JP4666336B2 - Method for producing antimony-containing composite metal oxide - Google Patents

Method for producing antimony-containing composite metal oxide Download PDF

Info

Publication number
JP4666336B2
JP4666336B2 JP2003336734A JP2003336734A JP4666336B2 JP 4666336 B2 JP4666336 B2 JP 4666336B2 JP 2003336734 A JP2003336734 A JP 2003336734A JP 2003336734 A JP2003336734 A JP 2003336734A JP 4666336 B2 JP4666336 B2 JP 4666336B2
Authority
JP
Japan
Prior art keywords
antimony
metal oxide
raw material
catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003336734A
Other languages
Japanese (ja)
Other versions
JP2005103346A (en
Inventor
守 渡辺
英範 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003336734A priority Critical patent/JP4666336B2/en
Publication of JP2005103346A publication Critical patent/JP2005103346A/en
Application granted granted Critical
Publication of JP4666336B2 publication Critical patent/JP4666336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、アンチモン含有複合金属酸化物の製造方法に関する。および、本発明の方法により得られる複合金属酸化物触媒を用いて、炭化水素を気相接触酸化反応または気相接触アンモ酸化反応させて、対応するアルケン、不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリルを製造する方法に関する。   The present invention relates to a method for producing an antimony-containing composite metal oxide. Using the mixed metal oxide catalyst obtained by the method of the present invention, a hydrocarbon is subjected to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction to give a corresponding alkene, unsaturated aldehyde, unsaturated carboxylic acid, The present invention relates to a method for producing a saturated nitrile.

アンチモンを必須成分として含有する複合金属酸化物触媒は、炭化水素の気相接触酸化反応の触媒、または気相接触アンモ酸化反応の触媒として従来から広く用いられている。
例えば、プロピレン、イソブテン、プロパン、イソブタンを原料とし、気相接触酸化反応または気相接触アンモ酸化反応によって、対応する不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリル、アルケンを製造する技術において、例えば、Fe−Sb系触媒(例えば、特許文献1参照)、Sb−U−Ni−V系触媒(例えば、特許文献2、特許文献3参照)、Sb−U−W系触媒(例えば、特許文献4参照)、Sb−U系触媒(例えば、特許文献5参照)、Sb−In系触媒(例えば、特許文献6参照)、Ga−Sb系触媒(例えば、特許文献7、特許文献8参照)、Sb−Sn系触媒、Sb−U系触媒(以上、例えば、特許文献9参照)、V−Sb系触媒(例えば、特許文献10参照)、V−Sb−Ti系触媒(例えば、特許文献11参照)、V−Sb−W系触媒(例えば、特許文献12、特許文献13、特許文献14参照)、V−Sb−Sn系触媒(例えば、特許文献15参照)、V−Sb−Bi系触媒(例えば、特許文献16参照)、V−Sb−Fe系触媒(例えば、特許文献17参照)、V−Sn−Sb−Cu系触媒(例えば、特許文献18参照)、Cr−Sb−W系触媒(例えば、特許文献19参照)、Mo−Sb−W系触媒(例えば、特許文献20参照)、Mo−V−Sb−Nb系触媒(例えば、特許文献21、特許文献22参照)、Sb−Re系触媒(例えば、特許文献23参照)、Mo−Bi−Fe−Sb系触媒(例えば、特許文献24参照)、Mo−V−Sb−Ti系触媒(例えば、特許文献25参照)、Mo−V−Sb−Fe系触媒(例えば、特許文献26参照)などが開示されている。
A composite metal oxide catalyst containing antimony as an essential component has been widely used as a catalyst for hydrocarbon gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction.
For example, in a technique for producing a corresponding unsaturated aldehyde, unsaturated carboxylic acid, unsaturated nitrile, alkene by using gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction using propylene, isobutene, propane, isobutane as raw materials, Fe-Sb-based catalysts (for example, see Patent Document 1), Sb-U-Ni-V-based catalysts (for example, see Patent Document 2 and Patent Document 3), Sb-U-W-based catalysts (for example, Patent Document 4) Sb—U-based catalyst (see, for example, Patent Document 5), Sb—In-based catalyst (for example, see Patent Document 6), Ga—Sb-based catalyst (for example, see Patent Document 7 and Patent Document 8), Sb -Sn-based catalyst, Sb-U-based catalyst (see, for example, Patent Document 9), V-Sb-based catalyst (for example, see Patent Document 10), V-Sb-Ti-based catalyst (for example, Patent Document 11) ), V-Sb-W catalyst (for example, see Patent Document 12, Patent Document 13, and Patent Document 14), V-Sb-Sn catalyst (see, for example, Patent Document 15), V-Sb-Bi catalyst (See, for example, Patent Document 16), V—Sb—Fe-based catalyst (see, for example, Patent Document 17), V—Sn—Sb—Cu-based catalyst (for example, see Patent Document 18), Cr—Sb—W-based catalyst. (See, for example, Patent Document 19), Mo—Sb—W-based catalyst (see, for example, Patent Document 20), Mo—V—Sb—Nb-based catalyst (see, for example, Patent Document 21 and Patent Document 22), Sb—Re Catalyst (see, for example, Patent Document 23), Mo—Bi—Fe—Sb catalyst (see, for example, Patent Document 24), Mo—V—Sb—Ti catalyst (see, for example, Patent Document 25), Mo—V -Sb-Fe catalyst (for example, Patent Document 2) Reference) and the like have been disclosed.

これらの公報においては、Sb原料としては例えば金属アンチモン、三酸化ニアンチモン、四酸化ニアンチモン、五酸化ニアンチモン、含水アンチモン酸化物、メタアンチモン酸、オルソアンチモン酸、ピロアンチモン酸、酸化アンチモンゾル、ハロゲン化アンチモン(例えば三塩化アンチモン、三弗化アンチモン、三臭化アンチモン、三沃化アンチモン、五塩化アンチモン、五弗化アンチモン、五沃化アンチモン)、水素化アンチモン、硫酸アンチモン、オキシ硫酸アンチモン、オキシ塩化アンチモン、アンチモンエトキシド、アンチモンブトキシド、酢酸アンチモン、蓚酸アンチモン、酒石酸アンチモン、酒石酸アンチモニルアンモニウムなどが教示されている。
これらのSb原料を用いて、Sbを含有する複合金属酸化物触媒を製造する場合、目的とする不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリル、アルケンの選択率が低いという問題があった。
In these publications, examples of Sb raw materials include metal antimony, antimony trioxide, niantimony tetroxide, antimony pentoxide, hydrous antimony oxide, metaantimonic acid, orthoantimonic acid, pyroantimonic acid, antimony oxide sol, Antimony halides (eg, antimony trichloride, antimony trifluoride, antimony tribromide, antimony triiodide, antimony pentachloride, antimony pentafluoride, antimony pentaiodide), antimony hydride, antimony sulfate, antimony oxysulfate, Antimony oxychloride, antimony ethoxide, antimony butoxide, antimony acetate, antimony oxalate, antimony tartrate, antimonylammonium tartrate and the like are taught.
When producing a composite metal oxide catalyst containing Sb using these Sb raw materials, there is a problem that the selectivity of the target unsaturated aldehyde, unsaturated carboxylic acid, unsaturated nitrile and alkene is low.

金属アンチモンを硝酸等の鉱酸に溶解して用いる場合は、触媒製造施設の腐食と特有の臭気があるため、製造設備の材質の制約があり、排気設備が必要である。金属アンチモンまたはアンチモンの酸化物をアンチモン以外の触媒構成元素例えばバナジウムの原料液などと還流下に沸騰させアンチモンを用いる場合は、触媒製造工程において、還流する工程が発生するために触媒製造用タンクに加熱設備および還流冷却器が必要であり、製造設備や工程が複雑になり、また加熱時間、加熱温度、加熱雰囲気等の管理方法が複雑になるという問題がある。ハロゲン化アンチモンに水またはアンモニア水を加えて加水分解して用いる場合は、触媒の製造時に有害なハロゲンガスが発生するという問題があり、排気設備が必要である。酒石酸アンチモニルアンモニウムを用いる場合は、調液する際に有害で刺激性の強いアンモニア水やガスを使用することが必要であり、また焼成工程などにおいてアンモニアガスが発生するという問題があり、排気設備が必要である。   When metal antimony is used by dissolving in mineral acid such as nitric acid, there is corrosion of the catalyst production facility and a specific odor, so there are restrictions on the material of the production equipment, and exhaust equipment is required. When antimony is used by boiling antimony metal or antimony oxide with a catalyst constituent element other than antimony, such as a vanadium raw material solution, under reflux, in the catalyst production process, a refluxing process occurs. There are problems that heating equipment and a reflux condenser are required, manufacturing equipment and processes become complicated, and management methods such as heating time, heating temperature, and heating atmosphere become complicated. When hydrolyzed by adding water or ammonia water to antimony halide, there is a problem that harmful halogen gas is generated during the production of the catalyst, and an exhaust facility is required. When using antimonyl ammonium tartrate, it is necessary to use ammonia water or gas that is harmful and irritating when preparing liquid, and there is a problem that ammonia gas is generated in the firing process, etc. is required.

また、その水溶液としての安定性が極めて低く、室温では析出物が生じやすいため保管する貯蔵タンクには温度管理のための付帯設備および加熱設備が必要である。また、アンチモンエトキシド、アンチモンブトキシド、酢酸アンチモンを用いる場合は、湿気を避けて保管し、窒素中で貯蔵するなどの取り扱いを要するうえ、特有の臭気があるため排気設備が必要である。蓚酸アンチモン、酒石酸アンチモンを用いる場合は、目的とする不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリル、アルケンの選択率が低いという問題があった。   Moreover, since the stability as the aqueous solution is extremely low and precipitates are likely to be generated at room temperature, the storage tank to be stored requires incidental equipment and heating equipment for temperature control. In addition, when using antimony ethoxide, antimony butoxide, and antimony acetate, it is necessary to handle it such as storing it away from moisture and storing it in nitrogen, and also requires exhaust equipment because of its unique odor. When antimony oxalate and antimony tartrate are used, there is a problem that the selectivity of the target unsaturated aldehyde, unsaturated carboxylic acid, unsaturated nitrile and alkene is low.

特公昭46−2804号公報Japanese Patent Publication No.46-2804 特公昭47−14371号公報Japanese Patent Publication No. 47-14371 米国特許第3,816,506号明細書US Pat. No. 3,816,506 米国特許第3,670,006号明細書US Pat. No. 3,670,006 米国特許第4,000,178号明細書US Patent No. 4,000,178 米国特許第3,678,090号明細書US Pat. No. 3,678,090 ソ連特許第547444号明細書Soviet Patent No. 547444 ソ連特許第698646号明細書Soviet Patent No. 698646 Specification 特公昭50−28940号公報Japanese Patent Publication No. 50-28940 特開昭47−33783号公報JP 47-33783 A 特開昭54−95439号公報JP 54-95439 A 特開平1−268668号公報JP-A-1-268668 特開平2−95439号公報JP-A-2-95439 特開平2−261544号公報JP-A-2-261544 米国特許第5,008,427号明細書US Pat. No. 5,008,427 特開平6−80620号公報Japanese Patent Laid-Open No. 6-80620 特開平6−135922号公報JP-A-6-135922 特開平4−275266号公報JP-A-4-275266 特開平7−157461号公報JP-A-7-157461 特開平7−157462号公報JP-A-7-157462 特開平5−213848号公報JP-A-5-213848 特開平9−157241号公報Japanese Patent Laid-Open No. 9-157241 特開2001−79397号公報JP 2001-79397 A 特開平2002−306968号公報JP-A-2002-306968 特開2002−361085号公報Japanese Patent Laid-Open No. 2002-361085 特開2002−88013号公報JP 2002-88013 A

本発明は、アンチモンを含有する複合金属酸化物触媒において、目的とする不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリル、アルケンの選択率が高い触媒を製造すること、さらに製造する際に複雑な設備や工程を必要としない触媒の製造方法を提供することを目的とする。   In the composite metal oxide catalyst containing antimony, the present invention produces a catalyst having a high selectivity for the target unsaturated aldehyde, unsaturated carboxylic acid, unsaturated nitrile, and alkene, and is complicated in production. It aims at providing the manufacturing method of the catalyst which does not require an installation and a process.

本発明者らは、前記課題を解決するため、炭化水素の気相接触酸化反応または気相接触アンモ酸化反応に用いるアンチモンを含有する複合金属酸化物の製造方法を鋭意検討した結果、原料を調合する工程でSb原料として、ハロゲンを含まないSb化合物および/またはSb金属、2つ以上のカルボキシル基を有するオキシ酸および過酸化水素水から得られた錯体を、Sb原料の少なくとも一部として用いることによって、目的とする生成物、特にはアルケン、不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリルの選択率が高く、さらに製造する際に複雑な設備や工程を必要としない触媒の製造方法を見いだし、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied a method for producing a composite metal oxide containing antimony used in a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of hydrocarbon, and as a result, prepared raw materials. A complex obtained from a halogen-free Sb compound and / or Sb metal, an oxyacid having two or more carboxyl groups, and a hydrogen peroxide solution as at least a part of the Sb material. Has found that the desired product, especially alkene, unsaturated aldehyde, unsaturated carboxylic acid, unsaturated nitrile, has a high selectivity and can be used to produce a catalyst that does not require complicated equipment and processes. The present invention has been made.

すなわち、本発明は、
(1) 炭化水素の気相接触酸化反応または気相接触アンモ酸化反応に用いるアンチモンを含有する複合金属酸化物触媒の製造方法において、原料を調合する工程で、酸化アンチモン、酒石酸又はクエン酸並びに過酸化水素水を混合し、得られた錯体を含むSb原料液を調製し、前記Sb原料液をアンチモン以外の構成元素と混合することを特徴とする複合金属酸化物触媒の製造方法、
(2)前記酸化アンチモン、前記酒石酸又は前記クエン酸並びに前記過酸化水素水の混合液を加熱することを特徴とする(1)に記載の複合金属酸化物触媒の製造方法、
(3)前記酸化アンチモン、前記酒石酸および前記過酸化水素水の混合液を加熱した後、前記アンチモン以外の構成元素と混合する前に放冷することを特徴とする(2)に記載の複合金属酸化物触媒の製造方法、
That is, the present invention
(1) In the method for producing a composite metal oxide catalyst containing antimony used for hydrocarbon gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction, antimony oxide, tartaric acid or citric acid, and hydrogen peroxide A method for producing a composite metal oxide catalyst , comprising: mixing an aqueous solution of hydrogen oxide ; preparing an Sb raw material liquid containing the obtained complex ; and mixing the Sb raw material liquid with a constituent element other than antimony ;
(2) The method for producing a mixed metal oxide catalyst according to (1) , wherein the mixed solution of antimony oxide, tartaric acid or citric acid and the hydrogen peroxide solution is heated .
(3) The mixed metal according to (2) , wherein the mixed solution of the antimony oxide, the tartaric acid and the hydrogen peroxide solution is heated and then allowed to cool before being mixed with a constituent element other than the antimony. Production method of oxide catalyst,

(4) アンチモンを含有する複合金属酸化物触媒が、アンチモン以外の構成元素として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、コバルト、ニッケル、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、ゲルマニウム、スズ、鉛、リン、ビスマス、テルル、ランタン、セリウムから選ばれた少なくとも1種以上の元素を含むことを特徴とする(1)〜(3)のいずれかに記載の複合金属酸化物触媒の製造方法、
(5) 炭化水素を気相接触アンモ酸化反応させて、対応する不飽和ニトリルを製造するにあたり、(1)〜(4)のいずれかに記載の製造方法によって得られた複合金属酸化物触媒を用いることを特徴とする不飽和ニトリルの製造方法、
に関するものである。
(4) The composite metal oxide catalyst containing antimony contains lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, titanium, zirconium, vanadium, niobium, tantalum, chromium as constituent elements other than antimony. At least one element selected from molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, boron, aluminum, gallium, indium, germanium, tin, lead, phosphorus, bismuth, tellurium, lanthanum, cerium The method for producing a composite metal oxide catalyst according to any one of (1) to (3), comprising:
(5) the hydrocarbons by gas phase catalytic ammoxidation, in producing the unsaturated nitriles the corresponding, (1) to (4) composite metal oxide catalyst obtained by the production method according to any one of method for producing an unsaturated nitrile you characterized by using a
It is about.

本発明は、 炭化水素の気相接触酸化反応または気相接触アンモ酸化反応に用いるアンチモンを含有する複合金属酸化物触媒の製造方法における原料を調合する工程で、Sb原料として、ハロゲンを含まないSb化合物および/またはSb金属、2つ以上のカルボキシル基を有するオキシ酸および過酸化水素水から得られた錯体を、Sb原料の少なくとも一部として用いることによって、目的とする生成物、特にはアルケン、不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリルの選択率が高く、さらに製造する際に複雑な設備や工程を必要としないという効果を見いだしたことに基づくものである。   The present invention relates to a step of preparing a raw material in a method for producing a composite metal oxide catalyst containing antimony used in a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of hydrocarbon. By using a compound and / or a Sb metal, a complex obtained from an oxyacid having two or more carboxyl groups and a hydrogen peroxide solution as at least a part of the Sb raw material, a desired product, particularly an alkene, This is based on the finding that an unsaturated aldehyde, an unsaturated carboxylic acid, and an unsaturated nitrile have a high selectivity, and that no complicated equipment or process is required for production.

以下、本発明について具体的に説明する。
本発明の触媒の製造方法は、原料調合工程、乾燥工程、焼成工程からなる製造方法の原料調合工程において、Sb原料として、酸化アンチモン、酒石酸又はクエン酸並びに過酸化水素水を混合し、得られた錯体を、Sb原料の少なくとも一部として用いることに特徴がある。
本発明における酸化アンチモン、酒石酸又はクエン酸並びに過酸化水素水から得られた錯体とは、酸化アンチモン、酒石酸又はクエン酸並びに過酸化水素水を水に加えて混合・溶解させたときに生成する錯体である。
Hereinafter, the present invention will be specifically described.
The catalyst production method of the present invention is obtained by mixing antimony oxide, tartaric acid or citric acid and hydrogen peroxide water as the Sb raw material in the raw material preparation step of the production method comprising a raw material preparation step, a drying step, and a firing step. The complex is characterized in that it is used as at least part of the Sb raw material.
The complex obtained from antimony oxide, tartaric acid or citric acid and hydrogen peroxide water in the present invention is a complex formed when antimony oxide, tartaric acid or citric acid and hydrogen peroxide water are added to water and mixed and dissolved. It is.

該錯体は、酸化アンチモン、酒石酸又はクエン酸並びに過酸化水素水を水に加えて混合・溶解させたSb原料液として、その他の触媒構成元素の原料や原料液と混合されることが好ましい。本発明において、2つ以上のカルボキシル基を有するオキシ酸は、酒石酸、クエン酸用いることができるが、好ましくは酒石酸である。ここで言う酒石酸とは、L(+)−酒石酸、D−酒石酸、DL−酒石酸、メソ酒石酸等のいずれでも良い。酒石酸を用いる場合、用いる酒石酸の量は限定されないが、好ましくは酒石酸/アンチモンのモル比が0.2〜3、特に好ましくは酒石酸/アンチモンのモル比が0.8〜2である。
本発明において、酸化アンチモンは、三酸化ニアンチモン、四酸化ニアンチモン、五酸化ニアンチモン、含水アンチモン酸化物を用いることができるが、好ましくは三酸化ニアンチモンである。
The complex is preferably mixed with a raw material or raw material liquid of other catalyst constituent elements as an Sb raw material liquid in which antimony oxide, tartaric acid or citric acid and hydrogen peroxide water are mixed and dissolved in water. In the present invention, oxy acids having two or more carboxyl groups, tartaric acid, may be used citric acid, preferably tartaric acid. The tartaric acid mentioned here may be any of L (+)-tartaric acid, D-tartaric acid, DL-tartaric acid, mesotartaric acid and the like. When tartaric acid is used, the amount of tartaric acid to be used is not limited, but the molar ratio of tartaric acid / antimony is preferably 0.2 to 3, and particularly preferably the molar ratio of tartaric acid / antimony is 0.8 to 2.
In the present invention, as antimony oxide, niantimony trioxide, niantimony tetroxide, niantimony pentoxide, hydrous antimony oxide, and the like can be used, and antimony trioxide is preferable.

本発明において、用いる過酸化水素水の量は限定されないが、過酸化水素水に含まれる過酸化水素の量としては、好ましくは過酸化水素/アンチモンのモル比が0.1〜5、特に好ましくは過酸化水素/アンチモンのモル比が0.5〜2である。
本発明のアンチモンを含有する複合金属酸化物触媒において、アンチモン以外の構成元素として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、コバルト、ニッケル、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、ゲルマニウム、スズ、鉛、リン、ビスマス、テルル、ランタン、セリウムから選ばれた少なくとも1種以上の元素であり、好ましくはチタン、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、鉄、アルミニウム、ガリウム、スズ、ビスマス、テルル、特に好ましくはバナジウム、ニオブ、クロム、モリブデン、タングステン、鉄、さらに特に好ましくはバナジウムである。
In the present invention, the amount of hydrogen peroxide used is not limited, but the amount of hydrogen peroxide contained in the hydrogen peroxide is preferably a hydrogen peroxide / antimony molar ratio of 0.1 to 5, particularly preferably. Has a hydrogen peroxide / antimony molar ratio of 0.5-2.
In the composite metal oxide catalyst containing antimony of the present invention, as constituent elements other than antimony, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, titanium, zirconium, vanadium, niobium, tantalum, chromium At least one element selected from molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, boron, aluminum, gallium, indium, germanium, tin, lead, phosphorus, bismuth, tellurium, lanthanum, cerium Preferably titanium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron, aluminum, gallium, tin, bismuth, tellurium, particularly preferably vanadium, niobium, chromium, molyb Emissions, tungsten, iron, more particularly preferably vanadium.

本発明のアンチモンを含有する複合金属酸化物触媒において、アンチモン以外の構成元素がバナジウム、ニオブ、クロム、モリブデン、タングステン、鉄(以下X元素と呼ぶ)の場合は、X元素/アンチモンのモル比が0.5〜2が好ましく、特に好ましくはX元素/アンチモンのモル比が0.7〜1.5、さらに特に好ましくはX元素/アンチモンのモル比が0.9〜1.1である。X元素の中で特にバナジウムの場合は、バナジウム/アンチモンのモル比が1に近い組成において、従来の製造方法では目的とするアルケン、不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリルの選択率が低かったが、本発明の製造方法によって新しい組成の触媒を提供することができる。   In the composite metal oxide catalyst containing antimony of the present invention, when the constituent elements other than antimony are vanadium, niobium, chromium, molybdenum, tungsten, iron (hereinafter referred to as X element), the molar ratio of X element / antimony is The molar ratio of X element / antimony is preferably 0.7 to 1.5, and more preferably the molar ratio of X element / antimony is 0.9 to 1.1. In particular, in the case of vanadium among the X elements, the selectivity of the target alkene, unsaturated aldehyde, unsaturated carboxylic acid, and unsaturated nitrile is high in the conventional production method in a composition having a molar ratio of vanadium / antimony close to 1. Although low, a catalyst having a new composition can be provided by the production method of the present invention.

アンチモン以外の構成元素の原料として特に制限はなく、使用する金属のシュウ酸塩、水酸化物、酸化物、硝酸塩、酢酸塩、アンモニウム塩、炭酸塩、アルコキシド等の化合物や使用する金属または金属化合物を適当な試薬で可溶化したものを用いることができる。
本発明の製造方法で得られた複合金属酸化物触媒は単独で触媒として使用することができるが、本発明の製造方法で得られた複合金属酸化物触媒とシリカ、アルミナなどの一種以上の担体成分とを同一粒子内に含んだ状態で使用してもよい。さらに、複合金属酸化物を粒子とシリカ、アルミナなどの一種以上の酸化物からなる粒子とが混合した状態で反応に使用してもよい。
There is no particular limitation as a raw material for constituent elements other than antimony, and compounds such as oxalates, hydroxides, oxides, nitrates, acetates, ammonium salts, carbonates, alkoxides of metals used, and metals or metal compounds used Can be used solubilized with an appropriate reagent.
The composite metal oxide catalyst obtained by the production method of the present invention can be used alone as a catalyst, but the composite metal oxide catalyst obtained by the production method of the present invention and one or more carriers such as silica and alumina You may use it in the state which contained the component in the same particle. Further, the composite metal oxide may be used for the reaction in a state where the particles and particles made of one or more oxides such as silica and alumina are mixed.

本発明の触媒の製造方法は、前記したように、原料調合工程、乾燥工程及び焼成工程の3つの工程からなる。以下にこれらの工程について説明する。
<原料調合工程>
Sb原料液としては、例えば三酸化ニアンチモンを酒石酸と過酸化水素を含む水溶液に溶解することで製造できる。混合することで溶解することができるが、60〜80℃に加熱して溶解しても良い。混合する時間は、好ましくは5分〜10時間、特に好ましくは10分〜2時間である。酒石酸を用いる場合、用いる酒石酸の量は限定されないが、好ましくは酒石酸/アンチモンのモル比が0.2〜3、特に好ましくは酒石酸/アンチモンのモル比が0.8〜2である。過酸化水素は、用いる過酸化水素水の量は限定されないが、過酸化水素水に含まれる過酸化水素の量としては、好ましくは過酸化水素/アンチモンのモル比が0.1〜5、特に好ましくは過酸化水素/アンチモンのモル比が0.5〜2である。
As described above, the method for producing a catalyst of the present invention includes three steps: a raw material preparation step, a drying step, and a firing step. These steps will be described below.
<Raw material preparation process>
The Sb raw material liquid can be produced, for example, by dissolving niantimony trioxide in an aqueous solution containing tartaric acid and hydrogen peroxide. Although it can melt | dissolve by mixing, you may heat and melt | dissolve at 60-80 degreeC. The mixing time is preferably 5 minutes to 10 hours, particularly preferably 10 minutes to 2 hours. When tartaric acid is used, the amount of tartaric acid to be used is not limited, but the molar ratio of tartaric acid / antimony is preferably 0.2 to 3, and particularly preferably the molar ratio of tartaric acid / antimony is 0.8 to 2. The amount of hydrogen peroxide used is not limited, but the amount of hydrogen peroxide contained in the hydrogen peroxide solution is preferably a hydrogen peroxide / antimony molar ratio of 0.1 to 5, particularly The hydrogen peroxide / antimony molar ratio is preferably 0.5-2.

アンチモン以外の構成元素がバナジウムの場合は、五酸化バナジウム、メタバナジン酸アンモニウム、シュウ酸バナジルの水溶液や、五酸化バナジウム、メタバナジン酸アンモニウムを過酸化水素水で溶解したV原料液を好適に用いることができる。
アンチモン以外の構成元素がリチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、コバルト、ニッケル、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、ゲルマニウム、スズ、鉛、リン、ビスマス、テルル、ランタン、セリウムを用いる場合には、使用する金属のシュウ酸塩、水酸化物、酸化物、硝酸塩、酢酸塩、アンモニウム塩、炭酸塩、アルコキシド等の化合物や使用する金属または金属化合物を適当な試薬で可溶化したものを用いることができる。
When the constituent element other than antimony is vanadium, it is preferable to use an aqueous solution of vanadium pentoxide, ammonium metavanadate, vanadyl oxalate, or a V raw material solution in which vanadium pentoxide, ammonium metavanadate is dissolved in hydrogen peroxide. it can.
Constituent elements other than antimony are lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, titanium, zirconium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, When using boron, aluminum, gallium, indium, germanium, tin, lead, phosphorus, bismuth, tellurium, lanthanum, cerium, oxalate, hydroxide, oxide, nitrate, acetate, ammonium of the metal used A compound obtained by solubilizing a compound such as a salt, carbonate, alkoxide or the like or a metal to be used or a metal compound with an appropriate reagent can be used.

各原料液を適宜の順序で混合することによって触媒原料液を製造することができる。触媒原料液は室温程度例えば20〜30℃で撹拌することで混合することができる。混合する時間は、好ましくは5分〜10時間、特に好ましくは10分〜2時間である。   A catalyst raw material liquid can be produced by mixing the raw material liquids in an appropriate order. The catalyst raw material liquid can be mixed by stirring at about room temperature, for example, 20 to 30 ° C. The mixing time is preferably 5 minutes to 10 hours, particularly preferably 10 minutes to 2 hours.

<乾燥工程>
原料調合工程で得られた触媒原料液を噴霧乾燥法または蒸発乾固法によって乾燥させ、乾燥粉体を得ることができる。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。このとき熱風の乾燥機入口温度は150〜300℃が好ましい。噴霧乾燥は簡便には100℃〜300℃に加熱された鉄板上へ触媒原料液を噴霧することによって行うこともできる。
<Drying process>
The catalyst raw material liquid obtained in the raw material preparation step can be dried by spray drying or evaporation to dryness to obtain a dry powder. The atomization in the spray drying method can employ a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method. As the drying heat source, air heated by steam, an electric heater or the like can be used. At this time, the dryer inlet temperature of hot air is preferably 150 to 300 ° C. Spray drying can also be performed simply by spraying the catalyst raw material liquid onto an iron plate heated to 100 ° C to 300 ° C.

<焼成工程>
乾燥工程で得られた乾燥粉体を焼成することによって複合金属酸化物触媒を得ることができる。焼成は回転炉、トンネル炉、管状炉、流動焼成炉等を用い、500〜800℃、好ましくは550〜700℃で実施することができる。焼成時間は0.5〜5時間、好ましくは1〜3時間である。
このようにして製造された触媒の存在下、炭化水素を気相接触酸化反応または気相接触アンモ酸化反応させて、対応するアルケン、不飽和アルデヒド、不飽和カルボン酸、不飽和ニトリルを製造する。例えば、プロパンまたはイソブタンを気相接触アンモ酸化させて、アクリロニトリルまたはメタクリロニトリルを製造する方法、他にプロパンまたはイソブタンを気相接触酸化させて、アクリル酸またはメタクリル酸を製造する方法、プロピレンまたはイソブテンを気相接触アンモ酸化させて、アクリロニトリルまたはメタクリロニトリルを製造する方法、プロピレンまたはイソブテンを気相接触酸化させて、アクロレインまたはメタクロレインを製造する方法、エタンを気相接触酸化させて、エチレンを製造する方法などがある。
<Baking process>
A composite metal oxide catalyst can be obtained by calcining the dry powder obtained in the drying step. Firing can be performed at 500 to 800 ° C., preferably 550 to 700 ° C., using a rotary furnace, tunnel furnace, tubular furnace, fluidized firing furnace or the like. The firing time is 0.5 to 5 hours, preferably 1 to 3 hours.
In the presence of the catalyst thus produced, the hydrocarbon is subjected to gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction to produce the corresponding alkene, unsaturated aldehyde, unsaturated carboxylic acid, and unsaturated nitrile. For example, a method of producing acrylonitrile or methacrylonitrile by vapor-phase catalytic ammoxidation of propane or isobutane, a method of producing acrylic acid or methacrylic acid by vapor-phase catalytic oxidation of propane or isobutane, propylene or isobutene Is a method of producing acrylonitrile or methacrylonitrile by vapor phase catalytic ammoxidation, a method of producing propylene or isobutene by vapor phase catalytic oxidation to produce acrolein or methacrolein, and ethane is vapor phase catalytically oxidized to produce ethylene. There are methods for manufacturing.

炭化水素やアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用することができる。
反応系に供給する酸素源として空気、酸素を富化した空気、または純酸素を用いることができる。更に、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水蒸気、窒素などを供給してもよい。
気相接触アンモ酸化の場合は、反応系に供給されるアンモニアの炭化水素に対するモル比は0.1〜1.5、好ましくは0.2〜1.2である。リサイクル方式で気相接触アンモ酸化を行う場合には、反応器入り口のガス組成は、アンモニアの炭化水素に対するモル比を0.2〜1.0にすることが好ましく、0.5〜0.8とすることがより好ましい。
The feedstock for hydrocarbons and ammonia is not necessarily highly pure, and industrial grade gases can be used.
As the oxygen source supplied to the reaction system, air, air enriched with oxygen, or pure oxygen can be used. Further, helium, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas.
In the case of gas phase catalytic ammoxidation, the molar ratio of ammonia to the hydrocarbon supplied to the reaction system is 0.1 to 1.5, preferably 0.2 to 1.2. When performing vapor phase catalytic ammoxidation in a recycle mode, the gas composition at the reactor inlet is preferably such that the molar ratio of ammonia to hydrocarbon is 0.2 to 1.0, 0.5 to 0.8 More preferably.

また、反応系に供給される分子状酸素の炭化水素に対するモル比は0.2〜6とすることが好ましく、0.4〜4とすることがより好ましい。リサイクル方式で気相接触アンモ酸化を行う場合には、反応器入り口のガス組成は、分子状酸素の炭化水素に対するモル比を0.8〜2.2にすることが好ましく、1.5〜1.9とすることがより好ましい。一方気相接触酸化を行う場合は、分子状酸素の炭化水素に対するモル比を0.1〜10、好ましくは0.1〜5である。また反応系に水蒸気を添加することが好ましく、その場合反応系に供給される水蒸気の炭化水素に対するモル比は0.1〜70、好ましくは3〜40である。   Further, the molar ratio of molecular oxygen to hydrocarbons supplied to the reaction system is preferably 0.2 to 6, and more preferably 0.4 to 4. When performing vapor phase catalytic ammoxidation in a recycle mode, the gas composition at the inlet of the reactor is preferably such that the molar ratio of molecular oxygen to hydrocarbon is 0.8 to 2.2, and 1.5 to 1 .9 is more preferable. On the other hand, when performing vapor phase catalytic oxidation, the molar ratio of molecular oxygen to hydrocarbon is 0.1 to 10, preferably 0.1 to 5. Moreover, it is preferable to add water vapor | steam to a reaction system, In that case, the molar ratio with respect to the hydrocarbon of the water vapor | steam supplied to a reaction system is 0.1-70, Preferably it is 3-40.

気相接触酸化および気相接触アンモ酸化のいずれについても、反応圧力は絶対圧で0.01〜1MPa、好ましくは0.1〜0.3MPaである。気相接触アンモ酸化の反応温度は300〜600℃、好ましくは380〜480℃である。気相接触酸化の反応温度は300〜600℃、好ましくは350〜440℃である。気相接触酸化および気相接触アンモ酸化のいずれについても、接触時間は0.05〜30(g・sec/ml)、好ましくは0.1〜10(g・sec/ml)である。接触時間は下記の式で定義される。
接触時間(g・sec/ml)=W/F×60×273/(273+T)×((P+0.101)/0.101)
〔ただし、Wは複合金属酸化物触媒の重量(g)、Fは原料混合ガスの流量(ml/min)、Tは反応温度(℃)、Pは反応圧力(ゲージ圧)(MPa)を表わす。〕気相接触酸化および気相接触アンモ酸化のいずれについても、反応は、固定床、流動床、移動床など従来の方式を採用できるが流動床が好ましい。反応は単流方式でもリサイクル方式でもよい。
For both gas phase catalytic oxidation and gas phase catalytic ammoxidation, the reaction pressure is 0.01 to 1 MPa in absolute pressure, preferably 0.1 to 0.3 MPa in absolute pressure. The reaction temperature of the gas phase ammoxidation is 300 to 600 ° C, preferably 380 to 480 ° C. The reaction temperature of the gas phase catalytic oxidation is 300 to 600 ° C, preferably 350 to 440 ° C. For both gas phase catalytic oxidation and gas phase catalytic ammoxidation, the contact time is 0.05 to 30 (g · sec / ml), preferably 0.1 to 10 (g · sec / ml). The contact time is defined by the following formula.
Contact time (g · sec / ml) = W / F × 60 × 273 / (273 + T) × ((P + 0.101) /0.101)
[W is the weight (g) of the composite metal oxide catalyst, F is the flow rate of the raw material mixed gas (ml / min), T is the reaction temperature (° C.), and P is the reaction pressure (gauge pressure) (MPa). . For both gas phase catalytic oxidation and gas phase catalytic ammoxidation, conventional methods such as a fixed bed, a fluidized bed and a moving bed can be used for the reaction, but a fluidized bed is preferred. The reaction may be a single flow method or a recycle method.

次に、本発明をプロパンの気相接触アンモ酸化反応の実施例で説明する。各例において、プロパン転化率、アクリロニトリル選択率は、それぞれ次の定義に従う。
プロパン転化率(%)={(反応したプロパンのモル数(μmol))/(供給したプロパンのモル数(μmol))}×100
アクリロニトリル選択率(%)={(生成したアクリロニトリルのモル数(μmol))/ (反応したプロパンのモル数(μmol))}×100
Next, the present invention will be described with reference to examples of vapor-phase catalytic ammoxidation of propane. In each example, propane conversion and acrylonitrile selectivity are in accordance with the following definitions.
Propane conversion (%) = {(moles of reacted propane (μmol)) / (moles of propane fed (μmol))} × 100
Acrylonitrile selectivity (%) = {(number of moles of acrylonitrile produced (μmol)) / (number of moles of reacted propane (μmol))} × 100

[実施例1]
<触媒調製>
成分組成式がV1.0Sb1.0(nは構成金属の原子価および原子比によって決まる数である。)で示される複合金属酸化物触媒を次のようにして調製した。
水58gにL(+)−酒石酸9.0gと30重量%の過酸化水素水6.8gを加え、室温で30分撹拌して溶解させ、さらに三酸化ニアンチモン(Sb)5.83gを加え、70℃で30分加熱して溶解したのち、30℃にて放冷し、Sb原料液を得た。水300gにメタバナジン酸アンモニウム(NHVO)4.68gを加え、70℃で15分加熱して溶解したのち、30℃にて放冷し、V原料液を得た。Sb原料液をV原料液に加え、室温で1時間撹拌して触媒原料液を得た。得られた触媒原料液を140℃に加熱したテフロン(登録商標)コーティング鉄板上に噴霧し乾燥粉体を得た。得られた乾燥粉末から2.0gを、内径20mmの石英管に充填し、350Nml/minの空気流通下、600℃で2時間焼成して複合金属酸化物触媒を得た。
[Example 1]
<Catalyst preparation>
V 1.0 Sb 1.0 O n ingredients formula (n is a number determined by the valency and atomic ratio of the constituent metals.) Was prepared composite metal oxide catalyst represented by the following manner.
4. To 58 g of water, 9.0 g of L (+)-tartaric acid and 6.8 g of 30% by weight hydrogen peroxide water were added and dissolved by stirring at room temperature for 30 minutes, and then niantimony trioxide (Sb 2 O 3 ). 83 g was added and dissolved by heating at 70 ° C. for 30 minutes, and then allowed to cool at 30 ° C. to obtain an Sb raw material liquid. To 300 g of water, 4.68 g of ammonium metavanadate (NH 4 VO 3 ) was added, dissolved by heating at 70 ° C. for 15 minutes, and then allowed to cool at 30 ° C. to obtain a V raw material liquid. The Sb raw material liquid was added to the V raw material liquid and stirred at room temperature for 1 hour to obtain a catalyst raw material liquid. The obtained catalyst raw material liquid was sprayed onto a Teflon (registered trademark) coated iron plate heated to 140 ° C. to obtain a dry powder. From the obtained dry powder, 2.0 g was filled in a quartz tube having an inner diameter of 20 mm, and calcined at 600 ° C. for 2 hours under an air flow of 350 Nml / min to obtain a composite metal oxide catalyst.

<プロパンのアンモ酸化反応試験>
複合金属酸化物触媒0.20gを内径4mmの固定床型反応管に充填し、反応温度T=460℃(外温)、プロパン:アンモニア:酸素:ヘリウム=1:0.7:1.7:5.3のモル比の原料混合ガスを流量F=12Nml/minで流した。このとき圧力Pはゲージ圧で0MPaであった。接触時間は0.38g・s/mlである(接触時間は、複合金属酸化物触媒重量をW(g)として、W/F×60×273/(273+T)×((P+0.101)/0.101)から求めた。)。反応ガスの分析はオンラインガスクロマトグラフィーで行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
A 0.20 g mixed metal oxide catalyst was charged into a fixed bed type reaction tube having an inner diameter of 4 mm, reaction temperature T = 460 ° C. (external temperature), propane: ammonia: oxygen: helium = 1: 0.7: 1.7: A raw material mixed gas having a molar ratio of 5.3 was supplied at a flow rate F = 12 Nml / min. At this time, the pressure P was 0 MPa as a gauge pressure. The contact time is 0.38 g · s / ml (the contact time is W / F × 60 × 273 / (273 + T) × ((P + 0.101) / 0, where the weight of the composite metal oxide catalyst is W (g)) .101))). Analysis of the reaction gas was performed by on-line gas chromatography. The obtained results are shown in Table 1.

[比較例1]
<触媒調製>
成分組成式がV1.0Sb1.0(nは構成金属の原子価および原子比によって決まる数である。)で示される複合金属酸化物触媒を次のようにして調製した。
Sb原料液において、L(+)−酒石酸と30重量%の過酸化水素水を用いなかった以外は実施例1の触媒調製を反復した。
<プロパンのアンモ酸化反応試験>
得られた複合金属酸化物触媒についてプロパンのアンモ酸化反応を、原料混合ガスを流量F=12Nml/minを18Nml/minに、接触時間は0.38g・s/mlを0.25g・s/mlに変更した以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
[Comparative Example 1]
<Catalyst preparation>
V 1.0 Sb 1.0 O n ingredients formula (n is a number determined by the valency and atomic ratio of the constituent metals.) Was prepared composite metal oxide catalyst represented by the following manner.
The catalyst preparation of Example 1 was repeated except that L (+)-tartaric acid and 30 wt% aqueous hydrogen peroxide were not used in the Sb raw material liquid.
<Propane Ammoxidation Test>
The resulting mixed metal oxide catalyst was subjected to propane ammoxidation reaction, the raw material mixed gas at a flow rate F = 12 Nml / min to 18 Nml / min, and the contact time from 0.38 g · s / ml to 0.25 g · s / ml. The procedure was the same as in Example 1 except that the change was made. The obtained results are shown in Table 1.

[比較例2]
<触媒調製>
成分組成式がV1.0Sb1.0(nは構成金属の原子価および原子比によって決まる数である。)で示される複合金属酸化物触媒を次のようにして調製した。
Sb原料液において、30重量%の過酸化水素水を用いなかった以外は実施例1の触媒調製を反復した。
<プロパンのアンモ酸化反応試験>
得られた複合金属酸化物触媒についてプロパンのアンモ酸化反応を、原料混合ガスを流量F=12Nml/minを48Nml/minに、接触時間は0.38g・s/mlを0.09g・s/mlに変更した以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
[Comparative Example 2]
<Catalyst preparation>
V 1.0 Sb 1.0 O n ingredients formula (n is a number determined by the valency and atomic ratio of the constituent metals.) Was prepared composite metal oxide catalyst represented by the following manner.
The catalyst preparation of Example 1 was repeated except that 30% by weight of hydrogen peroxide solution was not used in the Sb raw material liquid.
<Propane Ammoxidation Test>
The obtained mixed metal oxide catalyst was subjected to an ammoxidation reaction of propane, a raw material mixed gas at a flow rate F = 12 Nml / min to 48 Nml / min, and a contact time of 0.38 g · s / ml to 0.09 g · s / ml. The procedure was the same as in Example 1 except that the change was made. The obtained results are shown in Table 1.

[比較例3]
<触媒調製>
成分組成式がV1.0Sb1.0(nは構成金属の原子価および原子比によって決まる数である。)で示される複合金属酸化物触媒を次のようにして調製した。
Sb原料液において、L(+)−酒石酸の代わりにシュウ酸ニ水和物(H・2HO)7.56gを用い、30重量%の過酸化水素水を用いなかった以外は実施例1の触媒調製を反復した。
<プロパンのアンモ酸化反応試験>
得られた複合金属酸化物触媒についてプロパンのアンモ酸化反応を、原料混合ガスを流量F=12Nml/minを18Nml/minに、接触時間は0.38g・s/mlを0.25g・s/mlに変更した以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
[Comparative Example 3]
<Catalyst preparation>
V 1.0 Sb 1.0 O n ingredients formula (n is a number determined by the valency and atomic ratio of the constituent metals.) Was prepared composite metal oxide catalyst represented by the following manner.
In the Sb raw material liquid, 7.56 g of oxalic acid dihydrate (H 2 C 2 O 4 .2H 2 O) was used instead of L (+)-tartaric acid, and 30% by weight of hydrogen peroxide was not used. The catalyst preparation of Example 1 was repeated except for the above.
<Propane Ammoxidation Test>
The resulting mixed metal oxide catalyst was subjected to propane ammoxidation reaction, the raw material mixed gas at a flow rate F = 12 Nml / min to 18 Nml / min, and the contact time from 0.38 g · s / ml to 0.25 g · s / ml. The procedure was the same as in Example 1 except that the change was made. The obtained results are shown in Table 1.

[比較例4]
<触媒調製>
成分組成式がV1.0Sb1.0(nは構成金属の原子価および原子比によって決まる数である。)で示される複合金属酸化物触媒を次のようにして調製した。
Sb原料液において、L(+)−酒石酸を用いなかった以外は実施例1の触媒調製を反復した。
<プロパンのアンモ酸化反応試験>
得られた複合金属酸化物触媒についてプロパンのアンモ酸化反応を、原料混合ガスを流量F=12Nml/minを18Nml/minに、接触時間は0.38g・s/mlを0.25g・s/mlに変更した以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
[Comparative Example 4]
<Catalyst preparation>
V 1.0 Sb 1.0 O n ingredients formula (n is a number determined by the valency and atomic ratio of the constituent metals.) Was prepared composite metal oxide catalyst represented by the following manner.
The catalyst preparation of Example 1 was repeated except that L (+)-tartaric acid was not used in the Sb raw material liquid.
<Propane Ammoxidation Test>
The resulting mixed metal oxide catalyst was subjected to propane ammoxidation reaction, the raw material mixed gas at a flow rate F = 12 Nml / min to 18 Nml / min, and the contact time from 0.38 g · s / ml to 0.25 g · s / ml. The procedure was the same as in Example 1 except that the change was made. The obtained results are shown in Table 1.

[実施例2]
<Sb原料液の安定性試験>
実施例1のSb原料液の製法を反復して、Sb原料液を得た。得られたSb原料液を室温で1年間放置したが析出物は見られず安定なSb原料液であることがわかった。
[Example 2]
<Sb raw material stability test>
The manufacturing method of the Sb raw material liquid in Example 1 was repeated to obtain an Sb raw material liquid. The obtained Sb raw material liquid was allowed to stand at room temperature for 1 year, but no precipitate was observed, and it was found to be a stable Sb raw material liquid.

[実施例3]
<触媒調製>
成分組成式がV1.0Sb1.0(nは構成金属の原子価および原子比によって決まる数である。)で示される複合金属酸化物触媒を次のようにして調製した。
Sb原料液において、実施例2の1年間放置したSb原料液を用いた以外は実施例1の触媒調製を反復した。
<プロパンのアンモ酸化反応試験>
得られた複合金属酸化物触媒についてプロパンのアンモ酸化反応を、実施例1と同じ条件下にて行った。得られた結果を表1に示す。
[Example 3]
<Catalyst preparation>
V 1.0 Sb 1.0 O n ingredients formula (n is a number determined by the valency and atomic ratio of the constituent metals.) Was prepared composite metal oxide catalyst represented by the following manner.
The catalyst preparation of Example 1 was repeated except that the Sb raw material liquid left for one year in Example 2 was used as the Sb raw material liquid.
<Propane Ammoxidation Test>
The obtained composite metal oxide catalyst was subjected to propane ammoxidation reaction under the same conditions as in Example 1. The obtained results are shown in Table 1.

Figure 0004666336
Figure 0004666336

本発明は、アンチモンを必須成分として含有する複合金属酸化物の製造方法として、触媒分野、とくに炭化水素の気相接触酸化および気相接触アンモ酸化触媒の製造方法として好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a method for producing a composite metal oxide containing antimony as an essential component, particularly in the catalyst field, particularly as a method for producing a hydrocarbon gas phase catalytic oxidation and a gas phase catalytic ammoxidation catalyst.

Claims (5)

炭化水素の気相接触酸化反応または気相接触アンモ酸化反応に用いるアンチモンを含有する複合金属酸化物触媒の製造方法において、原料を調合する工程で、酸化アンチモン、酒石酸又はクエン酸並びに過酸化水素水を混合し、得られた錯体を含むSb原料液を調製し、前記Sb原料液をアンチモン以外の構成元素と混合することを特徴とする複合金属酸化物触媒の製造方法。 Antimony oxide, tartaric acid or citric acid and hydrogen peroxide solution in the step of preparing the raw material in the method for producing a composite metal oxide catalyst containing antimony used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of hydrocarbon And preparing a Sb raw material solution containing the resulting complex , and mixing the Sb raw material solution with a constituent element other than antimony . 前記酸化アンチモン、前記酒石酸又は前記クエン酸並びに前記過酸化水素水の混合液を加熱することを特徴とする請求項1に記載の複合金属酸化物触媒の製造方法。 The method for producing a mixed metal oxide catalyst according to claim 1 , wherein a mixed liquid of the antimony oxide, the tartaric acid or the citric acid and the hydrogen peroxide solution is heated . 前記酸化アンチモン、前記酒石酸又は前記クエン酸並びに前記過酸化水素水の混合液を加熱した後、前記アンチモン以外の構成元素と混合する前に放冷することを特徴とする請求項2に記載の複合金属酸化物触媒の製造方法。 3. The composite according to claim 2 , wherein the mixed solution of the antimony oxide, the tartaric acid or the citric acid, and the hydrogen peroxide solution is heated and then allowed to cool before being mixed with a constituent element other than the antimony. A method for producing a metal oxide catalyst. アンチモンを含有する複合金属酸化物触媒が、前記アンチモン以外の構成元素として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、コバルト、ニッケル、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、ゲルマニウム、スズ、鉛、リン、ビスマス、テルル、ランタン、セリウムから選ばれた少なくとも1種以上の元素を含むことを特徴とする請求項1〜3のいずれかに記載の複合金属酸化物触媒の製造方法。 Composite metal oxide catalyst containing antimony as an element other than the antimony, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum Including at least one element selected from tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, boron, aluminum, gallium, indium, germanium, tin, lead, phosphorus, bismuth, tellurium, lanthanum, cerium The manufacturing method of the composite metal oxide catalyst in any one of Claims 1-3 characterized by the above-mentioned. 炭化水素を気相接触アンモ酸化反応させて、対応する不飽和ニトリルを製造するにあたり、請求項1〜4のいずれかに記載の製造方法によって得られた複合金属酸化物触媒を用いることを特徴とする不飽和ニトリルの製造方法。
Hydrocarbons by gas phase catalytic ammoxidation, in producing the unsaturated nitriles the corresponding, characterized by using a composite metal oxide catalyst obtained by the process according to any one of claims 1 to 4 method for producing an unsaturated nitrile shall be the.
JP2003336734A 2003-09-29 2003-09-29 Method for producing antimony-containing composite metal oxide Expired - Lifetime JP4666336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336734A JP4666336B2 (en) 2003-09-29 2003-09-29 Method for producing antimony-containing composite metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336734A JP4666336B2 (en) 2003-09-29 2003-09-29 Method for producing antimony-containing composite metal oxide

Publications (2)

Publication Number Publication Date
JP2005103346A JP2005103346A (en) 2005-04-21
JP4666336B2 true JP4666336B2 (en) 2011-04-06

Family

ID=34532744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336734A Expired - Lifetime JP4666336B2 (en) 2003-09-29 2003-09-29 Method for producing antimony-containing composite metal oxide

Country Status (1)

Country Link
JP (1) JP4666336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862384B (en) * 2018-08-23 2020-06-16 广东致远新材料有限公司 Preparation method of low-antimony niobium oxide and preparation method of low-antimony tantalum oxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005603A (en) * 1998-04-23 2000-01-11 Mitsubishi Rayon Co Ltd Catalyst composition for making unsaturated nitrile
JP2002030028A (en) * 2000-07-13 2002-01-29 Mitsubishi Chemicals Corp Method for producing unsaturated carboxylic acid
JP2002159853A (en) * 2000-09-18 2002-06-04 Asahi Kasei Corp Method for producing oxide catalyst for oxidation or ammoxidation
JP2002355556A (en) * 2001-03-30 2002-12-10 Nippon Shokubai Co Ltd Catalyst for oxidation of alkyl benzenes and method for preparing aromatic aldehyde
JP2003071283A (en) * 2001-09-06 2003-03-11 Asahi Kasei Corp Method for manufacturing oxidation or ammoxydation catalyst
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
JP2006502950A (en) * 2002-10-17 2006-01-26 ビーエーエスエフ アクチェンゲゼルシャフト Multi-metal oxide composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131136A (en) * 1982-01-29 1983-08-04 Mitsubishi Chem Ind Ltd Catalyst composition
JPH1143314A (en) * 1997-07-25 1999-02-16 Mitsubishi Chem Corp Production of complex oxide
JPH11226408A (en) * 1998-02-18 1999-08-24 Mitsubishi Chemical Corp Production of metal oxide catalyst
JP3959836B2 (en) * 1998-04-02 2007-08-15 東亞合成株式会社 Method for producing a catalyst for acrylic acid production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005603A (en) * 1998-04-23 2000-01-11 Mitsubishi Rayon Co Ltd Catalyst composition for making unsaturated nitrile
JP2002030028A (en) * 2000-07-13 2002-01-29 Mitsubishi Chemicals Corp Method for producing unsaturated carboxylic acid
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
JP2002159853A (en) * 2000-09-18 2002-06-04 Asahi Kasei Corp Method for producing oxide catalyst for oxidation or ammoxidation
JP2002355556A (en) * 2001-03-30 2002-12-10 Nippon Shokubai Co Ltd Catalyst for oxidation of alkyl benzenes and method for preparing aromatic aldehyde
JP2003071283A (en) * 2001-09-06 2003-03-11 Asahi Kasei Corp Method for manufacturing oxidation or ammoxydation catalyst
JP2006502950A (en) * 2002-10-17 2006-01-26 ビーエーエスエフ アクチェンゲゼルシャフト Multi-metal oxide composition

Also Published As

Publication number Publication date
JP2005103346A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US5173468A (en) Compositions of the formula MO12 Pa Vb X1c X2d X3e Sbf Reg Sh On
US3980585A (en) Catalyst and process for preparing maleic anhydride from C4 hydrocarbons
JP5612202B2 (en) Catalyst for the oxidation of saturated and unsaturated aldehydes containing heteropolyacids to unsaturated carboxylic acids, process for the preparation and use thereof
JP2007530257A (en) Catalyst composition for selective conversion of alkane to unsaturated carboxylic acid, process for its preparation and process for its use
TWI655029B (en) Improved selective ammoxidation catalyst (1)
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP2009142815A (en) Catalyst composition for ammoxidation of alkane and olefin and methods of making and using same
TWI674146B (en) Improved mixed metal oxide ammoxidation catalysts
US4123388A (en) Catalyst and process for preparing maleic anhydride from C4 hydrocarbons
WO2001028984A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
JP4187837B2 (en) Method for producing catalyst for producing unsaturated nitrile
TWI501810B (en) Production method of unsaturated nitrile
JP6526062B2 (en) Improved selective ammoxidation catalyst
JPS5826329B2 (en) Seizouhou
US4152339A (en) Process for preparing maleic anhydride from c4 hydrocarbons
US4049574A (en) Catalyst and process for preparing maleic anhydride from C4 hydrocarbons
JP4666334B2 (en) Method for producing oxide catalyst for oxidation or ammoxidation
JP4666336B2 (en) Method for producing antimony-containing composite metal oxide
JP4455081B2 (en) Oxide catalyst
JP4187856B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4226120B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4535608B2 (en) Catalyst and method for producing unsaturated nitrile using the catalyst
JP4180317B2 (en) Method for producing oxidation reaction catalyst
JP2004066024A (en) Oxide catalyst
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term