JP4666874B2 - Purification and production method of pentafluoroethane and use thereof - Google Patents
Purification and production method of pentafluoroethane and use thereof Download PDFInfo
- Publication number
- JP4666874B2 JP4666874B2 JP2002192960A JP2002192960A JP4666874B2 JP 4666874 B2 JP4666874 B2 JP 4666874B2 JP 2002192960 A JP2002192960 A JP 2002192960A JP 2002192960 A JP2002192960 A JP 2002192960A JP 4666874 B2 JP4666874 B2 JP 4666874B2
- Authority
- JP
- Japan
- Prior art keywords
- pentafluoroethane
- oxygen
- contacting
- crude
- purifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- GTLACDSXYULKMZ-UHFFFAOYSA-N pentafluoroethane Chemical compound FC(F)C(F)(F)F GTLACDSXYULKMZ-UHFFFAOYSA-N 0.000 title claims description 144
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000746 purification Methods 0.000 title description 14
- 238000000034 method Methods 0.000 claims description 66
- 239000012535 impurity Substances 0.000 claims description 35
- 150000001875 compounds Chemical class 0.000 claims description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 239000001301 oxygen Substances 0.000 claims description 29
- 229910052760 oxygen Inorganic materials 0.000 claims description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 239000003463 adsorbent Substances 0.000 claims description 21
- 239000011148 porous material Substances 0.000 claims description 21
- 239000003054 catalyst Substances 0.000 claims description 19
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 claims description 14
- 230000002829 reductive effect Effects 0.000 claims description 13
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- 238000003682 fluorination reaction Methods 0.000 claims description 12
- 229910021536 Zeolite Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 239000010457 zeolite Substances 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 claims description 10
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 10
- 229950011008 tetrachloroethylene Drugs 0.000 claims description 10
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- BOUGCJDAQLKBQH-UHFFFAOYSA-N 1-chloro-1,2,2,2-tetrafluoroethane Chemical compound FC(Cl)C(F)(F)F BOUGCJDAQLKBQH-UHFFFAOYSA-N 0.000 claims description 6
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims 2
- 239000003575 carbonaceous material Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 description 24
- 150000001721 carbon Chemical group 0.000 description 21
- 239000002994 raw material Substances 0.000 description 17
- 238000004817 gas chromatography Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 239000002808 molecular sieve Substances 0.000 description 8
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 7
- RFCAUADVODFSLZ-UHFFFAOYSA-N 1-Chloro-1,1,2,2,2-pentafluoroethane Chemical compound FC(F)(F)C(F)(F)Cl RFCAUADVODFSLZ-UHFFFAOYSA-N 0.000 description 6
- 239000004340 Chloropentafluoroethane Substances 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 235000019406 chloropentafluoroethane Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 6
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical group FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 238000000895 extractive distillation Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229960001701 chloroform Drugs 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 125000004773 chlorofluoromethyl group Chemical group [H]C(F)(Cl)* 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/389—Separation; Purification; Stabilisation; Use of additives by adsorption on solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はペンタフルオロエタンの精製方法および製造方法並びにペンタフルオロエタンの用途に関する。
【0002】
【従来の技術】
ペンタフルオロエタン(以下、「CF3CHF2」ということがある。)は、例えば低温用冷媒やエッチングガスとして用いられ、またヘキサフルオロエタン(以下、「CF3CF3」ということがある。)製造用原料としても用いられる。
【0003】
ペンタフルオロエタンの製造方法としては、従来から次のような方法が知られている。例えば、
(1)テトラクロロエチレン(以下、「CCl2=CCl2」ということがある。)またはそのフッ化物を、フッ化水素でフッ素化する方法(特開平8−268932号公報等)、
(2)クロロペンタフルオロエタン(以下、「CF3CClF2」ということがある。)を還元水素化する方法(特許2540409号公報等)、
(3)ハロゲン含有エチレンにフッ素ガスを反応させる方法(特開平1−38034号公報等)、
等が挙げられる。
【0004】
これらの方法を用いて製造されたペンタフルオロエタンは、ハイドロクロロカーボン(HCC)類、クロロフルオロカーボン(CFC)類、ハイドロクロロフルオロカーボン(HCFC)類、ハイドロフルオロカーボン(HFC)類などの種々の不純物を含んでいる。
【0005】
純度の高いペンタフルオロエタンを得るためには、これらの不純物をできる限り除去する必要がある。これらの不純物のうち、クロロフルオロカーボン類等については高純度化するということの他に、オゾン層の破壊を防止するという観点から様々な精製方法が提案されている。クロロペンタフルオロエタンはペンタフルオロエタンと沸点が近く、通常の蒸留では分離が困難な化合物であるが、例えば以下のような精製方法を用いることができる。
【0006】
(1)抽出蒸留による方法(特表平9−508626号公報等)、
(2)クロロペンタフルオロエタンを還元水素化する方法(特開平8−301801号公報等)、
(3)クロロペンタフルオロエタンをフッ化水素(HF)によりフッ素化した後に除去する方法(特開2001−48816公報等)、
(4)吸着剤を用いて吸着し、除去する方法(特開平6−92879号公報等)。
【0007】
これに対し、ハイドロクロロカーボン類の1種であるクロロメタン(以下、「CH3Cl」ということがある。)はペンタフルオロエタンと共沸混合物や共沸用混合物を形成し、ペンタフフルオロエタンと分離することが非常に困難な化合物である。また、ハイドロフルオロカーボン類の1種である、ジフルオロメタン(以下、「CH2F2」ということがある。)と1,1,1−トリフルオロエタン(以下、「CF3CH3」ということがある。)はペンタフルオロエタンと共沸混合物や共沸用混合物を形成し、ペンタフフルオロエタンと分離することが非常に困難な化合物である。
【0008】
このような分離が困難なハイドロクロロカーボン類やハイドロフルオロカーボン類からなる不純物を精製して除去する方法については、例えば抽出蒸留による精製方法や活性炭によって吸着して除去する精製方法が知られている。しかしながら、抽出蒸留によって精製する方法は、蒸留塔などの高価な設備を複数必要とするため、設備費が高くなるという問題がある。また、活性炭によって吸着して精製する方法は十分な効果が得られなかった。
【0009】
【発明が解決しようとする課題】
本発明はこのような背景の下、低温用冷媒やエッチングガスとして使用することができる、高純度のペンタフルオロエタンを工業的に有利に精製する方法を提供することを課題とする。また、本発明は、ペンタフルオロエタンの製造方法およびペンタフルオロエタンの用途を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明者らは、前記の課題を解決すべく鋭意検討した結果、分子内に炭素原子1個を含むハイドロフルオロカーボン類、分子内に炭素原子1個を含むハイドロクロロフルオロカーボン類および分子内に炭素原子1個を含むハイドロクロロカーボン類からなる群から選ばれる少なくとも1種の化合物を含有する粗ペンタフルオロエタンと、平均細孔径が3Å〜6Åであり、かつシリカ/アルミニウム比が2.0以下であるゼオライトおよび/または平均細孔径が3.5Å〜6Åである炭素質吸着剤とからなる吸着剤を接触させ、粗ペンタフルオロエタン中に不純物として含まれる前記化合物の含有量を低減させる方法を用いることにより前記の課題を解決できることを見出し、本発明を完成するに至った。本発明は以下の[1]〜[13]に示されるペンタフルオロエタンの精製方法および製造方法並びにその用途である。
【0011】
[1] 分子内に炭素原子1個を含むハイドロフルオロカーボン類、分子内に炭素原子1個を含むハイドロクロロフルオロカーボン類および分子内に炭素原子1個を含むハイドロクロロカーボン類からなる群から選ばれる少なくとも1種の化合物を含有する粗ペンタフルオロエタンと、平均細孔径が3Å〜6Åであり、かつシリカ/アルミニウム比が2.0以下であるゼオライトおよび/または平均細孔径が3.5Å〜6Åである炭素質吸着剤とからなる吸着剤を接触させ、粗ペンタフルオロエタン中に不純物として含まれる前記化合物の含有量を低減させることを特徴とするペンタフルオロエタンの精製方法。
[2]前記分子内に炭素原子1個を含むハイドロフルオロカーボン類が、フルオロメタン、ジフルオロメタンおよびトリフルオロメタンからなる群から選ばれる少なくとも1種の化合物である上記[1]に記載のペンタフルオロエタンの精製方法。
[3]前記分子内に炭素原子1個を含むハイドロクロロフルオロカーボン類が、クロロジフルオロメタンである上記[1]に記載のペンタフルオロエタンの精製方法。
[4]前記分子内に炭素原子1個を含むハイドロクロロカーボン類が、クロロメタン、ジクロロメタンおよびトリクロロメタンからなる群から選ばれる少なくとも1種の化合物である上記[1]に記載のペンタフルオロエタンの精製方法。
[5]粗ペンタフルオロエタン中に不純物として含まれる前記化合物の総含有量が1vol%以下である上記[1]〜[4]のいずれかに記載のペンタフルオロエタンの精製方法。
【0012】
[6]粗ペンタフルオロエタンと前記吸着剤とを接触させる圧力が1MPa以下である上記[1]〜[5]のいずれかに記載のペンタフルオロエタンの精製方法。
[7]粗ペンタフルオロエタン中に不純物として含まれる前記化合物の総含有量が150volppm以下に低減される上記[1]〜[6]のいずれかに記載のペンタフルオロエタンの精製方法。
[8]粗ペンタフルオロエタン中に不純物として含まれる、分子内に炭素原子1個を含むハイドロフルオロカーボン類の総含有量が100volppm以下に低減される上記[1]〜[7]のいずれかに記載のペンタフルオロエタンの精製方法。
[9]粗ペンタフルオロエタン中に不純物として含まれる、分子内に炭素原子1個を含むハイドロクロロカーボン類の総含有量が50volppm以下に低減される上記[1]〜[8]のいずれかに記載のペンタフルオロエタンの精製方法。
[10]粗ペンタフルオロエタンが以下の工程を含む方法により得られるものである上記[1]〜[9]のいずれかに記載のペンタフルオロエタンの精製方法。
(1)テトラクロロエチレン、2、2−ジクロロ−1、1、1−トリフルオロエタンおよび2−クロロ−1、1、1、2−テトラフルオロエタンからなる群から選ばれる少なくとも1種とフッ化水素とを、フッ素化触媒の存在下に反応させてペンタフルオロエタンを得る工程
(2)工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程、または工程(1)で得られたペンタフルオロエタンと水素とを接触させ、次いで酸素および/または含酸素化合物と接触させる工程
【0013】
[11]以下の工程を含むことを特徴とするペンタフルオロエタンの製造方法。
(1)テトラクロロエチレン、2,2−ジクロロ−1,1,1−トリフルオロエタンおよび2−クロロ−1,1,1,2−テトラフルオロエタンからなる群から選ばれる少なくとも1種とフッ化水素とを、フッ素化触媒の存在下に反応させてペンタフルオロエタンを得る工程
(2)工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程、または工程(1)で得られたペンタフルオロエタンと水素とを接触させ、次いで酸素および/または含酸素化合物を接触させる工程
(3)工程(2)で得られたペンタフルオロエタンを上記[1]〜[9]のいずれかに記載の方法を用いて精製する工程
[12]請求項1〜10のいずれかに記載の方法を用いて精製された、
分子内に炭素原子1個を含むハイドロフルオロカーボン類、分子内に炭素原子1個を含むハイドロクロロフルオロカーボン類および分子内に炭素原子1個を含むハイドロクロロカーボン類の総含有量が150volppm以下であるペンタフルオロエタン。
[13]上記[12]に記載のペンタフルオロエタンとフッ素ガスとを反応させることを特徴とするヘキサフルオロエタンの製造方法。
[14]上記[12]に記載のペンタフルオロエタンを含むことを特徴とする冷媒。
【0014】
【発明の実施の形態】
以下、本発明について詳しく説明する。
前述したように、ペンタフルオロエタンの製造方法としては、例えば、テトラクロロエチレンまたはそのフッ化物を、フッ素化触媒の存在下にフッ化水素(HF)でフッ素化する方法が知られている。
【0015】
この方法を用いてペンタフルオロエタンを製造すると、一般的に行われる蒸留操作などの精製工程を行った場合であっても、ペンタフルオロエタンと分離することが困難な不純物が含まれる。これらの不純物としては、例えば、ハイドロフルオロカーボン類、ハイドロクロロフルオロカーボン類、ハイドロクロロカーボン類が挙げられる。これらの不純物は、クロロペンタフルオロエタンを触媒の存在下に水素還元する方法を用いた場合であっても同様に含まれる。従って、ペンタフルオロエタンを精製して高純度化するためには、これらの不純物を除去する必要がある。
【0016】
本発明のペンタフルオロエタンの精製方法は、分子内に炭素原子1個を含むハイドロフルオロカーボン類、分子内に炭素原子1個を含むハイドロクロロフルオロカーボン類および分子内に炭素原子1個を含むハイドロクロロカーボン類からなる群から選ばれる少なくとも1種の化合物を含有する粗ペンタフルオロエタンと、平均細孔径が3Å〜6Åであり、かつシリカ/アルミニウム比が2.0以下であるゼオライトおよび/または平均細孔径が3.5Å〜6Åである炭素質吸着剤とからなる吸着剤を接触させ、粗ペンタフルオロエタン中に不純物として含まれる前記化合物の含有量を低減させることを特徴とする。
【0017】
粗ペンタフルオロエタンに不純物として含まれる分子内に炭素原子1個を含むハイドロフルオロカーボン類は、フルオロメタン、ジフルオロメタンおよびトリフルオロメタンからなる群から選ばれる少なくとも1種の化合物である。また、分子内に炭素原子1個を含むハイドロクロロフルオロカーボン類は、クロロジフルオロメタンであり、分子内に炭素原子1個を含むハイドロクロロカーボン類は、クロロメタン、ジクロロメタンおよびトリクロロメタンからなる群から選ばれる少なくとも1種の化合物である。これらの不純物を含む粗ペンタフルオロエタンは、蒸留操作のみによって精製することが困難であり、本発明者らは吸着剤の極性や細孔径などを考慮し、吸着剤の種類や吸着条件などを変化させる等の検討を重ねた。
【0018】
その結果、平均細孔径が3Å〜6Åであり、かつシリカ/アルミニウム比(Si/Al比)が2.0以下であるゼオライトと接触させることにより、前記の不純物を選択的に吸着して除去することができることを見出した。シリカ/アルミニウム比が2.0以下であっても、平均細孔径が3Å未満または6Åを超えるゼオライトは、前記の不純物を低減する効果は認められなかった。また、平均細孔径が3Å〜6Åの範囲であっても、シリカ/アルミニウム比が2.0を超えるゼオライトは前記の不純物を低減する効果は認められなかった。
【0019】
また、平均細孔径が3.5Å〜6Åである炭素質吸着剤(モレキュラーシービングカーボン)と接触させることにより、前記の不純物を選択的に吸着して除去することができることを見出した。しかし、平均細孔径が3.5Å未満または6Åを超える炭素質吸着剤を用いた場合には、前記の不純物を低減する効果は認められなかった。例えば、平均細孔径が35Å程度の活性炭は一般に使用され、強い吸着能を有することが知られているが、前記の不純物を低減する効果は認められなかった。
前記のゼオライトや前記の炭素質吸着剤は、それぞれ単独で使用することも、あるいは両者を任意の割合で組み合わせて使用することもできる。
【0020】
粗ペンタフルオロエタン中に不純物として含まれる前記の不純物の総含有量は1vol%以下であることが好ましく、0.5vol%以下であることがさらに好ましい。不純物の総含有量が1vol%以上では吸着剤の使用量が多くなり、また設備費等が高くなり好ましくない。
【0021】
本発明のペンタフルオロエタンの精製方法において、前記不純物を含有する粗ペンタフルオロエタンを前記吸着剤に接触させる方法は特に限定されず、例えば気相で接触させる方法、あるいは液相で接触させる方法のいずれの方法も可能であるが、液相で接触させる方法が効率がよく好ましい。また、液相で接触させる方法は、回分式や連続式などの公知の方法を用いることができ、例えば、固定床式吸着塔を2基設け、一方の吸着塔が飽和吸着に達すると、これを切りかえて再生する方法を用いることができる。粗ペンタフルオロエタンと吸着剤とを接触させる圧力は1MPa以下が好ましく、この圧力が1MPaより大きいと設備費が高くなり好ましくない。
【0022】
粗ペンタフルオロエタンは、
(1)テトラクロロエチレン、2、2−ジクロロ−1、1、1−トリフルオロエタンおよび2−クロロ−1、1、1、2−テトラフルオロエタンからなる群から選ばれる少なくとも1種とフッ化水素とを、フッ素化触媒の存在下に反応させてペンタフルオロエタンを得る工程、および
(2)工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程、または工程(1)で得られたペンタフルオロエタンと水素とを接触させ、次いで酸素および/または含酸素化合物と接触させる工程、
を含む方法により得られるものであることが好ましい。
【0023】
工程(1)は、例えばテトラクロロエチレンを出発原料とし、フッ素化触媒の存在下にフッ化水素と2段階でフッ素化反応を行ってペンタフルオロエタンを得る方法を用いることができる。フッ素化触媒は、三価の酸化クロムを主成分とする担持型または塊状型触媒が好ましい。
【0024】
工程(2)において、工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程を行う場合、触媒としてパラジウム、ロジウム、ルテニウム、レニウム、白金および金からなる群から選ばれる少なくとも1種が担体に担持された担持型触媒の存在下で行うことができる。反応温度は150〜400℃の範囲であり、水素と接触させることにより、例えばハイドロクロロカーボン類の還元水素化反応を行う。
【0025】
また、工程(2)において、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程を行う場合、三価の酸化クロムを主成分とする担持型触媒または塊状型触媒、またはパラジウム、ロジウム、ルテニウム、レニウム、白金および金からなる群から選ばれる少なくとも1種が担体に担持された担持型触媒の存在下で行うことができる。反応温度は150〜400℃の範囲である。含酸素化合物としては、一酸化窒素(NO)、亜酸化窒素(N2O)、二酸化窒素(NO2)またはオゾン(O3)を用いることができる。この処理を行うことによって、不純物として含まれるハイドロフルオロカーボン類を酸化してCO2などに転化することができ、工程(2)は、工程(1)で得られたペンタフルオロエタンを水素と接触させる工程を行った後、酸素および/または含酸素化合物と接触させる工程を行うことが好ましい。
【0026】
粗ペンタフルオロエタン中に不純物として含まれる前記の化合物を、前記の吸着剤で処理した後、ペンタフルオロエタン中に含まれる前記の化合物の総含有量は、150volppm以下に低減することができ、100volppm以下に低減することもできる。また、本発明の精製方法を用いて精製されたペンタフルオロエタン中に不純物として含まれる、分子内に炭素原子1個を含むハイドロフルオロカーボン類の総含有量は100volppm以下に低減することができ、50volppm以下に低減することもできる。さらに、分子内に炭素原子1個を含むハイドロクロロカーボン類の総含有量は50volppm以下に低減することができ、30volppm以下に低減することもできる。ペンタフルオロエタン中に不純物として含まれる前記の化合物の含有量の測定は、ガスクロマトグラフ(GC)法のTCD法、FID法あるいはガスクロマトグラフ−質量分析(GC−MS)法等により実施することができる。
【0027】
また、本発明は、以下の工程を含むペンタフルオロエタンの製造方法を提供する。
(1)テトラクロロエチレン、2、2−ジクロロ−1、1、1−トリフルオロエタンおよび2−クロロ−1、1、1、2−テトラフルオロエタンからなる群から選ばれる少なくとも1種とフッ化水素とをフッ素化触媒の存在下に反応させてペンタフルオロエタンを得る工程
(2)工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程、または工程(1)で得られたペンタフルオロエタンと水素とを接触させ、次いで酸素および/または含酸素化合物と接触させる工程
(3)工程(2)で得られたペンタフルオロエタンを前記の方法を用いて精製する工程
【0028】
次に、本発明の精製方法を用いて得られたペンタフルオロエタンの用途について説明する。
高純度のペンタフルオロエタンは、低温用冷凍機の作動流体として用いられているクロロジフルオロメタン(CHClF2)の代替品であり、例えば、ジフルオロメタン/ペンタフルオロエタン/1,1,1,2−テトラフルオロエタンからなる混合冷媒として用いることができる。また、ジフルオロメタン/ペンタフルオロエタンからなる混合冷媒として用いることもできる。
【0029】
また、高純度のペンタフルオロエタンはヘキサフルオロエタン製造用原料としても用いることができる。特に、ペンタフルオロエタンとフッ素ガスとの反応によりヘキサフルオロエタンを製造する方法においては、高純度のペンタフルオロエタンを原料として用いることにより、目的物のヘキサフルオロエタンと難分離性の不純物の生成を抑制することができる。また、高純度のペンタフルオロエタンを原料として用いることにより、フッ素化反応条件の設定範囲が広がり、安定的に反応を制御することが可能となり、精製工程を簡素化することができる。
【0030】
さらに、高純度のペンタフルオロエタン、あるいはHe、N2、Ar等の不活性ガス、HCl、O2、H2等との混合ガスは、半導体デバイス製造工程におけるエッチング工程のエッチングガスとして用いることができる。LSIやTFT、有機EL等の半導体デバイスの製造プロセスでは、CVD法、スパッタリング法、あるいは蒸着法などを用いて薄膜や厚膜を形成し、回路パータンを形成するためにエッチングを行う際、前述のペンタフルオロエタンを含むガスをエッチングガスとして用いることができる。ペンタフルオロエタンを用いるエッチング方法は、プラズマエッチング、マイクロ波エッチング等の各種ドライエッチング条件で実施することができる。
【0031】
【実施例】
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0032】
[粗ペンタフルオロエタンの調製例1](原料例1)
触媒が充填されている第1反応器にテトラクロロエチレンとフッ化水素を導入し、中間体である2,2−ジクロロ−1,1,1−トリフルオロエタンおよびクロロ−1,1,1,2−テトラフルオロエタンを主成分とするガスを生成させ、これをHFと共に第2反応器に導入してペンタフルオロエタンを製造した。このペンタフルオロエタンを蒸留し、不純物として、クロロペンタフルオロエタン、フルオロメタン、ジフルオロメタン、クロロメタン、クロロジフルオロメタンおよび1,1,1−トリフルオロメタン等を含むペンタフルオロエタンを得た。ペンタフルオロエタンの純度は約99.4vol%であった。次に、この上記ペンタフルオロエタンを市販の水素化触媒の存在下に水素と反応(反応圧力0.15MPa、反応温度220℃)させた。ペンタフルオロエタンを主成分とする生成物に含まれる酸分を公知の方法で除去し、さらに蒸留を行って粗ペンタフルオロエタンを得た。得られた粗ペンタフルオロエタンをガスクロマトグラフで分析したところ、表1に示す組成であった。
【0033】
【表1】
【0034】
[粗ペンタフルオロエタンの調製例2](原料例2)
パラジウム/アルミナ触媒が充填されている反応器に、(原料例1)で得られたペンタフルオロエタンを空気と共に導入し、反応圧力0.2MPa、反応温度280℃という条件で反応させた。反応器出口ガス中に含まれる酸分と炭酸ガスの一部を、水酸化カリウム水溶液で洗浄することにより除去し、蒸留を行って粗ペンタフルオロエタンを得た。得られた粗ペンタフルオロエタンをガスクロマトグラフで分析したところ、表2に示す組成であった。
【0035】
【表2】
【0036】
[粗ペンタフルオロエタンの調製例3](原料例3)
(原料例2)で得られた粗ペンタフルオロエタンに、さらにCH2F2およびCH3Clを添加することにより粗ペンタフルオロエタン原料3を調製した。ガスクロマトグラフで分析したところ、表3に示す組成であった。
【0037】
【表3】
【0038】
(実施例1)
容積200mlのステンレス製シリンダーに、ゼオライト(モレキュラーシーブス4A(ユニオン昭和(株)製:平均細孔径3.5Å、シリカ/アルミニウム比=1.0))を20g充填し、真空乾燥後、シリンダーを冷却しながら(原料例1)の粗ペンタフルオロエタンを約100g充填し、温度を−10℃に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフで分析した。分析結果を表4に示した。
【0039】
【表4】
表4に示した分析結果から明らかなように、CH2F2とCH3Clは選択的に吸着して除去することができた。
【0040】
(実施例2)
容積200mlのステンレス製シリンダーに、実施例1と同様にモレキュラーシーブス4Aを20g充填し、真空乾燥後、シリンダーを冷却しながら(原料例2)で示した粗ペンタフルオロエタンを約100g充填し、温度を室温(20℃)に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフで分析した。分析結果を表5に示した。
【0041】
【表5】
表5に示した分析結果から明らかなように、純度が99.97vol%以上の高純度のペンタフルオロエタンが得られた。
【0042】
(実施例3)
容積200mlのステンレス製シリンダーに、実施例1と同様にモレキュラーシーブス4Aを30g充填し、シリンダーを冷却しながら(原料例3)で示した粗ペンタフルオロエタンを約100g充填し、真空乾燥後、温度を室温(25℃)に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフで分析した。分析結果を表6に示した。
【0043】
【表6】
【0044】
(実施例4)
容積200mlのステンレス製シリンダーに、炭素質吸着剤(モレキュラーシービングカーボン、武田薬品工業(株)製:平均細孔径4Å)を20g充填し、真空乾燥後、シレンダーを冷却しながら(原料例1)で示した粗ペンタフルオロエタンを約100g充填し、温度を−20℃に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフにて分析した。分析結果を表7に示した。
【0045】
【表7】
表7に示した分析結果から明らかなようにCH2F2とCH3Clを選択的に吸着して除去することができた。
【0046】
(実施例5)
容積200mlのステンレス製シリンダーに、(実施例1)で用いたモレキュラーシーブス4Aを15gと(実施例4)で用いたモレキュラーシービングカーボンを15gを混合して充填し、真空乾燥後、シリンダーを冷却しながら(原料例3)で示した粗ペンタフルオロエタンを約100g充填し、温度を室温(25℃)に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフィ−で分析した。分析結果を表8に示した。
【0047】
【表8】
【0048】
(比較例1)
容積200mlのステンレス製シリンダーに、ゼオライト(モレキュラーシーブス13X(ユニオン昭和(株)製:平均細孔径10Å、シリカ/アルミニウム比=1.2))を20g充填し、真空乾燥後、シリンダーを冷却しながら(原料例2)で示した粗ペンタフルオロエタンを約100g充填し、温度を室温(25℃)に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフで分析した。分析結果を表9に示した。
【0049】
【表9】
表9に示した分析結果から明らかなように、シリカ/アルミニウム比が2.0以下でも、平均細孔径が6Å以上では、選択的に吸着除去ができないことが分かった。
【0050】
(比較例2)
容積200mlのステンレス製シリンダーに、活性炭(粒状白サギKL、武田薬品工業(株)製:平均細孔径35Å)を20g充填し、真空乾燥後、シリンダーを冷却しながら(原料例2)で示した粗ペンタフルオロエタンを約100g充填し、温度を室温(25℃)に保ちながら時々撹拌し、約20時間後、液相部をガスクロマトグラフィ−で分析した。結果は(比較例1)と同様に選択的に吸着除去ができず、CH2F2やCH3Clの低減は認められなかった。
【0051】
(比較例3)
容積200mlのステンレス製シリンダーに、ゼオライト(H−ZSM−5(エヌ・イーケムキャット(株)製:平均細孔径6Å、シリカ/アルミニウム比=15))を用いた以外は(比較例1)と同様な操作、条件で実施し分析したところ、CH2F2やCH3Clの低減は認められなかった。
【0052】
【発明の効果】
以上説明したように、本発明の精製方法を用いれば、高純度のペンタフルオロエタンを得ることができる。また、本発明で得られたペンタフルオロエタンは低温用冷媒、高純度ヘキサフルオロエタン製造用原料として用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying and producing pentafluoroethane, and uses of pentafluoroethane.
[0002]
[Prior art]
Pentafluoroethane (hereinafter referred to as “CFThreeCHF2There are times. ) Is used as, for example, a low-temperature refrigerant or etching gas, and hexafluoroethane (hereinafter referred to as “CF”).ThreeCFThreeThere are times. ) Also used as a raw material for production.
[0003]
As a method for producing pentafluoroethane, the following methods are conventionally known. For example,
(1) Tetrachlorethylene (hereinafter referred to as “CCl2= CCl2There are times. ) Or a fluoride thereof with hydrogen fluoride (JP-A-8-268932, etc.),
(2) Chloropentafluoroethane (hereinafter referred to as “CFThreeCCIF2There are times. ) For reductive hydrogenation (Japanese Patent No. 2540409),
(3) a method of reacting fluorine gas with halogen-containing ethylene (JP-A-1-38034, etc.),
Etc.
[0004]
Pentafluoroethane produced using these methods contains various impurities such as hydrochlorocarbons (HCCs), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). It is out.
[0005]
In order to obtain pentafluoroethane with high purity, it is necessary to remove these impurities as much as possible. Among these impurities, various purification methods have been proposed from the viewpoint of preventing destruction of the ozone layer in addition to purifying chlorofluorocarbons and the like. Chloropentafluoroethane is a compound that has a boiling point close to that of pentafluoroethane and is difficult to separate by ordinary distillation. For example, the following purification method can be used.
[0006]
(1) A method by extractive distillation (Japanese Patent Publication No. 9-508626),
(2) A method for reductive hydrogenation of chloropentafluoroethane (JP-A-8-301801 etc.),
(3) A method of removing chloropentafluoroethane after fluorination with hydrogen fluoride (HF) (JP 2001-48816 A, etc.),
(4) A method of adsorbing and removing using an adsorbent (JP-A-6-92879, etc.).
[0007]
In contrast, chloromethane (hereinafter referred to as “CHH”), which is one of hydrochlorocarbons.ThreeSometimes referred to as “Cl”. ) Forms an azeotrope or azeotrope with pentafluoroethane and is a very difficult compound to separate from pentafluoroethane. In addition, difluoromethane (hereinafter referred to as “CH”), which is one of hydrofluorocarbons.2F2There are times. ) And 1,1,1-trifluoroethane (hereinafter “CF”)ThreeCHThreeThere are times. ) Forms an azeotrope or azeotrope with pentafluoroethane and is a very difficult compound to separate from pentafluoroethane.
[0008]
As methods for purifying and removing impurities such as hydrochlorocarbons and hydrofluorocarbons that are difficult to separate, there are known, for example, a purification method by extractive distillation and a purification method by adsorbing and removing by activated carbon. However, the method of purifying by extractive distillation has a problem that the equipment cost is high because a plurality of expensive equipment such as a distillation column is required. Moreover, the method of adsorbing and purifying with activated carbon did not provide a sufficient effect.
[0009]
[Problems to be solved by the invention]
Under such circumstances, an object of the present invention is to provide a method for industrially advantageously purifying high-purity pentafluoroethane that can be used as a low-temperature refrigerant or an etching gas. Another object of the present invention is to provide a method for producing pentafluoroethane and use of pentafluoroethane.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that hydrofluorocarbons containing one carbon atom in the molecule, hydrochlorofluorocarbons containing one carbon atom in the molecule, and carbon atoms in the molecule A crude pentafluoroethane containing at least one compound selected from the group consisting of one hydrochlorocarbon, an average pore diameter of 3 to 6 and a silica / aluminum ratio of 2.0 or less. Using a method of contacting an adsorbent composed of zeolite and / or a carbonaceous adsorbent having an average pore size of 3.5 to 6 to reduce the content of the compound contained as impurities in the crude pentafluoroethane Thus, the inventors have found that the above-described problems can be solved, and have completed the present invention. The present invention relates to a purification method and a production method of pentafluoroethane and uses thereof shown in the following [1] to [13].
[0011]
[1] At least selected from the group consisting of hydrofluorocarbons containing one carbon atom in the molecule, hydrochlorofluorocarbons containing one carbon atom in the molecule, and hydrochlorocarbons containing one carbon atom in the molecule A crude pentafluoroethane containing one compound, a zeolite having an average pore diameter of 3 to 6 and a silica / aluminum ratio of 2.0 or less, and / or an average pore diameter of 3.5 to 6 A method for purifying pentafluoroethane, comprising contacting an adsorbent comprising a carbonaceous adsorbent to reduce the content of the compound contained as an impurity in the crude pentafluoroethane.
[2] The pentafluoroethane according to [1], wherein the hydrofluorocarbon containing one carbon atom in the molecule is at least one compound selected from the group consisting of fluoromethane, difluoromethane, and trifluoromethane. Purification method.
[3] The method for purifying pentafluoroethane as described in [1] above, wherein the hydrochlorofluorocarbon containing one carbon atom in the molecule is chlorodifluoromethane.
[4] The hydrochlorocarbon containing one carbon atom in the molecule is at least one compound selected from the group consisting of chloromethane, dichloromethane and trichloromethane.ofA method for purifying pentafluoroethane.
[5] The method for purifying pentafluoroethane according to any one of the above [1] to [4], wherein the total content of the compounds contained as impurities in the crude pentafluoroethane is 1 vol% or less.
[0012]
[6] The method for purifying pentafluoroethane as described in any one of [1] to [5] above, wherein the pressure for bringing the crude pentafluoroethane into contact with the adsorbent is 1 MPa or less.
[7] The method for purifying pentafluoroethane according to any one of the above [1] to [6], wherein the total content of the compound contained as impurities in the crude pentafluoroethane is reduced to 150 volppm or less.
[8] Any one of [1] to [7] above, wherein the total content of hydrofluorocarbons containing one carbon atom in the molecule contained as impurities in the crude pentafluoroethane is reduced to 100 volppm or less. Of purification of pentafluoroethane.
[9] Any of the above [1] to [8], wherein the total content of hydrochlorocarbons containing one carbon atom in the molecule contained as impurities in the crude pentafluoroethane is reduced to 50 volppm or less. A method for purifying the described pentafluoroethane.
[10] The method for purifying pentafluoroethane as described in any one of [1] to [9] above, wherein the crude pentafluoroethane is obtained by a method including the following steps.
(1) Hydrogen fluoride and at least one selected from the group consisting of tetrachloroethylene, 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane Process for obtaining pentafluoroethane by reacting in the presence of a fluorination catalyst
(2) A step of bringing the pentafluoroethane obtained in the step (1) into contact with hydrogen, a step of bringing the pentafluoroethane obtained in the step (1) into contact with oxygen and / or an oxygen-containing compound, or a step ( The step of contacting the pentafluoroethane obtained in 1) with hydrogen and then contacting with oxygen and / or an oxygen-containing compound
[0013]
[11] A method for producing pentafluoroethane, comprising the following steps.
(1) Hydrogen fluoride and at least one selected from the group consisting of tetrachloroethylene, 2,2-dichloro-1,1,1-trifluoroethane, and 2-chloro-1,1,1,2-tetrafluoroethane Process for obtaining pentafluoroethane by reacting in the presence of a fluorination catalyst
(2) A step of bringing the pentafluoroethane obtained in the step (1) into contact with hydrogen, a step of bringing the pentafluoroethane obtained in the step (1) into contact with oxygen and / or an oxygen-containing compound, or a step ( The step of bringing the pentafluoroethane obtained in 1) into contact with hydrogen and then bringing into contact with oxygen and / or an oxygen-containing compound
(3) Pentafluoroethane obtained in step (2)Above [1]-[9]A step of purification using the method according to any one of
[12]Purified using the method according to claim 1,
Penta having a total content of hydrofluorocarbons containing one carbon atom in the molecule, hydrochlorofluorocarbons containing one carbon atom in the molecule, and hydrochlorocarbons containing one carbon atom in the molecule of 150 volppm or less Fluoroethane.
[13]the aboveDescribed in [12]A method for producing hexafluoroethane, comprising reacting pentafluoroethane and fluorine gas.
[14]the aboveDescribed in [12]A refrigerant comprising pentafluoroethane.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
As described above, as a method for producing pentafluoroethane, for example, a method is known in which tetrachloroethylene or a fluoride thereof is fluorinated with hydrogen fluoride (HF) in the presence of a fluorination catalyst.
[0015]
When pentafluoroethane is produced using this method, impurities that are difficult to separate from pentafluoroethane are contained even when a purification step such as a distillation operation that is generally performed is performed. Examples of these impurities include hydrofluorocarbons, hydrochlorofluorocarbons, and hydrochlorocarbons. These impurities are similarly included even when a method in which chloropentafluoroethane is reduced with hydrogen in the presence of a catalyst is used. Therefore, it is necessary to remove these impurities in order to purify and purify pentafluoroethane.
[0016]
The method for purifying pentafluoroethane according to the present invention comprises hydrofluorocarbons containing one carbon atom in the molecule, hydrochlorofluorocarbons containing one carbon atom in the molecule, and hydrochlorocarbon containing one carbon atom in the molecule. A crude pentafluoroethane containing at least one compound selected from the group consisting of: a zeolite having an average pore diameter of 3 to 6 and a silica / aluminum ratio of 2.0 or less; and / or an average pore diameter It is characterized in that an adsorbent comprising a carbonaceous adsorbent having a pH of 3.5 to 6% is brought into contact with each other to reduce the content of the compound contained as an impurity in the crude pentafluoroethane.
[0017]
The hydrofluorocarbon containing one carbon atom in the molecule contained as an impurity in the crude pentafluoroethane is at least one compound selected from the group consisting of fluoromethane, difluoromethane and trifluoromethane. The hydrochlorofluorocarbons containing one carbon atom in the molecule is chlorodifluoromethane, and the hydrochlorocarbons containing one carbon atom in the molecule are selected from the group consisting of chloromethane, dichloromethane and trichloromethane. At least one compound. Crude pentafluoroethane containing these impurities is difficult to purify only by distillation operation, and the present inventors change the type of adsorbent and adsorption conditions in consideration of the polarity and pore diameter of the adsorbent. Repeated examinations.
[0018]
As a result, the impurities are selectively adsorbed and removed by contacting with zeolite having an average pore diameter of 3 to 6 and a silica / aluminum ratio (Si / Al ratio) of 2.0 or less. I found that I can do it. Even when the silica / aluminum ratio was 2.0 or less, zeolite having an average pore diameter of less than 3 mm or more than 6 mm did not have the effect of reducing the impurities. Further, even if the average pore diameter was in the range of 3 to 6 mm, zeolite having a silica / aluminum ratio exceeding 2.0 did not have the effect of reducing the impurities.
[0019]
Moreover, it discovered that the said impurities could be selectively adsorbed and removed by making it contact with the carbonaceous adsorbent (molecular sieve carbon) whose average pore diameter is 3.5-6. However, when a carbonaceous adsorbent having an average pore diameter of less than 3.5 mm or more than 6 mm was used, the effect of reducing the impurities was not recognized. For example, activated carbon having an average pore diameter of about 35 mm is generally used and is known to have a strong adsorption ability, but the effect of reducing the impurities was not recognized.
The zeolite and the carbonaceous adsorbent can be used alone or in combination at any ratio.
[0020]
The total content of the impurities contained as impurities in the crude pentafluoroethane is preferably 1 vol% or less, and more preferably 0.5 vol% or less. If the total content of impurities is 1 vol% or more, the amount of adsorbent used is increased, and the equipment costs are increased, which is not preferable.
[0021]
In the method for purifying pentafluoroethane according to the present invention, the method for bringing the crude pentafluoroethane containing the impurities into contact with the adsorbent is not particularly limited. Any method is possible, but a method of contacting in a liquid phase is preferable because of its high efficiency. The liquid phase contact method may be a known method such as a batch type or a continuous type. For example, when two fixed bed type adsorption towers are provided and one of the adsorption towers reaches saturation adsorption, It is possible to use a method of switching and reproducing. The pressure at which the crude pentafluoroethane and the adsorbent are brought into contact with each other is preferably 1 MPa or less. If this pressure is greater than 1 MPa, the equipment cost increases, which is not preferable.
[0022]
Crude pentafluoroethane is
(1) Hydrogen fluoride and at least one selected from the group consisting of tetrachloroethylene, 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane Reacting in the presence of a fluorination catalyst to obtain pentafluoroethane, and
(2) A step of bringing the pentafluoroethane obtained in the step (1) into contact with hydrogen, a step of bringing the pentafluoroethane obtained in the step (1) into contact with oxygen and / or an oxygen-containing compound, or a step ( Contacting the pentafluoroethane obtained in 1) with hydrogen and then contacting with oxygen and / or an oxygen-containing compound;
It is preferable that it is obtained by the method containing.
[0023]
In step (1), for example, tetrachloroethylene can be used as a starting material, and a method of obtaining pentafluoroethane by performing a fluorination reaction with hydrogen fluoride in two stages in the presence of a fluorination catalyst can be used. The fluorination catalyst is preferably a supported or bulk catalyst mainly composed of trivalent chromium oxide.
[0024]
In the step (2), when performing the step of bringing the pentafluoroethane obtained in the step (1) into contact with hydrogen, at least one selected from the group consisting of palladium, rhodium, ruthenium, rhenium, platinum and gold as a catalyst. Can be carried out in the presence of a supported catalyst supported on a carrier. The reaction temperature is in the range of 150 to 400 ° C., and, for example, a reduction hydrogenation reaction of hydrochlorocarbons is performed by contacting with hydrogen.
[0025]
In addition, in the step (2), when the step of bringing the pentafluoroethane obtained in the step (1) into contact with oxygen and / or an oxygen-containing compound is performed, a supported catalyst mainly composed of trivalent chromium oxide or It can be carried out in the presence of a bulk catalyst or a supported catalyst in which at least one selected from the group consisting of palladium, rhodium, ruthenium, rhenium, platinum and gold is supported on a carrier. The reaction temperature is in the range of 150-400 ° C. Examples of oxygen-containing compounds include nitric oxide (NO) and nitrous oxide (N2O), nitrogen dioxide (NO)2) Or ozone (OThree) Can be used. By performing this treatment, the hydrofluorocarbons contained as impurities are oxidized to produce CO.2In step (2), the step of bringing the pentafluoroethane obtained in step (1) into contact with hydrogen is followed by the step of bringing into contact with oxygen and / or an oxygen-containing compound. Is preferred.
[0026]
After treating the compound contained as an impurity in the crude pentafluoroethane with the adsorbent, the total content of the compound contained in the pentafluoroethane can be reduced to 150 volppm or less, and 100 volppm It can also be reduced to the following. Further, the total content of hydrofluorocarbons containing one carbon atom in the molecule contained as an impurity in pentafluoroethane purified using the purification method of the present invention can be reduced to 100 volppm or less, and 50 volppm. It can also be reduced to the following. Furthermore, the total content of hydrochlorocarbons containing one carbon atom in the molecule can be reduced to 50 volppm or less, and can be reduced to 30 volppm or less. The content of the compound contained as an impurity in pentafluoroethane can be measured by a gas chromatography (GC) method TCD method, FID method, gas chromatography-mass spectrometry (GC-MS) method, or the like. .
[0027]
The present invention also provides a method for producing pentafluoroethane comprising the following steps.
(1) Hydrogen fluoride and at least one selected from the group consisting of tetrachloroethylene, 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane Process for obtaining pentafluoroethane by reacting benzene in the presence of a fluorination catalyst
(2) A step of bringing the pentafluoroethane obtained in the step (1) into contact with hydrogen, a step of bringing the pentafluoroethane obtained in the step (1) into contact with oxygen and / or an oxygen-containing compound, or a step ( The step of contacting the pentafluoroethane obtained in 1) with hydrogen and then contacting with oxygen and / or an oxygen-containing compound
(3) A step of purifying the pentafluoroethane obtained in step (2) using the above method.
[0028]
Next, the use of pentafluoroethane obtained using the purification method of the present invention will be described.
High-purity pentafluoroethane is a chlorodifluoromethane (CHClF) used as a working fluid in low-temperature refrigerators.2For example, it can be used as a mixed refrigerant composed of difluoromethane / pentafluoroethane / 1,1,1,2-tetrafluoroethane. It can also be used as a mixed refrigerant composed of difluoromethane / pentafluoroethane.
[0029]
Further, high-purity pentafluoroethane can also be used as a raw material for producing hexafluoroethane. In particular, in the method of producing hexafluoroethane by the reaction of pentafluoroethane and fluorine gas, by using high-purity pentafluoroethane as a raw material, the target hexafluoroethane and difficult-to-separate impurities are generated. Can be suppressed. Further, by using high-purity pentafluoroethane as a raw material, the setting range of the fluorination reaction conditions is expanded, the reaction can be controlled stably, and the purification process can be simplified.
[0030]
Furthermore, high-purity pentafluoroethane, or He, N2, Inert gas such as Ar, HCl, O2, H2And the like can be used as an etching gas in an etching process in a semiconductor device manufacturing process. In the manufacturing process of semiconductor devices such as LSI, TFT, and organic EL, when a thin film or a thick film is formed using a CVD method, a sputtering method, or a vapor deposition method, and etching is performed to form a circuit pattern, A gas containing pentafluoroethane can be used as an etching gas. An etching method using pentafluoroethane can be performed under various dry etching conditions such as plasma etching and microwave etching.
[0031]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
[0032]
[Preparation Example 1 of Crude Pentafluoroethane] (Raw Material Example 1)
Tetrachloroethylene and hydrogen fluoride are introduced into a first reactor packed with a catalyst, and intermediates such as 2,2-dichloro-1,1,1-trifluoroethane and chloro-1,1,1,2- A gas mainly composed of tetrafluoroethane was produced and introduced into the second reactor together with HF to produce pentafluoroethane. This pentafluoroethane was distilled to obtain pentafluoroethane containing chloropentafluoroethane, fluoromethane, difluoromethane, chloromethane, chlorodifluoromethane, 1,1,1-trifluoromethane and the like as impurities. The purity of pentafluoroethane was about 99.4 vol%. Next, this pentafluoroethane was reacted with hydrogen in the presence of a commercially available hydrogenation catalyst (reaction pressure 0.15 MPa, reaction temperature 220 ° C.). The acid content contained in the product containing pentafluoroethane as a main component was removed by a known method and further distilled to obtain crude pentafluoroethane. When the obtained crude pentafluoroethane was analyzed by gas chromatography, the composition shown in Table 1 was obtained.
[0033]
[Table 1]
[0034]
[Preparation Example 2 of Crude Pentafluoroethane] (Raw Material Example 2)
The pentafluoroethane obtained in (Raw Material Example 1) was introduced together with air into a reactor filled with a palladium / alumina catalyst, and reacted under the conditions of a reaction pressure of 0.2 MPa and a reaction temperature of 280 ° C. A part of the acid content and carbon dioxide contained in the reactor outlet gas was removed by washing with an aqueous potassium hydroxide solution, and distillation was performed to obtain crude pentafluoroethane. When the obtained crude pentafluoroethane was analyzed by gas chromatography, the composition shown in Table 2 was obtained.
[0035]
[Table 2]
[0036]
[Preparation Example 3 of Crude Pentafluoroethane] (Raw Material Example 3)
To the crude pentafluoroethane obtained in (Raw Material Example 2), further CH2F2And CHThreeCrude pentafluoroethane raw material 3 was prepared by adding Cl. When analyzed by gas chromatography, the composition shown in Table 3 was obtained.
[0037]
[Table 3]
[0038]
Example 1
20 g of zeolite (Molecular Sieves 4A (manufactured by Union Showa Co., Ltd .: average pore diameter: 3.5 mm, silica / aluminum ratio = 1.0)) is filled in a 200 ml stainless steel cylinder, vacuum dried, and then the cylinder is cooled. Then, about 100 g of the crude pentafluoroethane of (Raw material example 1) was charged, stirred occasionally while keeping the temperature at −10 ° C., and after about 20 hours, the liquid phase part was analyzed by gas chromatography. The analysis results are shown in Table 4.
[0039]
[Table 4]
As is apparent from the analysis results shown in Table 4, CH2F2And CHThreeCl could be selectively adsorbed and removed.
[0040]
(Example 2)
A stainless steel cylinder having a volume of 200 ml was charged with 20 g of molecular sieves 4A in the same manner as in Example 1, and after vacuum drying, approximately 100 g of the crude pentafluoroethane shown in (Raw Material Example 2) was charged while cooling the cylinder. The mixture was stirred occasionally while being kept at room temperature (20 ° C.), and after about 20 hours, the liquid phase portion was analyzed by gas chromatography. The analysis results are shown in Table 5.
[0041]
[Table 5]
As is clear from the analysis results shown in Table 5, high-purity pentafluoroethane having a purity of 99.97 vol% or more was obtained.
[0042]
Example 3
A stainless steel cylinder with a capacity of 200 ml was charged with 30 g of molecular sieves 4A in the same manner as in Example 1, and while cooling the cylinder, approximately 100 g of the crude pentafluoroethane shown in (Raw material example 3) was charged, and after vacuum drying, the temperature was Was kept stirring at room temperature (25 ° C.) from time to time, and after about 20 hours, the liquid phase portion was analyzed by gas chromatography. The analysis results are shown in Table 6.
[0043]
[Table 6]
[0044]
(Example 4)
Fill a 200 ml stainless steel cylinder with 20 g of carbonaceous adsorbent (Molecular Sieve Carbon, Takeda Pharmaceutical Co., Ltd .: average pore size 4 mm), and after drying in vacuo, cool the slender (Raw Material Example 1) About 100 g of the crude pentafluoroethane shown in FIG. 2 was charged, and the mixture was stirred occasionally while maintaining the temperature at −20 ° C. After about 20 hours, the liquid phase portion was analyzed by gas chromatography. The analysis results are shown in Table 7.
[0045]
[Table 7]
As is clear from the analysis results shown in Table 7, CH2F2And CHThreeCl could be selectively adsorbed and removed.
[0046]
(Example 5)
Fill a 200 ml stainless steel cylinder with 15 g of the molecular sieves 4A used in (Example 1) and 15 g of the molecular sieve carbon used in (Example 4). After vacuum drying, cool the cylinder. Then, about 100 g of the crude pentafluoroethane shown in (Raw material example 3) was charged, stirred occasionally while keeping the temperature at room temperature (25 ° C.), and after about 20 hours, the liquid phase part was analyzed by gas chromatography. The analysis results are shown in Table 8.
[0047]
[Table 8]
[0048]
(Comparative Example 1)
A stainless steel cylinder with a volume of 200 ml is filled with 20 g of zeolite (Molecular Sieves 13X (manufactured by Union Showa Co., Ltd .: average pore diameter 10 mm, silica / aluminum ratio = 1.2)), and after vacuum drying, the cylinder is cooled. About 100 g of the crude pentafluoroethane shown in (Raw material example 2) was charged, stirred occasionally while keeping the temperature at room temperature (25 ° C.), and after about 20 hours, the liquid phase part was analyzed by gas chromatography. The analysis results are shown in Table 9.
[0049]
[Table 9]
As is clear from the analysis results shown in Table 9, even when the silica / aluminum ratio was 2.0 or less, it was found that selective adsorption removal was not possible when the average pore diameter was 6 mm or more.
[0050]
(Comparative Example 2)
20 g of activated carbon (granular white heron KL, Takeda Pharmaceutical Co., Ltd .: average pore diameter 35 mm) was filled in a 200-ml stainless steel cylinder, vacuum dried, and then the cylinder was cooled (Ingredient Example 2). About 100 g of crude pentafluoroethane was charged, stirred occasionally while keeping the temperature at room temperature (25 ° C.), and after about 20 hours, the liquid phase portion was analyzed by gas chromatography. As in the case of (Comparative Example 1), the result could not be selectively removed by adsorption.2F2And CHThreeNo reduction in Cl was observed.
[0051]
(Comparative Example 3)
Same as (Comparative Example 1) except that zeolite (H-ZSM-5 (manufactured by N.E. Chemcat Co., Ltd .: average pore diameter 6 mm, silica / aluminum ratio = 15)) was used in a stainless steel cylinder with a volume of 200 ml. The analysis was conducted under various operations and conditions.2F2And CHThreeNo reduction in Cl was observed.
[0052]
【The invention's effect】
As described above, high-purity pentafluoroethane can be obtained by using the purification method of the present invention. Moreover, the pentafluoroethane obtained by this invention can be used as a low-temperature refrigerant | coolant and a raw material for high purity hexafluoroethane manufacture.
Claims (5)
(1)テトラクロロエチレン、2,2−ジクロロ−1,1,1−トリフルオロエタンおよび2−クロロ−1,1,1,2−テトラフルオロエタンからなる群から選ばれる少なくとも1種とフッ化水素とを、フッ素化触媒の存在下に反応させてペンタフルオロエタンを得る工程
(2)工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程、または工程(1)で得られたペンタフルオロエタンと水素とを接触させ、次いで酸素および/または含酸素化合物を接触させる工程The method for purifying pentafluoroethane according to any one of claims 1 to 3 , wherein the crude pentafluoroethane is obtained by a method comprising the following steps.
(1) Hydrogen fluoride and at least one selected from the group consisting of tetrachloroethylene, 2,2-dichloro-1,1,1-trifluoroethane, and 2-chloro-1,1,1,2-tetrafluoroethane Is obtained by reacting in the presence of a fluorination catalyst to obtain pentafluoroethane (2) The step of contacting pentafluoroethane obtained in step (1) with hydrogen, the pentafluoroethane obtained in step (1) A step of contacting ethane with oxygen and / or an oxygen-containing compound, or a step of contacting pentafluoroethane obtained in step (1) with hydrogen and then contacting oxygen and / or an oxygen-containing compound
(1)テトラクロロエチレン、2,2−ジクロロ−1,1,1−トリフルオロエタンおよび2−クロロ−1,1,1,2−テトラフルオロエタンからなる群から選ばれる少なくとも1種とフッ化水素とを、フッ素化触媒の存在下に反応させてペンタフルオロエタンを得る工程
(2)工程(1)で得られたペンタフルオロエタンと水素とを接触させる工程、工程(1)で得られたペンタフルオロエタンと酸素および/または含酸素化合物とを接触させる工程、または工程(1)で得られたペンタフルオロエタンと水素とを接触させ、次いで酸素および/または含酸素化合物を接触させる工程
(3)工程(2)で得られたペンタフルオロエタンを請求項1〜3のいずれかに記載の方法を用いて精製する工程The manufacturing method of the pentafluoroethane characterized by including the following processes.
(1) Hydrogen fluoride and at least one selected from the group consisting of tetrachloroethylene, 2,2-dichloro-1,1,1-trifluoroethane, and 2-chloro-1,1,1,2-tetrafluoroethane Is obtained by reacting in the presence of a fluorination catalyst to obtain pentafluoroethane (2) The step of contacting pentafluoroethane obtained in step (1) with hydrogen, the pentafluoroethane obtained in step (1) A step of contacting ethane with oxygen and / or an oxygen-containing compound, or a step of contacting pentafluoroethane obtained in step (1) with hydrogen and then contacting oxygen and / or an oxygen-containing compound (3) purifying using the methods described pentafluoroethane obtained in (2) in any one of claims 1 to 3
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002192960A JP4666874B2 (en) | 2002-07-02 | 2002-07-02 | Purification and production method of pentafluoroethane and use thereof |
KR1020047002757A KR100580915B1 (en) | 2002-07-02 | 2003-06-30 | Process for Purifying Pentafluoroethane, Process for Producing the Same, and Use Thereof |
CNB038009692A CN1314640C (en) | 2002-07-02 | 2003-06-30 | Method for purifying pentafluoroethane and method for producing the same and use thereof |
PCT/JP2003/008295 WO2004005226A1 (en) | 2002-07-02 | 2003-06-30 | Process for purifying pentafluoroethane, process for producing the same, and use thereof |
US10/488,288 US7084316B2 (en) | 2002-07-02 | 2003-06-30 | Process for purifying pentafluoroethane, process for producing the same, and use thereof |
AU2003245040A AU2003245040A1 (en) | 2002-07-02 | 2003-06-30 | Process for purifying pentafluoroethane, process for producing the same, and use thereof |
TW092117959A TWI272262B (en) | 2002-07-02 | 2003-07-01 | Process for purifying pentafluoroethane, process for producing the same, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002192960A JP4666874B2 (en) | 2002-07-02 | 2002-07-02 | Purification and production method of pentafluoroethane and use thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004035436A JP2004035436A (en) | 2004-02-05 |
JP2004035436A5 JP2004035436A5 (en) | 2005-10-20 |
JP4666874B2 true JP4666874B2 (en) | 2011-04-06 |
Family
ID=31702042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002192960A Expired - Lifetime JP4666874B2 (en) | 2002-07-02 | 2002-07-02 | Purification and production method of pentafluoroethane and use thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4666874B2 (en) |
KR (1) | KR100580915B1 (en) |
TW (1) | TWI272262B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4828208B2 (en) * | 2005-11-09 | 2011-11-30 | 昭和電工株式会社 | Method for separating and recovering pentafluoroethane and method for producing pentafluoroethane containing the method |
WO2013151070A1 (en) * | 2012-04-03 | 2013-10-10 | 旭硝子株式会社 | Method for purifying fluoroolefin, and method for producing fluoroolefin |
MX2020012830A (en) * | 2018-06-28 | 2021-02-15 | Chemours Co Fc Llc | Refrigerant blends having low global warming potential. |
KR20240136403A (en) * | 2022-02-21 | 2024-09-13 | 다이킨 고교 가부시키가이샤 | How to separate |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0525066A (en) * | 1991-07-23 | 1993-02-02 | Daikin Ind Ltd | Production of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane |
JPH0692879A (en) * | 1992-09-11 | 1994-04-05 | Daikin Ind Ltd | Method for purifying pentafluoroethane |
JPH06256234A (en) * | 1993-02-24 | 1994-09-13 | Elf Atochem Sa | Refining of pentafluoroethane |
WO1994020441A1 (en) * | 1993-03-05 | 1994-09-15 | Daikin Industries, Ltd. | Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane |
JPH0812602A (en) * | 1994-06-23 | 1996-01-16 | Showa Denko Kk | Purification of trifluoromethane |
JPH0881399A (en) * | 1994-09-08 | 1996-03-26 | Showa Denko Kk | Purification of tetrafluoromethane |
JPH08508479A (en) * | 1993-04-06 | 1996-09-10 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Separation of chloropentafluoroethane from pentafluoroethane |
JPH10287595A (en) * | 1997-04-16 | 1998-10-27 | Showa Denko Kk | Purification of hexafluoroethane |
JPH1171307A (en) * | 1997-06-18 | 1999-03-16 | Elf Atochem Sa | Production of hydrofluoroalkane |
JP2001302566A (en) * | 2000-04-28 | 2001-10-31 | Showa Denko Kk | Method for purifying tetrafluoromethane and use thereof |
-
2002
- 2002-07-02 JP JP2002192960A patent/JP4666874B2/en not_active Expired - Lifetime
-
2003
- 2003-06-30 KR KR1020047002757A patent/KR100580915B1/en active IP Right Grant
- 2003-07-01 TW TW092117959A patent/TWI272262B/en not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0525066A (en) * | 1991-07-23 | 1993-02-02 | Daikin Ind Ltd | Production of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane |
JPH0692879A (en) * | 1992-09-11 | 1994-04-05 | Daikin Ind Ltd | Method for purifying pentafluoroethane |
JPH06256234A (en) * | 1993-02-24 | 1994-09-13 | Elf Atochem Sa | Refining of pentafluoroethane |
WO1994020441A1 (en) * | 1993-03-05 | 1994-09-15 | Daikin Industries, Ltd. | Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane |
JPH08508479A (en) * | 1993-04-06 | 1996-09-10 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Separation of chloropentafluoroethane from pentafluoroethane |
JPH0812602A (en) * | 1994-06-23 | 1996-01-16 | Showa Denko Kk | Purification of trifluoromethane |
JPH0881399A (en) * | 1994-09-08 | 1996-03-26 | Showa Denko Kk | Purification of tetrafluoromethane |
JPH10287595A (en) * | 1997-04-16 | 1998-10-27 | Showa Denko Kk | Purification of hexafluoroethane |
JPH1171307A (en) * | 1997-06-18 | 1999-03-16 | Elf Atochem Sa | Production of hydrofluoroalkane |
JP2001302566A (en) * | 2000-04-28 | 2001-10-31 | Showa Denko Kk | Method for purifying tetrafluoromethane and use thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI272262B (en) | 2007-02-01 |
KR100580915B1 (en) | 2006-05-17 |
JP2004035436A (en) | 2004-02-05 |
KR20040044484A (en) | 2004-05-28 |
TW200401760A (en) | 2004-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5132555B2 (en) | Method for producing high purity hexafluoropropylene and cleaning gas | |
US7084316B2 (en) | Process for purifying pentafluoroethane, process for producing the same, and use thereof | |
US7045668B2 (en) | Production and use of hexafluoroethane | |
JPH06256234A (en) | Refining of pentafluoroethane | |
US6274782B1 (en) | Method for purifying hexafluoroethane | |
JP2003533447A (en) | Removal of (hydro) haloalkene impurities from product streams | |
RU2215730C2 (en) | Method of purifying tetrafluoromethane and utilization thereof | |
JP4666874B2 (en) | Purification and production method of pentafluoroethane and use thereof | |
US7696392B2 (en) | Purification method of 1,1-difluoroethane | |
JP3856408B2 (en) | Method for purifying hexafluoroethane | |
TWI266759B (en) | Process for the production of fluoroethane and use of the produced fluoroethane | |
US7074974B2 (en) | Process for the production of fluoroethane and use of the same | |
US6967260B2 (en) | Method for purification of tetrafluoromethane and use thereof | |
KR20020023966A (en) | Method for purification of tetrafluoromethane and use thereof | |
WO2001098240A2 (en) | Process for producing hexafluoroethane and use thereof | |
KR20030038792A (en) | Production and use of hexafluoroethane | |
JP4458784B2 (en) | Method for producing pentafluoroethane and use thereof | |
JP4463385B2 (en) | Method for producing hexafluoroethane and use thereof | |
US20040242943A1 (en) | Process for the production of fluoroethane and use of the produced fluoroethane | |
JP2004035436A5 (en) | ||
JP2005162738A (en) | Method for purifying 1,1-difluoroethane and application thereof | |
JP5105672B2 (en) | Method for purifying tetrachloroethylene and method for producing pentafluoroethane using the method | |
JP2003055277A (en) | Method for producing hexafluoroethane and use thereof | |
JPH0495037A (en) | Purification of 1,1,1,2-tetrafluoroethane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050627 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090722 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090722 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4666874 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |