JP4665361B2 - Method and apparatus for assembling mold for molding - Google Patents

Method and apparatus for assembling mold for molding Download PDF

Info

Publication number
JP4665361B2
JP4665361B2 JP2001249566A JP2001249566A JP4665361B2 JP 4665361 B2 JP4665361 B2 JP 4665361B2 JP 2001249566 A JP2001249566 A JP 2001249566A JP 2001249566 A JP2001249566 A JP 2001249566A JP 4665361 B2 JP4665361 B2 JP 4665361B2
Authority
JP
Japan
Prior art keywords
mold
molding
measuring
cavity
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001249566A
Other languages
Japanese (ja)
Other versions
JP2003053746A (en
Inventor
勲 唐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001249566A priority Critical patent/JP4665361B2/en
Publication of JP2003053746A publication Critical patent/JP2003053746A/en
Application granted granted Critical
Publication of JP4665361B2 publication Critical patent/JP4665361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックレンズを成形するための成形用モールドの組立方法及び組立装置に関するものである。
【0002】
【従来の技術】
従来の成形用モールドの組立方法は、特開平4−148906で開示されているとおりで、図4に工程フロー図を図5にキャビティ形成までの概略図を示す。まず従来の組立方法では、視野側の面を規定する成形型16と眼球側の面を規定する成形型17の求心を行った後、前記2枚の成形型の非成形面側を保持した状態で基準高さ18a、18bに対する成形面の中心部高さを第1の測定手段10a、10bで計測する。そして、前記2枚の成形型の中心が同一軸上にくるように成形型保持手段19a、19bを第1の移送手段11a、11bで移送する。その後、あらかじめ定めた基準位置に対する前記2枚の成形型中心部の高さデータを基に演算処理を行い、前記2枚の成形型成形面が所定の間隔13になるように成形型保持手段19a、19bを第2の移送手段12a、12bで移送する。最後に、前記2枚の成形型外周面に粘着テープ15を1周以上巻き付けてキャビティを形成する。
【0003】
後工程の注入装置では、2枚の成形型と粘着テープによって形成されるキャビティ内にプラスチックレンズ原料を充填する。眼鏡レンズの場合、乱視の処方があるため、図6に示すとおり、直交する軸方向で曲率半径が異なる(R1及びR2)成形型を使用する。そのため、成形型外周部の成形面間隔は円周方向で不均一となる。しかし、従来は成形型の軸方向出しを行っていないので、成形用モールド円周方向の任意の位置に注入針を挿入し、注入を行っている。
【0004】
【発明が解決しようとする課題】
従来の成形用モールドの組立方法においては、2枚の成形型の組み合わせが500種類以上有るため、その組み合わせを間違えたり、ロット内に異種の成形型が混入したり、2枚の成形型の上下を取り違えた場合、成形型成形面が所定の間隔13になるように成形型保持手段19a、19bを移送させたとき成形型同士が干渉する場合がある。図7に成形型の間違いで干渉を起こした場合の一例を示す。この例では、成形型14が正規の成形型でない場合である。第2の移送手段12aが所定の間隔13になるように成形型保持手段19aを動かすと、所定の間隔13が得られる前に成形型14の外周部がもう一方の成形型外周部に当たってしまう。この時、成形型の第2の移送手段12a、12bに無理な力が掛かり、第2の移送手段12a、12bに機械的ズレが生じる。第2の移送手段12a、12bの機械的ズレとは、移送手段先端の成形型保持部19a、19bの相対的ズレであり、平行度及び芯のズレが該当する。平行度及び芯のズレはプラスチックレンズの基本精度であるプリズム精度に大きく影響を及ぼすため、平行度及び芯のズレが生じた状態で成形型を組み立てると、成形上がりのプラスチックレンズはプリズム不良となってしまう。また、干渉により第2の移送手段12a、12bの機械的ズレが発生した場合、プリズム検査はプラスチックレンズを硬化させ成形型を剥離した以降でないとできないため、干渉以降プリズム不良レンズを生産し続けることになる。プラスチックレンズは硬化に20時間程度かかるため、成形型の干渉が検知できなければその間に生産した不良は膨大な数となる。さらに、いったん成形型の干渉による第2の移送手段12a、12bの機械的ズレが発生すると、精度が厳しいためその復元作業に多大な時間を費やすこととなる。その上、干渉により成形型自体にキズが付くと、そのキズがプラスチックレンズに転写され、プラスチックレンズ自体もキズ不良となる。キズの深さが浅ければ成形型を再度研磨することで再利用は可能であるが、干渉時の衝撃が強いと高価な成形型が割れてしまい再生不能となる。
【0005】
また、辛うじて干渉が発生しなくても、成形型外周部の成形面間隔が所定の間隔より小さくなった場合は、後工程の注入装置で注入針がキャビティ内に挿入できず、プラスチックレンズ原料をこぼしてしまうこともある。プラスチック原料が注入装置の可動部に付着すると固化し、動作異常の原因にもつながる。
【0006】
成形型外周部の間隔が狭い凸レンズ用の成形用モールドでは、高粘度のプラスチックレンズ原料を注入する際、キャビティ内がプラスチック原料で満たされる前に注入口から原料が溢れ出してしまいカケ不良(未充填)となる。プラスチックレンズ原料は重合開始材が添加されているので時間とともに粘度が上昇する。前記カケ不良の発生を抑えるには粘度が低い方が好ましいため、原料を調合してから注入するまでの時間的制約を設けなければならない。その結果、プラスチックレンズ原料を一度に大量に調合する事ができず、生産上のロスとなる。また、注入装置が何らかのトラブルで停止した場合、プラスチックレンズ原料の粘度が上昇し使用不可となる可能性もある。これらの理由から、少しでも成形型外周部の間隔の広いところから注入する事で、粘度上昇を起こしたプラスチックレンズ原料でも注入を可能にしたいという要望が高まっている。プラスチックレンズ原料の粘度を下げるために原料を加温する方法もあるが、プラスチックレンズ原料の種類によっては反応が急激に促進してしまい加温できないものもある。また、原料の加温はヒータを使用するため、省エネの観点でも不利と言った問題点を有していた。
【0007】
本発明は、2枚の成形型の干渉を未然に検知し、同時に、成形型外周部の間隔が最も広い位置に注入針が挿入できるように成形用モールドの方向出しを行う組立方法及び組立装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、2枚の成形型成形面が所定の間隔になるよう位置決めする前に、成形型外周部の成形面間距離を計測し、計測した値と計測した位置から2枚の成形型成形面の間隔が所定の間隔になるまでの各成形型の移送量の合計とを比較する事で、成形型同士の干渉を未然に検知することが有効であることを知見した。
【0009】
成形型同士の干渉を未然に検知することで、第2の移送手段の機械的ズレを回避することができ、従来数時間要した復元作業も実施しなくて済むようになり装置の停止ロス削減に寄与する。また、成形型の干渉防止によりプリズム不良のプラスチックレンズを大量に生産するといったことや、成形型の干渉による割れ及び成形面のキズも防止できる。
【0010】
また、成形型の干渉検知は同時に成形型の組み合わせ違い、ロット内の異種成形型の混入、及び上下の成形型の取り違いを検知することでもあるため、従来成形上がりの中間検査でしかとらえることのできなかった成形型種類違いを、組立作業時に見つけることができ不良を作らずにすむようになる。また、組立作業時に成形型の違いを検知できれば、中間検査で異常を発見したときのように、ロット内の成形型の種類を全数チェックする必要がなくなるといった利点も有する。
【0011】
さらに、成形型外周部の成形面間隔の最小寸法は確保されているので、後工程の注入装置で注入針を挿入する際、注入針が成形型に干渉することもなくなる。その結果、プラスチックレンズ原料をこぼすこともなく、装置の安定稼働や清掃時間の短縮が実現できる。
【0012】
また、方向出しした成形型の円周方向の位置を保持した状態で、組み立てられた成形用モールドを後工程の注入装置に供給することで、成形型外周部の成形面間隔が最も広い位置から注入することが可能となる。これにより、粘度上昇を起こしたプラスチックレンズ原料を注入しても、注入口からの溢れ出しが発生しないためカケ不良の削減にも効果がある。また、粘度上昇したプラスチックレンズ原料の注入が可能となることで、プラスチックレンズ原料が一度に大量に調合でき、調合回数及び調合作業工数を大幅に削減することができる。
【0013】
従って、形態1に記載の発明は、2枚の成形型に粘着テープを巻き付けてキャビティを形成し、前記キャビティ内にプラスチックレンズ原料を充填後に硬化させる注型成形方法において、各成形型を求心する工程と、各成形型の非成形面を保持する工程と、少なくとも一方の成形型の軸方向もしくは成形型の所定の位置につけられたマークを検出する工程と、検出した結果を基に成形型の軸方向出しを行う工程と、あらかじめ定めた基準位置に対する各成形型成形面の中心部の高さを測定する工程と、各成形型の中心を同一軸に合わせ込む工程と、成形型外周部の成形面間隔を計測する工程と、計測した値と計測した位置から2枚の成形型成形面の間隔が所定の間隔になるまでの各成形型の移送量の合計とを比較する工程と、2枚の成形型成形面の間隔を所定の間隔にする工程と、粘着テープを成形型外周面に巻き付けキャビティを形成する工程からなることを特徴とする成形用モールドの組立方法を提供する。
【0014】
また、形態2に記載の発明は、2枚の成形型に粘着テープを巻き付けてキャビティを形成し、前記キャビティ内にプラスチックレンズ原料を充填後硬化させる注型成形方法において、各成形型を求心する位置決め手段と、各成形型の非成形面を保持する保持手段と、少なくとも一方の成形型の軸方向もしくは成形型の所定の位置につけられたマークを検出する検出手段と、成形型の軸が所定の角度になるように成形型を回転させる軸方向出し手段と、あらかじめ定めた基準位置に対する各成形型成形面の中心部の高さを計測する第1の測定手段と、各成形型の中心を同一軸に合わせ込む第1の移送手段と、成形型外周部の成形面間隔を計測する第2の測定手段と、第2の測定手段によって計測された値と計測した位置から2枚の成形型成形面の間隔が所定の間隔になるまでの各成形型の移送量の合計とを比較する判定手段と、2枚の成形型成形面の間隔が所定の間隔になるよう各成形型を移動する第2の移送手段と、粘着テープを成形型外周面に巻き付けキャビティを形成する粘着テープ巻き付け手段を備えることを特徴とする成形用モールドの組立装置を提供する。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態について説明するが、本発明は下記の実施の形態に限定されるものではない。図1は本発明における成形用モールドの組立工程フロー図である。本実施例では、成形型の非成形面の保持工程に引き続き軸方向検出、軸方向出しを行っているが、成形型の非成形面の保持工程以降で成形型外周部の成形面間隔測定工程以前であればどのタイミングで行っても問題ない。まず、視野側の面を規定する成形型と眼球側の面を規定する成形型の求心を各々行う。次に、求心された状態の各成形型の非成形面を保持する。保持手段は、カップの内側に回転止め機構を有する吸着パットを装備し、真空吸着にて保持する。吸着パットの回転止め機構は、テーピング時、成形型とカップがずれないようにするため取り付いている。そして、少なくとも一方の成形型の軸方向もしくは成形型の所定の位置につけられたマークの検出を行う。軸方向の検出方法としては、オートレンズメータを用いて乱視用成形型の軸を検出する方法がコスト及び精度からみて望ましい。成形型の所定の位置に付けられたマーキングを検出する方法としては、CCDカメラを用いた画像処理や光学式センサを用いる方法等があるが、マークさえ検出できれば他の方法でも問題ない。軸方向またはマークの検出が終了したら、乱視用成形型で外周部の厚さが最大となる位置が、成形型外周部の成形面間隔を計測する第2の測定手段の計測位置になるように軸方向出しを行う。これは、図6に示すように、乱視用の成形型は外周部の厚さが異なるので、成形型外周部の成形面間隔が最小となる位置20、すなわち、成形型同士が最初に接触する位置の間隔を測定する必要があるからである。ただし、球面の成形型は、外周部の厚さが均一で軸方向出しをする必要がないので、軸方向検出も行わない。その後、基準高さに対する各成形型成形面の中心部高さを第1の測定手段で計測する。そして、2枚の成形型の中心が同一軸上にくるように第1の移送手段で搬送する。その状態で、2枚の成形型外周部の成形面間隔を測定する。前記成形型外周部の成形面間隔の測定方法は、図2に示すエリアセンサを用いた方法や図3に示すCCDカメラを用いた画像処理による方法(非接触)、及び変位センサ等を用いた物理的(接触式)方法が挙げられる。エリアセンサ1a、1bを用いる場合は、成形型の最外周部は成形型の真円度や外径精度及び成形型の求心精度によって端面位置がバラツクので、成形型の端面から0.2mm以上内側を測定した方が良い。また、エリアセンサは光の直進性の高いレーザー光を光源とするタイプが精度面で好ましい。CCDカメラ3を用いる場合は、画像を鮮明にするため照明4を用いる。ここで、成形型外周部の成形面間隔の測定値2と計測した位置から2枚の成形型成形面の間隔が所定の間隔になるまでの各成形型の移送量の合計とを比較し、移送量の合計≧測定値となったときエラー出しを行うことで成形型の干渉を未然に防止できる。
【0016】
また、移送量の合計≧(測定値−α)の条件でエラーだしする制御を行えば、成形面間隔21はαが確保できる。αの値は、プラスチックレンズの製品自体の仕様であるレンズ最少コバ厚寸法である。注入針の外径は、注入針の挿入精度を加えてα以下にする必要がある。これによって、成形型と注入針挿入時の干渉を未然に防止することができ、プラスチックレンズ原料をこぼすこともなく、装置の安定稼働、清掃時間の短縮が実現できる。
【0017】
その後、第2の移送手段により2枚の成形型が所定の間隔になるよう移送する。最後に、粘着テープを2枚の成形型外周面に貼り付けることで、成形用モールドは完成する。
【0018】
本実施例では、円形の成形型について説明したが、成形型は非円形形状であっても問題ない。
【0019】
成形型の方向出しは、成形型同士が最初に接触する位置の外周部の成形面間隔を測定するために行うのと同時に、成形型外周部の成形面間隔が最大となる位置21を一定方向に合わせることも目的とする。方向出しのされた成形用モールドの姿勢を保持したまま、後工程の注入装置に供給することで、成形型外周部の成形面間隔が最大となる位置に注入針が挿入出来るようになる。
【0020】
【発明の効果】
本発明の成形用モールドの組立方法及び組立装置を用いれば、2枚の成形型の干渉を未然に検知でき、さらに、成形型外周部の成形面間隔が最も広い位置で注入が行える向きで注入装置に供給できるようになる。成形型の干渉が検知できることで、組立装置の機械的ズレの発生も回避できる。その結果、プリズム不良やキズ不良の発生を防止でき、成形型の割れも起こらないのでコスト削減に大きく寄与する。また、同時に成形型の違いも検知できるため、度数不良の発生を未然に抑えることができるとともに、間違った成形型をその場で除去することが可能となる。さらに、注入針の干渉も抑制できるため、後工程の注入装置の安定稼働、清掃時間の短縮にもつながる。
【0021】
成形型外周部の成形面間隔が最も広いところからプラスチックレンズ原料が注入できるため、未充填によって起こるカケ不良が防止できる。また、粘度上昇を起こしたプラスチックレンズ原料でも注入が可能になるため、プラスチックレンズ原料が一度に大量に調合でき、調合回数及び調合作業工数を大幅に削減することができる。
【図面の簡単な説明】
【図1】本発明の成形用モールドの組立工程フロー図。
【図2】エリアセンサを用いた成形型外周部の成形面間間隔の測定方法を示す図であり、(a)は平面図、(b)は側面図である。
【図3】画像処理を用いた成形型外周部の成形面間間隔の測定方法を示す図であり、(a)は平面図、(b)は側面図である。
【図4】従来の成形用モールドの組立工程フロー図。
【図5】正常な成形型でのキャビティ形成までの概略図。
【図6】乱視用成形型の形状図。
【図7】間違った成形型で組み立て、干渉した状態を示す概略図。
【符号の説明】
1a、1b・・・・エリアセンサ
2・・・・・・・・成形型外周部の成形面間隔
3・・・・・・・・CCDカメラ
4・・・・・・・・照明
10a、10b・・第1の測定手段
11a、11b・・第1の移送手段
12a、12b・・第2の移送手段
13・・・・・・・所定の間隔
14・・・・・・・異常の成形型
15・・・・・・・粘着テープ
16・・・・・・・視野側の面を規定する成形型
17・・・・・・・眼球側の面を規定する成形型
18a、18b・・基準高さ
19a、19b・・成形型の保持手段
20・・・・・・・成形型外周部の成形面間隔の最少となる位置
21・・・・・・・成形型外周部の成形面間隔の最大となる位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembling method and an assembling apparatus for a molding mold for molding a plastic lens.
[0002]
[Prior art]
A conventional method for assembling a mold for molding is as disclosed in JP-A-4-148906. FIG. 4 shows a process flow diagram and FIG. 5 shows a schematic diagram until cavity formation. First, in the conventional assembling method, after the centering of the molding die 16 that defines the field on the visual field side and the molding die 17 that defines the surface on the eyeball side, the non-molding surface side of the two molding dies is held. The center height of the molding surface with respect to the reference heights 18a and 18b is measured by the first measuring means 10a and 10b. Then, the mold holding means 19a and 19b are transferred by the first transfer means 11a and 11b so that the centers of the two molds are on the same axis. Thereafter, a calculation process is performed based on the height data of the center of the two molds with respect to a predetermined reference position, and the mold holding means 19a so that the molding surfaces of the two molds are at a predetermined interval 13. , 19b are transferred by the second transfer means 12a, 12b. Finally, the adhesive tape 15 is wound around the outer peripheral surfaces of the two molds one or more times to form a cavity.
[0003]
In the post-injection apparatus, a plastic lens material is filled into a cavity formed by two molds and an adhesive tape. In the case of a spectacle lens, there is an astigmatism prescription, so as shown in FIG. 6, molds having different radii of curvature (R1 and R2) are used in the orthogonal axial directions. For this reason, the molding surface interval of the outer periphery of the molding die is not uniform in the circumferential direction. However, conventionally, since the molding die has not been placed in the axial direction, injection is performed by inserting an injection needle at an arbitrary position in the circumferential direction of the molding mold.
[0004]
[Problems to be solved by the invention]
In the conventional method for assembling a molding mold, there are more than 500 combinations of two molds. Therefore, the combinations are wrong, different molds are mixed in the lot, or the upper and lower molds are If the mold holding means 19a, 19b are moved so that the molding surface of the mold is at a predetermined interval 13, the molds may interfere with each other. FIG. 7 shows an example when interference occurs due to a mistake in the mold. In this example, the mold 14 is not a regular mold. When the mold holding means 19a is moved so that the second transfer means 12a has a predetermined interval 13, the outer periphery of the mold 14 hits the other outer periphery of the mold before the predetermined interval 13 is obtained. At this time, an excessive force is applied to the second transfer means 12a and 12b of the mold, and mechanical displacement occurs in the second transfer means 12a and 12b. The mechanical deviation of the second transfer means 12a, 12b is a relative deviation of the mold holding parts 19a, 19b at the tip of the transfer means, and corresponds to a parallelism and a deviation of the core. Parallelism and misalignment greatly affect prism accuracy, which is the basic accuracy of plastic lenses. If the mold is assembled with parallelism and misalignment, the plastic lens after molding becomes a defective prism. End up. In addition, when the mechanical displacement of the second transfer means 12a, 12b occurs due to interference, the prism inspection can be performed only after the plastic lens is cured and the mold is peeled off. become. Since a plastic lens takes about 20 hours to cure, if a mold interference cannot be detected, the number of defects produced during that time will be enormous. Furthermore, once the mechanical displacement of the second transfer means 12a, 12b due to the interference of the mold occurs, the accuracy is severe, and a great deal of time is spent on the restoration work. In addition, if the mold itself is scratched by interference, the scratch is transferred to the plastic lens, and the plastic lens itself becomes defective. If the depth of the scratch is shallow, it can be reused by polishing the mold again, but if the impact at the time of interference is strong, the expensive mold will crack and become unrecyclable.
[0005]
Even if barely no interference occurs, when the molding surface interval of the outer periphery of the mold is smaller than the predetermined interval, the injection needle cannot be inserted into the cavity by an injection device in a later process, and the plastic lens raw material is It may spill. If the plastic raw material adheres to the movable part of the injection device, it solidifies and causes abnormal operation.
[0006]
In a molding mold for a convex lens with a narrow space between the outer periphery of the mold, when a high-viscosity plastic lens raw material is injected, the raw material overflows from the injection port before the cavity is filled with the plastic raw material. Filling). Since the polymerization initiator is added to the plastic lens raw material, the viscosity increases with time. In order to suppress the occurrence of chipping defects, it is preferable that the viscosity is low. Therefore, it is necessary to provide time constraints from the preparation of the raw material to the injection. As a result, a large amount of plastic lens raw materials cannot be prepared at a time, resulting in a production loss. Also, if the injection device stops due to some trouble, the viscosity of the plastic lens raw material may increase and become unusable. For these reasons, there is a growing demand to enable injection of plastic lens raw materials that have increased in viscosity by injecting even as little as possible from the wide interval of the outer periphery of the mold. There is a method of heating the raw material in order to lower the viscosity of the plastic lens raw material, but depending on the type of the plastic lens raw material, there is a method in which the reaction is rapidly accelerated and cannot be heated. In addition, since the heating of the raw material uses a heater, it has a problem that it is disadvantageous from the viewpoint of energy saving.
[0007]
The present invention relates to an assembling method and an assembling apparatus for detecting the interference between two molding dies in advance and simultaneously directing the molding mold so that the injection needle can be inserted at a position where the distance between the outer peripheral portions of the molding dies is widest. The purpose is to provide.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor measured the distance between the molding surfaces of the outer periphery of the molding die before positioning the two molding die molding surfaces at a predetermined interval. By comparing the measured value with the total transfer amount of each mold until the interval between the molding surfaces of the two molds reaches a predetermined distance from the measured position, the interference between the molds is detected in advance. Was found to be effective.
[0009]
By detecting the interference between the molds in advance, mechanical misalignment of the second transfer means can be avoided, and the restoration work that has conventionally required several hours can be avoided, reducing the stop loss of the apparatus. Contribute to. Further, it is possible to prevent mass production of plastic lenses having defective prisms by preventing interference of the mold, and cracks and scratches on the molding surface due to interference of the mold.
[0010]
In addition, mold interference detection simultaneously detects differences in mold combinations, mixing of different molds in a lot, and the difference between upper and lower molds. Differences in mold types that could not be found can be found at the time of assembly work, so that it is possible to avoid making defects. Further, if the difference in the molds can be detected during the assembly operation, there is an advantage that it is not necessary to check all types of molds in the lot as in the case where an abnormality is found in the intermediate inspection.
[0011]
Furthermore, since the minimum dimension of the molding surface interval at the outer periphery of the molding die is secured, the injection needle does not interfere with the molding die when the injection needle is inserted by a subsequent injection device. As a result, stable operation of the apparatus and shortening of the cleaning time can be realized without spilling the plastic lens raw material.
[0012]
In addition, by supplying the assembled molding mold to the post-injection device while maintaining the circumferential position of the molded mold that has been directed, it is possible to start from the position where the molding surface spacing on the outer periphery of the molding mold is the widest. It becomes possible to inject. As a result, even if a plastic lens raw material having an increased viscosity is injected, overflow from the injection port does not occur, which is effective in reducing defective chips. In addition, since the plastic lens raw material having an increased viscosity can be injected, the plastic lens raw material can be prepared in a large amount at a time, and the number of preparations and the number of preparation operations can be greatly reduced.
[0013]
Therefore, the invention described in the first aspect is to center each mold in a casting molding method in which an adhesive tape is wound around two molds to form a cavity, and a plastic lens material is filled in the cavity and then cured. A step, a step of holding a non-molding surface of each mold, a step of detecting a mark placed in an axial direction of at least one mold or a predetermined position of the mold, and a mold based on the detected result A step of performing an axial direction, a step of measuring the height of the center of each mold surface relative to a predetermined reference position, a step of aligning the center of each mold with the same axis, The step of measuring the molding surface interval, the step of comparing the measured value and the total transfer amount of each molding die until the interval between the two molding die molding surfaces reaches a predetermined interval from the measured position, 2 Sheet molding mold A step of spacing surfaces at predetermined intervals to provide a method of assembling forming mold, characterized by comprising the step of forming a cavity winding an adhesive tape to the mold outer peripheral surface.
[0014]
Further, the invention described in the form 2 centripets each mold in a casting molding method in which a cavity is formed by winding an adhesive tape around two molds, and a plastic lens material is filled in the cavity and then cured. Positioning means, holding means for holding the non-molding surface of each mold, detection means for detecting a mark placed in the axial direction of at least one mold or a predetermined position of the mold, and the mold axis An axial direction rotating means for rotating the mold so as to be an angle, a first measuring means for measuring the height of the center portion of each mold surface relative to a predetermined reference position, and the center of each mold Two molds from a first transfer means that is aligned with the same axis, a second measurement means that measures the molding surface interval of the outer periphery of the mold, and a value measured by the second measurement means and the measured position Molding surface A determination means for comparing the total amount of transfer of each mold until the interval reaches a predetermined interval, and a second unit that moves each mold so that the interval between the two mold surfaces is a predetermined interval. There is provided a molding mold assembling apparatus comprising a transfer means and an adhesive tape winding means for winding an adhesive tape around an outer peripheral surface of a mold to form a cavity.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Although embodiments of the present invention will be described below, the present invention is not limited to the following embodiments. FIG. 1 is an assembly process flow diagram of a molding mold according to the present invention. In this embodiment, the axial direction detection and the axial direction are performed following the non-molding surface holding step of the molding die, but the molding surface interval measuring step of the outer periphery of the molding die after the non-molding surface holding step of the molding die. If it was before, there is no problem at any timing. First, centripetal operation is performed on a mold that defines the field on the visual field side and a mold that defines the surface on the eyeball side. Next, the non-molding surface of each mold in the centered state is held. The holding means is equipped with a suction pad having a rotation stop mechanism inside the cup and holds it by vacuum suction. An anti-rotation mechanism for the suction pad is attached to prevent the mold and the cup from shifting during taping. Then, detection of a mark placed in the axial direction of at least one mold or a predetermined position of the mold is performed. As a method for detecting the axial direction, a method for detecting the axis of the astigmatism mold using an auto lens meter is desirable from the viewpoint of cost and accuracy. As a method for detecting a marking attached to a predetermined position of the mold, there are an image processing using a CCD camera, a method using an optical sensor, and the like. When the detection of the axial direction or the mark is completed, the position where the thickness of the outer peripheral portion of the astigmatic mold is maximized becomes the measurement position of the second measuring means for measuring the molding surface interval of the outer periphery of the mold. Perform axial out. As shown in FIG. 6, since the astigmatic molds have different outer peripheral thicknesses, the positions 20 at which the molding surface interval between the outer peripheral parts of the molds becomes the minimum, that is, the molds contact each other first. This is because the position interval needs to be measured. However, the spherical mold does not detect the axial direction because the outer peripheral portion has a uniform thickness and does not need to be projected in the axial direction. Thereafter, the height of the center portion of each mold surface relative to the reference height is measured by the first measuring means. And it conveys with a 1st transfer means so that the center of two molds may be on the same axis | shaft. In this state, the molding surface interval between the outer peripheral portions of the two molding dies is measured. As the method for measuring the molding surface interval of the outer periphery of the molding die, a method using an area sensor shown in FIG. 2, a method using image processing (non-contact) using a CCD camera shown in FIG. A physical (contact type) method may be mentioned. When the area sensors 1a and 1b are used, the outermost peripheral portion of the mold has an end face position that varies depending on the roundness, outer diameter accuracy, and centripetal accuracy of the mold. It is better to measure. In addition, the area sensor is preferably of a type that uses a laser beam with high light straightness as a light source. When the CCD camera 3 is used, the illumination 4 is used to make the image clear. Here, the measurement value 2 of the molding surface interval of the outer periphery of the molding die is compared with the total transfer amount of each molding die until the interval between the two molding die molding surfaces reaches a predetermined interval from the measured position, By giving an error when the total transfer amount ≧ measured value, it is possible to prevent the mold from interfering.
[0016]
Further, if control is performed to generate an error under the condition of the total transfer amount ≧ (measured value−α), α can be secured as the molding surface interval 21. The value of α is the lens minimum edge thickness dimension, which is the specification of the plastic lens product itself. The outer diameter of the injection needle needs to be α or less in consideration of the insertion accuracy of the injection needle. As a result, interference between the mold and the injection needle can be prevented in advance, and the stable operation of the apparatus and shortening of the cleaning time can be realized without spilling the plastic lens raw material.
[0017]
Thereafter, the second transfer means transfers the two molds so as to have a predetermined interval. Finally, the molding mold is completed by sticking the adhesive tape to the outer peripheral surfaces of the two molding dies.
[0018]
In this embodiment, the circular mold has been described, but there is no problem even if the mold has a non-circular shape.
[0019]
The direction of the molding die is measured in order to measure the distance between the molding surfaces of the outer peripheral portion at the position where the molding dies first contact each other, and at the same time, the position 21 at which the molding surface interval of the outer peripheral portion of the molding die is maximized The purpose is to match. The injection needle can be inserted at a position where the molding surface interval of the outer periphery of the molding die is maximized by supplying it to an injection device in a subsequent process while maintaining the orientation of the molding mold that is directed.
[0020]
【The invention's effect】
By using the method and apparatus for assembling the molding mold of the present invention, it is possible to detect the interference between the two molding dies in advance, and inject in such a direction that the injection can be performed at the position where the molding surface interval of the outer periphery of the molding die is the widest. It can be supplied to the device. By detecting the interference of the mold, it is possible to avoid the occurrence of mechanical deviation of the assembling apparatus. As a result, it is possible to prevent the occurrence of prism defects and scratch defects, and the mold does not crack, which greatly contributes to cost reduction. In addition, since the difference in the molds can be detected at the same time, it is possible to suppress the occurrence of power failure and to remove the wrong mold on the spot. Furthermore, since interference of the injection needle can be suppressed, it leads to stable operation of the post-injection device and shortening of the cleaning time.
[0021]
Since the plastic lens raw material can be injected from the place where the molding surface interval of the outer periphery of the mold is widest, it is possible to prevent chipping defects caused by unfilling. Further, since it is possible to inject even a plastic lens material having an increased viscosity, a large amount of plastic lens material can be prepared at a time, and the number of preparations and preparation work steps can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is an assembly process flow diagram of a molding mold of the present invention.
FIGS. 2A and 2B are diagrams showing a method for measuring an interval between molding surfaces of a molding die outer periphery using an area sensor, wherein FIG. 2A is a plan view and FIG. 2B is a side view.
FIGS. 3A and 3B are diagrams illustrating a method for measuring a distance between molding surfaces of a molding die outer periphery using image processing, where FIG. 3A is a plan view and FIG. 3B is a side view.
FIG. 4 is an assembly process flow diagram of a conventional molding mold.
FIG. 5 is a schematic view until a cavity is formed with a normal mold.
FIG. 6 is a shape diagram of an astigmatism mold.
FIG. 7 is a schematic view showing a state where the wrong mold is assembled and interfered.
[Explanation of symbols]
1a, 1b ··· Area sensor 2 ··· Molding surface interval 3 at the outer periphery of the mold ··· CCD camera 4 ··· Illumination 10a and 10b .. First measuring means 11a, 11b .. First transfer means 12a, 12b .. Second transfer means 13... 15 ........ Adhesive tape 16 ........ Molding die 17 that defines the field on the visual field side ........ Molding die 18a, 18b that defines the surface on the eyeball side..Reference Height 19a, 19b ··· Mold holding means 20 ··············································································· Maximum position

Claims (2)

2枚の成形型に粘着テープを巻き付けてキャビティを形成し、前記キャビティ内にプラスチックレンズ原料を充填後に硬化させる注型成形方法であって、
各成形型の非成形面を保持する工程と、
少なくとも一方の成形型の軸方向もしくは成形型の所定の位置につけられたマークを検出する工程と、
検出した結果を基に成形型の軸方向出しを行う工程と、
あらかじめ定めた基準位置に対する各成形型成形面の中心部の高さを測定する工程と、
各成形型の中心を同一軸に合わせ込む工程と、
成形型外周部の成形面間隔を計測する工程と、
計測した値と計測した位置から2枚の成形型成形面における中心の間隔が所定の間隔になるまでの各成形型の移送量の合計とを比較する工程と、
2枚の成形型成形面における中心の間隔を所定の間隔にする工程と、
粘着テープを成形型外周面に巻き付けキャビティを形成する工程と、
を含み、
前記軸方向出しを行う工程は、前記成形型外周部の厚さが最大となる位置が、前記成形面間隔を計測する工程における計測位置となるように軸方向出しを行う、
ことを特徴とする成形用モールドの組立方法。
A casting molding method in which an adhesive tape is wound around two molding dies to form a cavity, and a plastic lens raw material is filled in the cavity and then cured .
Holding the non-molded surface of each mold;
Detecting a mark placed in the axial direction of at least one mold or a predetermined position of the mold;
A step of axially shaping the mold based on the detected result;
A step of measuring the height of the center of each molding surface relative to a predetermined reference position;
Aligning the center of each mold with the same axis;
Measuring the molding surface interval of the outer periphery of the mold, and
A step of comparing the measured value with the total transfer amount of each mold until the distance between the centers of the two molds from the measured position to a predetermined distance;
A step of setting a predetermined interval between the centers of the two mold forming surfaces;
Winding an adhesive tape around the outer peripheral surface of the mold to form a cavity ;
Including
The step of performing the axial direction performs the axial direction so that the position where the thickness of the outer periphery of the mold is maximized is the measurement position in the step of measuring the molding surface interval.
A method for assembling a mold for molding.
2枚の成形型に粘着テープを巻き付けてキャビティを形成し、前記キャビティ内にプラスチックレンズ原料を充填後硬化させる注型成形用モールドの組立装置であって、
各成形型の非成形面を保持する保持手段と、
少なくとも一方の成形型の軸方向もしくは成形型の所定の位置につけられたマークを検出する検出手段と、
成形型の軸が所定の角度になるように成形型を回転させる軸方向出し手段と、
あらかじめ定めた基準位置に対する各成形型成形面の中心部の高さを計測する第1の測定手段と、
各成形型の中心を同一軸に合わせ込む第1の移送手段と、
成形型外周部の成形面間隔を計測する第2の測定手段と、
前記第2の測定手段によって計測された値と計測した位置から2枚の成形型成形面における中心の間隔が所定の間隔になるまでの各成形型の移送量の合計とを比較する判定手段と、
2枚の成形型成形面における中心の間隔が所定の間隔になるよう各成形型を移動する第2の移送手段と、
粘着テープを成形型外周面に巻き付けキャビティを形成する粘着テープ巻き付け手段と、
を備えることを特徴とする成形用モールドの組立装置。
An apparatus for assembling a mold for casting molding, in which an adhesive tape is wound around two molds to form a cavity, and a plastic lens raw material is filled in the cavity and then cured .
Holding means for holding the non-molding surface of each mold;
Detecting means for detecting a mark placed in an axial direction of at least one mold or a predetermined position of the mold;
Axial direction extending means for rotating the mold so that the axis of the mold is at a predetermined angle;
First measuring means for measuring the height of the center portion of each molding surface relative to a predetermined reference position;
First transfer means for aligning the center of each mold with the same axis;
A second measuring means for measuring the molding surface interval of the outer periphery of the molding die;
Determining means for comparing the value measured by the second measuring means with the total transfer amount of each mold until the distance between the centers of the two molding dies from the measured position to a predetermined distance; ,
A second transfer means for moving the respective molds so that the distance between the centers of the two mold surfaces is a predetermined distance;
An adhesive tape winding means for winding an adhesive tape around the outer peripheral surface of the mold to form a cavity;
An apparatus for assembling a mold for molding.
JP2001249566A 2001-08-20 2001-08-20 Method and apparatus for assembling mold for molding Expired - Fee Related JP4665361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249566A JP4665361B2 (en) 2001-08-20 2001-08-20 Method and apparatus for assembling mold for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249566A JP4665361B2 (en) 2001-08-20 2001-08-20 Method and apparatus for assembling mold for molding

Publications (2)

Publication Number Publication Date
JP2003053746A JP2003053746A (en) 2003-02-26
JP4665361B2 true JP4665361B2 (en) 2011-04-06

Family

ID=19078550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249566A Expired - Fee Related JP4665361B2 (en) 2001-08-20 2001-08-20 Method and apparatus for assembling mold for molding

Country Status (1)

Country Link
JP (1) JP4665361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109383035A (en) * 2018-10-18 2019-02-26 江苏宇迪光学股份有限公司 A kind of assembling equipment for heavy caliber projection-type camera lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148906A (en) * 1990-10-12 1992-05-21 Seiko Epson Corp Molding method of plastic lens
JPH0519212A (en) * 1991-07-11 1993-01-29 Seiko Epson Corp Production system of plastic lens for spectacles
JPH0584755A (en) * 1991-09-25 1993-04-06 Seiko Epson Corp Production of plastic lens for glasses
JPH10264180A (en) * 1997-03-26 1998-10-06 Seiko Epson Corp Device for manufacturing plastic product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148906A (en) * 1990-10-12 1992-05-21 Seiko Epson Corp Molding method of plastic lens
JPH0519212A (en) * 1991-07-11 1993-01-29 Seiko Epson Corp Production system of plastic lens for spectacles
JPH0584755A (en) * 1991-09-25 1993-04-06 Seiko Epson Corp Production of plastic lens for glasses
JPH10264180A (en) * 1997-03-26 1998-10-06 Seiko Epson Corp Device for manufacturing plastic product

Also Published As

Publication number Publication date
JP2003053746A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US6103148A (en) Method for curing a lens-forming fluid
US6099763A (en) Method and apparatus for filling a lens-forming device with a curable fluid
KR100854188B1 (en) Mold forming method and apparatus, and plastic lens manufacturing method and apparatus
KR20060037325A (en) Lens having at least one lens centration mark and methods of making and using same
CN106425750B (en) The clamping jig and clamping process of eyeglass
KR20150079617A (en) Method for manufacturing optical lenses and assembly for manufacturing such lenses
KR100956376B1 (en) Wafer lens aligning method and wafer lens
JP4665361B2 (en) Method and apparatus for assembling mold for molding
US20050011227A1 (en) Method of preparation of lens
CN110877239B (en) Polishing method of tungsten steel mold core and mold sleeve
JPS61242921A (en) Molding device for glass lens
JP2005225113A (en) Method and device for positioning mold, method and apparatus for assembling lens molding mold
JPH04148906A (en) Molding method of plastic lens
JP5788970B2 (en) Method and apparatus for measuring annular lens axis angle
US20150378066A1 (en) Optical lens, lens unit, imaging module, electronic device, optical lens production method, lens mold, and shape correction method for lens mold
TWI810830B (en) Method and system for verifying the accurate mounting of molding inserts to a tooling plate of an injection-molding apparatus for molding ophthalmic lens molds
GB2216065A (en) Contact lens production
KR102570612B1 (en) Manufacturing method of auxiliary rim for eyeglass frames with improved lens bonding
JP5559982B2 (en) Glass aspheric lens and manufacturing method thereof
US11207854B2 (en) Method for manufacturing toric contact lenses
JP4168705B2 (en) Optical element and mold for molding the same
JPH0375494B2 (en)
JP2004066773A (en) Lens frame integrating mold
JPH0421611B2 (en)
JP2005227159A (en) Die thickness measuring method, and die thickness measuring instrument

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees