JP4665341B2 - Color matching method using liquid color measuring device - Google Patents

Color matching method using liquid color measuring device Download PDF

Info

Publication number
JP4665341B2
JP4665341B2 JP2001155064A JP2001155064A JP4665341B2 JP 4665341 B2 JP4665341 B2 JP 4665341B2 JP 2001155064 A JP2001155064 A JP 2001155064A JP 2001155064 A JP2001155064 A JP 2001155064A JP 4665341 B2 JP4665341 B2 JP 4665341B2
Authority
JP
Japan
Prior art keywords
liquid
color
colored liquid
colored
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001155064A
Other languages
Japanese (ja)
Other versions
JP2002350233A (en
Inventor
伸一 戸沢
政司 郡嶋
崇 稲村
明宏 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2001155064A priority Critical patent/JP4665341B2/en
Publication of JP2002350233A publication Critical patent/JP2002350233A/en
Application granted granted Critical
Publication of JP4665341B2 publication Critical patent/JP4665341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば印刷分野にて、印刷用の着色液体(特殊な場合を除くと具体例はインキ)の光学特性をその透過光を直接測定することによって得ることができ、その値を用いて原着色液体の配合比を求める事を可能にした色合わせ方法関する。
【0002】
【従来の技術】
従来,塗料,インキ,プラスチック等の着色溶液の調色プロセスにおける色彩管理は製造中の上記着色溶液を簡易校正機にて刷り,乾燥状態で測色する事により行っていた。すなわち,この測定された色と目標とする色との差より着色剤の配合比を算出したり,調色条件を変更するなどの方法が採られていた。
【0003】
この種の色合わせ方法では、熟練者の負荷を低減させる観点から目視に代えて、着色液体の測色の際に、着色液体を測色用セルに抽出して溶液状態で測色する技術が適用可能となっている。例えば、特開昭61−56923号公報、特開昭61−65123号公報などには、ライトガイド並びに検出プローブを着色液体中に浸漬して測色する方式が開示されている。
【0004】
また、特開平6−50819号公報には、隠蔽性の高い塗料等の測色の際に、着色液体の液面に対し所定の入射角で光を入射させ、垂直方向の反射光をカラーセンサで検知する方式が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、以上のような色合わせ方法では、いずれの測色方式も以下に述べるように、着色液体の測色には不十分である。従って、目標とする色と同等の光学特性をもつ着色液体の配合比計算精度を低下させてしまう可能性がある。
【0006】
例えば、ライトガイドを浸漬させる方式の場合、測色用セルの急速な洗浄が不可能であるため、測色用セルのガラスに着色成分が付着すると共に、付着した着色成分の完全な除去が困難となっている。また、付着した着色成分により、変色した色が検知されるため、測色結果が不正確になってしまう。
【0007】
さらに、この方式では、検出プローブの払拭装置を必要とする上、払拭の繰返しにより、プローブ先端にダメージを与える可能性がある。
一方、反射光を検知する方式は、塗料等の隠蔽性の高い着色液体に限定されるため、グラビアインキの如き、透明性の高い着色液体には適用不可能となっている。理由は、隠蔽性の高い着色液体の場合、下地の色の影響を受けず、紙等の支持体に塗布された色と、溶液状態での色とが一致するため、反射光の測定が可能となるが、透明性の高い着色液体の場合、下地の色の影響を受けるため、支持体に塗布された色と、溶液状態の色とが異なるからである。
【0008】
本発明は上記実情を考慮してなされたもので、着色液体を一度紙に印刷し,分光反射率計による測定値をその光学特性の代用値とするのではなく,広範囲濃度域の透明着色液体の真の光学特性を得る為に,直接にかつ簡単に同一膜厚での透過光を連続に測定し,その値を用いて原着色液体の配合比を計算する事を可能にする装置及び色合わせ方法を提供する事を目的とする。
【0009】
【課題を解決するための手段】
請求項1に対応する発明は、互いに対向配置された透明な2枚の平行平板
前記2枚の平行平板間の間隔を調節自在にする移動制御手段と、
前記平行平板間着色液体を通過させるための液体供給ポート並びに液体排出ポートを備えた測定用セルと、
前記平行平板間の着色液体に光を入射するための入射光学系と、
前記入射光学系により光が入射されるとき、前記平行平板間の着色液体を透過する透過光の透過光率を測定するための分光光度計と、を備えた、透明性の高い着色液体を液体状態のまま透過で測定する液体測色装置を用いて、
複数の原着色液体を混色して得られる混色液体の配合比を予測するにあたり、
前記平行平板間の混色液体のある膜厚(X1)での透過率値を測定し、
さらに、前記膜厚(X1)のn倍の膜厚(X2)での透過率値を連続的に測定し、
前記混色液体の吸収係数及び散乱係数を求め、
各原着色液体ごとの基礎データに基づき前記混色液体の色をつくる為の各原着色液体の配合比を求めることを特徴とする色合わせ方法、である。
【0012】
また請求項に対応する発明は、前記、ある膜厚(X1)とn倍の膜厚(X2)の関係において、n≦2であることを特徴とする請求項に記載の色合わせ方法である。
【0013】
なお、着色液体を測色する具体策としては、例えば容器中の着色液体の中で透明な平行平板の間に着色液体を満たして、着色液体の厚さの薄い膜を形成し、この薄い膜の透過光率を測定する構成が好ましい。
【0014】
(作用)
従って、請求項1に対応する発明は以上のような手段を講じたことにより、液体測色装置が、容器中の着色液体をサンプリングして液体のまま該着色液体に光を照射し、液膜を透過した光の分光透過率を測定し、測定後着色液体は排出ポートから排出され溶剤等で洗浄されるので、直接にかつ簡単に同一膜厚での透過光を連続にそして精度良く測定することができる。
【0015】
本発明において、測定する着色液体の層の厚さ(本発明では膜厚と記す)は、下記に記述する式において重要なファクタであり、2枚の平行平板間の間隔を正確に決定するため、前記測定手段が最大の光強度を検出したとき、すなわち、2枚の平行平板が当接し間隔が零になった時に、前記移動制御手段による下方への移動を停止し、そこを基点(原点)とし上方への移動量を決定して、膜厚を制御するものである。
【0016】
また着色液体の光学特性である吸収係数及び散乱係数を求めるには一般的には透過光率及び反射光率を両方求めなくてはならないが、請求項1に対応する発明においては、着色液体測色装置を用いて連続的に測定される2つの膜厚の透過率値から、前記混色液体の吸収係数及び散乱係数を求めることができ、その値を用いて前記混色液体を調色する為の原着色液体の配合比をコンピュータ処理し求めることができる。
【0017】
また、上記2つの膜厚は一方が他方の2倍以下であることが好ましい。2倍以上になると、徐々に下記に記述するのKubelka−Munkの理論から外れて、分光透過率と膜厚、吸光係数、散乱係数の関係が崩れてくるから、グラビアインキ等の着色液体を測定する際には、2倍以下にする。
【0018】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照して説明する。
図1は本発明の一実施形態に係わる膜形成装置を用いた液体測色装置の断面構成を示す模式図である。
【0019】
この膜形成装置は、図1に示すように、互いに対向配置されて間隔を調節自在な2枚の透明な平行平面基板からなる第1及び第2平面ガラス部(1),(9)を有し、且つ第1ガラス部(1)を保持する底部材(2)の周囲上に立設され、着色液体を通過させるための液体供給ポート(3)並びに液体排出ポート(4)が形成された側壁部材(5)からなる液体ホルダ(6)と、側壁部材(5)に固設された固定ブラケット(7)と固定ブラケット(7)に設けられ、上下方向に進退自在な駆動部(8a)を有する駆動部(8)と、駆動軸(8a)に連結され、周囲部が側壁部材(5)の内周部に沿って上下方向に摺動自在であり、且つ第2平面ガラス部(9)を第1平面ガラス部(1)に対向させつつ、第1平面ガラス部(1)に平行に保持する上下移動ホルダ(10)と、液体ホルダ(6)内の第1及び第2平面ガラス部(1),(9)間の着色液体に光を入射するための入射光学系と、入射光学系により光が入射されるとき、第2平面ガラス部(9)から第1平面ガラス部(1)を透過した透過光を受光する受光素子(23)と、第2光源部に対向するように受光素子(23)の側方に配置され、第2光源部(22)にて光を発生するとき、第2平面ガラス部(9)から第1平面ガラス部(1)を透過した透過光を分光分析するための分光光度計(24)と、受光素子(23)及び分光光度計を保持する素子ホルダ(25)と、駆動部(8)を制御する一方、受光素子(23)及び分光光度計(24)から得られるデータを処理する計算機(27)とを備えている。
【0020】
ここで、第1及び第2平面ガラス部(1),(9)は石英ガラス、合成石英ガラス又はBK7ガラス等の透明な材質から形成されている。なお、少なくとも第1平面ガラス部(1)及びこれに平行に対向配置された第2平面ガラス部(9)は、隙間のゼロ位置合せ等のように互いに当接する場合があるため、透明な性質に加え、充分な硬度をも備えた材質が好ましく、さらに、互いの当接面が平滑に形成されている。
【0021】
また、第1及び第2平面ガラス部(1),(9)、底部材(2)、側壁部材(5)及び上下移動ホルダ(10)は、着色液体に接する内部空間(測定用セル)の表面にフッ素樹脂の薄膜(数nm〜数10nm厚)からなる図示しない撥水層を備えている。
【0022】
液体供給ポート(3)及び液体排出ポート(4)は、各々側壁部材(5)の内周部と外周部とを連通させるように形成され、互いに光軸を介して対向配置されている。
液体供給ポート(3)には、着色液体として、例えば印刷インキiを導入するための第1導管(11a)の一端が接続されている。第1導管(11a)の他端は、着色液体供給源としての、例えば印刷インキiを収容するインキパン(12a)に連通されている。
【0023】
一方、液体排出ポート(4)は第2導管(11b)の一端が接続されている。
また、第2導管(11b)の他端は、廃液用インキパン(12b)に連通されている。
【0024】
なお、本発明で着色液体は、測定に好適な非常に薄い膜厚に形成される。このため、着色液体の粘性にもよるが、始めに着色液体を満たす隙間を測定に好適な値で保持すると、続いて着色液体をその隙間に流入させることが困難となる。
従って、隙間に着色液体を満たす際には、予め隙間を広く開けておき、着色液体を流入させた後に隙間を狭める手法が重要となる。例えば、通常のグラビアインキの場合、予め1mm位の隙間を開けることにより、容易に流入可能となる。
【0025】
固定ブラケット(7)は、上昇限界に位置した上下移動ホルダ(10)を検出して後述する計算機に送出するための位置センサ(14)を備えている。なお位置センサ(14)は、設置場所が固定ブラケット(7)に限らず、便宜、液体ホルダ(6)等に設置してもよい。
【0026】
駆動部(8)は、上下ピストン(26)を上下移動可能に保持するものであり、具体的には、ステッピングモータ又はサーボモータが使用可能となっており、いずれにしても、膜厚制御性及び測定精度向上の観点から、高分解能の動作制御及び停止精度を有することが好ましく、具体的には、パルス信号により駆動し、最小の移動距離が0. 1μm/パルス以下のものが望ましい。
【0027】
第2平面ガラス部(9)から第1平面ガラス部(1)を透過した透過光を受光する受光素子(23)は、移動制御部の基点を求める為に設置されたものであるが、第2光源部に対向するように配置された分光光度計(24)に兼用させてもよい。その場合は、透過光率の最大値を示す波長でモニターすれば最も感度が良好となる。この場合は、第1光源部及び受光素子(23)は不要となる。
【0028】
次に、このような膜形成装置を用いた液体測色装置の構成について述べる。
この液体測色装置は、互いに並列配置され、膜形成装置の第2平面ガラス部(9)に上方から光を導入するための第1及び第2光源部(21),(22)に対し、第1光源部(21)に対向するように第1平面ガラス部1の下方に配置され、第1光源部(21)にて光を発生するとき、第2平面ガラス部(9)から第1平面ガラス部(1)を透過した透過光を受光する受光素子(23)と、第2光源部に対向するように受光素子(23)の側方に配置され、第2光源部(22)にて光を発生するとき、第2平面ガラス部(9)から第1平面ガラス部(1)を透過した透過光を分光分析するための分光光度計(24)と、受光素子(23)及び分光光度計(24)を保持する素子ホルダ(25)と、駆動部(8)を制御する一方、受光素子(23)及び分光光度計(24)から得られるデータを処理する計算機(27)とを備えている。
【0029】
第1及び第2光源部(21)、(22)は、白色光を発生する100Wのハロゲンランプ及び白色光を導入するためのライトガイドが使用されるが、発光波長範囲の比較的広いタングステンランプ又はキセノンランプなどに代えてもよい。
【0030】
分光光度計(24)は、計算機(27)により制御され、第1及び第2平面ガラス部(1)、(9)間の隙間にある着色液体を透過した透過光に関し、グレーティングとCCDアレイとが分光光量を検知し、分光透過率T(λ)を測定し、測定結果を計算機(27)に与える機能をもっている。
【0031】
なお、分光透過率T(λ)は、約400nm〜700nmの可視光領域が例えば20nm間隔で測定される。また、分光光度計(24)は、グレーティングの代わりにフィルタを用いてもよく、CCDの代わりに光電子増倍管を用いてもよい。
【0032】
【実施例】
次に、このような膜形成装置の連続測定機能を用いることにより、着色液体のある膜厚での透過率値と連続的に測定され、前記膜厚の2倍の膜厚での透過率値を測定から、この着色液体の吸収係数及び散乱係数を求め、各原着色液体ごとの基礎データに基づき着色液体の色をつくる為の各原着色液体の配合比を求める色合わせ方法について述べる。
【0033】
測定される着色液体の2つの透過率値が次の(1)式の関係を満たす膜厚を有するものとする。
2X1 = X2 …(1)
上記膜厚値は数ミクロン〜数十ミクロンの幅に入るものであるが、(1)式を満た
す限りにおいてその値は制限されない。
【0034】
1のときの分光透過率をT1、X2のときのものをT2とする。Kubelka−Munkの理論を用いると、分光透過率と膜厚、吸収係数、散乱係数の間には次の関係がある。
1 =b/(a・sinh(bSX1)+ b・cosh(bSX1))…(2)
2 =b/(a・sinh(bSX2)+ b・cosh(bSX2))…(3)
K/S =(b2 + 1)1/2 − 1 …(4)
ここで、a,b:定数、K:吸収係数、S:散乱係数、X:膜厚、
sinh:hyperboric sin、
cosh:hyperboric cos とする。
【0035】
この関係をX1及びX2の2つの条件に対して連立させ、数学的な処理を施すとb、散乱係数S及び吸収係数Kは以下のように求められる。

Figure 0004665341
以上により2つの透過率値より、着色液体の吸収係数及び散乱係数を求めることができる。
【0036】
上式は、透過率Tを吸収係数K及び散乱係数Sに変換できることを示している。続いて、上式より求められた(K/S)は着色液体の着色状態を表すものであるが、この値を用いると混色された着色液体において、ダンカンの式(8)が成り立つことが知られている。
(K/S)mix(λ)=Σ{Ci×(K/S)i(λ)} …(8)
ここで、Ciは、i番目のベースインキの配合量であり、(K/S)i(λ)はこのi番目のベースインキの着色状態(K/S)である。
(K/S)mix(λ) は、1〜n番目の各ベースインキで調合された着色溶液の着色状態である。
【0037】
例えば最小二乗法を用い、(8)式の左辺を(8)式の右辺{Σ{Ci×(K/S)i(λ)}と等しくするように、各ベースインキの基礎データを用い各ベースインキの配合比を算出する。なお、上記の配合計算方法は、コンピュータ・カラーマッチングとして、一般的に普及・確立された手法である。
【0038】
上記操作により,例えば印刷現場の色合わせ工程におけるインキの色評価を実際のラインで行え,コンピュータ・カラーマッチングシステムと組み合わせる事によりインキ自動調合計算まで可能になる.
【0039】
この配合計算の精度は、ダンカンの式を用いた計算式を基本とし、各社固有の補正方法を加えることによってより実際の値に近づけることが可能であるが、前述したように吸収係数及び散乱係数を求めるためには、(1)式が成り立たなければならないので正確にある膜厚値及びその2倍の膜厚値を得ることが前提となる。この場合測定の対象となるインキ膜は2枚の平行平板間に作成されるのでこの2枚の平行平板間隔を正確に制御することが測定上の大きなポイントになる。
【0040】
そして、2枚の平行平板間隔を正確に制御するには、2枚の透明な平行平板間隔がゼロの場合すなわち、平行平板どうしが接触した場合を決定する必要がある。本発明では、この位置関係を移動制御手段の基点(原点)とした。
【0041】
この基点の決定方法は、前記移動制御手段が2枚の平行平板間の間隔を間欠的に移動させ、移動中装置内部に取り付けられた測定手段によって受光される受光量を記憶し、その受光量が最大値に達したときの位置を前記基点(原点)とするものである。
そして、基点から(1)式を満たす膜厚値を作るべく、第2平面ガラス部(9)は移動制御手段によって上方に移動する。
【0042】
次に、本実施形態の具体例について説明する。
例えば、ポリテックス社製の建装材用水性グラビアインキ(黄、赤、藍、レジューサ)を#4のザーンカップで13秒となるように粘度調製し、適当量混色したインキで印刷を開始する。
【0043】
液体測色装置は、測色の指示により、容器の印刷インキiを可視光領域400nm〜700nmを20nm間隔で測色し、印刷インキiの膜厚5ミクロンのときの分光透過率T1(λ)及び10ミクロンのときの分光透過率T2(λ)を得た。ここで、分光透過率T1(λ)及びT2(λ)、吸収係数K(λ),散乱係数S(λ)の値は、図2に示す通りである。
【0044】
上記の測定結果から、ベースインキの基礎データを用い、コンピュータカラーマッチング計算を施すと、配合比Ci は、黄0.84%、赤74.00%、藍0.59%、レジューサ24.57%として算出された。この時点の必要インキ重量は33kgだったので、各ベースインキの調合重量 は黄0.28kg、赤24.42kg、藍0.19kg、レジューサ8.11kgであった。この計算結果に基づき計量し、調合した結果、紙製のウェブ印刷シート上での色精度は良好で、印刷刷りだしによる損紙を大幅に減少させることができた。
【0045】
上述したように本実施形態によれば、液体測色装置が、容器中から抽出した印刷インキiに光を照射して、一方が他方の2倍の膜厚をもった液膜の2つの透過率光の分光特性を測定し、その印刷インキの吸収係数及び散乱係数を求め、次にインキの着色状態の値からコンピュータカラーマッチングの手法を用い、各ベースインキの配合比Ci を算出し、その値に基づき容器内にベースインキ又はレジューサ(希釈材)を供給するので、目標となるインキの色を容易にしかも迅速に作成でき、しかも作成した色精度を上げることにより印刷刷りだしによる損紙を減少させることができる。
【0046】
また、液体測色装置は、互いに対向配置されて間隔を調節自在な2枚の透明な平行平面基板を有し、且つ前記平行平板間に着色液体を通過させるための液体供給ポート並びに液体排出ポートを備えた測定用セルと、前記平行平板間の着色液体に光を入射するための入射光学系と、前記入射光学系により光が入射されるとき、前記平行平板間の着色液体を透過する透過光の透過光率を測定するための分光光度計とを備えたので、測定セル内に着色液体を通過させることにより、測定用セルへの着色成分の付着を阻止しつつ、透過光の透過光率を測定することにより、透明性の高い着色液体にも適用させることができる。
【0047】
また、ポンプにより、インキパン(12a)の印刷インキiを膜形成装置(6)に自動供給できるので、人手を不要として現場サイドで測色を行なうことができ、また人手を不要とすることから、印刷インキiの測色を高精度に安定的に行なうことができる。
【0048】
また、第1及び第2平面ガラス部(1),(9)を互いに当接させてゼロ位置を合せてから一定の隙間を形成することにより、測色用セル内の相対的な位置関係などが経時変化する場合であっても膜厚制御に誤差を生じないので、膜厚制御の信頼性を向上させることができる。
【0049】
また、第1及び第2平面ガラス部(1),(9)としては、互いの当接面が平滑に形成されたので、本実施形態の効果を容易且つ確実に奏することができる。
【0050】
さらに、第1及び第2平面ガラス部(1),(9)は、石英ガラス、合成石英ガラス又はBK7ガラス等の透明な材質から形成されているので、本実施形態の効果を容易且つ確実に奏することができる。
【0051】
また、第1及び第2平面ガラス部(1),(9)は、印刷インキiに接する面にフッ素樹脂の薄膜からなる撥水層を備えたので、従来より洗浄性を増すことができる。
【0052】
また、駆動手段としてサーボモータを備えたので、本実施形態の効果を容易且つ確実に奏することができる。
【0053】
また、光を均一化する観点から、第1光源部(21)と受光部(23)との間の入射光軸上、あるいは第2光源部(22)と分光光度計(24)との間の透過光軸上に周知技術の積分球(例えば大塚電子(株)製)を介在させた構成としても、本発明を同様に実施して同様の効果を有することができる。なお、散乱・吸収等を起こしつつ着色液体を透過した透過光を180度取込んで測色精度を向上させる観点から、積分球は容器と一体型に設けることが好ましい。
【0054】
さらに、分光光度計(24)を素子ホルダ(25)内に保持し、光源部(21)、(22)を第2平面ガラス部(9)の上方に配置した場合を説明したが、これに限らず、分光光度計(24)と光源部(22)との配置を逆にしても、本発明を同様に実施して同様の効果を得ることができる。
【0055】
また、着色液体をインキパン(12a)の外に取出すようにサンプリングしてインキパン(12a)の外部で測定する場合について説明したが、これに限らず、着色液体をインキパン(12a)中でサンプリングしてインキパン(12a)の内部で測定する構成としても、本発明を同様に実施して同様の効果を得ることができる。
【0056】
実施例では、膜厚を2倍に設定した場合について記述したが、必ずしも2倍である必要はなく、異なった膜厚の透過率データを測定し、同様な手法を施すことで色合わせをすることが可能である。 その他、本発明はその要旨を逸脱しない範囲で種々変形して実施できる。
【0057】
【発明の効果】
以上説明したように本発明によれば、例えば印刷分野にて、印刷用の着色液体(特殊な場合を除くと具体例はインキ)の光学特性をその透過光を2種類の膜厚で直接測定することによって得ることができ、その値を用いて原着色液体の配合比を求めることができる。
【0058】
また、測定用セルへの着色成分の付着を阻止しつつ、透明性の高い着色液体にも適用できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る膜形成装置を用いた液体測色装置の断面構成を示す模式図である。
【図2】(a)は実施例における具体例を説明するためのデータ表、(b)は透過率スペクトルを示す図である。
【符号の説明】
1…第1平面ガラス部
2…底部材
3…液体供給ポート
4…液体排出ポート
5…側壁部材
6…液体ホルダ
7…固定ブラケット
8…駆動部
8a…駆動軸
9…第2平面ガラス部
10…上下移動ホルダ
11a、11b…導管
12a、12b…インキパン
13…ポンプ
14…位置センサ
21,22…光源部
23…受光素子
24…分光光度計
25…素子ホルダ
26…ログファイル
27…計算機[0001]
BACKGROUND OF THE INVENTION
For example, in the printing field, the present invention can obtain the optical characteristics of a coloring liquid for printing (a specific example is ink unless otherwise specified) by directly measuring the transmitted light, and using the value. about the color matching method enables the seeking compounding ratio of the original colored liquid.
[0002]
[Prior art]
Conventionally, color management in the color matching process of colored solutions such as paints, inks, plastics, etc. has been performed by printing the colored solution being manufactured with a simple proofing machine and measuring the color in a dry state. That is, methods such as calculating the blending ratio of the colorant from the difference between the measured color and the target color and changing the toning conditions have been adopted.
[0003]
In this type of color matching method, instead of visual observation from the viewpoint of reducing the burden on the skilled worker, there is a technique for extracting the colored liquid into a color measuring cell and measuring the color in a solution state when measuring the colored liquid. Applicable. For example, JP-A-61-56923, JP-A-61-65123, etc. disclose a method of measuring the color by immersing a light guide and a detection probe in a colored liquid.
[0004]
Japanese Patent Application Laid-Open No. 6-50819 discloses that when performing colorimetry on a highly concealing paint or the like, light is incident on the liquid surface of the colored liquid at a predetermined incident angle, and the reflected light in the vertical direction is reflected on the color sensor. A detection method is disclosed.
[0005]
[Problems to be solved by the invention]
However, the color matching method as described above is insufficient for the color measurement of the colored liquid, as described below. Therefore, there is a possibility that the blending ratio calculation accuracy of a colored liquid having optical characteristics equivalent to the target color may be reduced.
[0006]
For example, in the case of the method of immersing the light guide, since the color measurement cell cannot be washed quickly, the color component adheres to the glass of the color measurement cell and it is difficult to completely remove the adhering color component. It has become. In addition, since the discolored color is detected by the attached coloring component, the color measurement result becomes inaccurate.
[0007]
Furthermore, this method requires a wiping device for the detection probe and may damage the probe tip due to repeated wiping.
On the other hand, since the method of detecting reflected light is limited to colored liquids with high concealment properties such as paint, it cannot be applied to colored liquids with high transparency such as gravure ink. The reason is that, in the case of colored liquids with high concealment, the color applied to the support such as paper matches the color in the solution state without being affected by the color of the base, and the reflected light can be measured. However, in the case of a highly transparent colored liquid, the color applied to the support is different from the color in the solution state because it is influenced by the color of the base.
[0008]
The present invention has been made in consideration of the above-mentioned circumstances, and a colored liquid is once printed on paper, and a measured value obtained by a spectral reflectometer is not used as a substitute value for the optical characteristics, but a transparent colored liquid in a wide concentration range. In order to obtain the true optical characteristics, the apparatus and color which can directly and easily measure the transmitted light with the same film thickness continuously and calculate the blending ratio of the original colored liquid using the measured value. The purpose is to provide a matching method.
[0009]
[Means for Solving the Problems]
Invention, a transparent two parallel plates which face each other corresponding to claim 1,
A movement control means for adjusting an interval between the two parallel plates;
A measuring cell with a liquid supply port and the liquid outlet port for passage of a colored liquid between the parallel plates,
An incident optical system for entering light into the colored liquid between the parallel plates;
A highly transparent colored liquid comprising: a spectrophotometer for measuring a transmittance of transmitted light that passes through the colored liquid between the parallel plates when light is incident by the incident optical system; Using a liquid colorimetry device that measures by transmission in the state,
In predicting the blending ratio of mixed liquids obtained by mixing multiple primary colored liquids,
Measure the transmittance value at a certain film thickness (X1) of the mixed color liquid between the parallel plates,
Furthermore, the transmittance value at the film thickness (X2) n times the film thickness (X1) is continuously measured,
Obtain the absorption coefficient and scattering coefficient of the color mixture liquid,
A color matching method characterized in that a blending ratio of each original colored liquid for producing the color of the mixed color liquid is obtained based on basic data for each original colored liquid .
[0012]
According to a second aspect of the present invention, there is provided the color matching method according to the first aspect, wherein n ≦ 2 in the relationship between the certain film thickness (X1) and the film thickness (X2) of n times. It is.
[0013]
In addition, as a specific measure for measuring the color of the colored liquid, for example, the colored liquid is filled between transparent parallel plates in the colored liquid in a container to form a thin film of the colored liquid. The structure which measures the transmitted light rate of is preferable.
[0014]
(Function)
Accordingly, in the invention corresponding to claim 1, by taking the above-described means, the liquid color measuring device samples the colored liquid in the container and irradiates the colored liquid with the light as it is, and the liquid film Measure the spectral transmittance of the light that has passed through, and after the measurement, the colored liquid is discharged from the discharge port and washed with a solvent, etc., so that the transmitted light with the same film thickness can be measured directly and easily continuously and accurately. be able to.
[0015]
In the present invention, the thickness of the colored liquid layer to be measured (referred to as film thickness in the present invention) is an important factor in the formula described below, and is used to accurately determine the distance between two parallel plates. When the measuring means detects the maximum light intensity, that is, when two parallel flat plates come into contact with each other and the interval becomes zero, the movement control means stops moving downward, and the base point (the origin) ) And the amount of upward movement is determined to control the film thickness.
[0016]
Further , in order to obtain the absorption coefficient and the scattering coefficient, which are optical characteristics of the colored liquid, it is generally necessary to obtain both the transmitted light rate and the reflected light rate. However , in the invention corresponding to claim 1, the colored liquid The absorption coefficient and the scattering coefficient of the color mixture liquid can be obtained from the transmittance values of two film thicknesses measured continuously using a color measuring device, and the color mixture liquid is toned using the values. The mixing ratio of the original colored liquid can be determined by computer processing.
[0017]
Moreover, it is preferable that one of the two film thicknesses is not more than twice the other. When it becomes more than 2 times, it gradually deviates from the Kubelka-Munk theory described below, and the relationship between spectral transmittance, film thickness, extinction coefficient, and scattering coefficient collapses. When doing so, make it twice or less.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a cross-sectional configuration of a liquid colorimetric apparatus using a film forming apparatus according to an embodiment of the present invention.
[0019]
As shown in FIG. 1, this film forming apparatus has first and second flat glass portions (1) and (9) made of two transparent parallel flat substrates that are arranged opposite to each other and can be adjusted in distance. And a liquid supply port (3) and a liquid discharge port (4) for allowing the colored liquid to pass therethrough are formed on the periphery of the bottom member (2) holding the first glass part (1). A liquid holder (6) composed of a side wall member (5), a fixed bracket (7) fixed to the side wall member (5), and a fixed bracket (7), and a drive unit (8a) which is movable in the vertical direction. And a drive shaft (8a), a peripheral portion is slidable in the vertical direction along the inner peripheral portion of the side wall member (5), and the second flat glass portion (9) ) Facing the first flat glass part (1) and kept parallel to the first flat glass part (1). An up-and-down moving holder (10), an incident optical system for entering light into the colored liquid between the first and second flat glass portions (1) and (9) in the liquid holder (6), and the incident optical system When light is incident by the light receiving element, the light receiving element (23) that receives the transmitted light that has passed through the first flat glass part (1) from the second flat glass part (9) and the second light source part are received. When the second light source part (22) generates light at the side of the element (23), the transmitted light transmitted from the second flat glass part (9) through the first flat glass part (1) is split. A spectrophotometer (24) for analysis, a light receiving element (23), an element holder (25) for holding the spectrophotometer, and a drive unit (8) are controlled, while the light receiving element (23) and the spectrophotometer And a computer (27) for processing data obtained from (24).
[0020]
Here, the first and second flat glass portions (1) and (9) are made of a transparent material such as quartz glass, synthetic quartz glass or BK7 glass. Note that at least the first flat glass portion (1) and the second flat glass portion (9) arranged opposite to each other in parallel therewith may be in contact with each other as in the zero alignment of the gap, and so on. In addition, a material having sufficient hardness is preferable, and the contact surfaces of each other are formed smoothly.
[0021]
Further, the first and second flat glass portions (1) and (9), the bottom member (2), the side wall member (5), and the vertical movement holder (10) are in the internal space (measuring cell) in contact with the colored liquid. A water repellent layer (not shown) made of a fluororesin thin film (several nm to several tens of nm thick) is provided on the surface.
[0022]
The liquid supply port (3) and the liquid discharge port (4) are formed so as to communicate the inner peripheral portion and the outer peripheral portion of the side wall member (5), respectively, and are arranged to face each other via the optical axis.
One end of a first conduit (11a) for introducing, for example, printing ink i as a colored liquid is connected to the liquid supply port (3). The other end of the first conduit (11a) communicates with an ink pan (12a) that stores, for example, printing ink i as a colored liquid supply source.
[0023]
On the other hand, the liquid discharge port (4) is connected to one end of the second conduit (11b).
The other end of the second conduit (11b) communicates with the waste liquid ink pan (12b).
[0024]
In the present invention, the colored liquid is formed in a very thin film thickness suitable for measurement. For this reason, although depending on the viscosity of the colored liquid, if the gap filling the colored liquid is first held at a value suitable for measurement, it becomes difficult to subsequently cause the colored liquid to flow into the gap.
Accordingly, when filling the gap with the colored liquid, it is important to widen the gap in advance and then narrow the gap after the colored liquid is introduced. For example, in the case of ordinary gravure ink, it is possible to easily flow in by opening a gap of about 1 mm in advance.
[0025]
The fixed bracket (7) includes a position sensor (14) for detecting the vertical movement holder (10) positioned at the ascending limit and sending it to a computer to be described later. The position sensor (14) is not limited to the fixed bracket (7) and may be installed on the liquid holder (6) or the like for convenience.
[0026]
The drive unit (8) holds the upper and lower pistons (26) so as to be movable up and down. Specifically, a stepping motor or a servo motor can be used. In addition, from the viewpoint of improving measurement accuracy, it is preferable to have high-resolution operation control and stop accuracy. Those of 1 μm / pulse or less are desirable.
[0027]
The light receiving element (23) that receives the transmitted light that has passed through the first flat glass portion (1) from the second flat glass portion (9) is installed to obtain the base point of the movement control unit. The spectrophotometer (24) arranged so as to face the two light source units may also be used. In that case, the best sensitivity is obtained by monitoring at the wavelength showing the maximum value of the transmitted light rate. In this case, the first light source unit and the light receiving element (23) are not necessary.
[0028]
Next, the configuration of a liquid color measuring device using such a film forming apparatus will be described.
This liquid colorimetric device is arranged in parallel with each other, with respect to the first and second light source parts (21), (22) for introducing light into the second flat glass part (9) of the film forming apparatus from above. When the first light source unit (21) emits light and is disposed below the first flat glass unit 1 so as to oppose the first light source unit (21), the first flat glass unit (9) starts with the first. A light receiving element (23) that receives the transmitted light that has passed through the flat glass part (1) and a side of the light receiving element (23) so as to face the second light source part, and the second light source part (22) A spectrophotometer (24) for spectrally analyzing the transmitted light transmitted from the second flat glass part (9) through the first flat glass part (1), the light receiving element (23), and the spectrophotometer. While controlling the element holder (25) holding the photometer (24) and the drive unit (8), the light receiving element (2 ) And and a computer (27) for processing data obtained from the spectrophotometer (24).
[0029]
The first and second light source sections (21) and (22) use a 100 W halogen lamp for generating white light and a light guide for introducing white light, but a tungsten lamp having a relatively wide emission wavelength range. Alternatively, a xenon lamp may be used.
[0030]
The spectrophotometer (24) is controlled by the computer (27) and relates to the transmitted light transmitted through the colored liquid in the gap between the first and second flat glass portions (1) and (9). Has a function of detecting the spectral light amount, measuring the spectral transmittance T (λ), and giving the measurement result to the computer (27).
[0031]
The spectral transmittance T (λ) is measured in the visible light region of about 400 nm to 700 nm at intervals of 20 nm, for example. The spectrophotometer (24) may use a filter instead of the grating, and may use a photomultiplier tube instead of the CCD.
[0032]
【Example】
Next, by using the continuous measurement function of such a film forming apparatus, the transmittance value at a certain film thickness of the colored liquid is continuously measured, and the transmittance value at twice the film thickness is measured. A color matching method for obtaining an absorption coefficient and a scattering coefficient of this colored liquid from the measurement and obtaining a blending ratio of each original colored liquid for producing a color of the colored liquid based on basic data for each original colored liquid will be described.
[0033]
It is assumed that the two transmittance values of the colored liquid to be measured have a film thickness that satisfies the relationship of the following equation (1).
2X 1 = X 2 (1)
The film thickness value falls within the range of several microns to several tens of microns, but the value is not limited as long as the expression (1) is satisfied.
[0034]
The spectral transmittance at X 1 is T 1 , and the spectral transmittance at X 2 is T 2 . When the Kubelka-Munk theory is used, the following relationship exists between the spectral transmittance, the film thickness, the absorption coefficient, and the scattering coefficient.
T 1 = b / (a · sinh (bSX 1 ) + b · cosh (bSX 1 )) (2)
T 2 = b / (a · sinh (bSX 2 ) + b · cosh (bSX 2 )) (3)
K / S = (b 2 +1) 1/2 −1 (4)
Where a, b: constant, K: absorption coefficient, S: scattering coefficient, X: film thickness,
sinh: hyperbolic sin,
cosh: hyperbolic cos.
[0035]
When this relationship is made simultaneous with respect to the two conditions X 1 and X 2 and mathematical processing is performed, b, the scattering coefficient S, and the absorption coefficient K are obtained as follows.
Figure 0004665341
As described above, the absorption coefficient and the scattering coefficient of the colored liquid can be obtained from the two transmittance values.
[0036]
The above equation shows that the transmittance T can be converted into an absorption coefficient K and a scattering coefficient S. Subsequently, (K / S) obtained from the above equation represents the coloring state of the colored liquid, but when this value is used, it is known that Duncan's equation (8) holds in the mixed colored liquid. It has been.
(K / S) mix (λ) = Σ {C i × (K / S) i (λ)} (8)
Here, C i is a blending amount of the i-th base ink, and (K / S) i (λ) is a coloring state (K / S) of the i-th base ink.
(K / S) mix (λ) is the coloring state of the coloring solution prepared with each of the first to nth base inks.
[0037]
For example, using the least squares method, the basic data of each base ink is used so that the left side of equation (8) is equal to the right side of equation (8) {Σ {C i × (K / S) i (λ)}. The blending ratio of each base ink is calculated. Note that the above-described blending calculation method is a method that is generally spread and established as computer color matching.
[0038]
With the above operation, for example, the color evaluation of ink in the color matching process at the printing site can be performed on an actual line, and by combining with a computer color matching system, automatic ink blending calculation can be performed.
[0039]
The accuracy of this blending calculation is based on the calculation formula using Duncan's formula, and it can be made closer to the actual value by adding a correction method unique to each company, but as described above, the absorption coefficient and scattering coefficient (1) must be satisfied in order to obtain the value, it is premised that a certain film thickness value and a film thickness value twice that value are obtained. In this case, since the ink film to be measured is formed between two parallel flat plates, it is a major point in measurement to accurately control the distance between the two parallel flat plates.
[0040]
In order to accurately control the distance between the two parallel flat plates, it is necessary to determine when the distance between the two transparent parallel flat plates is zero, that is, when the parallel flat plates are in contact with each other. In the present invention, this positional relationship is used as the base point (origin) of the movement control means.
[0041]
In this base point determination method, the movement control means intermittently moves the interval between two parallel plates, stores the received light amount received by the measuring means attached inside the apparatus during movement, and the received light amount. The position at which the maximum value is reached is the base point (origin).
Then, the second flat glass portion (9) is moved upward by the movement control means in order to make a film thickness value satisfying the expression (1) from the base point.
[0042]
Next, a specific example of this embodiment will be described.
For example, water viscosity gravure ink for construction materials (yellow, red, indigo, reducer) manufactured by Polytex is adjusted to 13 seconds with # 4 Zaan cup, and printing is started with ink mixed with appropriate amount .
[0043]
The liquid color measuring device measures the color of the printing ink i in the container in the visible light region of 400 nm to 700 nm at intervals of 20 nm according to the color measurement instruction, and the spectral transmittance T 1 (λ) when the thickness of the printing ink i is 5 microns. ) And 10 micron spectral transmittance T 2 (λ) was obtained. Here, the values of the spectral transmittances T 1 (λ) and T 2 (λ), the absorption coefficient K (λ), and the scattering coefficient S (λ) are as shown in FIG.
[0044]
From the above measurement results, when the computer color matching calculation is performed using the basic data of the base ink, the blending ratio C i is 0.84% yellow, 74.00% red, 0.59% indigo, and 24.57 reducer. Calculated as a percentage. Since the required ink weight at this time was 33 kg, the blended weight of each base ink was 0.28 kg yellow, 24.42 kg red, 0.19 kg indigo, and 8.11 kg reducer. As a result of weighing and blending based on this calculation result, the color accuracy on the paper web print sheet was good, and the loss paper due to the printing out could be greatly reduced.
[0045]
As described above, according to the present embodiment, the liquid color measurement device irradiates the printing ink i extracted from the container with light, and one of the two transmissions of the liquid film having a film thickness twice as large as the other. Measure the spectral characteristics of the rate light, determine the absorption coefficient and scattering coefficient of the printing ink, then calculate the blend ratio C i of each base ink using the computer color matching method from the value of the color state of the ink, Based on the value, base ink or reducer (diluent) is supplied into the container, so that the target ink color can be created easily and quickly, and the printed paper is printed out by increasing the color accuracy. Can be reduced.
[0046]
Further, the liquid colorimetric apparatus has two transparent parallel flat substrates that are arranged opposite to each other and can freely adjust the interval, and a liquid supply port and a liquid discharge port for allowing the colored liquid to pass between the parallel plates A measurement cell comprising: an incident optical system for entering light into the colored liquid between the parallel plates; and a transmission that transmits the colored liquid between the parallel plates when light is incident by the incident optical system. A spectrophotometer for measuring the transmitted light transmittance of light, so that the colored liquid is allowed to pass through the measurement cell, thereby preventing the colored component from adhering to the measurement cell and transmitting the transmitted light. By measuring the rate, it can also be applied to colored liquids with high transparency.
[0047]
Moreover, since the printing ink i of the ink pan (12a) can be automatically supplied to the film forming apparatus (6) by the pump, it is possible to perform color measurement on the site side without the need for manual labor, and since no manual labor is required, Color measurement of the printing ink i can be stably performed with high accuracy.
[0048]
In addition, the first and second flat glass portions (1) and (9) are brought into contact with each other and the zero position is adjusted, and then a certain gap is formed, so that the relative positional relationship within the colorimetric cell, etc. Even in the case where the temperature changes with time, no error occurs in the film thickness control, so that the reliability of the film thickness control can be improved.
[0049]
Moreover, as the first and second flat glass portions (1) and (9), the contact surfaces are formed smoothly, so that the effects of the present embodiment can be easily and reliably achieved.
[0050]
Furthermore, since the first and second flat glass portions (1) and (9) are made of a transparent material such as quartz glass, synthetic quartz glass, or BK7 glass, the effects of the present embodiment can be easily and reliably achieved. Can play.
[0051]
Further, the first and second flat glass portions (1) and (9) are provided with a water-repellent layer made of a fluororesin thin film on the surface in contact with the printing ink i.
[0052]
In addition, since the servo motor is provided as the driving means, the effects of the present embodiment can be easily and reliably achieved.
[0053]
Further, from the viewpoint of uniformizing the light, it is on the incident optical axis between the first light source part (21) and the light receiving part (23), or between the second light source part (22) and the spectrophotometer (24). Even if a well-known integrating sphere (for example, manufactured by Otsuka Electronics Co., Ltd.) is interposed on the transmitted optical axis, the present invention can be implemented in the same manner to achieve the same effect. Note that the integrating sphere is preferably provided integrally with the container from the viewpoint of improving the colorimetric accuracy by capturing the transmitted light that has passed through the colored liquid while causing scattering and absorption.
[0054]
Furthermore, the case where the spectrophotometer (24) is held in the element holder (25) and the light source parts (21) and (22) are arranged above the second flat glass part (9) has been described. Not limited to this, even if the arrangement of the spectrophotometer (24) and the light source unit (22) is reversed, the present invention can be similarly implemented to obtain the same effect.
[0055]
Moreover, although the case where it sampled so that a colored liquid was taken out out of an ink pan (12a) and measured outside the ink pan (12a) was demonstrated, not only this but a colored liquid is sampled in an ink pan (12a). The same effect can be obtained by carrying out the present invention in the same manner as the configuration for measuring inside the ink pan (12a).
[0056]
In the embodiment, the case where the film thickness is set to double has been described. However, it is not always necessary that the film thickness is doubled, and transmittance data of different film thicknesses are measured, and color matching is performed by applying a similar method. It is possible. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.
[0057]
【The invention's effect】
As described above, according to the present invention, for example, in the printing field, the optical characteristics of a coloring liquid for printing (a specific example is ink except for special cases) is directly measured with two kinds of film thickness. The blending ratio of the original colored liquid can be obtained using the value.
[0058]
Further, the present invention can be applied to a colored liquid having high transparency while preventing adhesion of colored components to the measurement cell.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional configuration of a liquid colorimetric apparatus using a film forming apparatus according to an embodiment of the present invention.
FIG. 2A is a data table for explaining a specific example in the embodiment, and FIG. 2B is a diagram showing a transmittance spectrum.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st plane glass part 2 ... Bottom member 3 ... Liquid supply port 4 ... Liquid discharge port 5 ... Side wall member 6 ... Liquid holder 7 ... Fixed bracket 8 ... Drive part 8a ... Drive shaft 9 ... 2nd plane glass part 10 ... Vertical movement holders 11a, 11b ... conduits 12a, 12b ... ink pan 13 ... pump 14 ... position sensors 21, 22 ... light source 23 ... light receiving element 24 ... spectrophotometer 25 ... element holder 26 ... log file 27 ... computer

Claims (2)

互いに対向配置された透明な2枚の平行平板
前記2枚の平行平板間の間隔を調節自在にする移動制御手段と、
前記平行平板間着色液体を通過させるための液体供給ポート並びに液体排出ポートを備えた測定用セルと、
前記平行平板間の着色液体に光を入射するための入射光学系と、
前記入射光学系により光が入射されるとき、前記平行平板間の着色液体を透過する透過光の透過光率を測定するための分光光度計と、を備えた、透明性の高い着色液体を液体状態のまま透過で測定する液体測色装置を用いて、
複数の原着色液体を混色して得られる混色液体の配合比を予測するにあたり、
前記平行平板間の混色液体のある膜厚(X1)での透過率値を測定し、
さらに、前記膜厚(X1)のn倍の膜厚(X2)での透過率値を連続的に測定し、
前記混色液体の吸収係数及び散乱係数を求め、
各原着色液体ごとの基礎データに基づき前記混色液体の色をつくる為の各原着色液体の配合比を求めることを特徴とする色合わせ方法。
Two parallel flat transparent which face each other,
A movement control means for adjusting an interval between the two parallel plates;
A measuring cell with a liquid supply port and the liquid outlet port for passage of a colored liquid between the parallel plates,
An incident optical system for entering light into the colored liquid between the parallel plates;
A highly transparent colored liquid comprising: a spectrophotometer for measuring a transmittance of transmitted light that passes through the colored liquid between the parallel plates when light is incident by the incident optical system; Using a liquid colorimetry device that measures by transmission in the state,
In predicting the blending ratio of mixed liquids obtained by mixing multiple primary colored liquids,
Measure the transmittance value at a certain film thickness (X1) of the mixed color liquid between the parallel plates,
Furthermore, the transmittance value at the film thickness (X2) n times the film thickness (X1) is continuously measured,
Obtain the absorption coefficient and scattering coefficient of the color mixture liquid,
A color matching method characterized by obtaining a blending ratio of each original colored liquid for producing the color of the mixed color liquid based on basic data for each original colored liquid.
前記、ある膜厚(X1)とn倍の膜厚(X2)の関係において、n≦2であることを特徴とする請求項に記載の色合わせ方法。Wherein, in the context of certain thickness (X1) n times the thickness (X2), color matching method according to claim 1, characterized in that the n ≦ 2.
JP2001155064A 2001-05-24 2001-05-24 Color matching method using liquid color measuring device Expired - Fee Related JP4665341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155064A JP4665341B2 (en) 2001-05-24 2001-05-24 Color matching method using liquid color measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155064A JP4665341B2 (en) 2001-05-24 2001-05-24 Color matching method using liquid color measuring device

Publications (2)

Publication Number Publication Date
JP2002350233A JP2002350233A (en) 2002-12-04
JP4665341B2 true JP4665341B2 (en) 2011-04-06

Family

ID=18999312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155064A Expired - Fee Related JP4665341B2 (en) 2001-05-24 2001-05-24 Color matching method using liquid color measuring device

Country Status (1)

Country Link
JP (1) JP4665341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230018695A (en) * 2021-07-30 2023-02-07 고려대학교 산학협력단 Transmission infrared spectroscopy for real-time chemical reaction flow solution monitoring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003372B4 (en) 2005-01-24 2024-04-18 Gunther Krieg Method and device for controlling the concentration of components of additives in a pressure process fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313352A (en) * 1995-03-10 1996-11-29 Toppan Printing Co Ltd Liquid colorimetric method and device and color matching method and device using these
JPH09257705A (en) * 1996-03-18 1997-10-03 Ricoh Co Ltd Fluid sample concentration measuring device
JP2000241246A (en) * 1999-02-23 2000-09-08 Toppan Printing Co Ltd Film forming device, and device and method for liquid colorimetry
JP2001091358A (en) * 1999-09-24 2001-04-06 Jasco Corp Toning method and equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313352A (en) * 1995-03-10 1996-11-29 Toppan Printing Co Ltd Liquid colorimetric method and device and color matching method and device using these
JPH09257705A (en) * 1996-03-18 1997-10-03 Ricoh Co Ltd Fluid sample concentration measuring device
JP2000241246A (en) * 1999-02-23 2000-09-08 Toppan Printing Co Ltd Film forming device, and device and method for liquid colorimetry
JP2001091358A (en) * 1999-09-24 2001-04-06 Jasco Corp Toning method and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230018695A (en) * 2021-07-30 2023-02-07 고려대학교 산학협력단 Transmission infrared spectroscopy for real-time chemical reaction flow solution monitoring
KR102532353B1 (en) * 2021-07-30 2023-05-15 고려대학교 산학협력단 Transmission infrared spectroscopy for real-time chemical reaction flow solution monitoring

Also Published As

Publication number Publication date
JP2002350233A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
EP2219869B1 (en) Language and method for measuring the viscosity of printing ink during the printing and ink correction process
US10837898B2 (en) Sensor for a virtually simultaneous measurement of a transmission and/or forward scattering and/or remission and for a simultaneous measurement of the transmission and forward scattering or transmission and remission of a liquid sample
GB2150688A (en) Photoelectric monitoring of emulsions
US6867861B2 (en) Method and apparatus for characterizing the color properties of fluids
JP4665341B2 (en) Color matching method using liquid color measuring device
JP2007046979A (en) Automatic correction method for dispensed amount and dispenser having such function
US4715710A (en) Pump colorimetric analyzer
US20180266939A1 (en) Method and device for determining a substance concentration or a substance in a liquid medium
JP2003194709A (en) Optical analyzing cell and optical analyzing system using the same and its method
JP2001212937A (en) Apparatus and method for correcting color
JP2000246871A (en) Color correcting apparatus and method therefor
JP2002098589A (en) Method and device for color correction
JP2004271478A (en) Device and method for color correction
CN103674861B (en) The assay method of absorbance
JP2003108239A (en) Control apparatus and method for viscosity of colored liquid
JP2001091358A (en) Toning method and equipment
JP2003156394A (en) Method and instrument for liquid colorimetry
JP2000241246A (en) Film forming device, and device and method for liquid colorimetry
JPH08313352A (en) Liquid colorimetric method and device and color matching method and device using these
JPH0894441A (en) Method and apparatus for measurement of color of liquid
JPH0650819A (en) Liquid colorimetry and device therefor
JP3269831B2 (en) Method and apparatus for controlling ink pigment concentration
JPH10213481A (en) Liquid color measuring device and method for correcting color of colored liquid
JP2002107290A (en) Colored liquid replenishing device and colored liquid replenishing method
JP2000241320A (en) Film-forming device, and liquid colorimetry device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees