JP4665501B2 - Temperature compensated piezoelectric oscillator and receiver using the same - Google Patents

Temperature compensated piezoelectric oscillator and receiver using the same Download PDF

Info

Publication number
JP4665501B2
JP4665501B2 JP2004360506A JP2004360506A JP4665501B2 JP 4665501 B2 JP4665501 B2 JP 4665501B2 JP 2004360506 A JP2004360506 A JP 2004360506A JP 2004360506 A JP2004360506 A JP 2004360506A JP 4665501 B2 JP4665501 B2 JP 4665501B2
Authority
JP
Japan
Prior art keywords
signal
frequency
temperature
output
piezoelectric oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004360506A
Other languages
Japanese (ja)
Other versions
JP2006170673A (en
Inventor
昭 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004360506A priority Critical patent/JP4665501B2/en
Publication of JP2006170673A publication Critical patent/JP2006170673A/en
Application granted granted Critical
Publication of JP4665501B2 publication Critical patent/JP4665501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Superheterodyne Receivers (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

本発明は、測位情報を受信する衛星受信装置に関し、特に同装置における衛星捕捉時間の短縮と安定した衛星の追従を可能にする温度補償型圧電発振器とそれを用いた衛星受信装置に関する。 The present invention relates to a satellite receiver that receives positioning information, and more particularly to a temperature-compensated piezoelectric oscillator that enables shortening of satellite acquisition time and stable tracking of the satellite and a satellite receiver using the same.

測位衛星システム、例えばGPS(Global Positioning System)は、衛星を用いた全世界的な測位システムであって、陸上、海上を問わず地球上のどの地域においても連続的に単独で測位可能な測位システムである。
GPS受信装置は、GPS衛星から送信される測位情報に関する信号を受信して復調処理を行ない、その緒果得られたデータをもとに測位演算を行ってGPS受信装置の位置(緯度、経度ならびに高度)に関する情報を出力するものである。
このGPS受信装置は、年々小型化が進み、カーナビゲーション等の据え置き型のものだけでなく、移動体通信の携帯端末に組込まれたものも実用化されている。
A positioning satellite system, such as GPS (Global Positioning System), is a global positioning system using satellites, and can be continuously and independently positioned in any region on the earth regardless of land or sea. It is.
The GPS receiver receives a signal related to positioning information transmitted from a GPS satellite, performs demodulation processing, performs a positioning calculation based on the data obtained as a result, and performs the position of the GPS receiver (latitude, longitude and Information on altitude) is output.
This GPS receiving device has been reduced in size year by year, and not only a stationary type such as a car navigation system but also a device incorporated in a mobile terminal for mobile communication has been put into practical use.

GPS受信信号から測位情報に関するデータを取り出すためには、受信信号の搬送波に対応した信号とこの信号に同期したGPSシステムの擬似拡散信号とを掛け合わせて、その相関値を積算し、相関の最も強くなる点を同期点と判別してデータを取り出す「衛星の捕捉処理」を行う。 In order to extract data related to positioning information from the GPS received signal, the signal corresponding to the carrier wave of the received signal is multiplied by the pseudo-spread signal of the GPS system synchronized with this signal, and the correlation value is integrated. A “satellite acquisition process” is performed in which the point that becomes stronger is determined as a synchronization point and data is extracted.

さらに、衛星を捕捉した後も、前記受信信号の搬送波に対応する信号が衛星の高速移動によるドップラシフトのためにその周波数が変動するので、掛け合わせる擬似拡散信号の周波数を変動する受信信号の周波数に追従させて、継続してデータを取り出す「衛星の追従処理」を行う必要がある。
衛星の捕捉処理が完了し追従処理を行っている間に得られたデータの演算処理を行うことによって測位情報を得ることができる。
Furthermore, since the frequency of the signal corresponding to the carrier of the received signal fluctuates due to Doppler shift due to the high-speed movement of the satellite even after the satellite is acquired, the frequency of the received signal that fluctuates the frequency of the pseudo spread signal to be multiplied Therefore, it is necessary to perform “satellite tracking processing” for continuously extracting data.
Positioning information can be obtained by performing calculation processing of data obtained while the satellite acquisition processing is completed and the tracking processing is performed.

図3は、従来のGPS受信装置の一例を示す構成概要図である。同図に示すように、本GPS受信装置100は、アンテナ1と、周波数混合部21とPLL・VCO回路22とからなる周波数変換部2と、メモリ32を備えた温度補償水晶発振器(以下、TCXOという)3と、一次復調部4と、スペクトラム拡散(Spread Spectrum:以下SSという)復調部(SS復調部)5と、測位演算部61を備えたCPU6とで構成される。 FIG. 3 is a schematic configuration diagram illustrating an example of a conventional GPS receiver. As shown in the figure, the GPS receiver 100 includes a temperature-compensated crystal oscillator (hereinafter referred to as TCXO) including an antenna 1, a frequency converting unit 2 including a frequency mixing unit 21 and a PLL / VCO circuit 22, and a memory 32. 3, a primary demodulation unit 4, a spread spectrum (hereinafter referred to as SS) demodulation unit (SS demodulation unit) 5, and a CPU 6 including a positioning calculation unit 61.

前記一次復調部4は、乗算部41と、フラクショナルシンセサイザ部42bを備えた搬送波再生部42とで構成される。
また、前記SS復調部5は、受信システムで設定された衛星チャネル数に対応した数のSS復調部が備えられるものであって、その各々のSS復調部は相関器51、PN符号発生器52、相関積算/判定部53、DPLL56及び分周回路55で構成される。ただし、図3には、簡略化のために、1チャネル分のSS復調部5のみを図示している。
The primary demodulation unit 4 includes a multiplication unit 41 and a carrier wave reproduction unit 42 including a fractional synthesizer unit 42b.
The SS demodulator 5 is provided with a number of SS demodulator units corresponding to the number of satellite channels set in the receiving system. Each SS demodulator unit includes a correlator 51 and a PN code generator 52. , A correlation integration / determination unit 53, a DPLL 56 and a frequency divider 55. However, FIG. 3 shows only the SS demodulator 5 for one channel for the sake of simplicity.

同図において、アンテナ1で受信された衛星からのGPS信号(中心周波数:fGPS)は、送信データがBPSK(Binary Phase Shift Keying)変調され、更に擬似拡散信号によってスペクトラム拡散変調(SS変調)された信号である。この信号は周波数変換部2の周波数混合部21の一方の入力端に入力される。
一方、メモリ32に記憶された補償データに基づいて温度補償された温度補償水晶発振器(以下、TCXOという)3の出力信号(周波数:fXO)は、前記周波数変換部2のPLL・VCO回路22において所定の局部発振周波数(fLO)に逓倍されて前記周波数混合部21のもう一方の入力端に入力される。
周波数混合部21ではGPS信号(fGPS)が局部発振周波数(fLO)と混合され、中間周波信号(IFGPS)に周波数変換されて一次復調部4に出力される。
In the figure, the GPS signal (center frequency: fGPS) from the satellite received by the antenna 1 is BPSK (Binary Phase Shift Keying) modulated on the transmission data, and further spread spectrum modulated (SS modulated) by the pseudo spread signal. Signal. This signal is input to one input terminal of the frequency mixing unit 21 of the frequency conversion unit 2.
On the other hand, an output signal (frequency: fXO) of a temperature-compensated crystal oscillator (hereinafter referred to as TCXO) 3 that has been temperature-compensated based on compensation data stored in the memory 32 is sent to the PLL / VCO circuit 22 of the frequency converter 2. The frequency is multiplied to a predetermined local oscillation frequency (fLO) and input to the other input terminal of the frequency mixing unit 21.
In the frequency mixing unit 21, the GPS signal (fGPS) is mixed with the local oscillation frequency (fLO), converted into an intermediate frequency signal (IFGPS), and output to the primary demodulation unit 4.

一次復調部4に入力した中間周波信号(IFGPS)は、乗算部41の一方の入力端に入力されるとともに、搬送波再生回路42に供給される。この搬送波再生回路42では、TCXO3を基準信号源とするフラクショナルシンセサイザ部42bの出力信号をもとに前記中間周波受信信号(IFGPS)と同期のとれた搬送波を再生し、乗算部41のもう一方の入力端へ出力する。
その結果、中間周波信号(IFGPS)よりBPSK復調波が取り出され、SS復調部5に出力される。
一次復調部4の出力信号は送信データがSS変調された信号であって、この信号を各衛星チャネルごと設けられたSS復調部5に入力し、以下に述べるようにSS復調することによって、それぞれ送信データ(軌道情報)が得られる。
The intermediate frequency signal (IFGPS) input to the primary demodulator 4 is input to one input terminal of the multiplier 41 and supplied to the carrier recovery circuit 42. The carrier recovery circuit 42 recovers a carrier synchronized with the intermediate frequency reception signal (IFGPS) based on the output signal of the fractional synthesizer unit 42b using TCXO3 as a reference signal source. Output to the input terminal.
As a result, a BPSK demodulated wave is extracted from the intermediate frequency signal (IFGPS) and output to the SS demodulator 5.
The output signal of the primary demodulator 4 is a signal whose transmission data is SS-modulated, and this signal is input to the SS demodulator 5 provided for each satellite channel, and SS is demodulated as described below, respectively. Transmission data (orbit information) is obtained.

前記SS復調部5に入力されたSS変調波は、相関器51において、TCXO3の出力を基準信号源とするDPLL56の出力信号をクロック信号としてPN符号発生器52で生成されたGPSの擬似拡散符号(PN符号)との相関がとられる。
衛星捕捉の段階では同期点が不明であるので、DPLL56の出力信号の周波数を所定の割合で変化させながら同期点をサーチする。
相関器51の出力信号(相関値)は相関積算/判定部53で1周期分ずつ順次積算し、相関が最も強くなる積算値最大の点を同期点と判定し、そこでサーチを停止し、即ちDPLL56の出力周波数を固定して受信データ(衛星軌道情報等)を得ることができる。このようにしてSS変調波は復調される。
The SS modulated wave input to the SS demodulator 5 is a GPS pseudo spread code generated by the PN code generator 52 using the output signal of the DPLL 56 using the output of the TCXO 3 as a reference signal source in the correlator 51 as a clock signal. Correlation with (PN code) is taken.
Since the synchronization point is unknown at the satellite acquisition stage, the synchronization point is searched while changing the frequency of the output signal of the DPLL 56 at a predetermined rate.
The output signal (correlation value) of the correlator 51 is sequentially integrated for each period by the correlation integration / determination unit 53, and the point with the maximum integrated value at which the correlation is strongest is determined as the synchronization point, and the search is stopped there. Reception data (satellite orbit information, etc.) can be obtained with the output frequency of the DPLL 56 fixed. In this way, the SS modulated wave is demodulated.

前記相関器51に入力するSS変調波は、高速移動する衛星のドップラー効果によってその周波数が刻々と変化する。このような衛星捕捉後のSS変調波の周波数の変動に追従しつつデータを得る衛星追従の段階では、SS変調波の周波数変動に対応して前記DPLL56で生成される出力信号の周波数を変化させて、前記相関積算/判定部53にて上述と同様の同期点判定を行うことによって同期を保持し続ける。
なお、前記相関積算/判定部53からは、同期点を求めるためにDPLL56の出力周波数をどのように調整するか(高くするか、低くするか、維持するか)の自動周波数制御情報がDPLL56に供給される。
The frequency of the SS modulated wave input to the correlator 51 changes every moment due to the Doppler effect of the satellite moving at high speed. In the satellite tracking stage in which data is obtained while following the variation in the frequency of the SS modulated wave after capturing the satellite, the frequency of the output signal generated by the DPLL 56 is changed in response to the frequency variation in the SS modulated wave. Thus, the correlation integration / determination unit 53 keeps the synchronization by performing the same synchronization point determination as described above.
From the correlation integration / determination unit 53, automatic frequency control information on how to adjust (increase, decrease, or maintain) the output frequency of the DPLL 56 to obtain the synchronization point is sent to the DPLL 56. Supplied.

