JP4667476B2 - Electrical component connection method and connection structure, and power conversion device using the connection structure - Google Patents

Electrical component connection method and connection structure, and power conversion device using the connection structure Download PDF

Info

Publication number
JP4667476B2
JP4667476B2 JP2008036204A JP2008036204A JP4667476B2 JP 4667476 B2 JP4667476 B2 JP 4667476B2 JP 2008036204 A JP2008036204 A JP 2008036204A JP 2008036204 A JP2008036204 A JP 2008036204A JP 4667476 B2 JP4667476 B2 JP 4667476B2
Authority
JP
Japan
Prior art keywords
electrical component
protrusions
connection structure
bus bar
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008036204A
Other languages
Japanese (ja)
Other versions
JP2009193928A (en
Inventor
篤 武智
直紀 保西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008036204A priority Critical patent/JP4667476B2/en
Publication of JP2009193928A publication Critical patent/JP2009193928A/en
Application granted granted Critical
Publication of JP4667476B2 publication Critical patent/JP4667476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Dc-Dc Converters (AREA)

Description

この発明は、電気部品と導通バスバーとの接続、特に大電流を流す電気部品と導通バスバーとを溶融接合により接続する電気部品の接続方法及び接続構造、並びにその接続構造を用いた電力変換装置に関するものである。   TECHNICAL FIELD The present invention relates to a connection method and a connection structure of an electrical component that connects an electrical component and a conductive bus bar, in particular, an electrical component that conducts a large current and a conductive bus bar by fusion bonding, and a power converter using the connection structure. Is.

従来、数百Aからの大電流を導通させる導体同士の接続手段としてねじによる締結が行われている。しかし、大電流経路に用いられる導体同士の接続には大きな径のねじが必要となり、大きな締結スペースを要する。このため、機器の小型化が進むにつれてねじによる締結が小型化の制約になる場合が出てきている。   Conventionally, fastening with screws is performed as a connection means between conductors for conducting a large current from several hundreds of A. However, a large-diameter screw is required to connect the conductors used in the large current path, and a large fastening space is required. For this reason, with the progress of miniaturization of equipment, there are cases where fastening with screws becomes a restriction on miniaturization.

例えば、従来の電力変換装置においては、外部接続導体と電力半導体モジュールの主端子がねじで締結されているため、主端子の端子台、及び端子台と外部接続導体とをボルトあるいはナットで締結するための面積が必要で、コンパクト化の阻害要因となっている。また、ねじによる締結は接触接続方式であるため、大きな電流を制御する電力変換装置では、締結部の接触抵抗を低減する必要があり、このためにも大きな締結面積が必要となっている。   For example, in the conventional power conversion device, the external connection conductor and the main terminal of the power semiconductor module are fastened with screws, so the terminal block of the main terminal and the terminal block and external connection conductor are fastened with bolts or nuts. Area is required, which is an obstacle to downsizing. In addition, since the fastening with screws is a contact connection method, in a power converter that controls a large current, it is necessary to reduce the contact resistance of the fastening portion, and for this reason, a large fastening area is required.

更に、ねじを締結するために、ドライバーやラチェットなどの締め付け工具をねじの軸方向からアプローチさせて作業する必要があり、工具がアプローチする方向に対して干渉しないように装置に大きな空間を確保する必要がある。このため、機器の小型化が進むにつれてねじによる接続が小型化の制約になる問題が出てきている。   Furthermore, in order to fasten the screw, it is necessary to work with a tightening tool such as a screwdriver or ratchet approaching from the axial direction of the screw, so that a large space is secured in the apparatus so as not to interfere with the direction in which the tool approaches. There is a need. For this reason, the problem that the connection by a screw becomes a restriction | limiting of size reduction has come out as the size reduction of an apparatus progresses.

そこで、かかる問題に着目し、導体同士のねじによる締結に変わる方法として、アーク溶接などの溶融接合が適用されることが増えてきている。   Therefore, paying attention to such a problem, fusion bonding such as arc welding has been increasingly applied as a method of changing to fastening with a screw between conductors.

例えば、電気部品のリード足と導通バスバーとを接続する電気部品の接続構造として、導通バスバーの先端部に突起を設け、この突起と電気部品のリード足とをアーク溶接することにより、電気部品と導通バスバーとを電気接続することが提案されている(例えば、特許文献1参照)。   For example, as a connection structure of an electrical component that connects a lead leg of an electrical component and a conductive bus bar, a projection is provided at the tip of the conductive bus bar, and this projection and the lead foot of the electrical component are arc welded, thereby It has been proposed to electrically connect a conductive bus bar (see, for example, Patent Document 1).

また、車載用の電力変換装置の大電力化に際しては、個々の半導体モジュールの大電力化を図る方法が考えられているが、半導体素子の大電力化には限界があるため、複数の半導体モジュールを電気的に並列接続して大電力化を図ることが行われている。   In addition, a method for increasing the power consumption of individual semiconductor modules has been considered for increasing the power consumption of in-vehicle power converters. However, since there is a limit to increasing the power consumption of semiconductor elements, a plurality of semiconductor modules are considered. The electric power is connected in parallel to increase the power.

半導体モジュールを並列接続するには、並列接続される半導体モジュールの同極性を有する主端子相互間を接続する必要があり、その半導体モジュールから突き出た主端子を、半導体モジュール近傍で直角に曲げ、半導体モジュール上方において多点で溶接をはじめとする金属接合により接続する方法が提案されている(例えば、特許文献2参照)。   In order to connect semiconductor modules in parallel, it is necessary to connect the main terminals having the same polarity of the semiconductor modules connected in parallel, and the main terminals protruding from the semiconductor module are bent at a right angle in the vicinity of the semiconductor module. There has been proposed a method of connecting by metal bonding including welding at multiple points above the module (for example, see Patent Document 2).

特開2002−134956号公報(要約の欄、図1)Japanese Patent Laid-Open No. 2002-134956 (summary column, FIG. 1) 特開2007−110870号公報(段落0019、図6)JP 2007-110870 (paragraph 0019, FIG. 6)

上記特許文献1に開示された電気部品の接続構造は、電気部品と導通バスバーとの電気
接続にアーク溶接法が採用されており、このアーク溶接法では一般的に高さ方向の空間を利用して接合できる構造にでき、電気的正極となるチャックを挟み込むスペースさえ設ければよいため、ねじによる締結にくらべて床面積を縮小できる利点がある。
The electrical component connection structure disclosed in Patent Document 1 employs an arc welding method for electrical connection between the electrical component and the conductive bus bar, and this arc welding method generally uses a space in the height direction. Therefore, there is an advantage that the floor area can be reduced as compared with the fastening by screws.

しかし、ここに開示されているのは、導通バスバーの先端部に一点の突起を設け、この一点の突起に電気部品のリード足を接合し、その接合部を点溶接する構造であり、大電流を流すためには突起を一点設けるのみでは足りず、数箇所設けてその数箇所を点溶接する必要がある。即ち、特許文献1による電気部品の接続構造には、大電流を流すための考慮がなされていない。   However, what is disclosed here is a structure in which a single protrusion is provided at the tip of the conductive bus bar, a lead leg of an electrical component is joined to this single protrusion, and the joint is spot welded. In order to flow, it is not sufficient to provide only one point of protrusion, and it is necessary to provide several points and spot weld several points. In other words, the electric component connection structure disclosed in Patent Document 1 does not take into account the flow of a large current.

また、並列接続されるコンデンサの同電位の電極相互間を、導通バスバーを介して接続するものであり、溶接点数が増えてラインタクトが長くなる問題がある。   Further, the electrodes having the same potential of the capacitors connected in parallel are connected through a conductive bus bar, and there is a problem that the number of welding points increases and the line tact becomes long.

また、上記特許文献2は、半導体モジュールを並列接続するときに、並列接続されるそれぞれの半導体モジュールから突き出した主端子を半導体モジュール近傍で直角に曲げ、半導体モジュール上方において多点で溶接する方法を提案するもので、半導体モジュールの主端子と導通バスバーとの接続方法については開示されていない。   In addition, when the semiconductor modules are connected in parallel, the above Patent Document 2 is a method in which main terminals protruding from the semiconductor modules connected in parallel are bent at right angles in the vicinity of the semiconductor module and welded at multiple points above the semiconductor module. The proposed method does not disclose a connection method between the main terminal of the semiconductor module and the conductive bus bar.

この発明は上記課題に鑑みてなされたもので、ラインタクトを伸ばすことなく、良好な溶接結果が得られ、安定して量産できる電気部品の接続方法及び接続構造、並びにその接続構造を用いた電力変換装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned problems, and it is possible to obtain a good welding result without extending the line tact, and to stably mass-produce electric component connection methods and connection structures, and electric power using the connection structures. The object is to provide a conversion device.

この発明は、電気部品の接続端子の先端部に導通バスバーの先端部を接続する電気部品の接続方法であって、上記接合部先端に複数個の突起部を形成し、上記突起部を同じ溶接条件で連続的に溶融接合する電気部品の接続方法において、上記突起部の接合順序に従って上記突起部を異なる高さとし、上記突起部の溶融量を制御するものである。 The present invention relates to a method for connecting an electrical component for connecting a distal end portion of a conductive bus bar to a distal end portion of a connection terminal of an electrical component, wherein a plurality of protruding portions are formed at the distal end of the joint portion, and the protruding portions are welded to the same In the method of connecting electrical components that are continuously melt-bonded under conditions, the protrusions are set to different heights according to the bonding order of the protrusions, and the amount of melting of the protrusions is controlled .

この発明によれば、ラインタクトを伸ばすことなく、良好な溶接結果が得られ、安定して量産できる電気部品が提供できる。   According to the present invention, it is possible to provide an electrical component that can obtain a good welding result without increasing the line tact and can be stably mass-produced.

以下、この発明に係る電気部品の接続方法及び接続構造、並びにその接続構造を用いた電力変換装置の好適な実施の形態について図面を参照して説明する。なお、これらの実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a method and a connection structure for electrical components according to the present invention and a power converter using the connection structure will be described with reference to the drawings. Note that the present invention is not limited to these embodiments.

実施の形態1.
図1は、この発明の実施の形態1に係る電気部品の接続構造を説明する模式図で、電力変換装置へ適用した実施の形態を示す模式図である。図1において、(a)は電力変換装置に用いられる半導体モジュールと導通バスバーとの溶融接合部を側面から見た断面模式図で、(b)は図1(a)の一部を正面から見た部分断面模式図である。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating a connection structure for electrical components according to Embodiment 1 of the present invention, and is a schematic diagram illustrating an embodiment applied to a power converter. 1A is a schematic cross-sectional view of a melt-bonded portion between a semiconductor module and a conductive bus bar used in a power conversion device as viewed from the side, and FIG. 1B is a partial view of FIG. FIG.

実施の形態1に係る電気部品の接続構造は、図1に示すように2個の半導体モジュール1,2と、1個の導通バスバー3からなる合計3個の端子を、図1において上方から図示しない非消耗性電極により一括してアーク溶接(TIG溶接)するものである。これにより、2個の半導体モジュール1,2と、1個の導通バスバー3からなる合計3個の端子が、ナゲット4により一括して溶融接合されることになる。即ち、半導体モジュール1,2の端子1a,2aをそれぞれの半導体モジュール1,2の近傍で直角に曲げて接合すると共に、導通バスバー3の先端部3aを半導体モジュール1,2の端子1a,2aと同様に直角に曲げて接合し、半導体モジュール1,2の端子1a,2aの先端部と導通バスバー3の先端部3aとをナゲット4により一括して溶融接合するものである。   As shown in FIG. 1, the electrical component connection structure according to the first embodiment shows a total of three terminals including two semiconductor modules 1 and 2 and one conductive bus bar 3 from above in FIG. Arc welding (TIG welding) is collectively performed using non-consumable electrodes. As a result, a total of three terminals including two semiconductor modules 1 and 2 and one conductive bus bar 3 are melt-bonded together by the nugget 4. That is, the terminals 1a and 2a of the semiconductor modules 1 and 2 are bent at right angles in the vicinity of the respective semiconductor modules 1 and 2 and joined, and the leading end portion 3a of the conductive bus bar 3 is connected to the terminals 1a and 2a of the semiconductor modules 1 and 2. Similarly, the end portions of the terminals 1 a and 2 a of the semiconductor modules 1 and 2 and the end portion 3 a of the conductive bus bar 3 are melt-bonded together by the nugget 4 by being bent at a right angle.

以上のように、実施の形態1に係る電気部品の接続構造によれば、2個の半導体モジュール1,2と、1個の導通バスバー3との合計3個の端子をナゲット4により一括して溶融接合するため、溶接点数を減少でき、ラインタクトを短くすることが可能となる。   As described above, according to the electrical component connection structure according to the first embodiment, a total of three terminals of the two semiconductor modules 1 and 2 and the one conductive bus bar 3 are collectively collected by the nugget 4. Since fusion bonding is performed, the number of welding points can be reduced and the line tact can be shortened.

また、実施の形態1に係る電気部品の接続構造を電力変換装置に用いることにより、大電力化に伴って必要とされる半導体モジュール1,2の並列化が省スペースで可能になると共に、安定した大電力通電を可能とする電力変換装置を得ることができる。   In addition, by using the electrical component connection structure according to the first embodiment for the power conversion device, parallelization of the semiconductor modules 1 and 2 required for increasing power can be achieved in a space-saving manner, and stable. Thus, it is possible to obtain a power conversion device capable of energizing large power.

なお、上記においては3端子の場合について図示説明したが、突起の個数、形状はこれに限られるものではない。また、半導体モジュール1,2の端子1a,2aをそれぞれの半導体モジュール1,2の近傍で直角に曲げると共に、導通バスバー3の先端部3aを半導体モジュール1,2の端子1a,2aと同様に直角に曲げて溶接する、所謂、拝み溶接する場合について図示説明したが、この形態に限られるものでもない。   In the above description, the case of three terminals has been described. However, the number and shape of the protrusions are not limited thereto. Further, the terminals 1a and 2a of the semiconductor modules 1 and 2 are bent at right angles in the vicinity of the respective semiconductor modules 1 and 2, and the front end portion 3a of the conductive bus bar 3 is perpendicular to the terminals 1a and 2a of the semiconductor modules 1 and 2. Although the case of so-called prayer welding, which is bent and welded, is illustrated and explained, it is not limited to this form.

実施の形態2.
次に、この発明の実施の形態2に係る電気部品の接続構造について説明する。実施の形態1においては、2個の半導体モジュール1,2と、1個の導通バスバー3との合計3個の端子をナゲット4により一括して溶融接合する実施の形態について説明した。この実施の形態1によれば、上述した効果を得ることはできるが、溶接部における溶接結果が十分でない課題が残る。以降で説明する実施の形態2は、実施の形態1の効果を得ると共に、溶接部における溶接結果を向上させるものである。
Embodiment 2. FIG.
Next, an electrical component connection structure according to Embodiment 2 of the present invention will be described. In the first embodiment, the embodiment in which a total of three terminals of the two semiconductor modules 1 and 2 and the one conductive bus bar 3 are fused and joined together by the nugget 4 has been described. According to this Embodiment 1, although the effect mentioned above can be acquired, the subject that the welding result in a welding part is not enough remains. In the second embodiment described below, the effects of the first embodiment are obtained, and the welding result in the welded portion is improved.

実施の形態2を説明するにあたり、便宜上、まず、発明者らの実験に基づくアーク溶接部の熱解析結果について説明する。図2(a)(b)は、溶接箇所が3点、即ち、端部にある突起(以下、端部突起といい、両端の端部突起を両端突起という。)と中央部にある突起(以下、中央突起という。)に同一条件で溶接した場合に所定時刻における最高到達点温度を解析した熱解析結果である。この解解析結果から明らかなように、同じ条件による溶接では中央突起と両端突起の温度差が大きく、結果として溶融量も中央突起が両端突起に比べ少なくなることが理解できる。   In describing the second embodiment, for the sake of convenience, first, the thermal analysis result of the arc welded part based on the experiments of the inventors will be described. 2 (a) and 2 (b), there are three points to be welded, that is, protrusions at the ends (hereinafter referred to as end protrusions, end protrusions at both ends are referred to as both end protrusions) and protrusions at the center ( Hereinafter, it is a thermal analysis result obtained by analyzing the maximum temperature at a predetermined time when welding to the central protrusion under the same conditions. As is apparent from the solution analysis results, it can be understood that in the welding under the same conditions, the temperature difference between the central protrusion and the both end protrusions is large, and as a result, the amount of melting is smaller in the central protrusion than in the both end protrusions.

図2(a)(b)の熱解析結果について、図3、図4、図5、および図6を用いて更に説明する。図3は半導体モジュールの端子と導通バスバーの先端接続部を示す模式図で、(a)は半導体モジュールの端子と導通バスバーとの溶融接合部の正面図、(b)は図3(a)の側面図である。なお、ここでは簡略化のため、半導体モジュールの端子と導通バスバーをそれぞれ1個ずつの合計2個を拝み溶接する場合について図示している。   The thermal analysis results shown in FIGS. 2A and 2B will be further described with reference to FIGS. 3, 4, 5, and 6. FIG. FIG. 3 is a schematic view showing the terminal of the semiconductor module and the tip connection portion of the conductive bus bar. FIG. 3 (a) is a front view of the melt-bonded portion between the terminal of the semiconductor module and the conductive bus bar, and FIG. It is a side view. Here, for the sake of simplification, a case where a total of two terminals, one each for the semiconductor module and one conductive bus bar, are welded is illustrated.

一般に、半導体モジュールの端子30aと導通バスバー31の母材の材質は銅であり、必要な場合は腐食防止のために、ニッケル(Ni)や錫(Sn)のメッキをすることもある。この端子30aと導通バスバー31に対し、実施の形態1と同様に非消耗性電極32をその上部から図のように配置し、半導体モジュールの端子30aと導通バスバー31を溶接する。このとき、端子30aと導通バスバー31は図示しないチャックにより紙面に対し平行な方向に挟まれて固定されている。このチャックは溶接電源のアースに接続されており、非消耗性電極32の先端に高電圧を印加することにより、端子30aと導通バスバー31のそれぞれの先端部との間にアーク放電が発生し、端子30aと導通バスバー31が溶接される。   Generally, the base material of the terminal 30a of the semiconductor module and the conductive bus bar 31 is copper, and nickel (Ni) or tin (Sn) may be plated if necessary to prevent corrosion. The non-consumable electrode 32 is disposed on the terminal 30a and the conductive bus bar 31 from the top as shown in the figure as in the first embodiment, and the terminal 30a of the semiconductor module and the conductive bus bar 31 are welded. At this time, the terminal 30a and the conductive bus bar 31 are sandwiched and fixed in a direction parallel to the paper surface by a chuck (not shown). This chuck is connected to the ground of the welding power source. By applying a high voltage to the tip of the non-consumable electrode 32, an arc discharge is generated between the terminal 30a and each tip of the conductive bus bar 31, The terminal 30a and the conductive bus bar 31 are welded.

図4は、端子30a(図示せず)と導通バスバー31の右側端部突起33を所定電流、かつ所定通電時間のプロファイルで溶接したときの通電終了瞬間における温度分布を模式的に示した図である。図2に示した解析の結果から類推して、導通バスバー31の右側端
部突起33は、図4に示す高温部が約1500℃〜1700℃、中温部が約1000℃〜1500℃、低温部が約300℃〜1000℃の温度分布を示している。右側端部突起33は中央突起34に比べ、その形状から供給された熱量が放熱しにくく熱がこもりやすいため、図に示すように突起全体がかなり高温になる。そのため、右側端部突起33は十分に溶融する。
FIG. 4 is a diagram schematically showing the temperature distribution at the end of energization when the terminal 30a (not shown) and the right end protrusion 33 of the conductive bus bar 31 are welded with a profile of a predetermined current and a predetermined energization time. is there. By analogy with the analysis results shown in FIG. 2, the right end protrusion 33 of the conductive bus bar 31 has a high temperature portion of about 1500 ° C. to 1700 ° C., a middle temperature portion of about 1000 ° C. to 1500 ° C., and a low temperature portion shown in FIG. Indicates a temperature distribution of about 300 ° C to 1000 ° C. Compared with the central protrusion 34, the right end protrusion 33 is less likely to dissipate the amount of heat supplied from its shape, and heat tends to be trapped, so that the entire protrusion becomes considerably hot as shown in the figure. Therefore, the right end protrusion 33 is sufficiently melted.

図5は、図4と同様の条件で中央突起34を溶接し、同様に通電が終了した瞬間の温度分布を模式的に示した図である。中央突起34を溶接する場合は、その形状から供給された熱が放熱されやすくこもりにくいため、熱が端子全体に分散してしまう。このため、右側端部突起33の溶接の場合よりも全体的に突起部の温度は低い温度分布となり、中央突起34の温度も右側端部突起33の溶接より低い温度分布となる。そのため図6に示すように、中央突起34のナゲット35は両端突起のナゲット36よりも小さく、強度も弱くなってしまう。   FIG. 5 is a diagram schematically showing the temperature distribution at the moment when the central projection 34 is welded under the same conditions as in FIG. When the central protrusion 34 is welded, the heat supplied from the shape is easily dissipated and is not easily trapped, so that the heat is dispersed throughout the terminal. For this reason, the temperature of the protrusion is generally lower than that of the welding of the right end protrusion 33, and the temperature of the central protrusion 34 is also lower than that of the right end protrusion 33. Therefore, as shown in FIG. 6, the nugget 35 of the central protrusion 34 is smaller than the nugget 36 of both end protrusions, and the strength is weakened.

なお、上記においては、溶接箇所が3点、即ち、右側端部突起33と中央突起34を同一条件で溶接した場合について説明したが、この現象は2点の突起、即ち、中央突起がない場合においても、端部突起、例えば図4の右側端部突起33において、その右側部分と左側部分の間で上記現象と同様の現象が生じる。   In the above description, the case where the welding point is three points, that is, the case where the right end protrusion 33 and the central protrusion 34 are welded under the same conditions has been described. However, this phenomenon occurs when there are no two protrusions, that is, the central protrusion. In FIG. 4, in the end protrusion, for example, the right end protrusion 33 in FIG.

上記の結果および解析により、全ての突起を同条件で溶接したのでは、中央突起において溶融強度が弱くなる課題があり、以下、この課題を解決する電気部品の接続構造について説明する。   As a result of the above results and analysis, if all the protrusions are welded under the same conditions, there is a problem that the melt strength is weakened in the central protrusion. Hereinafter, a connection structure of an electrical component that solves this problem will be described.

図7は、この発明の実施の形態2を示す半導体モジュール端子と導通バスバーの先端接続部を示し、(a)は正面図、(b)は側面図である。また、図8は、図7の突起部を適正な条件で溶接したときの溶接ナゲットを示す模式図である。   7A and 7B show a semiconductor module terminal and a leading end connection portion of a conductive bus bar according to Embodiment 2 of the present invention, wherein FIG. 7A is a front view and FIG. 7B is a side view. FIG. 8 is a schematic diagram showing a weld nugget when the protrusions of FIG. 7 are welded under appropriate conditions.

実施の形態2に係る電気部品の接続構造は、図7に示すように、半導体モジュール端子70の先端接続部と導通バスバー72の先端接続部の端部突起73、74の根元に放熱部75、76を設けた形状になっている。これにより、端部突起73、74と中央突起77の放熱性がほぼ同等となり、図8に示すように同条件で溶接しても同様な溶接ナゲット80を得ることができる。このときの溶接条件は図4、図5で説明した溶接条件よりも高めの設定にすることができ、十分な溶融量のナゲット80を得ることができる。なお、本実施の形態では半導体モジュール端子70と導通バスバー72の両方に放熱部75、76を設けているが、形状はこれに限られず、放熱部75、76は半導体モジュール端子70及び導通バスバー72のいずれか片方だけに設けてもよい。   As shown in FIG. 7, the electrical component connection structure according to the second embodiment has a heat radiation portion 75 at the base of the end projections 73 and 74 of the tip connection portion of the semiconductor module terminal 70 and the tip connection portion of the conduction bus bar 72. 76 is provided. Thereby, the heat dissipation of the end protrusions 73 and 74 and the central protrusion 77 becomes substantially equal, and a similar weld nugget 80 can be obtained even if welding is performed under the same conditions as shown in FIG. The welding conditions at this time can be set higher than the welding conditions described with reference to FIGS. 4 and 5, and a nugget 80 having a sufficient melting amount can be obtained. In this embodiment, the heat radiating portions 75 and 76 are provided in both the semiconductor module terminal 70 and the conductive bus bar 72, but the shape is not limited to this, and the heat radiating portions 75 and 76 are formed in the semiconductor module terminal 70 and the conductive bus bar 72. You may provide only in any one of these.

実施の形態3.
次に、この発明の実施の形態3に係る電気部品の接続構造について説明する。図9は、実施の形態3を示す半導体モジュール端子と導通バスバーの先端接続部を示し、(a)は正面図、(b)は側面図である。
Embodiment 3 FIG.
Next, an electrical component connection structure according to Embodiment 3 of the present invention will be described. FIG. 9 shows the semiconductor module terminal and the leading end connection portion of the conductive bus bar according to the third embodiment, where (a) is a front view and (b) is a side view.

この実施の形態の特徴は、半導体モジュール端子90あるいは導通バスバー91に設けられる中央突起93の高さを、端部突起94、95に比べて高くしていることである。図10は、図9の形状において、図4、図5で説明した溶接条件で中央突起93を溶接したときの通電終了時の温度分布を模式的に示した図である。中央突起93の先端から熱の拡散が大きくなる根元までの距離が遠くなるため、放熱しにくく熱がこもりやすい構造となっている。よって、中央突起93の先端部ではかなり高温の状態となるため、中央突起93が十分に溶融し、図11に示すように端部突起94、95とほぼ均質のナゲット96を得ることができる。なお、実施の形態3の考え方を、実施の形態2で説明した電気部品の接続構造に適用することも考えられ、一層良好な効果を得ることが可能になる。   The feature of this embodiment is that the height of the central protrusion 93 provided on the semiconductor module terminal 90 or the conductive bus bar 91 is higher than that of the end protrusions 94 and 95. FIG. 10 is a diagram schematically showing a temperature distribution at the end of energization when the central protrusion 93 is welded under the welding conditions described in FIGS. 4 and 5 in the shape of FIG. Since the distance from the tip of the central protrusion 93 to the root where heat diffusion increases, the structure becomes difficult to dissipate heat and easily accumulate heat. Therefore, since the front end portion of the central protrusion 93 is in a considerably high temperature state, the central protrusion 93 is sufficiently melted, and a nugget 96 that is substantially homogeneous with the end protrusions 94 and 95 can be obtained as shown in FIG. Note that it is possible to apply the concept of the third embodiment to the electrical component connection structure described in the second embodiment, so that even better effects can be obtained.

実施の形態4.
次に、この発明の実施の形態4に係る電気部品の接続構造について説明する。図12は、実施の形態4を示す半導体モジュール端子と導通バスバーとの先端接続部の正面模式図である。製品の製造において、複数の突起部を連続的に溶接する場合、溶接工程は往々にしてネック工程になりやすく、溶接間隔はできるだけ短くする必要がある。一方、溶接ではごく短時間に小さな突起部に大きな熱量を供給するため、図4、図5に示すように周辺部の温度上昇、特に隣接する突起も温度上昇する。そのため、溶接間隔が短くなり隣接する突起を連続で溶接するほど、最初の溶接箇所に供給された熱が残った状態で次の溶接を行うことになる。このような場合、全く初期の熱がない状態で条件設定を行った溶接条件で溶接すると、トータルの入熱量が増えてしまい、過溶融による形状異常、溶融部の溶け落ちなどが起こりやすくなる。
Embodiment 4 FIG.
Next, an electrical component connection structure according to Embodiment 4 of the present invention will be described. FIG. 12 is a schematic front view of the tip connection portion between the semiconductor module terminal and the conductive bus bar according to the fourth embodiment. In the manufacture of products, when a plurality of protrusions are continuously welded, the welding process often becomes a neck process, and the welding interval needs to be as short as possible. On the other hand, since a large amount of heat is supplied to small protrusions in a very short time in welding, the temperature rises in the peripheral portion, particularly adjacent protrusions, as shown in FIGS. Therefore, as the welding interval is shortened and adjacent protrusions are continuously welded, the next welding is performed with the heat supplied to the first welding portion remaining. In such a case, if welding is performed under conditions in which there is no initial heat at all, the total amount of heat input increases, and shape anomalies due to overmelting, melting of the melted portion, etc. are likely to occur.

図12に示す実施の形態4においては、図中左から順に同じ溶接条件、つまり同じ入熱量で溶接を行った場合を示している。十分に溶接間隔がある場合には図6のようになるはずである。つまり端部突起120、121は同じ形状のナゲット122、123で、中央突起124のナゲット125は放熱しやすいことから端部突起120、121のナゲット122、123に比べ小さくなる。   In Embodiment 4 shown in FIG. 12, the case where it welds on the same welding conditions from the left in the figure, ie, the same heat input, is shown. When there is a sufficient welding interval, it should be as shown in FIG. That is, the end projections 120 and 121 are nuggets 122 and 123 having the same shape, and the nugget 125 of the central projection 124 is easy to dissipate heat, and thus is smaller than the nuggets 122 and 123 of the end projections 120 and 121.

一方、実際の製造時に連続的に溶接すると、2発目の溶接点では先に述べた放熱のしやすさからナゲット125が左端のナゲット122よりも小さくなり、右側端部突起121の溶接部では左側端部突起120と中央突起126の2回の溶接による熱量が残っているため、トータルの入熱量が多くなり、左側端部突起120に比べて過溶融になる。また、最悪の場合形状不良や溶融部崩落などが起こる。   On the other hand, if welding is continuously performed during actual manufacturing, the nugget 125 becomes smaller than the left nugget 122 at the second welding point because of the ease of heat dissipation described above, and the welded portion of the right end protrusion 121 is Since the amount of heat from the two weldings of the left end projection 120 and the central projection 126 remains, the total amount of heat input increases, and is overmelted compared to the left end projection 120. In the worst case, a defective shape or collapse of the melted part occurs.

そこで、2番目以降に溶接される突起部について、それまでの溶接による残留熱量を考慮して各突起の高さを変えることで、溶け量不足、過溶融といった不良を回避することができ、また各溶接部で均質な溶接部を得ることができる。 Therefore, the projections are welded to the second and subsequent, by taking into account the residual amount of heat by welding so far varying the height of each projection, it is possible to avoid defects such as melt shortage, excessive melting, also A homogeneous weld can be obtained at each weld.

具体的には図13に示すように突起部の高さをHb>Ha>Hcとする。なお、Haは左側端部突起120の高さ、Hbは中央突起126の高さ、Hcは右側端部突起120の高さをそれぞれ示している。これにより、溶け量不足気味の中央突起126は入熱量が増え溶融部は大きくなり、左側端部突起120、中央突起126の残留熱の影響を受け過溶融気味となる右側端部突起121は放熱性がよくなるため、熱がこもるのを抑制することで溶融量を少なくし、各溶接部の溶融量をほぼ均質にすることができる。   Specifically, as shown in FIG. 13, the height of the protrusion is set to Hb> Ha> Hc. Here, Ha represents the height of the left end projection 120, Hb represents the height of the central projection 126, and Hc represents the height of the right end projection 120. As a result, the center protrusion 126 with a poor melting amount increases the amount of heat input and the melted portion becomes larger, and the right end protrusion 121 that becomes overmelted under the influence of the residual heat of the left end protrusion 120 and the central protrusion 126 dissipates heat. Therefore, the amount of melting can be reduced by suppressing heat accumulation, and the amount of melting of each weld can be made almost uniform.

実施の形態5.
次に、この発明の実施の形態5に係る電気部品の接続構造について説明する。図14は、実施の形態5を示す半導体モジュール端子と導通バスバーとの先端接続部の正面模式図である。実施の形態5は先に述べた実施の形態3の考え方と同様であって、突起間の谷間の深さで突起毎の放熱性を制御する実施の形態を示すものである。まず、図14の左側端部突起140を溶接するが、左側端部突起140と中央突起141の谷間が深くなっているため、左側端部突起140の溶接による熱影響は、中央突起141および右側端部突起142に及びにくい。
Embodiment 5. FIG.
Next, an electrical component connection structure according to Embodiment 5 of the present invention will be described. FIG. 14 is a schematic front view of the tip connection portion between the semiconductor module terminal and the conductive bus bar according to the fifth embodiment. The fifth embodiment is the same as the idea of the third embodiment described above, and shows an embodiment in which the heat radiation performance for each protrusion is controlled by the depth of the valley between the protrusions. First, the left end projection 140 of FIG. 14 is welded. Since the valley between the left end projection 140 and the central projection 141 is deep, the thermal effect due to the welding of the left end projection 140 is affected by the central projection 141 and the right projection. It is difficult to reach the end protrusion 142.

一方、中央突起141は、左側端部突起140との間の谷間が深くなったことで放熱性が悪くなるため、溶け量が少ない点が解消される。また、最後の右端端部突起142の溶接では、左側端部突起140の熱影響が少なく、中央突起141の熱影響のみを受けるようになるため過溶融が改善される効果がある。これにより、左側端部突起140、中央突
起141、右端端部突起142の3個の突起とも均一のナゲット143を形成し、溶け量不足、過溶融が改善されるため、各溶接部の溶融量をほぼ均質にすることができる。
On the other hand, since the central protrusion 141 has a deeper valley between the left end protrusion 140 and the heat dissipation becomes worse, the melting point is reduced. Further, in the last welding of the right end end protrusion 142, the thermal influence of the left end protrusion 140 is small, and only the heat influence of the central protrusion 141 is received, so that overmelting is improved. As a result, a uniform nugget 143 is formed on the three projections of the left end projection 140, the central projection 141, and the right end projection 142, and the melting amount of each welded portion is improved because melting is insufficient and overmelting is improved. Can be made almost homogeneous.

以上、この発明の各実施の形態について説明したが、この発明はこれらの実施の形態を適宜組み合わせた実施形態としてもよく、諸種の設計的変更をも包摂するものである。   As mentioned above, although each embodiment of this invention was described, this invention is good also as embodiment which combined these embodiment suitably, and includes various design changes.

また、この発明の溶融接合は特に溶融方法を制限するものではないが、特に、TIG溶接、MIG溶接、レーザ溶接、電子ビーム溶接など、ごく短時間に突起部に大量の熱量を供給する方法においては、これまで述べた残留熱や溶接間隔による熱影響が顕著になるため、よりこの発明の効果が顕著に現れることになり有効である。   Further, the fusion bonding of the present invention does not particularly limit the melting method, but in particular, in a method of supplying a large amount of heat to the protrusions in a very short time, such as TIG welding, MIG welding, laser welding, and electron beam welding. This is effective because the effects of the present invention appear more remarkably because the thermal influence due to the residual heat and the welding interval described so far becomes remarkable.

この発明は、複数の半導体モジュールを電気的に並列接続して大電力化を図る電力変換装置、例えばハイブリッド自動車や電気自動車に使用される電力変換装置に利用できる。   The present invention can be applied to a power conversion device that increases power by electrically connecting a plurality of semiconductor modules in parallel, for example, a power conversion device used in a hybrid vehicle or an electric vehicle.

実施の形態1に係る電気部品の接続構造を説明する模式図である。FIG. 3 is a schematic diagram illustrating a connection structure for electrical components according to the first embodiment. 実施の形態2に係る電気部品の接続構造を説明するための発明者らの試験によるアーク溶接部の熱解析結果を示す図である。It is a figure which shows the thermal-analysis result of the arc welding part by the test of the inventors for demonstrating the connection structure of the electrical component which concerns on Embodiment 2. FIG. 実施の形態2に係る電気部品の接続構造を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an electrical component connection structure according to a second embodiment. 実施の形態2に係る電気部品の接続構造を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an electrical component connection structure according to a second embodiment. 実施の形態2に係る電気部品の接続構造を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an electrical component connection structure according to a second embodiment. 実施の形態2に係る電気部品の接続構造を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an electrical component connection structure according to a second embodiment. 実施の形態2を示す半導体モジュール端子と導通バスバーの先端接続部を示す模式図である。It is a schematic diagram which shows the semiconductor module terminal which shows Embodiment 2, and the front-end | tip connection part of a conduction bus bar. 実施の形態2を示す半導体モジュール端子と導通バスバーの先端接続部に得られる溶接ナゲットを示す模式図である。It is a schematic diagram which shows the welding nugget obtained by the semiconductor module terminal which shows Embodiment 2, and the front-end | tip connection part of a conduction bus bar. 実施の形態3を示す半導体モジュール端子と導通バスバーの先端接続部を示す模式図である。It is a schematic diagram which shows the semiconductor module terminal which shows Embodiment 3, and the front-end | tip connection part of a conduction bus bar. 実施の形態3に係る電気部品の接続構造を説明する図で、半導体モジュール端子と導通バスバーを溶接したときの通電終了時の温度分布を模式的に示した図である。It is a figure explaining the connection structure of the electrical component which concerns on Embodiment 3, and is the figure which showed typically the temperature distribution at the time of completion | finish of electricity supply when a semiconductor module terminal and a conduction bus bar are welded. 実施の形態3に係る電気部品の接続構造の効果を説明する模式図である。10 is a schematic diagram for explaining the effect of the electrical component connection structure according to Embodiment 3. FIG. 実施の形態4に係る電気部品の接続構造を説明するための半導体モジュール端子と導通バスバーとの先端接続部の正面模式図である。It is a front schematic diagram of the front-end | tip connection part of the semiconductor module terminal and conduction | electrical_connection bus bar for demonstrating the connection structure of the electrical component which concerns on Embodiment 4. FIG. 実施の形態4を示す半導体モジュール端子と導通バスバーとの先端接続部の正面模式図である。It is a front schematic diagram of the front-end | tip connection part of the semiconductor module terminal and conduction bus bar which shows Embodiment 4. 実施の形態5を示す半導体モジュール端子と導通バスバーとの先端接続部の正面模式図である。It is a front schematic diagram of the front-end | tip connection part of the semiconductor module terminal and conduction | electrical_connection bus bar which shows Embodiment 5. FIG.

符号の説明Explanation of symbols

1、2 半導体モジュール
1a、2a、 30a、70、90 端子
3、31、72、91 導通バスバー
3a 導通バスバーの先端部
4、35、36、80、96、122、123、125、143 ナゲット
32 非消耗性電極
33、73、74、94、95、120、121、140、142 端部突起
34、77、93、124、141 中央突起
75、76 放熱部
1, 2 Semiconductor module 1a, 2a, 30a, 70, 90 Terminal 3, 31, 72, 91 Conductive bus bar 3a Conductive bus bar tip 4, 35, 36, 80, 96, 122, 123, 125, 143 Nugget 32 Non Consumable electrodes 33, 73, 74, 94, 95, 120, 121, 140, 142 End projections 34, 77, 93, 124, 141 Central projections 75, 76 Heat radiation portion

Claims (6)

電気部品の接続端子の先端部に導通バスバーの先端部を接続する電気部品の接続方法であって、上記接続部先端に複数個の突起部を形成し、上記突起部を同じ溶接条件で連続的に溶融接合する電気部品の接続方法において、
上記突起部の接合順序に従って上記突起部を異なる高さとし、上記突起部の溶融量を制御することを特徴とする電気部品の接続方法。
An electrical component connection method for connecting the front end portion of the conductive bus bar to the tip portion of the connecting terminals of the electrical components, a plurality of projections formed on the connection tip, continuously the projections under the same welding conditions In the method of connecting electrical components to be melt bonded to
A method for connecting electrical parts, wherein the protrusions are set to different heights in accordance with the joining order of the protrusions, and the melting amount of the protrusions is controlled .
電気部品の接続端子の先端部に導通バスバーの先端部を接続する電気部品の接続方法であって、上記接続部先端に複数個の突起部を形成し、上記突起部を同じ溶接条件で連続的に溶融接合する電気部品の接続方法において、
上記突起部の接合順序に従って上記突起部間の谷間を異なる深さとし、上記突起部の溶融量を制御することを特徴とする電気部品の接続方法。
An electrical component connection method for connecting a distal end portion of a conductive bus bar to a distal end portion of a connection terminal of an electrical component, wherein a plurality of protrusions are formed at the distal end of the connection portion, and the protrusions are continuously formed under the same welding conditions. In the method of connecting electrical components to be melt bonded to
A method for connecting electrical parts, wherein the valleys between the protrusions are set to different depths according to the joining order of the protrusions, and the melting amount of the protrusions is controlled .
電気部品の接続端子の先端部に導通バスバーの先端部が溶融接合される電気部品の接続構造において、
上記接合部先端に少なくとも3個の突起部を並列に形成し、中央部に配置された突起部の高さを両端部に配置された突起部の高さよりも高くしたことを特徴とする電気部品の接続構造。
In the electrical component connection structure in which the distal end portion of the conductive bus bar is melt-bonded to the distal end portion of the connection terminal of the electrical component,
An electrical component characterized in that at least three projections are formed in parallel at the tip of the joint, and the height of the projection arranged at the center is higher than the height of the projection arranged at both ends. Connection structure.
電気部品の接続端子の先端部に導通バスバーの先端部が溶融接合される電気部品の接続構造において、
上記接合部先端に少なくとも4個の突起部を並列に形成し、中央部に配置された突起部間の谷間を両端部に配置された突起部間の谷間より深くしたことを特徴とする電気部品の接続構造。
In the electrical component connection structure in which the distal end portion of the conductive bus bar is melt-bonded to the distal end portion of the connection terminal of the electrical component,
An electrical component characterized in that at least four projections are formed in parallel at the joint tip, and the valley between the projections arranged at the center is deeper than the valley between the projections arranged at both ends. Connection structure.
上記両端部に配置された突起部の他の突起部と隣接しない側部に熱拡散部を形成したことを特徴とする請求項3または4に記載の電気部品の接続構造。 5. The electrical component connection structure according to claim 3, wherein a heat diffusion portion is formed on a side portion that is not adjacent to another projection portion disposed at the both end portions . 上記請求項3〜5の何れか一項に記載の電気部品の接続構造を備えたことを特徴とする電力変換装置。 A power converter comprising the electrical component connection structure according to any one of claims 3 to 5.
JP2008036204A 2008-02-18 2008-02-18 Electrical component connection method and connection structure, and power conversion device using the connection structure Expired - Fee Related JP4667476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036204A JP4667476B2 (en) 2008-02-18 2008-02-18 Electrical component connection method and connection structure, and power conversion device using the connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008036204A JP4667476B2 (en) 2008-02-18 2008-02-18 Electrical component connection method and connection structure, and power conversion device using the connection structure

Publications (2)

Publication Number Publication Date
JP2009193928A JP2009193928A (en) 2009-08-27
JP4667476B2 true JP4667476B2 (en) 2011-04-13

Family

ID=41075753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036204A Expired - Fee Related JP4667476B2 (en) 2008-02-18 2008-02-18 Electrical component connection method and connection structure, and power conversion device using the connection structure

Country Status (1)

Country Link
JP (1) JP4667476B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213884B2 (en) * 2010-01-27 2013-06-19 三菱電機株式会社 Semiconductor device module
JP5540791B2 (en) * 2010-03-17 2014-07-02 日産自動車株式会社 Electronic component, inverter device provided with electronic component, and method of joining electronic component
JP5972775B2 (en) * 2012-12-13 2016-08-17 日立オートモティブシステムズ株式会社 Power converter
JP2015119608A (en) * 2013-12-20 2015-06-25 三菱電機株式会社 On-vehicle rotary electric unit
JP6642123B2 (en) * 2016-03-04 2020-02-05 株式会社デンソー Rotating electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129498A (en) * 2003-10-01 2005-05-19 Shindengen Electric Mfg Co Ltd Connection method and structure of busbar and conductive member
JP2006302543A (en) * 2005-04-15 2006-11-02 Tokai Kogyo Co Ltd Bus bar, electric parts case, mounting method of electric parts, and terminal connection method
JP2007110870A (en) * 2005-10-17 2007-04-26 Mitsubishi Electric Corp Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129498A (en) * 2003-10-01 2005-05-19 Shindengen Electric Mfg Co Ltd Connection method and structure of busbar and conductive member
JP2006302543A (en) * 2005-04-15 2006-11-02 Tokai Kogyo Co Ltd Bus bar, electric parts case, mounting method of electric parts, and terminal connection method
JP2007110870A (en) * 2005-10-17 2007-04-26 Mitsubishi Electric Corp Power converter

Also Published As

Publication number Publication date
JP2009193928A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US20110117420A1 (en) Bus bar and battery module including the same
TWI573648B (en) Method for welding electrode taps of secondary battery and electrode assembly manufactured thereby
JP4667476B2 (en) Electrical component connection method and connection structure, and power conversion device using the connection structure
US8779321B2 (en) Method of welding circuit conductor and terminal of control apparatus
JP2017027926A (en) Wiring module and power storage module
JP2019046885A (en) Semiconductor device and method of manufacturing the same
JP2013033901A (en) Semiconductor device
JP5540791B2 (en) Electronic component, inverter device provided with electronic component, and method of joining electronic component
JP2019136748A (en) Resistance spot welding method
JP2012029459A (en) Electric power conversion system
JP5826305B2 (en) Control device terminal welding method
WO2021047307A1 (en) Spot welding method for multi-layer conductor of motor winding
JP5627303B2 (en) Arrangement structure of wiring material
JP6569558B2 (en) module
JP4235168B2 (en) Bonding structure and bonding method of bus bar for electronic device and connection terminal
JP6547527B2 (en) Power converter
JP4325550B2 (en) Bonding structure and bonding method of bus bar for electronic device and connection terminal
JP7218328B2 (en) Method for manufacturing secondary battery and secondary battery
JP5555464B2 (en) Control device terminal welding method
JP5005382B2 (en) Electrical member connection method
JP2023039818A (en) Bus bar
CN107681218B (en) Sensor fuse for battery array
JPH10211590A (en) Ultrasonic welding
JP5538842B2 (en) Welding method to bus bar
US20130171891A1 (en) Connection terminal and circuit component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4667476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees