JP4665160B2 - Apparatus and method for measuring film forming speed in film forming apparatus - Google Patents

Apparatus and method for measuring film forming speed in film forming apparatus Download PDF

Info

Publication number
JP4665160B2
JP4665160B2 JP2005021207A JP2005021207A JP4665160B2 JP 4665160 B2 JP4665160 B2 JP 4665160B2 JP 2005021207 A JP2005021207 A JP 2005021207A JP 2005021207 A JP2005021207 A JP 2005021207A JP 4665160 B2 JP4665160 B2 JP 4665160B2
Authority
JP
Japan
Prior art keywords
receiving
unit
transmission
substrate
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005021207A
Other languages
Japanese (ja)
Other versions
JP2006206969A5 (en
JP2006206969A (en
Inventor
修 白井
Original Assignee
株式会社昭和真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和真空 filed Critical 株式会社昭和真空
Priority to JP2005021207A priority Critical patent/JP4665160B2/en
Publication of JP2006206969A publication Critical patent/JP2006206969A/en
Publication of JP2006206969A5 publication Critical patent/JP2006206969A5/ja
Application granted granted Critical
Publication of JP4665160B2 publication Critical patent/JP4665160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は基板上に堆積する物質の膜厚又は成膜速度を測定する装置および方法に関する。   The present invention relates to an apparatus and a method for measuring a film thickness or a deposition rate of a substance deposited on a substrate.

薄膜の成膜中に膜厚および成膜速度をモニタする方法として、従来から水晶振動子が用いられている。これは、水晶振動子の固有振動数がその質量によって変化することを利用するものであり、水晶振動子に堆積する薄膜によって生じる振動周波数の変化を、基板に堆積する薄膜の膜厚および成膜速度に換算するものである。   Conventionally, a crystal resonator has been used as a method for monitoring the film thickness and the film formation rate during the formation of a thin film. This utilizes the fact that the natural frequency of a crystal resonator changes with its mass, and changes in the vibration frequency caused by the thin film deposited on the crystal resonator It is converted to speed.

基板に堆積する薄膜の成膜速度および膜厚を精度良くモニタするためには、水晶振動子を出来る限り基板に近づけることが望ましいが、成膜時に基板位置が変化する構成では内部の電気ケーブルの引き回し等が困難であるため、水晶振動子を基板から離れた位置に固定配置していた。この場合、水晶振動子に堆積する膜厚と基板に堆積する膜厚が異なるため、膜厚コントローラに予め補正値を入力する必要があり、補正値の入力が煩わしいばかりでなく測定精度が悪いという問題があった。こうした問題を解決するため、成膜時に基板位置が変化する構成であっても基板と共に水晶振動子を移動させ、水晶振動子と基板とを常に等しい成膜条件下に位置させる構成が、例えば特許文献1から3に開示されている。   In order to accurately monitor the deposition rate and thickness of the thin film deposited on the substrate, it is desirable to place the crystal unit as close to the substrate as possible. However, in the configuration where the substrate position changes during deposition, the internal electrical cable Since it is difficult to route, the crystal resonator is fixedly arranged at a position away from the substrate. In this case, since the film thickness deposited on the crystal resonator is different from the film thickness deposited on the substrate, it is necessary to input a correction value in advance to the film thickness controller, which is not only troublesome to input the correction value but also has poor measurement accuracy. There was a problem. In order to solve such a problem, even if the substrate position changes during film formation, a configuration in which the crystal resonator is moved together with the substrate and the crystal resonator and the substrate are always positioned under the same film formation conditions is, for example, a patent Documents 1-3 are disclosed.

特許文献1は、連続式スパッタ装置に於ける膜厚確認方法に関し、基板を取り付けたトレーに水晶振動子を取り付け、トレーがスパッタ電極を通過したときに、水晶振動子に膜厚コントローラから延びる接触子を接触させて基板に成膜された膜厚を確認するものである。   Patent Document 1 relates to a film thickness confirmation method in a continuous sputtering apparatus, in which a crystal resonator is attached to a tray to which a substrate is attached, and when the tray passes through a sputter electrode, contact extending from the film thickness controller to the crystal resonator. The thickness of the film formed on the substrate is confirmed by contacting the child.

特許文献2は、蒸着室内部に膜厚モニタおよび膜厚モニタの情報を送信する無線方式の送信機を設置し、蒸着室内部または外部に設置した受信機に膜厚モニタの情報を伝送するものである。   In Patent Document 2, a film thickness monitor and a wireless transmitter that transmits information on the film thickness monitor are installed inside the vapor deposition chamber, and information on the film thickness monitor is transmitted to a receiver installed inside or outside the vapor deposition chamber. It is.

特許文献3は、真空チャンバー内に被処理基板表面の情報である温度、膜厚、圧力、フローティングポテンシャル等を計測するためのセンサーを配し、センサーが計測したデータを真空チャンバー外に設けた受信機に無線で送信するものである。実施例では、センサー回路、変調回路、送信回路、および送信アンテナにより構成される送信機と、受信アンテナ、受信回路、復調回路、および処理・表示手段により構成される受信機が示されている。
特許第3292925号 特開平09−256155号 特開平06−76193号
In Patent Document 3, a sensor for measuring temperature, film thickness, pressure, floating potential, etc., which is information on the surface of a substrate to be processed is arranged in a vacuum chamber, and the data measured by the sensor is provided outside the vacuum chamber. It is transmitted wirelessly to the machine. In the embodiment, a transmitter including a sensor circuit, a modulation circuit, a transmission circuit, and a transmission antenna, and a receiver including a reception antenna, a reception circuit, a demodulation circuit, and processing / display means are shown.
Japanese Patent No. 3292925 JP 09-256155 A Japanese Patent Laid-Open No. 06-76193

薄膜デバイスに要求される仕様が厳しくなるに従い、成膜された薄膜の特性は単に膜厚だけでは無く、膜の充填密度、屈折率といった膜の諸特性が極めて重要視されており、これらの膜の諸特性は成膜速度に大きく左右されることから、リアルタイムで成膜速度を監視することが極めて重要である。   As the specifications required for thin film devices become stricter, not only the film thickness but also the film characteristics such as film packing density and refractive index are regarded as very important. Since these characteristics greatly depend on the film formation speed, it is extremely important to monitor the film formation speed in real time.

然しながら特許文献1では、成膜を終えた後、水晶振動子が組み込まれたトレーが膜厚コントローラから延びる接触子と接触する位置まで移動しなければ水晶振動子の振動周波数測定を行うことができないため、リアルタイムでの成膜速度監視が不可能であった。   However, in Patent Document 1, after the film formation is completed, the vibration frequency of the crystal resonator cannot be measured unless the tray in which the crystal resonator is incorporated moves to a position where the tray extends from the film thickness controller. Therefore, it is impossible to monitor the film formation speed in real time.

特許文献2は膜厚モニタの情報を無線伝送するため成膜中の膜厚測定を可能とするが、膜厚モニタの送信機が基板と共に公転かつ定期的に反転する過程のいずれかで伝送波が基板ホルダ等により遮蔽される位置が存在し、厳密にはリアルタイムで成膜速度を監視することができない。また、基板が公転かつ反転するため、受信機送信機間距離が常に変化してしまう。例えば成膜装置においては、電子銃を用いるものや、プラズマを生成するものがあるが、電子銃のノイズやプラズマ等の影響に加えて受信機送信機間距離が変化してしまうと、伝送波を安定して送受信できず測定精度に影響を及ぼしてしまう。   Patent Document 2 enables film thickness measurement during film formation because the film thickness monitor information is transmitted wirelessly. However, the transmission wave is transmitted in one of the processes in which the transmitter of the film thickness monitor revolves with the substrate periodically. However, there is a position where the film is shielded by a substrate holder or the like, and it is not possible to monitor the film formation speed in real time. Further, since the substrate revolves and reverses, the distance between the receiver and the transmitter always changes. For example, some film forming apparatuses use an electron gun or generate plasma. If the distance between the transmitter and the transmitter changes in addition to the influence of noise or plasma of the electron gun, the transmission wave Cannot be transmitted and received stably, affecting measurement accuracy.

特許文献3についても、位置変化する送信機から情報を受信するということに関して、遮蔽物や受信機送信機間距離を考慮するという内容を示唆する記載はない。また、受信機が真空チャンバー外に配置されるため、例えば成膜中の基板搬送距離が大きい場合などは成膜の最初から最後までリアルタイムで成膜速度を監視することが困難である。   Also in Patent Document 3, there is no description suggesting the contents of considering the shielding object and the distance between the transmitter and the transmitter with respect to receiving information from the transmitter whose position changes. Further, since the receiver is disposed outside the vacuum chamber, for example, when the substrate transport distance during film formation is large, it is difficult to monitor the film formation speed in real time from the beginning to the end of film formation.

本発明は、安定した測定手段により、成膜中リアルタイムで膜厚又は成膜速度を監視することを目的とするものである。
本発明の第1の側面は、発振回路を有する水晶振動子上に堆積する物質の膜厚又は膜厚変化量をモニタする測定装置であって、水晶振動子の振動周波数を送信する送信手段、水晶振動子および送信手段を連動して移動させる移動手段、並びに、水晶振動子の振動周波数を受信する受信手段を有し、水晶振動子上への物質堆積時に送信手段の送信部が移動する移動経路内の任意の一点と受信手段の受信部とが常に略一定距離を保つように構成した。
An object of the present invention is to monitor a film thickness or a film formation speed in real time during film formation by a stable measuring means.
A first aspect of the present invention is a measuring apparatus for monitoring the thickness or amount of change in thickness of a substance deposited on a crystal resonator having an oscillation circuit, the transmitting means for transmitting the vibration frequency of the crystal resonator, A moving unit that moves the quartz crystal unit and the transmitting unit in conjunction with each other, and a receiving unit that receives the vibration frequency of the quartz crystal unit, and the transmission unit of the transmitting unit moves when the substance is deposited on the crystal unit. An arbitrary point in the path and the receiving unit of the receiving means are always kept at a substantially constant distance.

本発明の第2の側面は、真空槽、基板の成膜手段、および基板の移動手段を有する真空装置において、基板上に堆積する物質の膜厚又は膜厚変化量をモニタする測定装置であって、発振回路を有する水晶振動子、水晶振動子の振動周波数を送信する送信手段、水晶振動子の振動周波数を受信する受信手段を有し、水晶振動子を基板に近接配置し、移動手段は基板、水晶振動子、および送信手段を連動して移動させ、基板上への成膜時に送信手段の送信部が移動する移動経路内の任意の一点と受信機の受信部とが常に略一定距離を保つように構成し、水晶振動子上に堆積する物質の膜厚又は膜厚変化量をモニタすることにより基板上に堆積する物質の膜厚又は膜厚変化量をモニタする構成とした。   According to a second aspect of the present invention, there is provided a measuring apparatus for monitoring a film thickness or a film thickness change amount of a substance deposited on a substrate in a vacuum apparatus having a vacuum chamber, a substrate film forming unit, and a substrate moving unit. A crystal unit having an oscillation circuit, a transmission unit that transmits a vibration frequency of the crystal unit, a reception unit that receives a vibration frequency of the crystal unit, the crystal unit is disposed close to the substrate, and the moving unit is The substrate, the crystal unit, and the transmission unit are moved in conjunction with each other, and any one point in the moving path along which the transmission unit of the transmission unit moves during film formation on the substrate is always at a substantially constant distance. The film thickness of the substance deposited on the crystal resonator or the amount of change in the film thickness is monitored to monitor the film thickness of the substance deposited on the substrate.

本発明の第3の側面は、第1乃至第2いずれかの側面において、受信部は送信部の移動経路に覆設され、移動経路に対して所定の距離を有して対面する面体構造とした。   According to a third aspect of the present invention, in any one of the first and second aspects, the receiving unit is covered with a moving path of the transmitting unit, and has a face body structure facing the moving path with a predetermined distance. did.

本発明の第4の側面は、第1乃至第2いずれかの側面において、送信部を送信側アンテナとし、受信部を受信側アンテナとし、水晶振動子の振動周波数を電磁波として非接触伝送する構成とした。送信手段を水晶振動子の発振回路から出力される信号を変調する変調部、変調部において変調された信号を増幅する送信側増幅部、および増幅された信号を送信する送信側アンテナにより構成し、受信手段を送信側アンテナから信号を受信する受信側アンテナ、受信側アンテナが受信した信号を増幅する受信側増幅部、および増幅された信号を検波する検波部により構成した。   According to a fourth aspect of the present invention, in any one of the first and second aspects, the transmission unit is a transmission-side antenna, the reception unit is a reception-side antenna, and the vibration frequency of the crystal resonator is contactlessly transmitted as an electromagnetic wave. It was. The transmission means comprises a modulation unit that modulates a signal output from the oscillation circuit of the crystal resonator, a transmission side amplification unit that amplifies the signal modulated in the modulation unit, and a transmission side antenna that transmits the amplified signal, The receiving means is composed of a receiving antenna that receives a signal from the transmitting antenna, a receiving amplifier that amplifies the signal received by the receiving antenna, and a detector that detects the amplified signal.

本発明の第5の側面は、第1乃至第2いずれかの側面において、送信部を送信側電極とし、受信部を受信側電極とし、水晶振動子の振動周波数を送信側電極と受信側電極との容量結合により非接触伝送する構成とした。送信手段を送信側電極、水晶振動子の発振回路から出力される信号を変調する変調部、および変調部において変調された信号に対応する電圧を送信側電極に印加する電圧印加部により構成し、受信手段を送信側電極に対面する受信側電極、受信側電極を介して受信した信号を復調する復調部により構成した。   According to a fifth aspect of the present invention, in any one of the first and second aspects, the transmission unit is a transmission side electrode, the reception unit is a reception side electrode, and the vibration frequency of the crystal resonator is the transmission side electrode and the reception side electrode. And non-contact transmission by capacitive coupling. The transmission means comprises a transmission side electrode, a modulation unit that modulates a signal output from the oscillation circuit of the crystal resonator, and a voltage application unit that applies a voltage corresponding to the signal modulated in the modulation unit to the transmission side electrode, The receiving means is composed of a receiving electrode facing the transmitting electrode and a demodulator that demodulates the signal received via the receiving electrode.

本発明の第6の側面は、送信手段に非接触で電力を供給する構成とした。電力送信用コイルおよび電力受信用コイルを用い、電力送信用コイルが生成する磁束が電磁結合により電力受信用コイルと鎖交し、誘起電圧を励起することにより該送信手段に電力を供給する構成とした。   The sixth aspect of the present invention is configured to supply power to the transmission means in a contactless manner. A configuration in which a power transmission coil and a power reception coil are used, and a magnetic flux generated by the power transmission coil is linked to the power reception coil by electromagnetic coupling to supply power to the transmission means by exciting an induced voltage. did.

上記第1乃至第6の側面において、成膜手段はスパッタ電極に配設したターゲット材料を通電により基板上に堆積させるスパッタ手段であってもよい。   In the first to sixth aspects, the film forming means may be a sputtering means for depositing a target material disposed on the sputtering electrode on the substrate by energization.

本発明の第7の側面は、真空槽、基板の成膜手段、基板の搬送用トレー、真空槽に固定配置された防着板、基板の近接位置に配置された水晶振動子、水晶振動子の発振回路、水晶振動子の発振回路に接続し得られた信号を変調する変調部、変調部により変調された信号を増幅する送信側増幅部、送信側増幅部により増幅された信号を電波として送信する送信側アンテナ、送信側アンテナから送信された電波を受信する受信側アンテナ、受信アンテナが受信した信号を増幅する受信側増幅部、受信側増幅部により増幅された信号を検波する検波部を有し、水晶振動子、変調部、送信側増幅部、および、送信側アンテナを搬送用トレーに配設し、少なくとも基板への成膜時に搬送用トレーが移動する移動経路から所定の距離離れて対面する位置に防着板を覆設し、防着板を受信側アンテナとして受信側増幅部に接続し、水晶振動子上に堆積する物質の膜厚又は膜厚変化量をモニタすることにより、基板上への成膜中に膜厚又は成膜速度を常に測定、監視することを構成とした。   According to a seventh aspect of the present invention, there is provided a vacuum chamber, a substrate film forming means, a substrate transport tray, a deposition plate fixedly disposed in the vacuum chamber, a crystal resonator disposed in the proximity of the substrate, and a crystal resonator Oscillation circuit, modulation unit that modulates the signal obtained by connecting to the oscillation circuit of the crystal resonator, transmission side amplification unit that amplifies the signal modulated by the modulation unit, and signal amplified by the transmission side amplification unit as radio waves A transmitting antenna for transmitting, a receiving antenna for receiving radio waves transmitted from the transmitting antenna, a receiving amplifier for amplifying a signal received by the receiving antenna, and a detector for detecting the signal amplified by the receiving amplifier. A quartz resonator, a modulation unit, a transmission-side amplification unit, and a transmission-side antenna are arranged on the transfer tray, and at least a predetermined distance away from a moving path along which the transfer tray moves during film formation on the substrate In the facing position The substrate is covered, the shield plate is connected to the reception-side amplifier as the reception-side antenna, and the film thickness of the substance deposited on the crystal resonator or the amount of change in the film thickness is monitored, thereby forming the substrate on the substrate. The film thickness or the film formation speed was always measured and monitored in the film.

本発明の第8の側面は、第1乃至第7の側面のいずれかの測定装置を備える成膜装置であって、測定装置の測定結果を元に成膜速度を制御する手段を設ける構成とした。   According to an eighth aspect of the present invention, there is provided a film forming apparatus including the measuring apparatus according to any one of the first to seventh aspects, and a configuration in which means for controlling a film forming speed is provided based on a measurement result of the measuring apparatus. did.

本発明の第9の側面は、水晶振動子上への薄膜形成時における膜厚又は膜厚変化量の測定方法であって、水晶振動子の振動周波数を伝送する送信手段、水晶振動子および送信手段を連動させて位置変化させる駆動手段、並びに送信手段から水晶振動子の振動周波数を受信する受信手段を有し、駆動手段によりに送信手段位置が変化しても送信手段と受信手段との距離を常に略一定に保つ測定方法である。   According to a ninth aspect of the present invention, there is provided a method for measuring a film thickness or a film thickness change amount when a thin film is formed on a crystal resonator, wherein the transmitting means transmits the vibration frequency of the crystal resonator, the crystal resonator, and the transmission A driving means for changing the position by interlocking the means, and a receiving means for receiving the vibration frequency of the crystal unit from the transmitting means, and the distance between the transmitting means and the receiving means even if the transmitting means position is changed by the driving means; This is a measurement method that always keeps constant.

本発明の第10の側面は、基板上への薄膜形成時における膜厚および膜厚変化量の測定方法であって、基板の近接位置に水晶振動子を配置し、水晶振動子の振動周波数を伝送する送信手段、基板、水晶振動子、および送信手段を連動させて位置変化させる駆動手段、並びに送信手段から水晶振動子の振動周波数を受信する受信手段を有し、駆動手段によりに送信手段位置が変化しても送信手段と受信手段との距離が常に略一定に保つ測定方法である。   According to a tenth aspect of the present invention, there is provided a method for measuring a film thickness and a film thickness change amount when a thin film is formed on a substrate. Transmitting means for transmitting, substrate, crystal resonator, driving means for changing the position in conjunction with the transmitting means, and receiving means for receiving the vibration frequency of the crystal resonator from the transmitting means. This is a measurement method in which the distance between the transmitting means and the receiving means is always kept substantially constant even if the distance changes.

水晶振動子の振動周波数を伝送する送信手段が位置変化しても、振動周波数の受信手段と送信手段との距離を常に略一定に保つことができるため、安定した信号の授受が可能となる。   Even if the transmission means for transmitting the vibration frequency of the crystal resonator changes its position, the distance between the reception means and the transmission means for the vibration frequency can be kept substantially constant at all times, so that stable signal exchange can be performed.

本発明の第1の実施例を説明する。以下第1乃至第3の実施例においては、図1および図2に示す連続式スパッタ装置を用いるものとするが、本発明の測定手段を搭載可能な装置はこれに限られるものではない。例えば成膜手段はスパッタに限られるものではなく、真空蒸着やIAD(Ion Assisted Deposition)等を用いても良い。   A first embodiment of the present invention will be described. In the following first to third embodiments, the continuous sputtering apparatus shown in FIGS. 1 and 2 is used, but the apparatus on which the measuring means of the present invention can be mounted is not limited to this. For example, the film forming means is not limited to sputtering, and vacuum deposition, IAD (Ion Assisted Deposition), or the like may be used.

同図において、成膜室1はガス導入口2と排気口3、スパッタ電極4を備え、成膜室1の左右には仕切バルブ5を介して真空圧と大気圧に変更自在の仕込室6と取出室7が設けられている。仕込室6には基板8を組み込んだ板状のトレ9ーが例えば複数枚収容される。トレー9は仕込室6から仕切りバルブ5を介して順次成膜室1内へ送り込まれ、成膜室1から仕切バルブ5を介して取出室7へと送り出される。トレー9は動力源13に接続する駆動機構11により搬送され、図中10はトレー9の移載経路を示す。スパッタ電源12はスパッタ電極4へ電力を供給する電源である。同図ではスパッタ電極4を移載経路10の片側にのみ設けるが、スパッタ電極を移載経路の両側に設け、基板8を両面成膜する構成としてもよい。   In the figure, a film forming chamber 1 is provided with a gas inlet port 2, an exhaust port 3, and a sputter electrode 4, and a charging chamber 6 that can be changed to a vacuum pressure and an atmospheric pressure via a partition valve 5 on the left and right sides of the film forming chamber 1. A take-out chamber 7 is provided. In the preparation chamber 6, for example, a plurality of plate-like trays 9 incorporating the substrate 8 are accommodated. The tray 9 is sequentially fed from the preparation chamber 6 into the film forming chamber 1 through the partition valve 5, and is sent out from the film forming chamber 1 to the take-out chamber 7 through the partition valve 5. The tray 9 is conveyed by a drive mechanism 11 connected to a power source 13, and reference numeral 10 in the drawing denotes a transfer path for the tray 9. The sputtering power source 12 is a power source that supplies power to the sputtering electrode 4. In the figure, the sputter electrode 4 is provided only on one side of the transfer path 10, but the sputter electrode may be provided on both sides of the transfer path and the substrate 8 may be formed on both sides.

トレー9には水晶振動子15、および水晶振動子15の振動周波数を送信する送信手段16が組み込まれ、水晶振動子15は基板8の成膜面に近接する位置に取り付けられる。成膜室1には、送信手段16から伝送される発振信号を受信する受信手段17が配設され、例えば発振回路と演算回路を備えた公知の膜厚コントローラ14に接続される。トレー9は駆動機構11により移載経路上を所定の搬送速度で移動するが、トレー9がスパッタ電極4の前面を通過するときに、スパッタ電極4に固定したターゲット14からのスパッタ物質が基板8に成膜される。同時に、トレー9に組み込んだ水晶振動子15にも基板8と同厚の薄膜が成膜されるため、膜厚コントローラ14は水晶振動子15の発振信号から基板8上に堆積する膜厚又は膜厚変化量を検出する。同図の装置は非接触の送信手段16および受信手段17を用いて振動周波数伝送するため、成膜時に水晶振動子が位置変化する場合であっても成膜中のリアルタイム測定が可能となる。よって測定用の水晶振動子を基板と等しい成膜条件下におくことができるため、高精度の成膜制御が可能となる。この場合、膜厚コントローラ14に図示しない制御装置を接続し、制御装置をスパッタ電源12や動力源13に接続して成膜速度等を制御すればよい。   The tray 9 incorporates a crystal resonator 15 and a transmission means 16 for transmitting the vibration frequency of the crystal resonator 15, and the crystal resonator 15 is attached at a position close to the film formation surface of the substrate 8. The film forming chamber 1 is provided with receiving means 17 for receiving the oscillation signal transmitted from the transmitting means 16 and is connected to a known film thickness controller 14 having, for example, an oscillation circuit and an arithmetic circuit. The tray 9 is moved at a predetermined transport speed on the transfer path by the drive mechanism 11. When the tray 9 passes the front surface of the sputtering electrode 4, the sputtered substance from the target 14 fixed to the sputtering electrode 4 is transferred to the substrate 8. A film is formed. At the same time, since a thin film having the same thickness as that of the substrate 8 is formed on the crystal resonator 15 incorporated in the tray 9, the film thickness controller 14 determines the film thickness or film deposited on the substrate 8 from the oscillation signal of the crystal resonator 15. Detect thickness change. Since the apparatus shown in the figure transmits vibration frequency using the non-contact transmission means 16 and reception means 17, real-time measurement during film formation is possible even when the position of the crystal resonator changes during film formation. Therefore, since the crystal resonator for measurement can be placed under the same film formation conditions as the substrate, high-precision film formation control is possible. In this case, a control device (not shown) may be connected to the film thickness controller 14, and the control device may be connected to the sputtering power source 12 or the power source 13 to control the film forming speed and the like.

