JP4666526B2 - Commutator motor and vacuum cleaner - Google Patents

Commutator motor and vacuum cleaner Download PDF

Info

Publication number
JP4666526B2
JP4666526B2 JP2007020242A JP2007020242A JP4666526B2 JP 4666526 B2 JP4666526 B2 JP 4666526B2 JP 2007020242 A JP2007020242 A JP 2007020242A JP 2007020242 A JP2007020242 A JP 2007020242A JP 4666526 B2 JP4666526 B2 JP 4666526B2
Authority
JP
Japan
Prior art keywords
field
commutator motor
tooth portion
core
armature core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007020242A
Other languages
Japanese (ja)
Other versions
JP2008187840A (en
Inventor
勇人 吉野
芳雄 滝田
康樹 木村
昭夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007020242A priority Critical patent/JP4666526B2/en
Publication of JP2008187840A publication Critical patent/JP2008187840A/en
Application granted granted Critical
Publication of JP4666526B2 publication Critical patent/JP4666526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Dc Machiner (AREA)

Description

この発明は、主に電気掃除機等に搭載される電動送風機に用いられる整流子電動機に関するものである。   The present invention relates to a commutator motor mainly used for an electric blower mounted on a vacuum cleaner or the like.

電気掃除機等に搭載される整流子モータの電機子鉄心の鉄損低減を達成しながら、励磁電流増加を抑えた高効率な整流子モータを得るために、固定子鉄心は高磁束密度領域においても磁化特性の劣化が少ない材質で構成し、電機子鉄心は少なくとも中磁束密度領域まで磁化特性の劣化が少なく、鉄損特性の良好な材質で構成し、両者を組合わせて構成する整流子モータが提案されている(例えば、特許文献1参照)。   In order to obtain a highly efficient commutator motor that suppresses an increase in excitation current while achieving a reduction in the iron loss of the armature core of the commutator motor mounted in a vacuum cleaner, etc., the stator core is used in a high magnetic flux density region. The commutator motor is composed of a material that has little deterioration in magnetization characteristics, and the armature core is composed of a material that has little deterioration in magnetization characteristics to the middle magnetic flux density region and that has good iron loss characteristics. Has been proposed (see, for example, Patent Document 1).

また、巻線用のスロットを形成した一対の極部を備える界磁鉄心と、極部に巻かれて巻線を有する界磁組立体と、略毎分30000〜40000回転の回転速度で回転する電機子とを備え、電機子を構成する電機子鉄心の電気鉄板の材質を界磁鉄心の材質よりケイ素量を多くし低鉄損にするとともに、界磁鉄心をヨーク部で分割することで、電動機の効率の低下を少なくしながら、材料費を低減させる整流子電動機が提案されている(例えば、特許文献2参照)。
特開2005−57849号公報 特許第3550797号公報
In addition, a field core having a pair of pole portions in which winding slots are formed, a field assembly having a winding wound around the pole portions, and rotating at a rotational speed of about 30,000 to 40,000 revolutions per minute. With the armature, the material of the electric iron plate of the armature core that constitutes the armature is made to have a lower iron loss by increasing the amount of silicon than the material of the field core, and by dividing the field core at the yoke part, There has been proposed a commutator motor that reduces material costs while reducing a decrease in efficiency of the motor (see, for example, Patent Document 2).
JP 2005-57849 A Japanese Patent No. 35509797

前記特許文献1に提案されている従来の整流子モータでは、固定子鉄心と電機子鉄心とを互いに異なる材質で構成し、電機子鉄心を低鉄損の材質で構成しているが、空隙近傍の電機子鉄心に近い固定子鉄心表面に発生する鉄損を低減することができないという課題があった。   In the conventional commutator motor proposed in Patent Document 1, the stator core and the armature core are made of different materials, and the armature core is made of a low iron loss material. There is a problem that iron loss generated on the surface of the stator core close to the armature core cannot be reduced.

また、前記特許文献2に提案されている別の整流子電動機でも同様に、空隙近傍の電機子鉄心に近い界磁鉄心表面に発生する鉄損を低減することができない課題があった。   Similarly, another commutator motor proposed in Patent Document 2 has a problem that iron loss generated on the surface of the field core near the armature core near the gap cannot be reduced.

この発明は、上記のような課題を解決するためになされたもので、高効率かつ低価格な整流子電動機及びそれを用いた電気掃除機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly efficient and low-cost commutator motor and a vacuum cleaner using the commutator motor.

この発明に係る整流子電動機は、界磁鉄心に界磁巻線を施した界磁と、界磁鉄心の内側に配置され、電機子鉄心のスロット内に電機子巻線を施した電機子と、電機子巻線に連結された整流子と、整流子に接しながら電力を供給するブラシと、電機子鉄心の中央に出力軸を有する整流子電動機において、界磁鉄心は界磁歯部と界磁継鉄部に分割され、界磁歯部及び電機子鉄心は同一の材質で構成されると共に、界磁継鉄部は界磁歯部及び電機子鉄心と異なる材質で構成されることを特徴とする。   A commutator motor according to the present invention includes a field having a field core provided with a field winding, and an armature disposed inside the field core and having an armature winding provided in a slot of the armature core. In a commutator motor having a commutator connected to an armature winding, a brush for supplying electric power while being in contact with the commutator, and an output shaft in the center of the armature core, the field iron core has a field tooth portion and a field It is divided into magnetic yoke parts, and the field tooth part and the armature core are made of the same material, and the field yoke part is made of a material different from the field tooth part and the armature core. And

この発明に係る整流子電動機は、上記構成により、界磁鉄心の空隙近傍の鉄損を低減させると共に、鉄心打ち抜きの材料取りを改善させることで、高効率かつ低価格な整流子電動機を得ることができる。   The commutator motor according to the present invention obtains a high-efficiency and low-cost commutator motor by reducing the iron loss in the vicinity of the gap in the field core and improving the material punching of the core by the above configuration. Can do.

実施の形態1.
図1、図2は実施の形態1を示す図で、図1は整流子電動機100の横断面図、図2は界磁鉄心20の分割図である。
Embodiment 1 FIG.
1 and 2 are diagrams showing the first embodiment. FIG. 1 is a cross-sectional view of the commutator motor 100 and FIG. 2 is a division view of the field core 20.

図1において、界磁鉄心20は界磁歯部1と界磁継鉄部2に分割されて構成されている。界磁歯部1と界磁継鉄部2とは、それぞれ電磁鋼板を複数枚積層して構成されている。また界磁歯部1には界磁巻線3が施されている。界磁歯部1は図1の例では、二つあり、それぞれに界磁巻線3が施されている。界磁鉄心20の外周部には、磁性体である鉄製のフレーム4が設けられ、界磁鉄心20はフレーム4に圧入することで固定されている。   In FIG. 1, the field iron core 20 is divided into a field tooth portion 1 and a field yoke portion 2. The field tooth portion 1 and the field yoke portion 2 are each configured by laminating a plurality of electromagnetic steel plates. A field winding 3 is applied to the field tooth portion 1. In the example of FIG. 1, there are two field tooth portions 1, each of which is provided with a field winding 3. An iron frame 4, which is a magnetic body, is provided on the outer periphery of the field iron core 20, and the field iron core 20 is fixed by being pressed into the frame 4.

界磁鉄心20の内周部には空隙を介して電機子30が設けられる。電機子30は、電機子鉄心5、電機子巻線6、出力軸7等を備える。電機子鉄心5も界磁鉄心20と同様に電磁鋼板を複数枚積層することで構成されている。電機子鉄心5のスロット5a(図1の例は、22個)には電機子巻線6が施されており、電機子巻線6は整流子(図示せず)に接続されている。電機子鉄心5の中心部には出力軸7が設けられ、例えば出力軸7に羽根を付けることで送風機(例えば、電気掃除機に使用される)が構成される。   An armature 30 is provided on the inner periphery of the field iron core 20 through a gap. The armature 30 includes an armature core 5, an armature winding 6, an output shaft 7, and the like. Similarly to the field core 20, the armature core 5 is also configured by laminating a plurality of electromagnetic steel plates. An armature winding 6 is provided in a slot 5a (22 pieces in the example of FIG. 1) of the armature core 5, and the armature winding 6 is connected to a commutator (not shown). An output shaft 7 is provided at the center of the armature core 5, and a blower (for example, used for a vacuum cleaner) is configured by attaching a blade to the output shaft 7, for example.

整流子電動機100に交流電圧を印加すると電流は、二つある界磁巻線3の一方の界磁巻線3を介して、整流子に接続された一方のブラシに流れる。電機子巻線6へはブラシと整流子の摺動接触によって電流が流れ、電機子巻線6に流れた電流は他方のブラシから他方の界磁巻線3に流れることで界磁磁束及び電機子磁束が生成され、整流子電動機100はトルクを発生する。   When an AC voltage is applied to the commutator motor 100, the current flows to one brush connected to the commutator through one field winding 3 of the two field windings 3. A current flows to the armature winding 6 due to the sliding contact between the brush and the commutator, and the current flowing to the armature winding 6 flows from the other brush to the other field winding 3, so A child magnetic flux is generated, and the commutator motor 100 generates torque.

本実施の形態の整流子電動機100は、一分間当たりの回転数が36000rpm以上で運転される。また、電機子鉄心5には22個のスロット5aが設けられており、電機子鉄心歯部5bも22個構成されている。各々の電機子鉄心歯部5bは1回転当たり22回切り替わるため、その切替周波数は36000/60×22=13200Hz以上となる。   The commutator motor 100 of the present embodiment is operated at a rotational speed of 36000 rpm or more per minute. The armature core 5 is provided with 22 slots 5a, and 22 armature core teeth 5b are also formed. Since each armature core tooth portion 5b is switched 22 times per rotation, the switching frequency is 36000/60 × 22 = 13200 Hz or more.

その結果、電機子30で発生する鉄損はヒステリシス損よりも渦電流損が支配的となり、鉄損を低減させるためには渦電流損を減らすことが可能な薄板の電磁鋼板を用いることが一般的である。しかし、一般的に鉄損特性を良好にするために電磁鋼板を薄板にすると、電磁鋼板が高価になる傾向にある。   As a result, the iron loss generated in the armature 30 is dominated by eddy current loss rather than hysteresis loss. In order to reduce the iron loss, it is common to use a thin electromagnetic steel sheet capable of reducing the eddy current loss. Is. However, generally, when a magnetic steel sheet is made thin in order to improve iron loss characteristics, the magnetic steel sheet tends to be expensive.

一方、界磁鉄心20の界磁継鉄部2は、印加される交流電圧の周波数である50Hzまたは60Hzで切り替わる(磁束が変化する)ため渦電流損は高くない。しかし、界磁歯部1の電機子鉄心5に対向する部位(内周側表面)は、電機子磁束の高周波の切替による影響で渦電流損が高くなる傾向にある。   On the other hand, the field yoke portion 2 of the field core 20 is switched at 50 Hz or 60 Hz, which is the frequency of the applied AC voltage (the magnetic flux changes), so the eddy current loss is not high. However, the part (inner peripheral surface) facing the armature core 5 of the field tooth portion 1 tends to have high eddy current loss due to the influence of switching of the high frequency of the armature magnetic flux.

本実施の形態では、界磁鉄心20を構成する界磁歯部1と界磁継鉄部2を分割すると共に、渦電流損が高くなる電機子鉄心5及び界磁歯部1に、例えば0.1〜0.35mmの薄板電磁鋼板を使用し、渦電流損が低い界磁継鉄部2は別の、例えば0.35〜1mmの電磁鋼板を用いる。そのように構成することにより、鉄損を低減させた高効率で、低価格の整流子電動機100を得ることができる。   In the present embodiment, the field tooth portion 1 and the field yoke portion 2 constituting the field iron core 20 are divided, and the armature core 5 and the field tooth portion 1 where the eddy current loss is increased are set to 0, for example. A thin magnetic steel sheet having a thickness of 0.1 to 0.35 mm is used, and another magnetic steel sheet having a low eddy current loss, for example, 0.35 to 1 mm is used. With such a configuration, a high-efficiency and low-cost commutator motor 100 with reduced iron loss can be obtained.

例えば、界磁歯部1及び電機子鉄心5の電磁鋼板として、JISの規格である35A250材や35A300材を使用し、界磁継鉄部2には、50A470材や50A1000材の電磁鋼板を使用することで、高効率でかつ低価格な整流子電動機100を得ることができる。   For example, JIS standard 35A250 material or 35A300 material is used as the magnetic steel sheet of the field tooth portion 1 and the armature core 5, and 50A470 material or 50A1000 material is used for the field relay portion 2. By doing so, the commutator motor 100 with high efficiency and low price can be obtained.

図2に示すように、界磁歯部1と界磁継鉄部2とはアリ溝8により連結される。アリ溝8は、アリ溝(メス)8aと、アリ溝(オス)8bとで構成される。図2では、アリ溝(メス)8aを界磁継鉄部2に設け、アリ溝(オス)8bを界磁歯部1に設けたが、その逆にしてもよい。   As shown in FIG. 2, the field tooth portion 1 and the field yoke portion 2 are connected by a dovetail groove 8. The dovetail groove 8 includes an ant groove (female) 8a and an ant groove (male) 8b. In FIG. 2, the dovetail groove (female) 8 a is provided in the field yoke portion 2, and the dovetail groove (male) 8 b is provided in the field tooth portion 1.

界磁歯部1に界磁巻線3を施した後に、電磁鋼板の積層方向から圧入することで界磁歯部1と界磁継鉄部2が連結可能となり、界磁40を構成することができる。   After the field winding 3 is applied to the field tooth portion 1, the field tooth portion 1 and the field yoke portion 2 can be connected by press-fitting from the laminating direction of the electromagnetic steel sheets, thereby forming the field 40. Can do.

界磁歯部1に設けられた溝9は、界磁歯部1に界磁巻線3を施す際に界磁歯部1を抑えるために使用するものである。また、図1に示すように、フレーム4と界磁歯部1との空間は送風機の風路となるが、溝9もその風路の一部となり、溝9があることにより、溝9がない場合よりも風路の断面積を大きくできる。風路を確保することで界磁巻線3の冷却効果があり、巻線温度を下げることで巻線抵抗が下がり、銅損が低減する効果が得られる。但し、風路が十分に確保されていれば、溝9の有無は問わない。   The groove 9 provided in the field tooth portion 1 is used to suppress the field tooth portion 1 when the field winding 3 is applied to the field tooth portion 1. In addition, as shown in FIG. 1, the space between the frame 4 and the field tooth portion 1 becomes an air passage of the blower, but the groove 9 also becomes a part of the air passage. The cross-sectional area of the air passage can be made larger than when there is no air channel. By securing the air path, there is an effect of cooling the field winding 3, and by lowering the winding temperature, the winding resistance is lowered and the copper loss is reduced. However, the presence or absence of the groove 9 does not matter as long as the air path is sufficiently secured.

実施の形態2.
図3乃至図6は実施の形態2を示す図で、変形例を含む整流子電動機100の横断面図である。尚、図3乃至図5では、電機子30は省略している。
Embodiment 2. FIG.
3 to 6 are diagrams showing the second embodiment, and are cross-sectional views of a commutator motor 100 including a modification. 3 to 5, the armature 30 is omitted.

本実施の形態は、界磁歯部1の歯幅を実施の形態1の界磁歯部1の歯幅よりも細くし、歯の根元を直角形状にしたものである。   In the present embodiment, the tooth width of the field tooth portion 1 is made smaller than the tooth width of the field tooth portion 1 of the first embodiment, and the root of the tooth is formed into a right-angle shape.

界磁歯部1の歯幅を細くすれば、界磁歯部1に施される界磁巻線3の周長が短くなる。界磁巻線3の周長が短くなれば、巻線の抵抗値は低くなり銅損が低減する。界磁歯部1の歯幅を細くすることで巻線周長を短くすることができ、また歯の根元を直角形状にすることで、巻線の巻始め位置が固定され、界磁歯部1に直接巻線を巻く際に、より周長を短くすることが可能であり、銅損を低減させた高効率な整流子電動機100を得ることができる。   If the tooth width of the field tooth portion 1 is reduced, the circumferential length of the field winding 3 applied to the field tooth portion 1 is shortened. If the circumference of the field winding 3 is shortened, the resistance value of the winding is lowered and the copper loss is reduced. The winding circumference can be shortened by narrowing the tooth width of the field tooth portion 1, and the winding start position of the winding is fixed by making the root of the tooth a right angle shape, and the field tooth portion When the winding is directly wound around 1, the circumference can be further shortened, and a highly efficient commutator motor 100 with reduced copper loss can be obtained.

図4は第1の変形例である別の整流子電動機100の横断面図を示す。図3の整流子電動機100では、界磁歯部1に界磁巻線3を施したが、図4の整流子電動機100は、界磁巻線3を界磁継鉄部2に施す。また、鉄製のフレーム4の代わりに樹脂フレーム10を用いる。   FIG. 4 shows a cross-sectional view of another commutator motor 100 which is a first modification. In the commutator motor 100 of FIG. 3, the field winding 3 is applied to the field tooth portion 1, but the commutator motor 100 of FIG. 4 applies the field winding 3 to the field yoke portion 2. Further, a resin frame 10 is used instead of the iron frame 4.

界磁継鉄部2の径方向の寸法は、界磁歯部1の周方向の寸法よりも短い。従って、界磁巻線3を界磁継鉄部2に直接を施すため、巻線周長が短くなると共に、巻線を俵状に配置する完全整列巻が容易に可能であるため、巻線抵抗の低抵抗化を実現でき、銅損を低減させた高効率な整流子電動機100を得ることができる。   The radial dimension of the field yoke portion 2 is shorter than the circumferential dimension of the field tooth portion 1. Therefore, since the field winding 3 is directly applied to the field yoke portion 2, the winding peripheral length is shortened, and complete alignment winding in which the windings are arranged in a bowl shape can be easily performed. Resistance reduction of resistance can be realized, and a highly efficient commutator motor 100 with reduced copper loss can be obtained.

但し、本実施の形態では、鉄製のフレーム4の代わりに樹脂フレーム10を用いている。図3に示す整流子電動機100と同様に鉄製のフレーム4を用いると、界磁継鉄部2とフレーム4との空間に配置された界磁巻線3で生成される界磁磁束が磁性体である鉄製のフレーム4側に漏れる。そのため、必要なトルクを得るためには、整流子電動機100に流れる電流が高くなり、効率が低下するという課題がある。   However, in this embodiment, the resin frame 10 is used instead of the iron frame 4. When the iron frame 4 is used similarly to the commutator motor 100 shown in FIG. 3, the field magnetic flux generated by the field winding 3 disposed in the space between the field yoke portion 2 and the frame 4 is a magnetic material. It leaks to the iron frame 4 side. Therefore, in order to obtain the required torque, there is a problem that the current flowing through the commutator motor 100 increases and the efficiency decreases.

非磁性体である樹脂フレーム10を用いることで、この漏れ磁束は発生しなくなり、高効率な整流子電動機100を得ることができる。ここでは非磁性体として樹脂フレーム10を用いたが、他の非磁性体であるアルミやステンレスなどの材質のフレームを用いても同様の効果を得ることができる。   By using the resin frame 10 which is a non-magnetic material, this leakage magnetic flux is not generated, and a highly efficient commutator motor 100 can be obtained. Here, the resin frame 10 is used as the non-magnetic material, but the same effect can be obtained by using other non-magnetic material such as aluminum or stainless steel.

図5は第2の変形例である別の整流子電動機100の横断面図を示す。図5に示す整流子電動機100は、図3及び図4に示した整流子電動機100の界磁歯部1の中心線方向の寸法(図3、図4上での縦方向の寸法)を小さくし、且つ溝9を省いたものである。   FIG. 5 shows a cross-sectional view of another commutator motor 100 which is a second modification. The commutator motor 100 shown in FIG. 5 has a smaller dimension in the center line direction (vertical dimension in FIGS. 3 and 4) of the field tooth portion 1 of the commutator motor 100 shown in FIGS. 3 and 4. In addition, the groove 9 is omitted.

図3では、界磁巻線3は界磁歯部1に直接施されていたので、界磁巻線3を配置するスペースを確保するためには、図中の整流子電動機100の界磁歯部1の中心線方向の寸法(図3上での縦寸法)を大きくする必要がある。整流子電動機100の界磁歯部1の中心線方向の寸法を小さくすると、界磁巻線3の配置スペースが狭くなり、界磁巻線3の電線線径を細くする必要があり、結果として銅損が高く、電動機効率が低下するという課題があった。   In FIG. 3, the field winding 3 is directly applied to the field tooth portion 1. Therefore, in order to secure a space for arranging the field winding 3, the field tooth of the commutator motor 100 in the figure is used. It is necessary to increase the dimension of the portion 1 in the center line direction (vertical dimension in FIG. 3). If the dimension in the center line direction of the field tooth portion 1 of the commutator motor 100 is reduced, the arrangement space of the field winding 3 is reduced, and it is necessary to reduce the wire diameter of the field winding 3. There was a problem that copper loss was high and motor efficiency was reduced.

但し、図4や図5の整流子電動機100では、界磁巻線3を界磁継鉄部2に直接施すので、図3に示した界磁巻線3の配置スペースを小さくしても特に支障はない。整流子電動機100の界磁歯部1の中心線方向の寸法を小さくしても、小さくしない従来のものと同等の特性を得ることができる。   However, in the commutator motor 100 of FIGS. 4 and 5, the field winding 3 is directly applied to the field yoke portion 2, so even if the arrangement space of the field winding 3 shown in FIG. There is no hindrance. Even if the size of the field tooth portion 1 of the commutator motor 100 in the center line direction is reduced, the same characteristics as those of the conventional one that is not reduced can be obtained.

界磁歯部1の中心線方向の寸法を小さくすることで整流子電動機100が小型化になり、軽量化が実現できると共に、使用する電磁鋼板の量を削減することができ、低価格な整流子電動機100を得ることができる。   By reducing the size of the field tooth portion 1 in the center line direction, the commutator motor 100 can be reduced in size and weight can be reduced, and the amount of electromagnetic steel sheet to be used can be reduced, so that low-cost rectification can be achieved. The child electric motor 100 can be obtained.

図6は第3の変形例である別の整流子電動機100の横断面図を示す。図5で示した界磁歯部1の両端の歯先形状は、界磁歯部1の中心線に対して対称形状であるが、図6の界磁歯部1の両端の歯先形状は、界磁歯部1の中心線に対して非対称形状である。しかも、界磁歯部1の中心線に直交する線に対して、界磁歯部1は非対称である。   FIG. 6 shows a cross-sectional view of another commutator motor 100 which is a third modification. The tooth tip shapes at both ends of the field tooth portion 1 shown in FIG. 5 are symmetrical with respect to the center line of the field tooth portion 1, but the tooth tip shapes at both ends of the field tooth portion 1 in FIG. The shape is asymmetric with respect to the center line of the field tooth portion 1. Moreover, the field tooth portion 1 is asymmetric with respect to a line orthogonal to the center line of the field tooth portion 1.

図6において、電機子30は反時計方向に回転する。界磁歯部1は磁極中心(図6上では縦軸)に対して反時計方向の歯先形状に対して、時計方向の歯先を太くして磁束密度を緩和させた仕様である。   In FIG. 6, the armature 30 rotates counterclockwise. The field tooth portion 1 has a specification in which the clockwise tooth tip is thickened to reduce the magnetic flux density with respect to the counter clockwise tooth tip shape with respect to the magnetic pole center (vertical axis in FIG. 6).

界磁鉄心20で生成された界磁磁束と、電機子鉄心5で生成された電機子磁束とは、整流子電動機100の運転中、所定の角度をもって運転している。一般的に磁束の向きは界磁歯部1の磁極中心に対して傾いており、時計方向の歯先に磁束が集中する傾向にある。本実施の形態では、磁束が集中する方向の歯先を太くして、磁束密度を緩和させることで、整流子電動機100に流れる電流を低減することができ、更に高効率な整流子電動機100を得ることができる。   The field magnetic flux generated by the field iron core 20 and the armature magnetic flux generated by the armature core 5 are operated at a predetermined angle during the operation of the commutator motor 100. Generally, the direction of the magnetic flux is inclined with respect to the magnetic pole center of the field tooth portion 1, and the magnetic flux tends to concentrate on the tooth tip in the clockwise direction. In the present embodiment, the current flowing through the commutator motor 100 can be reduced by thickening the tooth tips in the direction in which the magnetic flux concentrates to reduce the magnetic flux density, and the commutator motor 100 with higher efficiency can be reduced. Obtainable.

実施の形態3.
図7乃至図11は実施の形態3を示す図で、図7はロール状の電磁鋼板のフープ材11からプレス加工にて打ち抜いて構成される界磁歯部1及び電機子鉄心5の材料取りを説明した図、図8はロール状の電磁鋼板のフープ材12からプレス加工にて打ち抜いて構成される界磁継鉄部2の材料取りを説明した図、図9は図7の変形例のロール状の電磁鋼板のフープ材11からプレス加工にて打ち抜いて構成される界磁歯部1及び電機子鉄心5の材料取りを説明した図、図10は実施の形態2で説明した図5の界磁歯部1及び電機子鉄心5の材料取りを説明した図、図11は実施の形態2で説明した図5の界磁継鉄部2の材料取りを説明した図である。
Embodiment 3 FIG.
7 to 11 are diagrams showing the third embodiment, and FIG. 7 is a diagram showing material removal of the field tooth portion 1 and the armature core 5 formed by punching from a hoop material 11 of a rolled electromagnetic steel sheet. FIG. 8 is a diagram illustrating the material removal of the field yoke portion 2 formed by stamping from a hoop material 12 of a roll-shaped electromagnetic steel sheet, and FIG. 9 is a modification of FIG. FIG. 10 is a diagram for explaining material removal of the field tooth portion 1 and the armature core 5 formed by punching from a hoop material 11 of a rolled electromagnetic steel sheet, and FIG. 10 is a diagram of FIG. 5 described in the second embodiment. FIG. 11 is a diagram for explaining material removal of the field tooth portion 1 and the armature core 5, and FIG. 11 is a diagram for explaining material removal of the field yoke portion 2 of FIG. 5 described in the second embodiment.

前述の通り、界磁歯部1及び電機子鉄心5は鉄損(特に渦電流損)が高く、界磁継鉄部2で発生する鉄損は比較的低くなっている。そのため、界磁歯部1及び電機子鉄心5は薄板電磁鋼板、例えば0.1〜0.35mmの板厚で構成されるフープ材11を使用することで高効率な整流子電動機100を得ることができる。   As described above, the field tooth portion 1 and the armature core 5 have high iron loss (particularly eddy current loss), and the iron loss generated in the field yoke portion 2 is relatively low. Therefore, the field tooth part 1 and the armature core 5 are obtained by using a thin electromagnetic steel plate, for example, a hoop material 11 having a thickness of 0.1 to 0.35 mm to obtain a highly efficient commutator motor 100. Can do.

但し、薄板電磁鋼板は高価であるが、界磁歯部1及び電機子鉄心5を同一のフープ材11から打ち抜くことで材料取り(歩留り)が良好になるため、薄板電磁鋼板の使用量を低減することができる。それにより、高効率でかつ低価格な整流子電動機100を得ることができる(図7参照)。   However, although the thin electromagnetic steel sheet is expensive, since the material picking (yield) is improved by punching the field tooth portion 1 and the armature core 5 from the same hoop material 11, the amount of use of the thin electromagnetic steel sheet is reduced. can do. Thereby, the highly efficient and low-cost commutator motor 100 can be obtained (see FIG. 7).

一方、界磁継鉄部2はフープ材11とは異なる材質の電磁鋼板、例えば0.35〜1mmの板厚からなるフープ材12を使用することで、電磁鋼板の材料コストを低くすることができ、低価格な整流子電動機100を得ることができる(図8参照)。   On the other hand, the field yoke portion 2 uses a magnetic steel plate made of a material different from the hoop material 11, for example, a hoop material 12 having a thickness of 0.35 to 1 mm, thereby reducing the material cost of the magnetic steel plate. The low-price commutator motor 100 can be obtained (see FIG. 8).

ここで図7において、界磁歯部1の最大横幅(周方向幅)を電機子鉄心5の外径より小さく設定している。界磁歯部1の最大横幅を電機子鉄心5の外径より大きくすると、フープ材11からの材料取りが悪化するため、薄板電磁鋼板の使用量が増加して、電動機が高価になるという課題があった。   Here, in FIG. 7, the maximum lateral width (circumferential width) of the field tooth portion 1 is set smaller than the outer diameter of the armature core 5. When the maximum lateral width of the field tooth portion 1 is made larger than the outer diameter of the armature core 5, the material removal from the hoop material 11 deteriorates, so that the amount of use of the thin electromagnetic steel sheet increases and the motor becomes expensive. was there.

本実施の形態では、界磁歯部1の最大横幅を電機子鉄心5の外径より小さくすることで材料取りを改善した低価格な整流子電動機100を得ることができる。   In the present embodiment, it is possible to obtain a low-cost commutator motor 100 with improved material handling by making the maximum width of the field tooth portion 1 smaller than the outer diameter of the armature core 5.

ここでは界磁歯部1の最大横幅を電機子鉄心5の外径より小さくすることについて述べたが、望ましくは、双方の寸法をほぼ同一に設定することで更なる材料取りの改善が可能となる。   Here, the maximum lateral width of the field tooth portion 1 has been described as being smaller than the outer diameter of the armature core 5, but it is desirable that further improvement in material removal is possible by setting both dimensions to be substantially the same. Become.

また、図9は図7の変形例であり、図7に示したものに対して、鉄心材料取りの方向を90度回転させて、対向する二つの界磁歯部1の方向とフープ材11を構成する薄板電磁鋼板の圧延方向の向きを揃えたものである。   FIG. 9 is a modification of FIG. 7, and the direction of the iron core material is rotated by 90 degrees with respect to that shown in FIG. The direction of the rolling direction of the thin magnetic steel sheets constituting the same is aligned.

電機子鉄心5は整流子電動機100の運転中、回転しているため、磁束の流れる向きも回転しているが、界磁歯部1は電動機運転中も固定しており、磁束の流れは二つの界磁歯部1に対して相対向する方向に流れる。フープ材11を構成する電磁鋼板は圧延方向に磁束が流れやすく(磁化容易方向)、その直角方向に磁束が流れにくくなる(磁化困難方向)。   Since the armature core 5 rotates during the operation of the commutator motor 100, the direction in which the magnetic flux flows also rotates. However, the field tooth portion 1 is fixed during the operation of the motor, and the flow of the magnetic flux is two. It flows in the direction opposite to one field tooth portion 1. In the magnetic steel sheet constituting the hoop material 11, magnetic flux easily flows in the rolling direction (easy magnetization direction), and magnetic flux hardly flows in the perpendicular direction (magnetic difficulty direction).

本実施の形態では、界磁歯部1の磁束の流れと電磁鋼板の圧延方向(磁化容易方向)を揃えることで磁束が流れやすくなるため、整流子電動機100に流れる電流が少なくなり、高効率な整流子電動機100を得ることができる。   In the present embodiment, since the magnetic flux easily flows by aligning the flow of magnetic flux of the field tooth portion 1 and the rolling direction (magnetization direction) of the magnetic steel sheet, the current flowing to the commutator motor 100 is reduced, and the high efficiency. A commutator motor 100 can be obtained.

図5に示した整流子電動機100は、界磁歯部1の中心線方向の寸法を小さくしたため、図10及び図11に示すように、打ち抜きピッチが小さくなると共に材料取りが改善する。そのため低価格な整流子電動機100を得ることができる。   In the commutator motor 100 shown in FIG. 5, since the size of the field tooth portion 1 in the center line direction is reduced, as shown in FIGS. 10 and 11, the punching pitch is reduced and the material removal is improved. Therefore, a low-cost commutator motor 100 can be obtained.

ここで電機子鉄心5の直径に対して界磁歯部1の最大横幅を大きくするとフープ材11の材料幅を大きくする必要があり、歩留りが悪化する。従って、界磁歯部1の最大横幅を電機子鉄心5の直径以下に設定することが望ましい。   Here, if the maximum lateral width of the field tooth portion 1 is increased with respect to the diameter of the armature core 5, it is necessary to increase the material width of the hoop material 11, and the yield deteriorates. Therefore, it is desirable to set the maximum lateral width of the field tooth portion 1 to be equal to or less than the diameter of the armature core 5.

実施の形態4.
実施の形態1乃至実施の形態3の整流子電動機100を、電気掃除機の送風機に使用すれば、高効率かつ低価格な電気掃除機を得ることができる。
Embodiment 4 FIG.
If the commutator motor 100 of Embodiment 1 thru | or Embodiment 3 is used for the air blower of a vacuum cleaner, a highly efficient and low-priced vacuum cleaner can be obtained.

実施の形態1を示す図で、整流子電動機100の横断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the commutator motor 100. 実施の形態1を示す図で、界磁鉄心20の分割図。FIG. 5 shows the first embodiment and is a division view of the field core 20. 実施の形態2を示す図で、整流子電動機100の横断面図。FIG. 5 shows the second embodiment and is a cross-sectional view of the commutator motor 100. 実施の形態2を示す図で、第1の変形例である別の整流子電動機100の横断面図。It is a figure which shows Embodiment 2, and is a cross-sectional view of another commutator motor 100 which is a 1st modification. 実施の形態2を示す図で、第2の変形例である別の整流子電動機100の横断面図。It is a figure which shows Embodiment 2, and is a cross-sectional view of another commutator motor 100 which is a 2nd modification. 実施の形態2を示す図で、第3の変形例である別の整流子電動機100の横断面図。It is a figure which shows Embodiment 2, and is a cross-sectional view of another commutator motor 100 which is a 3rd modification. 実施の形態3を示す図で、ロール状の電磁鋼板のフープ材11からプレス加工にて打ち抜いて構成される界磁歯部1及び電機子鉄心5の材料取りを説明した図。The figure which shows Embodiment 3 and is the figure explaining the material removal of the field tooth part 1 comprised by stamping from the hoop material 11 of a roll-shaped electromagnetic steel plate, and the armature core 5. FIG. 実施の形態3を示す図で、ロール状の電磁鋼板のフープ材12からプレス加工にて打ち抜いて構成される界磁継鉄部2の材料取りを説明した図。The figure which shows Embodiment 3 and is the figure explaining the material removal of the field yoke part 2 comprised by punching from the hoop material 12 of a roll-shaped electromagnetic steel plate. 実施の形態3を示す図で、図7の変形例のロール状の電磁鋼板のフープ材11からプレス加工にて打ち抜いて構成される界磁歯部1及び電機子鉄心5の材料取りを説明した図。In the figure which shows Embodiment 3, the material removal of the field tooth part 1 comprised by stamping from the hoop material 11 of the roll-shaped electromagnetic steel plate of the modification of FIG. 7 and the armature core 5 was demonstrated. Figure. 実施の形態3を示す図で、実施の形態2で説明した図5の界磁歯部1及び電機子鉄心5の材料取りを説明した図。FIG. 6 shows the third embodiment, and is a diagram illustrating the material removal of the field tooth portion 1 and the armature core 5 of FIG. 5 described in the second embodiment. 実施の形態3を示す図で、実施の形態2で説明した図5の界磁継鉄部2の材料取りを説明した図である。It is a figure which shows Embodiment 3, and is a figure explaining the material removal of the field yoke part 2 of FIG. 5 demonstrated in Embodiment 2. FIG.

符号の説明Explanation of symbols

1 界磁歯部、2 界磁継鉄部、3 界磁巻線、4 フレーム、5 電機子鉄心、5a スロット、5b 電機子鉄心歯部、6 電機子巻線、7 出力軸、8 アリ溝、8a アリ溝(メス)、8b アリ溝(オス)、9 溝、10 樹脂フレーム、11 フープ材、12 フープ材、20 界磁鉄心、40 界磁、100 整流子電動機。   1 field tooth part, 2 field yoke part, 3 field winding, 4 frame, 5 armature core, 5a slot, 5b armature core tooth part, 6 armature winding, 7 output shaft, 8 dovetail , 8a Dovetail groove (female), 8b Dovetail groove (male), 9 groove, 10 resin frame, 11 hoop material, 12 hoop material, 20 field core, 40 field, 100 commutator motor.

Claims (10)

界磁鉄心に界磁巻線を施した界磁と、前記界磁鉄心の内側に配置され、電機子鉄心のスロット内に電機子巻線を施した電機子と、前記電機子巻線に連結された整流子と、前記整流子に接しながら電力を供給するブラシと、前記電機子鉄心の中央に出力軸を有する整流子電動機において、
前記界磁鉄心は界磁歯部と界磁継鉄部に分割され、前記界磁歯部及び前記電機子鉄心は同一の材質で構成されると共に、前記界磁継鉄部は前記界磁歯部及び前記電機子鉄心と異なる材質で構成されることを特徴とする整流子電動機。
A field magnet provided with a field winding on a field core, an armature disposed inside the field core and armature wound in a slot of the armature core, and connected to the armature winding A commutator, a brush for supplying power while being in contact with the commutator, and a commutator motor having an output shaft in the center of the armature core;
The field iron core is divided into a field tooth portion and a field yoke portion, the field tooth portion and the armature core are made of the same material, and the field yoke portion is made of the field tooth. The commutator motor is composed of a material different from that of the armature core and the armature core.
前記界磁歯部及び前記界磁継鉄部及び前記電機子鉄心は複数枚の電磁鋼板を積層して構成されると共に、前記界磁歯部及び前記電機子鉄心に用いる電磁鋼板の厚さを、前記界磁継鉄部に用いる電磁鋼板の厚さより薄くしたことを特徴とする請求項1記載の整流子電動機。   The field tooth portion, the field yoke portion, and the armature core are configured by laminating a plurality of electromagnetic steel plates, and the thickness of the electromagnetic steel plate used for the field tooth portion and the armature core is set. 2. The commutator motor according to claim 1, wherein the thickness of the electromagnetic steel sheet used for the field yoke portion is smaller. 前記界磁歯部及び前記電機子鉄心に用いる電磁鋼板の同一磁束密度と同一周波数における単位重量あたりの鉄損を、前記界磁継鉄部に用いる電磁鋼板の同一磁束密度と同一周波数における単位重量あたりの鉄損よりも小さくしたことを特徴とする請求項1又は請求項2記載の整流子電動機。   The iron loss per unit weight at the same magnetic flux density and the same frequency of the magnetic steel sheet used for the field tooth portion and the armature core is the unit weight at the same magnetic flux density and the same frequency of the magnetic steel sheet used for the field yoke portion. The commutator motor according to claim 1, wherein the commutator motor is smaller than a per core loss. 前記界磁歯部及び前記電機子鉄心は、ロール状で構成される電磁鋼板の同一のフープ材からプレス加工で打ち抜いて構成されることを特徴とする請求項1乃至請求項3のいずれかに記載の整流子電動機。   The said field tooth part and said armature core are stamped by the press work from the same hoop material of the electromagnetic steel plate comprised by roll shape, The structure of any one of Claim 1 thru | or 3 characterized by the above-mentioned. The commutator motor described. 前記界磁歯部の周方向の最大横幅を前記電機子鉄心の外径よりも小さくしたことを特徴とする請求項4記載の整流子電動機。   The commutator motor according to claim 4, wherein a maximum lateral width of the field tooth portion in a circumferential direction is made smaller than an outer diameter of the armature core. 前記界磁歯部に前記界磁巻線を施したことを特徴とする請求項1乃至請求項5のいずれかに記載の整流子電動機。   The commutator motor according to claim 1, wherein the field winding is applied to the field tooth portion. 前記界磁継鉄部に前記界磁巻線を施すと共に、前記界磁の外周部に非磁性体で構成されたフレームを設けたことを特徴とする請求項1乃至請求項5のいずれかに記載の整流子電動機。   6. The field winding portion is provided with the field winding, and a frame made of a non-magnetic material is provided on an outer peripheral portion of the field magnet. The commutator motor described. 前記界磁継鉄部と前記界磁歯部の連結部をアリ溝で構成し、前記界磁巻線を施した後に、前記界磁継鉄部と前記界磁歯部を前記アリ溝の圧入により結合させたことを特徴とする請求項1乃至7のいずれかに記載の整流子電動機。   A connecting portion between the field yoke portion and the field tooth portion is constituted by a dovetail groove, and after the field winding is applied, the field yoke portion and the field tooth portion are press-fitted into the dovetail groove. The commutator motor according to any one of claims 1 to 7, wherein the commutator motors are coupled together. 一分間当たりの回転数が36000回転以上の回転数で運転されることを特徴とする請求項1乃至請求項8のいずれかに記載の整流子電動機。 The commutator motor according to any one of claims 1 to 8, wherein the motor is operated at a rotational speed per minute of 36000 or more. 請求項1乃至請求項9記載のいずれかに記載の整流子電動機を備えたことを特徴とする電気掃除機。   A vacuum cleaner comprising the commutator motor according to any one of claims 1 to 9.
JP2007020242A 2007-01-31 2007-01-31 Commutator motor and vacuum cleaner Active JP4666526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020242A JP4666526B2 (en) 2007-01-31 2007-01-31 Commutator motor and vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020242A JP4666526B2 (en) 2007-01-31 2007-01-31 Commutator motor and vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2008187840A JP2008187840A (en) 2008-08-14
JP4666526B2 true JP4666526B2 (en) 2011-04-06

Family

ID=39730491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020242A Active JP4666526B2 (en) 2007-01-31 2007-01-31 Commutator motor and vacuum cleaner

Country Status (1)

Country Link
JP (1) JP4666526B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155780B2 (en) * 2008-09-03 2013-03-06 三菱電機株式会社 Commutator motor and electric vacuum cleaner using the same
JP4901844B2 (en) * 2008-11-28 2012-03-21 三菱電機株式会社 Commutator motor, blower and vacuum cleaner
JP2010193607A (en) * 2009-02-18 2010-09-02 Mitsubishi Electric Corp Rotary electric machine, manufacturing method thereof, and hoist
JP5738228B2 (en) * 2012-03-27 2015-06-17 三菱電機株式会社 Laminated stator core, method for producing laminated stator core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865979A (en) * 1994-06-06 1996-03-08 Matsushita Electric Ind Co Ltd Field assembly of commutator motor, commutator motor containing such field assembly and manufacture of field assembly
JPH08317579A (en) * 1995-05-15 1996-11-29 Sanyo Electric Co Ltd Motor, and manufacture of motor
JPH0946999A (en) * 1995-07-26 1997-02-14 Matsushita Electric Ind Co Ltd Commutator motor
JP2000184628A (en) * 1998-12-10 2000-06-30 Sanyo Electric Co Ltd Stator for motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865979A (en) * 1994-06-06 1996-03-08 Matsushita Electric Ind Co Ltd Field assembly of commutator motor, commutator motor containing such field assembly and manufacture of field assembly
JPH08317579A (en) * 1995-05-15 1996-11-29 Sanyo Electric Co Ltd Motor, and manufacture of motor
JPH0946999A (en) * 1995-07-26 1997-02-14 Matsushita Electric Ind Co Ltd Commutator motor
JP2000184628A (en) * 1998-12-10 2000-06-30 Sanyo Electric Co Ltd Stator for motor

Also Published As

Publication number Publication date
JP2008187840A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4926107B2 (en) Rotating electric machine
JP4838348B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP4784726B2 (en) DC motor
JP5737250B2 (en) Rotor and rotating electric machine
WO2010150492A1 (en) Axial motor
JP4844570B2 (en) Permanent magnet type motor
WO2014208110A1 (en) Axial type rotating electrical machine
JP6789451B1 (en) Hybrid field double gap synchronous machine and drive system
JP4640373B2 (en) Rotating electric machine
JP4666526B2 (en) Commutator motor and vacuum cleaner
JP5381139B2 (en) Electric motor
JP4901844B2 (en) Commutator motor, blower and vacuum cleaner
JP2008306796A (en) Rotary electric machine
JP2006325295A (en) Stator
JP4080273B2 (en) Permanent magnet embedded motor
US20190173334A1 (en) Rotating electrical machine rotor
JP5460807B1 (en) Synchronous motor
JP2009247078A (en) Commutator motor, blower, and electric cleaner
KR102515118B1 (en) A rotor for interior permanent magnet motors
JP2007097276A (en) Iron core of rotating electric machine and iron core of linear motor
JP5782929B2 (en) Motor stator core
JP2006280087A (en) Dynamo-electric machine
JP4607823B2 (en) AC rotating electric machine
JP6032998B2 (en) Motor fastening structure and motor equipped with the same
JP2019162005A (en) Brushless motor, and blower

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250