上記のようにして衛星チャネルごとに得られたそれぞれの軌道情報はCPU6の測位演算部61に入力され、該測位演算部6において演算処理されて、受信装置100の測位情報が得られる。
特開2002−228737号公報
The respective orbit information obtained for each satellite channel as described above is input to the positioning calculation unit 61 of the CPU 6 and is processed in the positioning calculation unit 6 to obtain the positioning information of the receiving device 100.
JP 2002-228737 A

上述のように、GPS受信信号を復調する場合、一次復調部4ではBPSK復調のために、受信装置100の動作開始とともにTCXO3よりその出力周波数fXOがフラクショナルシンセサイザ部42bに供給される。
しかしながら、このTCXO3の出力周波数fXOは、温度補償された後もTCXOに固有の温度に対する周波数偏差を持って発振している。そのため、例えば、TCXO3の中心周波数f0=24.5MHzで、その発振周波数の最大の偏差が±2ppm、フラクショナルシンセサイザ部42bの基準の出力周波数が64.5MHzであるとすると、フラクショナルシンセサイザ部42bの動作開始時には、その出力周波数は基準の周波数(64.5MHz)から最大で64.5MHz×2ppm=129Hzずれた点からドップラー周波数を含んだ中間周波信号(IFgps)をサーチしはじめることになる。そのため、中間周波信号(IFgps)の一次復調に時間を要するという問題点があった。
As described above, when the GPS reception signal is demodulated, the primary demodulation unit 4 supplies the output frequency fXO from the TCXO 3 to the fractional synthesizer unit 42b at the start of the operation of the reception device 100 for BPSK demodulation.
However, the output frequency fXO of the TCXO 3 oscillates with a frequency deviation with respect to the temperature inherent to the TCXO even after temperature compensation. Therefore, for example, when the center frequency f0 of the TCXO3 is 24.5 MHz, the maximum deviation of the oscillation frequency is ± 2 ppm, and the reference output frequency of the fractional synthesizer unit 42b is 64.5 MHz, the operation of the fractional synthesizer unit 42b At the start, the output frequency starts to search for an intermediate frequency signal (IFgps) including the Doppler frequency from a point where the output frequency is shifted from the reference frequency (64.5 MHz) by a maximum of 64.5 MHz × 2 ppm = 129 Hz. Therefore, there is a problem that it takes time for the primary demodulation of the intermediate frequency signal (IFgps).

さらに、SS復調部5においては、ドップラシフトによって周波数が変動するGPS受信信号とPN符号発生器52で生成した符号系列との同期をとるために、DPLL56の出力周波数を1.023MHz±5kHzの範囲に亘って所定の同期引き込み速度で調整して、変動する受信周波数を追跡して捕捉し、同期を取っている。
そして、従来、この同期引き込み速度は、TCXOの初期の発振周波数安定度から勘案して、例えば100Hz/sec程度とするのが一般的であった。
このように、100Hz/secという粗い同期引き込み速度で、ドップラシフトによって変動するSS変調波の周波数を追跡して同期点をサーチするので、相関が弱くなり同期はずれが発生して同期点のサーチをやり直す場合が発生するという問題があった。
上述のような問題のために、受信装置の受信動作開始後、測位情報を得るための軌道情報の復調には、例えば40〜60秒という長時間を要するという問題があった。
本発明は、上記課題を解決するためになされたものであって、温度補償型水晶発振器を基準信号源とするGPS受信装置におけるSS変調波の復調時間を短縮して、優れた受信感度特性を有するGPS受信装置を提供することを目的とする。
Further, in the SS demodulator 5, in order to synchronize the GPS reception signal whose frequency fluctuates due to Doppler shift and the code sequence generated by the PN code generator 52, the output frequency of the DPLL 56 is in the range of 1.023 MHz ± 5 kHz. Over a period of time, the frequency is adjusted at a predetermined synchronization pull-in speed to track and capture the fluctuating reception frequency for synchronization.
Conventionally, this synchronization pull-in speed is generally set to, for example, about 100 Hz / sec in consideration of the initial oscillation frequency stability of the TCXO.
In this way, since the synchronization point is searched by tracking the frequency of the SS modulation wave that fluctuates due to the Doppler shift at a coarse synchronization pull-in speed of 100 Hz / sec, the correlation becomes weak and out of synchronization occurs, and the search for the synchronization point is performed. There was a problem that the case where it redoed occurred.
Due to the above-described problems, there is a problem that it takes a long time, for example, 40 to 60 seconds to demodulate the trajectory information to obtain positioning information after the reception operation of the receiving apparatus is started.
The present invention has been made to solve the above-described problems, and shortens the demodulation time of the SS modulation wave in the GPS receiver using the temperature-compensated crystal oscillator as a reference signal source, thereby providing excellent reception sensitivity characteristics. It is an object of the present invention to provide a GPS receiving device having the above.

上記課題を解決するため、請求項1においては、温度補償データを記憶する記憶手段を有する温度補償圧電発振器を備え、前記記憶手段に前記温度補償圧電発振器の中心発振周波数に対する基準温度における発振周波数のオフセット量と、温度を所定の速度で変化させたときの最大の周波数変化率と、を記憶させ、前記温度補償圧電発振器の出力を基準信号としたDPLL(Digital Phase Lock Loop)よりの出力信号をクロック信号として生成された擬似拡散符号と受信信号との相関によって同期点を求めてスペクトラム拡散復調を行い、前記同期点を求める際の同期引き込み速度を、前記記憶手段に記憶された前記最大の周波数変化率の値としたことを特徴とする受信装置である。
また、請求項2においては、温度補償データを記憶する記憶手段を有する温度補償圧電発振器を備え、前記記憶手段に前記温度補償圧電発振器の中心発振周波数に対する基準温度における発振周波数のオフセット量と、温度を所定の速度で変化させたときの最大の周波数変化率と、を記憶させ、前記温度補償圧電発振器の出力を基準信号としたフラクショナルシンセサイザより出力される信号をもとに搬送波を再生した搬送波再生回路出力信号と受信信号とを乗算してBPSK(Binary Phase Shift Keying)復調を行い、前記BPSK復調によって取り出された被スペクトラム拡散変調波と前記温度補償圧電発振器の出力を基準信号としたDPLL(Digital Phase Lock Loop)よりの出力信号をクロック信号として生成された擬似拡散符号との相関によって同期点を求めてスペクトラム拡散復調を行う受信装置であって、前記受信装置の動作開始時に、前記記憶手段に記憶された前記オフセット量を前記フラクショナルシンセサイザに設定して該フラクショナルシンセサイザの出力信号が前記受信信号の所定の中心周波数となるように構成すると共に、前記同期点を求める際の同期引き込み速度を、前記記憶手段に記憶された前記最大の周波数変化率の値としたことを特徴とする

In order to solve the above-mentioned problem, in claim 1, a temperature compensation piezoelectric oscillator having storage means for storing temperature compensation data is provided, and the storage means has an oscillation frequency at a reference temperature with respect to a center oscillation frequency of the temperature compensation piezoelectric oscillator. The offset amount and the maximum frequency change rate when the temperature is changed at a predetermined speed are stored, and an output signal from a DPLL (Digital Phase Lock Loop) using the output of the temperature compensated piezoelectric oscillator as a reference signal is stored. Spread spectrum demodulation is performed by obtaining a synchronization point based on the correlation between the pseudo-spread code generated as a clock signal and the received signal, and the maximum frequency stored in the storage means is the synchronization pull-in speed when obtaining the synchronization point. The receiving apparatus is characterized in that the value of the rate of change is used.
According to a second aspect of the present invention, a temperature compensated piezoelectric oscillator having storage means for storing temperature compensation data is provided, and the storage means has an oscillation frequency offset amount at a reference temperature with respect to a center oscillation frequency of the temperature compensated piezoelectric oscillator, and a temperature The maximum frequency change rate when the frequency is changed at a predetermined speed is stored, and the carrier wave is reproduced based on the signal output from the fractional synthesizer using the output of the temperature compensated piezoelectric oscillator as a reference signal. A BPSK (Binary Phase Shift Keying) demodulation is performed by multiplying the circuit output signal and the received signal, and a DPLL (Digital PLL) using the spread spectrum modulated wave extracted by the BPSK demodulation and the output of the temperature compensated piezoelectric oscillator as a reference signal By the correlation with the pseudo spread code generated using the output signal from Phase Lock Loop) as the clock signal A receiving apparatus for performing spread spectrum demodulation by obtaining an epoch, wherein when the operation of the receiving apparatus starts, the offset amount stored in the storage unit is set in the fractional synthesizer, and an output signal of the fractional synthesizer is The reception signal is configured to have a predetermined center frequency, and the synchronization pull-in speed when obtaining the synchronization point is the value of the maximum frequency change rate stored in the storage unit.

本発明の測位衛星受信装置では、一次復調部のフラクショナルシンセサイザ及びスペクトラム拡散復調(SS復調)部のDPLLのそれぞれの基準信号の発信源となる温度補償水晶発振器(TCXO)のメモリに、該TCXOの発振出力の中心周波数と、基準温度における発振周波数のオフセットの量と、1℃/secで温度を変化させたときのTCXOの最大周波数変化率とを記憶させる。
そして、受信装置の電源投入時に、前記フラクショナルシンセサイザにTCXOの中心周波数と基準温度における発振周波数のオフセットの量を設定して、フラクショナルシンセサイザの出力周波数が受信中間周波信号の所定の中心周波数となるように制御する。これによって従来より素早くドップラーシフトによって中心周波数からずれている衛星からの受信信号を捕捉することができる。
In the positioning satellite receiver of the present invention, the memory of the temperature-compensated crystal oscillator (TCXO) serving as the reference signal source of the fractional synthesizer of the primary demodulator and the DPLL of the spread spectrum demodulator (SS demodulator) is stored in the TCXO. The center frequency of the oscillation output, the amount of offset of the oscillation frequency at the reference temperature, and the maximum frequency change rate of the TCXO when the temperature is changed at 1 ° C./sec are stored.
Then, when the receiver is turned on, the TCXO center frequency and the amount of offset of the oscillation frequency at the reference temperature are set in the fractional synthesizer so that the output frequency of the fractional synthesizer becomes the predetermined center frequency of the reception intermediate frequency signal. To control. As a result, a received signal from a satellite deviated from the center frequency by Doppler shift can be captured more quickly than before.

さらに、TCXOのメモリに記憶させた該TCXOの最大周波数変化率の値を、前記DPLLで周波数を変化させてスペクトラム拡散復調における同期点を求めるときのクロック同期引き込み速度と設定した。この速度は従来の同期引き込み速度より小さい値であるので、SS復調のための受信信号とPN符号発生器出力との相関が強く現れるので、同期はずれを防止して確実に同期点を捕捉することが可能である。また、微弱電波においても同期が取れやすくるので受信感度の向上につながる。
したがって、本発明によれば、衛星受信電波を素早く確実に捕捉して測位時間を短縮するとともに、低受信感度で衛星信号を捕捉できる優れた測位衛星受信装置を提供する上で著効を奏する。
Further, the value of the maximum frequency change rate of the TCXO stored in the memory of the TCXO is set as the clock synchronization pull-in speed when the synchronization point in the spread spectrum demodulation is obtained by changing the frequency by the DPLL. Since this speed is smaller than the conventional synchronization pull-in speed, the correlation between the received signal for SS demodulation and the output of the PN code generator appears strongly, so that synchronization loss is prevented and the synchronization point is reliably captured. Is possible. In addition, since it is easy to synchronize even a weak radio wave, the reception sensitivity is improved.
Therefore, according to the present invention, the satellite reception radio wave is quickly and surely captured to shorten the positioning time, and at the same time, the present invention is very effective in providing an excellent positioning satellite receiver capable of capturing a satellite signal with low reception sensitivity.

本発明を図面に示した実施の形態に基づいて説明する。図1は、本発明に係わる温度補償水晶発振器を用いたGPS受信装置の実施の一形態例を示す構成概要図である。
同図に示すように、本GPS受信装置10は、アンテナ1と、周波数混合部21とPLL・VCO回路22とからなる周波数変換部2と、メモリ31を備えた温度補償水晶発振器(以下、TCXOという)3と、一次復調部4と、スペクトラム拡散復調部(SS復調部)5と、測位演算部61を備えたCPU6と、メモリ7とで構成される。
The present invention will be described based on the embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a GPS receiver using a temperature compensated crystal oscillator according to the present invention.
As shown in the figure, the GPS receiver 10 includes a temperature-compensated crystal oscillator (hereinafter referred to as TCXO) including an antenna 1, a frequency converting unit 2 including a frequency mixing unit 21 and a PLL / VCO circuit 22, and a memory 31. 3, a primary demodulation unit 4, a spread spectrum demodulation unit (SS demodulation unit) 5, a CPU 6 including a positioning calculation unit 61, and a memory 7.

前記一次復調部4は、乗算部41と、フラクショナルシンセサイザ部42aを備えた搬送波再生部42とで構成される。
また、前記SS復調部5は、受信システムで設定された衛星チャネル数に対応した数のSS復調部が備えられるものであって、その各々のSS復調部は相関器51、PN符号発生器52、相関積算/判定部53、DPLL54及び分周回路55で構成される。ただし、図1には、簡略化のために、1チャネル分のSS復調部5のみを図示している。
The primary demodulator 4 includes a multiplier 41 and a carrier recovery unit 42 including a fractional synthesizer unit 42a.
The SS demodulator 5 is provided with a number of SS demodulator units corresponding to the number of satellite channels set in the receiving system. Each SS demodulator unit includes a correlator 51 and a PN code generator 52. , A correlation integration / determination unit 53, a DPLL 54 and a frequency divider 55. However, FIG. 1 shows only the SS demodulator 5 for one channel for the sake of simplicity.

なお、GPS受信装置10の各構成部位の機能、動作は、TCXO3のメモリ31と、一次復調部4のフラクショナルシンセサイザ42aと、SS復調部のDPLL54と、メモリ7とを除いて、図3の同一符号で表される構成部位の機能動作と同じであり、また、本受信装置10におけるBPSK復調及びSS復調の基本的な復調動作は図3のGPS受信装置100の場合と同じであるので、共通部分の詳細な説明は省略する。 The functions and operations of the components of the GPS receiver 10 are the same as those in FIG. 3 except for the memory 31 of the TCXO 3, the fractional synthesizer 42a of the primary demodulator 4, the DPLL 54 of the SS demodulator, and the memory 7. This is the same as the functional operation of the constituent parts represented by reference numerals, and the basic demodulation operations of BPSK demodulation and SS demodulation in the receiving apparatus 10 are the same as those in the GPS receiving apparatus 100 of FIG. Detailed description of the portion is omitted.

本受信装置10に装着されるメモリ31を備えたTCXO3は、その製造・検査段階において次のように構成される。
(イ) 基準温度(25℃)における発振周波数の中心周波数からのずれ(周波数オフセット)を計測する。
(ロ)所定の速度(例えば、1秒に1℃の割合)で温度変化させたときの発振周波数を計測する。
(ハ)計測結果に基づいて各温度における周波数変化率(ppm/℃)を計算する。
(ニ)TCXOの中心周波数と、(イ)の周波数オフセットと、(ハ)によって得られる周波数変化率(ppm/℃)のうちの最大の値(以下、最大周波数変化率(ppm/℃)という)と、をメモリ31に記憶させる。
なお、TCXO3の中心周波数とは、任意に定めた基準周波数のことであり、いわゆる公称周波数を用いるのが一般的である。
The TCXO 3 including the memory 31 attached to the receiving apparatus 10 is configured as follows in the manufacturing / inspection stage.
(B) Measure the deviation (frequency offset) from the center frequency of the oscillation frequency at the reference temperature (25 ° C).
(B) The oscillation frequency when the temperature is changed at a predetermined speed (for example, a rate of 1 ° C. per second) is measured.
(C) Calculate the frequency change rate (ppm / ° C) at each temperature based on the measurement result.
(D) The maximum value (hereinafter referred to as the maximum frequency change rate (ppm / ° C)) of the center frequency of TCXO, the frequency offset of (b), and the frequency change rate (ppm / ° C) obtained by (c) ) Are stored in the memory 31.
Note that the center frequency of the TCXO 3 is an arbitrarily determined reference frequency, and a so-called nominal frequency is generally used.

図2は、前記のように構成されたTCXO3を備えたGPS受信装置10をTCXO3のメモリ31に記憶されたデータをもとに、受信動作開始時に一次復調部4のフラクショナルシンセサイザ42aとSS復調部5のDPLL54の動作を制御する制御フローチャートである。
同図を参照しながら、本GPS受信装置10の復調動作を説明する。
FIG. 2 shows the fractional synthesizer 42a and the SS demodulator of the primary demodulator 4 based on the data stored in the memory 31 of the TCXO3 with respect to the GPS receiver 10 having the TCXO3 constructed as described above. 5 is a control flowchart for controlling the operation of the DPLL 54 in FIG.
The demodulation operation of the GPS receiver 10 will be described with reference to FIG.

GPS受信装置10の電源がONになると(図2S1)、TCXO3からは、メモリ31の温度補償データに基づいて温度補償が施された発振周波数が出力されるとともに、メモリ31よりCPU6を介してメモリ7へTCXO3の中心周波数と、基準温度における周波数オフセットと、最大周波数変化率(ppm/℃)のデータが読み込まれる(図2S2)。
これらのデータを読み込んだCPU6は、中心周波数と周波数オフセットのデータに基づいてフラクショナルシンセサイザ部42aを制御して、該フラクショナルシンセサイザ部42aの出力周波数が所定の受信中間周波信号の中心周波数(IF0)から出力し始めるように設定する(図2S3、S4)。
このようにして、所定の中間周波信号の中心周波数(IF0)からその周波数が変化するフラクショナルシンセサイザ部42aの出力が搬送波再生回路42に出力される。
搬送波再生回路42では、前記フラクショナルシンセサイザ42a出力信号と受信信号(IFGPS)とを同期させて搬送波を再生し、乗算部41において前記再生搬送波と受信信号(IFGPS)とを乗算して一次変調(BPSK変調)波を復調する。
When the GPS receiver 10 is powered on (S1 in FIG. 2), the TCXO 3 outputs an oscillation frequency that has been subjected to temperature compensation based on the temperature compensation data in the memory 31, and also from the memory 31 via the CPU 6 to the memory. The data of the center frequency of the TCXO 3, the frequency offset at the reference temperature, and the maximum frequency change rate (ppm / ° C.) are read into 7 (S 2 in FIG. 2).
The CPU 6 which has read these data controls the fractional synthesizer unit 42a based on the center frequency and frequency offset data, and the output frequency of the fractional synthesizer unit 42a is determined from the center frequency (IF0) of the predetermined reception intermediate frequency signal. Setting is made so as to start outputting (S3 and S4 in FIG. 2).
In this way, the output of the fractional synthesizer unit 42 a whose frequency changes from the center frequency (IF 0) of the predetermined intermediate frequency signal is output to the carrier wave reproduction circuit 42.
In the carrier recovery circuit 42, the output signal of the fractional synthesizer 42a and the received signal (IFGPS) are synchronized to recover the carrier, and the multiplier 41 multiplies the recovered carrier and the received signal (IFGPS) to perform primary modulation (BPSK). Demodulate the modulated wave.

また、前記CPU6は、SS復調部5のDPLL54におけるクロック同期引き込み速度を、メモリ7に読み込んだTCXO3の最大周波数変化率(ppm/℃)の値に設定する (図2S5)。
例えば、TCXO3の最大周波数変化率(ppm/℃)が0.02ppm/℃の場合、クロック同期引き込み速度は、GPS周波数×最大周波数変化率(ppm/℃)=1575.42(MHz)×0.02(ppm/℃)=31.5Hz/℃、即ちクロック同期引き込み速度を31.5Hz/secに設定する。
前記SS復調部5に入力した一次復調部4の出力信号は、相関器51において、PN符号発生器52で生成されたGPSのPN符号との相関がとられる。このPN符号は、前述のようにTCXO3の最大周波数変化率(ppm/℃)の値に基づいて設定された31.5Hz/secの速度でその発振周波数が調整されるDPLL54の出力信号をクロック信号としてPN符号発生器52で生成される。なお、前記クロック同期引き込み速度は、計算値に基づいてその近似値(例えば、30Hz/sec)としてよいことは当然である。
相関器51の出力信号(相関値)は相関積算/判定部53で1周期分ずつ順次積算し、積算値最大の点を相関が最も強くなる同期点と判定して受信データ(衛星軌道情報等)を得ることができる。
Further, the CPU 6 sets the clock synchronization pull-in speed in the DPLL 54 of the SS demodulator 5 to the value of the maximum frequency change rate (ppm / ° C.) of the TCXO 3 read into the memory 7 (S5 in FIG. 2).
For example, when the maximum frequency change rate (ppm / ° C.) of TCXO3 is 0.02 ppm / ° C., the clock synchronization pull-in speed is GPS frequency × maximum frequency change rate (ppm / ° C.) = 1575.42 (MHz) × 0.4. 02 (ppm / ° C.) = 31.5 Hz / ° C. That is, the clock synchronous pull-in speed is set to 31.5 Hz / sec.
The correlator 51 correlates the output signal of the primary demodulator 4 input to the SS demodulator 5 with the GPS PN code generated by the PN code generator 52. This PN code is a clock signal that is output from the DPLL 54 whose oscillation frequency is adjusted at a rate of 31.5 Hz / sec set based on the maximum frequency change rate (ppm / ° C.) of the TCXO 3 as described above. Is generated by the PN code generator 52. Of course, the clock synchronization pull-in speed may be an approximate value (for example, 30 Hz / sec) based on the calculated value.
The output signal (correlation value) of the correlator 51 is sequentially integrated for each cycle by the correlation integration / determination unit 53, and the point with the maximum integrated value is determined as the synchronization point with the strongest correlation, and the received data (satellite orbit information, etc. ) Can be obtained.

前記相関器51に入力するSS変調波は、衛星のドップラー効果によってその周波数が変化している。このSS変調波の周波数の変動に追従して、前記DPLL54で生成される出力信号の周波数を調整して前記PN符号のチップレートを変化させ、同期を保持し続ける。
なお、前記相関積算/判定部53からは、自動周波数制御情報がDPLL54に供給されて、同期点を保持するためのDPLL54の出力周波数の調整指示が行われる。
The frequency of the SS modulated wave input to the correlator 51 changes due to the Doppler effect of the satellite. Following the variation in the frequency of the SS modulation wave, the frequency of the output signal generated by the DPLL 54 is adjusted to change the chip rate of the PN code, and keep the synchronization.
From the correlation integration / determination unit 53, automatic frequency control information is supplied to the DPLL 54, and an instruction to adjust the output frequency of the DPLL 54 for maintaining a synchronization point is issued.

上記のようにGPS受信装置10を構成することによって、一次復調部4の搬送波再生回路42で、素早く搬送波を再生してBPSK復調することが可能となる。
また、同期引き込み速度を個々のTCXO3の最大周波数変化率(ppm/℃)の値としているので、TCXOのバラツキを考慮して、同期引き込み速度を大きく設定することなく各TCXOの能力に応じた値とすることができるので、SS復調部5の相関器51における相関が、同期引き込み速度を大きい値に設定していたときよりも強くなるため衛星受信波との同期がとりやすくなり、衛星の追従動作が確実になる。
By configuring the GPS receiver 10 as described above, the carrier wave recovery circuit 42 of the primary demodulator 4 can quickly reproduce the carrier wave and perform BPSK demodulation.
In addition, since the synchronous pull-in speed is the value of the maximum frequency change rate (ppm / ° C.) of each TCXO 3, considering the variation of TCXO, a value corresponding to the capability of each TCXO without setting the synchronous pull-in speed large Therefore, since the correlation in the correlator 51 of the SS demodulator 5 becomes stronger than when the synchronization pull-in speed is set to a large value, it becomes easier to synchronize with the satellite reception wave, and the satellite tracking Operation will be reliable.

本発明に係わる温度補償水晶発振器を用いたGPS受信装置の実施の一形態例を示す構成概要図1 is a schematic configuration diagram showing an embodiment of a GPS receiver using a temperature-compensated crystal oscillator according to the present invention. 一次復調部のフラクショナルシンセサイザとSS復調部5のDPLLとの動作を制御する制御フローチャート図。The control flowchart figure which controls operation | movement with the fractional synthesizer of a primary demodulation part, and DPLL of SS demodulation part 5. FIG. 従来のGPS受信装置の一例を示す構成概要図。The structure schematic diagram which shows an example of the conventional GPS receiver.

符号の説明Explanation of symbols

1・・アンテナ、 2・・周波数変換部、 3・・温度補償水晶発振器(TCXO)、
4・・一次復調部、 5・・スペクトラム拡散復調部(SS復調部)、 6・・CPU、
7・・メモリ、10・・GPS受信装置、21・・周波数混合部、22・・PLL・
VCO回路、
31、32・・メモリ、 41・・乗算部、 42・・搬送波再生部、
42a、42b・・フラクショナルシンセサイザ部、 51・・相関器、
52・・PN符号発生器、 53・・相関積算/判定部、 54、56・・DPLL、
55・・分周回路、 61・・測位演算部、 100・・GPS受信装置、
1 .... Antenna, 2 .... Frequency converter, 3 .... Temperature compensated crystal oscillator (TCXO),
4 .... primary demodulation unit, 5 .... spread spectrum demodulation unit (SS demodulation unit), 6 .... CPU,
7 .... Memory 10 .... GPS receiver, 21 ... Frequency mixing unit 22, ... PLL
VCO circuit,
31, 32 ... Memory 41 ... Multiplying unit 42 ... Carrier recovery unit,
42a, 42b, a fractional synthesizer section, 51, a correlator,
52 .. PN code generator, 53 .. Correlation integration / determination unit, 54, 56.
55..Division circuit, 61..Positioning calculation unit, 100..GPS receiver,

Claims (2)

温度補償データを記憶する記憶手段を有する温度補償圧電発振器を備え、  A temperature compensated piezoelectric oscillator having storage means for storing temperature compensation data;
前記記憶手段に前記温度補償圧電発振器の中心発振周波数に対する基準温度における発振周波数のオフセット量と、温度を所定の速度で変化させたときの最大の周波数変化率と、を記憶させ、  The storage means stores an offset amount of an oscillation frequency at a reference temperature with respect to a center oscillation frequency of the temperature compensated piezoelectric oscillator, and a maximum frequency change rate when the temperature is changed at a predetermined speed,
前記温度補償圧電発振器の出力を基準信号としたDPLL(Digital Phase Lock Loop)よりの出力信号をクロック信号として生成された擬似拡散符号と受信信号との相関によって同期点を求めてスペクトラム拡散復調を行い、  Spread spectrum demodulation is performed by obtaining a synchronization point based on a correlation between a pseudo spread code generated by using an output signal from a digital phase lock loop (DPLL) using the output of the temperature compensated piezoelectric oscillator as a reference signal and a received signal as a clock signal. ,
前記同期点を求める際の同期引き込み速度を、前記記憶手段に記憶された前記最大の周波数変化率の値としたことを特徴とする受信装置。  5. A receiving apparatus according to claim 1, wherein the synchronization pull-in speed when obtaining the synchronization point is a value of the maximum frequency change rate stored in the storage means.
温度補償データを記憶する記憶手段を有する温度補償圧電発振器を備え、  A temperature compensated piezoelectric oscillator having storage means for storing temperature compensation data;
前記記憶手段に前記温度補償圧電発振器の中心発振周波数に対する基準温度における発振周波数のオフセット量と、温度を所定の速度で変化させたときの最大の周波数変化率と、を記憶させ、  The storage means stores an offset amount of an oscillation frequency at a reference temperature with respect to a center oscillation frequency of the temperature compensated piezoelectric oscillator, and a maximum frequency change rate when the temperature is changed at a predetermined speed,
前記温度補償圧電発振器の出力を基準信号としたフラクショナルシンセサイザより出力される信号をもとに搬送波を再生した搬送波再生回路出力信号と受信信号とを乗算してBPSK(Binary Phase Shift Keying)復調を行い、  BPSK (Binary Phase Shift Keying) demodulation is performed by multiplying the received signal with the carrier signal recovery circuit output signal that reproduces the carrier wave based on the signal output from the fractional synthesizer using the output of the temperature compensated piezoelectric oscillator as a reference signal. ,
前記BPSK復調によって取り出された被スペクトラム拡散変調波と前記温度補償圧電発振器の出力を基準信号としたDPLL(Digital Phase Lock Loop)よりの出力信号をクロック信号として生成された擬似拡散符号との相関によって同期点を求めてスペクトラム拡散復調を行う受信装置であって、  Based on the correlation between the spread spectrum modulated wave extracted by the BPSK demodulation and the pseudo spread code generated using the output signal from the digital phase lock loop (DPLL) using the output of the temperature compensated piezoelectric oscillator as a reference signal A receiver that performs spread spectrum demodulation to obtain a synchronization point,
前記受信装置の動作開始時に、前記記憶手段に記憶された前記オフセット量を前記フラクショナルシンセサイザに設定して該フラクショナルシンセサイザの出力信号が前記受信信号の所定の中心周波数となるように構成すると共に、前記同期点を求める際の同期引き込み速度を、前記記憶手段に記憶された前記最大の周波数変化率の値としたことを特徴とする受信装置。  At the start of the operation of the receiving device, the offset amount stored in the storage means is set in the fractional synthesizer so that the output signal of the fractional synthesizer becomes a predetermined center frequency of the received signal, and 5. A receiving apparatus according to claim 1, wherein a synchronization pull-in speed when obtaining a synchronization point is a value of the maximum frequency change rate stored in the storage means.
JP2004360506A 2004-12-13 2004-12-13 Temperature compensated piezoelectric oscillator and receiver using the same Expired - Fee Related JP4665501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360506A JP4665501B2 (en) 2004-12-13 2004-12-13 Temperature compensated piezoelectric oscillator and receiver using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360506A JP4665501B2 (en) 2004-12-13 2004-12-13 Temperature compensated piezoelectric oscillator and receiver using the same

Publications (2)

Publication Number Publication Date
JP2006170673A JP2006170673A (en) 2006-06-29
JP4665501B2 true JP4665501B2 (en) 2011-04-06

Family

ID=36671603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360506A Expired - Fee Related JP4665501B2 (en) 2004-12-13 2004-12-13 Temperature compensated piezoelectric oscillator and receiver using the same

Country Status (1)

Country Link
JP (1) JP4665501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934710A (en) * 2020-07-06 2020-11-13 南京天际砺剑科技有限公司 High-dynamic spread spectrum signal rapid acquisition algorithm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110312334A1 (en) * 2007-08-06 2011-12-22 Pioneer Corporation Satellite positioning device and acquisition method
JP5011559B2 (en) * 2008-10-03 2012-08-29 古野電気株式会社 Reference signal generator
CN109873636B (en) * 2019-03-27 2023-05-05 维沃移动通信有限公司 Frequency adjustment method and mobile terminal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308587A (en) * 1987-06-10 1988-12-15 Japan Radio Co Ltd Gps navigation system
JPH04278723A (en) * 1991-03-06 1992-10-05 Furuno Electric Co Ltd Satellite navigation receiver
JPH06242208A (en) * 1993-02-15 1994-09-02 Matsushita Electric Ind Co Ltd Gps receiver
JPH11326487A (en) * 1998-05-12 1999-11-26 Sokkia Co Ltd Gps receiver
JP2001021634A (en) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd Positioning receiver and positioning method
JP2001281322A (en) * 2000-03-29 2001-10-10 Seiko Epson Corp Receiver, its controlling method, and receiver controlling program recording medium
JP2002214323A (en) * 2001-01-23 2002-07-31 Maspro Denkoh Corp Device for generating reference frequency
JP2004317175A (en) * 2003-04-11 2004-11-11 Mitsubishi Electric Corp Gps receiver
JP2006501480A (en) * 2002-09-30 2006-01-12 モトローラ・インコーポレイテッド Self-adjustment of GPS receiver frequency offset

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308587A (en) * 1987-06-10 1988-12-15 Japan Radio Co Ltd Gps navigation system
JPH04278723A (en) * 1991-03-06 1992-10-05 Furuno Electric Co Ltd Satellite navigation receiver
JPH06242208A (en) * 1993-02-15 1994-09-02 Matsushita Electric Ind Co Ltd Gps receiver
JPH11326487A (en) * 1998-05-12 1999-11-26 Sokkia Co Ltd Gps receiver
JP2001021634A (en) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd Positioning receiver and positioning method
JP2001281322A (en) * 2000-03-29 2001-10-10 Seiko Epson Corp Receiver, its controlling method, and receiver controlling program recording medium
JP2002214323A (en) * 2001-01-23 2002-07-31 Maspro Denkoh Corp Device for generating reference frequency
JP2006501480A (en) * 2002-09-30 2006-01-12 モトローラ・インコーポレイテッド Self-adjustment of GPS receiver frequency offset
JP2004317175A (en) * 2003-04-11 2004-11-11 Mitsubishi Electric Corp Gps receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934710A (en) * 2020-07-06 2020-11-13 南京天际砺剑科技有限公司 High-dynamic spread spectrum signal rapid acquisition algorithm

Also Published As

Publication number Publication date
JP2006170673A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US8229460B2 (en) Demodulation apparatus and receiving apparatus
JP2003255040A (en) Gps receiver and receiving method
US7053825B2 (en) Communication device
JP2006349587A (en) Gps receiver
US5402442A (en) Receiving device for receiving and demodulating spread spectrum-modulated GPS wave
JP4177585B2 (en) GPS receiver and receiving method
JP4665501B2 (en) Temperature compensated piezoelectric oscillator and receiver using the same
JPH05157826A (en) Gps satellite signal receiving method and gps receiving device
US20110212718A1 (en) Methods and apparatus for stabilizing reference oscillators
JP2006184219A (en) Receiving system for positioning satellite
JP2003255036A (en) Receiver
JP5434301B2 (en) Signal receiving apparatus, signal receiving apparatus control method, and computer program
JP4109097B2 (en) Satellite signal receiving method and receiving apparatus therefor
JP3738766B2 (en) Communication device
JP3804618B2 (en) Communication device
JP2003232844A (en) Receiving device
JP2900756B2 (en) GPS receiver
JP3864807B2 (en) Correlation detection apparatus, correlation detection method, and reception apparatus
JPS63111486A (en) Reverse spread circuit for spectrum spread receiver
JP2005331368A (en) Gps receiver and synchronization retaining method in gps receiver
JP2000174685A (en) Communication equipment and communication method
Principe et al. SOFT-REC: a GPS/EGNOS Software Receiver
JPH05312935A (en) Signal processing circuit of gps receiver
JP2006234847A (en) Gps receiver and positioning method of gps receiver
JPH1068768A (en) Receiver

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees