれば、各層に壁内開口9が形成されながらも、内部補強架構51の全体としての剛性と耐力がスパン方向にも高さ方向にも均等になり、部分的な脆弱箇所がなくなるため、面内の水平力に対する抵抗要素である耐震補強架構としての機能の低下は回避される。   As shown in FIG. 1, if the openings 9 in the wall are alternately arranged from the lower layer to the upper layer with the corridor 4 interposed therebetween, the rigidity of the internal reinforcing frame 51 as a whole can be increased while the openings 9 in the wall are formed in each layer. Since the proof stress is equal in both the span direction and the height direction, and there are no partial fragile portions, the deterioration of the function as the seismic reinforcement frame which is a resistance element against the horizontal force in the plane is avoided.

構造物1が既存構造物で、桁行方向の耐震性能を補う必要がある場合には、桁行方向の構面1A、1Aの外側に、構造物1の桁行方向の地震力(水平力)を分担し、構造物1に桁行方向の耐震性を付与する構面外補強架構10、10が配置される。   When the structure 1 is an existing structure and it is necessary to supplement the seismic performance in the direction of the beam, the seismic force (horizontal force) in the direction of the beam of the structure 1 is shared outside the surface 1A, 1A in the direction of the beam. Then, the off-structure reinforcement frames 10 and 10 that provide the structure 1 with seismic resistance in the direction of the beam are arranged.

構面外補強架構10は図9に示すように基本的には桁行方向に間隔を置いて配列する柱10a、10aと、隣接する柱10a、10aをつなぐ梁10bと、柱10aと梁10bの交点間に架設されるブレース10c等からなり、既存構造物の基礎7に加え、地上層の複数箇所において桁行方向の構面1Aを構成するフレーム等に接合される。   As shown in FIG. 9, the out-of-plane reinforcing frame 10 is basically composed of columns 10a and 10a arranged at intervals in the column direction, beams 10b connecting adjacent columns 10a and 10a, columns 10a and 10b. It consists of braces 10c or the like installed between the intersections, and is joined to a frame or the like that forms the construction surface 1A in the row direction at a plurality of locations on the ground layer in addition to the foundation 7 of the existing structure.

構面外補強架構10が地震時の水平力を負担したときに、ブレース10cに水平力を効率的に負担させることができるよう、柱10aは1層単位で分割され、分割された上下の柱10c、10c間に水平方向の相対移動を生じさせる積層ゴム支承等の免震装置が介在させられることもある。   When the out-of-plane reinforcement frame 10 bears a horizontal force at the time of an earthquake, the pillar 10a is divided in units of one layer so that the brace 10c can efficiently bear the horizontal force. A seismic isolation device such as a laminated rubber bearing that causes relative movement in the horizontal direction may be interposed between 10c and 10c.

構面外補強架構10は基礎7のスパン方向外側の地中に新たに構築される基礎(フーチング)11上に構築され、基礎11は基礎7に直接、もしくは地中梁8を介して接合され、構面外補強架構10は地上において梁(桁)、スラブ、壁等の接続部材12を介して桁行方向の構面1Aに接合される。構面外補強架構10はまた、スパン方向の柱2・梁3のフレームに接続され、間接的に廊下4を閉塞した耐震要素5が構成する内部補強架構51に連続する。   The out-of-plane reinforcement frame 10 is constructed on a foundation (footing) 11 newly constructed in the ground outside the span direction of the foundation 7, and the foundation 11 is joined to the foundation 7 directly or via the underground beam 8. The out-of-plane reinforcing frame 10 is joined on the ground via a connecting member 12 such as a beam (girder), slab, wall or the like to the structural surface 1A in the column direction. The out-of-plane reinforcement frame 10 is also connected to the frame of the column 2 and the beam 3 in the span direction, and continues to the internal reinforcement frame 51 formed by the seismic element 5 that indirectly closes the corridor 4.

構面外補強架構10が内部補強架構51に接続され、両者が連続することで、スパン方向の水平力に対する抵抗要素である内部補強架構51が負担すべき水平力の一部が構面外補強架構10に伝達され、負担されることになる。構面外補強架構10に流れたスパン方向の水平力の一部は構面外補強架構10を支持する基礎11に伝達され、地中梁8で負担される。地中梁8は曲げ戻しモーメントを発揮することにより構造物1にスパン方向に作用する転倒モーメントに抵抗し、内部補強架構51の転倒を防止する。   When the external reinforcement frame 10 is connected to the internal reinforcement frame 51 and they are continuous, a part of the horizontal force that should be borne by the internal reinforcement frame 51 that is a resistance element against the horizontal force in the span direction is reinforced outside the plane. It is transmitted to the frame 10 and is borne. Part of the horizontal force in the span direction that has flowed to the out-of-plane reinforcing frame 10 is transmitted to the foundation 11 that supports the out-of-plane reinforcing frame 10 and is borne by the underground beam 8. The underground beam 8 resists the overturning moment acting on the structure 1 in the span direction by exhibiting the bending back moment, and prevents the internal reinforcing frame 51 from overturning.

図10は廊下4の開口部を閉塞する耐震要素5を少なくとも地下最下層に配置した場合の内部補強架構51の構成例を示している。図10に示す構造物1は請求項1に記載の発明の実施形態に相当する。   FIG. 10 shows a configuration example of the internal reinforcing frame 51 when the seismic element 5 that closes the opening of the corridor 4 is disposed at least in the lowest underground layer. A structure 1 shown in FIG. 10 corresponds to an embodiment of the invention described in claim 1.

図10は地下層が1層(地下1階)しかない場合の例であるから、廊下4の開口部を閉塞する耐震要素5はこの地下1階にのみ配置されるが、地下層が複数ある場合にはその内の少なくとも基礎7(11)寄りの最下層に耐震要素5が配置されればよい。地下層が複数ある場合に、最下層より上の層においては、全地下層の廊下4の開口部に耐震要素5を配置する場合と、1層置き、もしくは複数層置きに配置する場合がある。   Since FIG. 10 shows an example in which there is only one underground layer (the first floor), the seismic element 5 that closes the opening of the corridor 4 is arranged only on the first floor, but there are a plurality of underground layers. In that case, the seismic element 5 may be arranged at least in the lowermost layer near the foundation 7 (11). When there are a plurality of underground layers, in the layers above the lowest layer, there are cases where the seismic elements 5 are arranged in the openings of the corridors 4 of all the underground layers, and there are cases where they are arranged every other layer or every other layer .

図10ではまた、地上層(地上階)における廊下4の開口部に耐震要素5を配置していない場合を示しているが、地上層における廊下4の開口部に耐震要素5を配置する場合には、図1の例の場合と同様に、耐震要素5は少なくとも高さ方向に連続的に存在している開口部の連続性を分断するように、1層置き、もしくは複数層置きに配置されればよい。   FIG. 10 also shows a case where the seismic element 5 is not disposed in the opening of the hallway 4 in the ground layer (ground floor), but when the seismic element 5 is disposed in the opening of the hallway 4 in the ground layer. As in the case of the example of FIG. 1, the seismic elements 5 are arranged in every other layer or every other layer so as to divide the continuity of the openings that are continuously present at least in the height direction. Just do it.

図10では、図1において廊下4を挟んだ両側に高さ方向に交互に配列している壁内開口9を二点鎖線で示しているが、二点鎖線の壁内開口9は地上層のいずれかの廊下4の開口部に耐震要素5が配置される場合に、その層の廊下4以外の空間に配置されるか、配置されている耐震要素5、もしくは付加耐震要素6に廊下4の開口部に代わって形成されることがあることを意味している。   In FIG. 10, the opening 9 in the wall alternately arranged in the height direction on both sides of the corridor 4 in FIG. 1 is indicated by a two-dot chain line. When the seismic element 5 is arranged in the opening of any one of the corridors 4, it is arranged in a space other than the corridor 4 of the layer, or the seismic element 5 or the additional seismic element 6 arranged in the hallway 4. It means that it may be formed in place of the opening.

1……内部補強架構付き構造物、1A……桁行方向の構面、
2……柱、3……梁、4……廊下、
5……耐震要素、51……内部補強架構、
6……付加耐震要素、7……基礎(フーチング)、8……地中梁、
9……壁内開口、
10……構面外補強架構、10a……柱、10b……梁、10c……ブレース、
11……基礎(フーチング)、12……接続部材。
1 …… Structure with internal reinforcement frame, 1A …… Structure surface in the direction of girder,
2 ... pillars, 3 ... beams, 4 ... corridors,
5 ... Seismic element 51 ... Internal reinforcement frame
6 …… Additional seismic elements, 7 …… Funds, 8 …… Underground beams,
9 …… Open in the wall,
10 …… Out-of-plane reinforcement frame, 10a …… Column, 10b …… Beam, 10c …… Brace,
11: Foundation (footing), 12: Connection member.

Claims (6)

スパン方向と桁行方向のそれぞれの架構が柱・梁のフレームを有し、スパン方向に配列する一部の柱間に、桁行方向に連続する廊下が配置されている複数層の構造物の内部において、
桁行方向の前記柱・梁のフレームの内、少なくとも桁行方向中間部位置の柱を通るスパン方向の前記柱・梁のフレームを構成し、前記廊下を区画する、並列する柱間にスパン方向を向く耐震要素が少なくとも地下最下層以上の層に配置されていることを特徴とする内部補強架構付き構造物。
Inside the multi-layered structure where each span frame and cross beam frame has a pillar / beam frame, and a corridor continuous in the cross row direction is arranged between some columns arranged in the span direction. ,
The column / beam frame in the span direction passing through at least the column at the middle position in the column direction is included in the column / beam frame in the column direction, and the span direction is defined between the parallel columns that define the corridor. A structure with an internal reinforcement frame, characterized in that the seismic elements are arranged at least in the layer below the lowest basement.
前記耐震要素は地上層には各層単位で配置され、この各層の耐震要素が前記廊下の開口部を構造物の高さ方向に不連続状態にしていることを特徴とする請求項1に記載の内部補強架構付き構造物。   The seismic element is arranged on the ground layer in units of layers, and the seismic element of each layer makes the opening of the corridor discontinuous in the height direction of the structure. Structure with internal reinforcement frame. スパン方向と桁行方向のそれぞれの架構が柱・梁のフレームを有し、スパン方向に配列する一部の柱間に、桁行方向に連続する廊下が配置されている複数層の構造物の内部において、
桁行方向の前記柱・梁のフレームの内、少なくとも桁行方向中間部位置の柱を通るスパン方向の前記柱・梁のフレームを構成し、前記廊下を区画する、並列する柱間にスパン方向を向く耐震要素が各層単位で配置され、この各層の耐震要素が前記廊下の開口部を構造物の高さ方向に不連続状態にしていることを特徴とする内部補強架構付き構造物。
Inside the multi-layered structure where each span frame and cross beam frame has a pillar / beam frame, and a corridor continuous in the cross row direction is arranged between some columns arranged in the span direction. ,
The column / beam frame in the span direction passing through at least the column at the middle position in the column direction is included in the column / beam frame in the column direction, and the span direction is defined between the parallel columns that define the corridor. A structure with an internal reinforcement frame, wherein the seismic elements are arranged in units of layers, and the seismic elements of each layer make the opening of the corridor discontinuous in the height direction of the structure.
前記廊下以外の区間のスパン方向の柱間に付加耐震要素が配置され、この付加耐震要素の一部に、前記廊下の開口部に代わる壁内開口が形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の内部補強架構付き構造物。   The additional seismic element is disposed between the columns in the span direction of the section other than the corridor, and an opening in the wall that replaces the opening of the corridor is formed in a part of the additional seismic element. The structure with an internal reinforcement frame according to any one of claims 1 to 3. 桁行方向の構面のスパン方向外側に構面外補強架構が配置され、この構面外補強架構はスパン方向の柱・梁のフレームに接続され、間接的に前記廊下を閉塞した耐震要素に連続していることを特徴とする請求項1乃至請求項4のいずれかに記載の内部補強架構付き構造物。   An out-of-plane reinforcement frame is placed on the outside of the span direction in the span direction, and this out-of-plane reinforcement frame is connected to the column / beam frame in the span direction and is connected to the seismic elements that indirectly block the corridor. The structure with an internal reinforcement frame according to any one of claims 1 to 4, wherein the structure has an internal reinforcement frame. 前記構面外補強架構の基礎はそれを除いた構造物の基礎とスパン方向に連結されていることを特徴とする請求項5に記載の内部補強架構付き構造物。
The structure with an internal reinforcement frame according to claim 5, wherein the foundation of the out-of-plane reinforcement frame is connected to the foundation of the structure excluding the foundation in the span direction.
JP2010265961A 2010-11-30 2010-11-30 Structure with internal reinforcement frame Active JP4667536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265961A JP4667536B1 (en) 2010-11-30 2010-11-30 Structure with internal reinforcement frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265961A JP4667536B1 (en) 2010-11-30 2010-11-30 Structure with internal reinforcement frame

Publications (2)

Publication Number Publication Date
JP4667536B1 true JP4667536B1 (en) 2011-04-13
JP2012117232A JP2012117232A (en) 2012-06-21

Family

ID=44021699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265961A Active JP4667536B1 (en) 2010-11-30 2010-11-30 Structure with internal reinforcement frame

Country Status (1)

Country Link
JP (1) JP4667536B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837145B1 (en) * 2011-08-30 2011-12-14 等 塩原 Seismic retrofitting structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400306B2 (en) * 2014-03-07 2018-10-03 大和ハウス工業株式会社 Steel frame residential building with bi-directional brace structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building
JPH09273317A (en) * 1996-04-05 1997-10-21 Taisei Corp Vibration-resistant reinforcing method of existing concrete structure
JPH09310511A (en) * 1996-05-23 1997-12-02 Ohbayashi Corp Earthquake resistant reinforcing construction of existing building
JPH1046834A (en) * 1996-05-23 1998-02-17 Ohbayashi Corp Earthquake-resistant reinforcing structure of existing building
JP2002206353A (en) * 2001-01-09 2002-07-26 Mitsui Constr Co Ltd Vibration control structure building
JP2005139770A (en) * 2003-11-07 2005-06-02 Hitoshi Shiobara Vibration control reinforcing frame for existing building and vibration control building using it
JP2010242393A (en) * 2009-04-07 2010-10-28 Shimizu Corp Seismic strengthening structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building
JPH09273317A (en) * 1996-04-05 1997-10-21 Taisei Corp Vibration-resistant reinforcing method of existing concrete structure
JPH09310511A (en) * 1996-05-23 1997-12-02 Ohbayashi Corp Earthquake resistant reinforcing construction of existing building
JPH1046834A (en) * 1996-05-23 1998-02-17 Ohbayashi Corp Earthquake-resistant reinforcing structure of existing building
JP2002206353A (en) * 2001-01-09 2002-07-26 Mitsui Constr Co Ltd Vibration control structure building
JP2005139770A (en) * 2003-11-07 2005-06-02 Hitoshi Shiobara Vibration control reinforcing frame for existing building and vibration control building using it
JP2010242393A (en) * 2009-04-07 2010-10-28 Shimizu Corp Seismic strengthening structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837145B1 (en) * 2011-08-30 2011-12-14 等 塩原 Seismic retrofitting structure

Also Published As

Publication number Publication date
JP2012117232A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5601847B2 (en) building
KR101211145B1 (en) Multi-Story Coupled Seismic Energy Dissipation System with Displacement Amplification
JP6245890B2 (en) building
JP4667536B1 (en) Structure with internal reinforcement frame
JP4579615B2 (en) Multi-layer core wall type seismic control high-rise apartment building
JP2988470B2 (en) Reinforcement structure of existing structure and reinforcement structure
JP2013032696A (en) Reinforcement structure of rigid frame structure
JP2006138127A (en) Structure of building
JP6690150B2 (en) Beam-column structure of plate-like apartment house
JP2014047522A (en) Building
JP5683349B2 (en) Frame structure of plate apartment
KR101133177B1 (en) Multi-Story Coupled Seismic Energy Dissipation System with Displacement Amplification
KR101266215B1 (en) Improved seismic performance of Staggered wall system with central hall
JP5096979B2 (en) Reinforcement structure of ramen structure
JP2011052507A (en) Low-story building
JP3787813B2 (en) Large span structure building
JP5703412B2 (en) Frame structure of plate apartment
JP2002161580A (en) Multiple dwelling house structure
JP3211098U (en) Seismic reinforcement structure for existing steel buildings
JP6045807B2 (en) Seismic element intensive structure
JP2010189903A (en) Damping frame for building
JP4800166B2 (en) housing complex
JP6951851B2 (en) High-rise earthquake-resistant building
JP5379414B2 (en) Building
JP2024112407A (en) Building Structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250