第1の実施例は、水晶振動子15の振動周波数を伝送に適した電気信号に変換し、その電波をアンテナから放射することを特徴とする。
図3に第1の実施例における送信手段16および受信手段17の概略図を示す。同図の送信手段16は、トレー9内部に内蔵された発振部20、変調部21、送信側増幅部22、および、送信側アンテナ23により構成される。トレー9表面に組み込まれた水晶振動子15は発振部20に接続され、発振部20は水晶振動子固有の振動周波数で発振する。得られた発振信号は変調部21に入力され搬送波が変調される。実施例では搬送波をASK変調(amplitude shift keying)するものとするが、ASK変調だけでなく、例えば、AM変調、FM変調、FSK変調等の他の変調方式を用いても良い。変調された搬送波は送信側増幅部22で増幅され送信側アンテナ23を介して電波として送信される。
The first embodiment is characterized in that the vibration frequency of the crystal unit 15 is converted into an electric signal suitable for transmission, and the radio wave is radiated from an antenna.
FIG. 3 shows a schematic diagram of the transmitting means 16 and the receiving means 17 in the first embodiment. The transmission means 16 shown in the figure includes an oscillation unit 20, a modulation unit 21, a transmission side amplification unit 22, and a transmission side antenna 23 built in the tray 9. The crystal unit 15 incorporated on the surface of the tray 9 is connected to the oscillation unit 20, and the oscillation unit 20 oscillates at a vibration frequency unique to the crystal unit. The obtained oscillation signal is input to the modulation unit 21 and the carrier wave is modulated. In the embodiment, it is assumed that the carrier wave is ASK modulated (amplitude shift keying), but other modulation methods such as AM modulation, FM modulation, and FSK modulation may be used in addition to ASK modulation. The modulated carrier wave is amplified by the transmission side amplification unit 22 and transmitted as a radio wave via the transmission side antenna 23.

同図の受信手段17は、成膜室1内壁に固定配置された受信側アンテナ24、受信側増幅部25、検波部26により構成される。送信側アンテナ23から送信された信号を受信側アンテナ24を介して受信し、受信側増幅部25に於いて微弱な信号を増幅する。増幅された信号は検波部26で検波され、水晶振動子15の振動周波数と同一周波数の信号が出力される。この信号を膜厚コントローラ14に入力し、膜厚又は成膜速度を測定する。   The receiving means 17 shown in FIG. 1 includes a receiving side antenna 24, a receiving side amplifying unit 25, and a detecting unit 26 fixedly disposed on the inner wall of the film forming chamber 1. A signal transmitted from the transmitting antenna 23 is received via the receiving antenna 24, and a weak signal is amplified in the receiving amplifier 25. The amplified signal is detected by the detection unit 26, and a signal having the same frequency as the vibration frequency of the crystal resonator 15 is output. This signal is input to the film thickness controller 14 to measure the film thickness or film forming speed.

成膜装置においては、成膜手段から放出するターゲット物質により内壁が汚染されることを防止する目的で防着板が配設されることが一般的である。防着板は成膜領域を被覆する形状あるため、基板の移載経路に平行に防着板を配設し、これを受信側アンテナ24として用いることにより、送信側アンテナ23が基板8と一体となって移動しても送信側アンテナ23と受信側アンテナ24との距離が常に保たれ安定して発振信号を伝送することが可能となる。同図の装置では、成膜装置に一般的に備え付けられる防着板を受信側アンテナ24として兼用することにより、部品点数の削減および構成の簡略化に貢献するが、防着板と受信側アンテナ24は別に設けてもよい。受信側アンテナ24は、成膜時に送信側アンテナ23が移動する移載経路10内の任意の一点から常に略一定の距離を保つように構成すればよい。   In the film forming apparatus, an adhesion preventing plate is generally disposed for the purpose of preventing the inner wall from being contaminated by the target material released from the film forming means. Since the deposition preventing plate has a shape that covers the film formation region, the transmission receiving antenna 23 is integrated with the substrate 8 by arranging the deposition preventing plate in parallel with the transfer path of the substrate and using it as the receiving antenna 24. Therefore, even if the mobile station moves, the distance between the transmitting antenna 23 and the receiving antenna 24 is always maintained, and the oscillation signal can be transmitted stably. In the apparatus shown in the figure, the deposition plate generally provided in the film forming apparatus is also used as the reception-side antenna 24, thereby contributing to the reduction of the number of parts and the simplification of the configuration. 24 may be provided separately. The reception side antenna 24 may be configured to always maintain a substantially constant distance from any one point in the transfer path 10 along which the transmission side antenna 23 moves during film formation.

図4は受信側アンテナ23と送信側アンテナ24の概略斜視図を示す。図は移載経路10上を矢印方向に移動するトレー9を破線にて示すが、トレー9が移動しても送信側アンテナ23と受信側アンテナ24との距離が常に一定に保たれていることがわかる。   FIG. 4 is a schematic perspective view of the receiving antenna 23 and the transmitting antenna 24. In the figure, the tray 9 moving in the direction of the arrow on the transfer path 10 is indicated by a broken line, but the distance between the transmitting antenna 23 and the receiving antenna 24 is always kept constant even if the tray 9 moves. I understand.

第1の実施例は、光領域を含む電磁波を媒体とし、送信側から電磁波を輻射し、受信側が電磁波を捕捉することにより発振信号を非接触に伝送するものであればよく、例えば、光電変換により送信側が信号光を出射し、受信側が受光器等を用いて信号光を受信する構成としてもよい。   In the first embodiment, any electromagnetic wave including a light region may be used as a medium, the electromagnetic wave may be radiated from the transmission side, and the reception side may capture the electromagnetic wave to transmit the oscillation signal in a non-contact manner. Thus, the transmission side may emit signal light and the reception side may receive signal light using a light receiver or the like.

次に本発明の第2の実施例を説明する。第2の実施例は、送信側電極および受信側電極を用い、電極間の容量結合により水晶振動子の発振信号を非接触に伝送することを特徴とする。送信手段および受信手段を除く部分は第1の実施例と同様であるため、同様部分の説明は省略する。
図5に第2の実施例における送信手段16および受信手段17の概略図を示す。同図の送信手段16は、水晶振動子15の発振部30、発振信号を変調する変調部31、送信側電極33、および変調信号に対応する電圧を送信側電極33に印加する電圧印加部32により構成され、受信手段17は、送信側電極33に対面する受信側電極34、受信電極34を介して受信した信号を復調する復調部35により構成される。
Next, a second embodiment of the present invention will be described. The second embodiment is characterized in that a transmission-side electrode and a reception-side electrode are used and an oscillation signal of a crystal resonator is transmitted in a non-contact manner by capacitive coupling between the electrodes. Since the parts other than the transmitting means and the receiving means are the same as those in the first embodiment, the description of the same parts is omitted.
FIG. 5 shows a schematic diagram of the transmitting means 16 and the receiving means 17 in the second embodiment. The transmission unit 16 in FIG. 1 includes an oscillation unit 30 of the crystal unit 15, a modulation unit 31 that modulates an oscillation signal, a transmission-side electrode 33, and a voltage application unit 32 that applies a voltage corresponding to the modulation signal to the transmission-side electrode 33. The receiving means 17 includes a receiving electrode 34 facing the transmitting electrode 33 and a demodulator 35 that demodulates the signal received via the receiving electrode 34.

図6は受信側電極34と送信側電極33の概略斜視図を示す。図では、凹形状の受信側電極34に、凸形状の送信側電極33が所定の間隙をもって嵌入される様子を示すが、例えば受信側電極を凸形状、送信側電極を凹形状としてもよい。電極の形状は適宜選択すればよく、対面する電極間で容量を形成するように構成すればよい。送信側電極33はトレー9に固定配置し、受信側電極34は成膜時に送信側電極33が移動する移載経路10を覆設するように成膜室1に固定配置する。図は移載経路10上を矢印方向に移動するトレー9を破線にて示すが、トレー9が移動しても送信側電極33と受信側電極34との距離および面積が常に一定に保たれるため、電極間の容量に変化がなく、発振信号を安定して伝送することが可能となる。実施例では電極間の間隙を真空槽内雰囲気に等しいものとしているが、電極間に誘電体を満たしてもよい。   FIG. 6 is a schematic perspective view of the reception side electrode 34 and the transmission side electrode 33. In the figure, the convex transmission side electrode 33 is inserted into the concave reception side electrode 34 with a predetermined gap. For example, the reception side electrode may be convex and the transmission side electrode may be concave. What is necessary is just to select the shape of an electrode suitably, and just to comprise so that a capacity | capacitance may be formed between the electrodes which face. The transmission-side electrode 33 is fixedly arranged in the tray 9 and the reception-side electrode 34 is fixedly arranged in the film forming chamber 1 so as to cover the transfer path 10 along which the transmission-side electrode 33 moves during film formation. In the figure, the tray 9 moving in the direction of the arrow on the transfer path 10 is indicated by a broken line. However, even if the tray 9 moves, the distance and area between the transmission side electrode 33 and the reception side electrode 34 are always kept constant. Therefore, there is no change in the capacitance between the electrodes, and the oscillation signal can be transmitted stably. In the embodiment, the gap between the electrodes is equal to the atmosphere in the vacuum chamber, but a dielectric may be filled between the electrodes.

次に本発明の第3の実施例を説明する。第3の実施例は、送信手段に非接触で電力を供給することを特徴とする。電力供給手段を除く部分は第1乃至第2の実施例と同様であるため、同様部分の説明は省略する。
図7に第3の実施例における電力供給手段の概略図を示す。同図の電力供給手段は、送信手段16側に設けられる電力受信用コイル40と、受信手段17側に設けられる電力送信用コイル41および電力伝送用発振部43により構成される。図では、電力送信用コイル41が生成する磁束42が電磁結合により電力受信用コイル40と鎖交し、誘起電圧を励起することにより送信手段16に電力を供給するものとする。電力受信用コイル40の誘起電圧は、送信手段16内の整流回路で整流して送信手段16内の各回路の電源として用いられる。
Next, a third embodiment of the present invention will be described. The third embodiment is characterized in that power is supplied to the transmission means in a contactless manner. Since the part excluding the power supply means is the same as in the first and second embodiments, the description of the same part is omitted.
FIG. 7 shows a schematic diagram of the power supply means in the third embodiment. The power supply means shown in FIG. 1 includes a power reception coil 40 provided on the transmission means 16 side, a power transmission coil 41 provided on the reception means 17 side, and a power transmission oscillation unit 43. In the figure, it is assumed that the magnetic flux 42 generated by the power transmission coil 41 is linked to the power reception coil 40 by electromagnetic coupling and supplies the power to the transmission means 16 by exciting the induced voltage. The induced voltage of the power receiving coil 40 is rectified by a rectifier circuit in the transmission unit 16 and used as a power source for each circuit in the transmission unit 16.

電力送信用コイル41を受信側アンテナ24又は受信側電極34に併設し、電力受信用コイル40を送信側アンテナ23又は送信側電極33に併設することにより、コイル間の距離が保たれるため、電力の伝送効率の変動を抑えて安定した電力供給が可能となる。   Since the power transmission coil 41 is provided in the reception antenna 24 or the reception electrode 34 and the power reception coil 40 is provided in the transmission antenna 23 or the transmission electrode 33, the distance between the coils is maintained. Stable power supply is possible by suppressing fluctuations in power transmission efficiency.

実施例では電力供給手段を別途設けたが、発振信号の送信手段16および受信手段17に電力供給手段を組み込んでもよい。例えば、第1の実施例における送信側アンテナ23にアンテナコイルを、受信側アンテナ24にループアンテナを用い、受信手段17に電力供給用発振部を設けることにより、送信手段16側からの発振信号の伝送と受信手段17側からの電力供給を同時に行うことも可能である。送信手段16側からの発振信号の伝送は、アンテナコイルからループアンテナへの電磁誘導により行えばよい。   In the embodiment, the power supply means is provided separately. However, the power supply means may be incorporated in the oscillation signal transmission means 16 and the reception means 17. For example, in the first embodiment, an antenna coil is used for the transmitting antenna 23, a loop antenna is used for the receiving antenna 24, and an oscillation unit for supplying power is provided in the receiving means 17, so that the oscillation signal from the transmitting means 16 side can be obtained. It is also possible to perform transmission and power supply from the receiving means 17 side at the same time. Transmission of the oscillation signal from the transmitting means 16 side may be performed by electromagnetic induction from the antenna coil to the loop antenna.

実施例では成膜を行おうとする基板をインライン式に搬送する例について述べたが、本発明の測定手段は、バッチ式の成膜装置や枚葉式成膜装置においても搭載可能である。例えば、基板を基板ドーム等の回転ホルダに搭載する場合は、回転ホルダ上に送信手段を固定配置し、回転ホルダの上面を被覆する円板形状の受信手段を成膜室に固定配置すればよい。もしくは、受信手段は、基板ホルダの外周を被覆する円柱形状としてもよい。これにより、成膜時に基板ホルダが回転駆動しても、振動周波数の送信部と受信部との距離は常に一定であるため、信号を安定して伝送することができる。受信部を基板の移動経路に沿った形状とし、基板が位置変化しても送信部との距離が所定の距離に保たれるように構成すれば種々の成膜装置に応用可能である。   In the embodiment, an example in which a substrate on which a film is to be formed is conveyed in-line is described. However, the measuring means of the present invention can also be mounted in a batch-type film forming apparatus or a single-wafer type film forming apparatus. For example, when the substrate is mounted on a rotating holder such as a substrate dome, the transmitting means is fixedly disposed on the rotating holder, and the disk-shaped receiving means covering the upper surface of the rotating holder is fixedly disposed in the film forming chamber. . Alternatively, the receiving means may have a cylindrical shape covering the outer periphery of the substrate holder. Thereby, even if the substrate holder is rotationally driven at the time of film formation, the distance between the transmitting part and the receiving part of the vibration frequency is always constant, so that the signal can be stably transmitted. If the receiving part is shaped along the movement path of the substrate and the distance from the transmitting part is maintained at a predetermined distance even if the position of the substrate is changed, it can be applied to various film forming apparatuses.

実施例では基板上に堆積する薄膜を水晶振動子を用いて間接的にモニタするが、成膜を行おうとする基板が水晶振動子等の圧電振動体である場合は、実基板の振動周波数を直接モニタしてもよい。   In the embodiment, the thin film deposited on the substrate is indirectly monitored using a crystal resonator. However, when the substrate on which the film is to be formed is a piezoelectric vibrator such as a crystal resonator, the vibration frequency of the actual substrate is set. You may monitor directly.

実施例では水晶振動子の振動周波数で変調をかけたが、水晶振動子の振動周波数を低周波に分周し変調しても良く、また水晶振動子の振動周波数を電力増幅し振動周波数のまま無線伝送しても良い。   In the embodiment, modulation was performed with the vibration frequency of the crystal resonator. However, the vibration frequency of the crystal resonator may be divided and modulated, and the vibration frequency of the crystal resonator may be amplified to remain at the vibration frequency. Wireless transmission may be performed.

水晶振動子を複数個取り付けそれぞれの振動周波数を伝送することにより、リアルタイムでの膜厚分布監視も可能となる。   By attaching a plurality of crystal resonators and transmitting the vibration frequency of each, it is possible to monitor the film thickness distribution in real time.

更に水晶振動子の代わりに熱電対の電位差を電圧/周波数変換し、これを変調信号として用いることにより、成膜中のリアルタイム温度測定も可能となる。   Further, by converting the potential difference of the thermocouple into a voltage / frequency instead of the crystal resonator and using this as a modulation signal, it is possible to measure the real time temperature during film formation.

連続式スパッタ装置概略断面図Schematic sectional view of continuous sputtering equipment 連続式スパッタ装置概略平面図Outline plan view of continuous sputtering equipment 第1の実施例における送信手段および受信手段概略図Schematic diagram of transmission means and reception means in the first embodiment 第1の実施例における送信側アンテナおよび受信側アンテナ概略斜視図Schematic perspective view of a transmitting antenna and a receiving antenna in the first embodiment 第2の実施例における送信手段および受信手段概略図Schematic diagram of transmitting means and receiving means in the second embodiment 第2の実施例における送信側電極および受信側電極概略図Schematic diagram of transmitting and receiving electrodes in the second embodiment 第3の実施例における電力送信手段概略図Schematic diagram of power transmission means in the third embodiment

符号の説明Explanation of symbols

1 成膜室
2 ガス導入口
3 排気口
4 スパッタ電極
5 仕切バルブ
6 仕込室
7 取出室
8 基板
9 トレー
10 移載経路
11 駆動機構
12 スパッタ電源
13 動力源
14 膜厚コントローラ
15 水晶振動子
16 送信手段
17 受信手段
20 発振部
21 変調部
22 送信側増幅部
23 送信側アンテナ
24 受信側アンテナ
25 受信側増幅部
26 検波部
30 発振部
31 変調部
32 電圧印加部
33 送信側電極
34 受信側電極
35 復調部
40 電力受信用コイル
41 電力送信用コイル
42 磁束
1 Deposition chamber
2 Gas inlet
3 Exhaust port
4 Sputter electrode
5 Gate valve
6 Preparation room
7 Extraction room
8 Board
9 trays
10 Transfer route
11 Drive mechanism
12 Sputter power supply
13 Power source
14 Film thickness controller
15 Quartz crystal
16 Transmission means
17 Receiving means
20 Oscillator
21 Modulator
22 Transmitter amplifier
23 Transmitting antenna
24 Receiver antenna
25 Receiver amplifier
26 Detector
30 Oscillator
31 Modulator
32 Voltage application section
33 Transmitter electrode
34 Receiver electrode
35 Demodulator
40 Power receiving coil
41 Coil for power transmission
42 Magnetic flux

Claims (13)

発振回路を有する水晶振動子上に堆積する物質の膜厚又は膜厚変化量をモニタする測定装置であって、
該水晶振動子の振動周波数を検出して送信する送信手段、該水晶振動子および該送信手段を連動して移動経路に沿って移動させる移動手段、並びに該送信手段から送信された振動周波数を受信する受信手段を備え、
該受信手段が、該移動経路に平行に配設された受信部を有し、これにより該移動経路と該受信部とが略一定距離で離隔されるように構成されたことを特徴とする測定装置。
A measuring device for monitoring a film thickness or a film thickness change amount of a substance deposited on a crystal resonator having an oscillation circuit,
Transmission means for detecting and transmitting the vibration frequency of the crystal resonator, movement means for moving the crystal resonator and the transmission means along the movement path, and receiving the vibration frequency transmitted from the transmission means Receiving means for
The measuring means characterized in that the receiving means has a receiving part arranged in parallel with the moving path, and thereby the moving path and the receiving part are separated from each other by a substantially constant distance. apparatus.
真空槽、基板の成膜手段、および該基板の移動手段を有する真空装置において、該基板上に堆積する物質の膜厚又は膜厚変化量をモニタする測定装置であって、
発振回路を有する水晶振動子、該水晶振動子の振動周波数を検出して送信する送信手段、および該送信手段から送信された振動周波数を受信する受信手段を備え、
該水晶振動子が該基板に近接配置され、
該移動手段が該基板、該水晶振動子および該送信手段を連動して移動経路に沿って移動させるように構成され、
該受信手段が、該移動経路に平行に配設された受信部を有し、これにより該移動経路と該受信部とが略一定距離で離隔されるよう構成され、
該水晶振動子上に堆積する物質の膜厚又は膜厚変化量をモニタすることにより該基板上に堆積する物質の膜厚又は膜厚変化量がモニタされることを特徴とする測定装置。
In a vacuum apparatus having a vacuum chamber, a film forming means for a substrate, and a moving means for the substrate, a measuring device for monitoring a film thickness or a film thickness change amount of a substance deposited on the substrate,
A crystal unit having an oscillation circuit, a transmission unit that detects and transmits a vibration frequency of the crystal unit, and a reception unit that receives the vibration frequency transmitted from the transmission unit,
The quartz crystal is disposed close to the substrate;
The moving means is configured to move the substrate, the quartz crystal vibrator, and the transmitting means in conjunction with each other along a moving path;
The receiving means has a receiving unit arranged in parallel to the moving path, and is configured so that the moving path and the receiving unit are separated from each other by a substantially constant distance.
A measuring apparatus characterized in that the film thickness or film thickness change amount of a substance deposited on the substrate is monitored by monitoring the film thickness or film thickness change quantity of the substance deposited on the crystal resonator.
請求項1乃至2記載の測定装置において、
該送信部が送信側アンテナであり、
該受信部が受信側アンテナであり、
該水晶振動子の振動周波数が電磁波として非接触伝送されることを特徴とする測定装置。
The measuring apparatus according to claim 1 or 2,
The transmitter is a transmitting antenna;
The receiver is a receiving antenna;
A measurement apparatus characterized in that the vibration frequency of the crystal resonator is transmitted in a non-contact manner as an electromagnetic wave.
請求項3記載の測定装置において、
該送信手段が、該水晶振動子の発振回路から出力される信号を変調する変調部、該変調部において変調された信号を増幅する送信側増幅部、および増幅された信号を送信する送信側アンテナを備え、
該受信手段が、該送信側アンテナから信号を受信する受信側アンテナ、該受信側アンテナが受信した信号を増幅する受信側増幅部、および増幅された信号を検波する検波部を備えたことを特徴とする測定装置。
The measuring apparatus according to claim 3, wherein
A modulation unit that modulates a signal output from the oscillation circuit of the crystal resonator, a transmission side amplification unit that amplifies the signal modulated in the modulation unit, and a transmission side antenna that transmits the amplified signal With
The receiving means includes a receiving antenna that receives a signal from the transmitting antenna, a receiving amplifier that amplifies the signal received by the receiving antenna, and a detector that detects the amplified signal. A measuring device.
請求項1乃至2記載の測定装置において、
該送信部が送信側電極であり、
該受信部が受信側電極であり、
該水晶振動子の振動周波数が送信側電極と受信側電極との容量結合により非接触伝送されることを特徴とする測定装置。
The measuring apparatus according to claim 1 or 2,
The transmitter is a transmitter electrode;
The receiver is a receiving electrode;
A measurement apparatus, wherein the vibration frequency of the crystal resonator is transmitted in a non-contact manner by capacitive coupling between a transmission side electrode and a reception side electrode.
請求項5記載の測定装置において、
該送信手段が、送信側電極、該水晶振動子の発振回路から出力される信号を変調する変調部、および該変調部において変調された信号に対応する電圧を送信側電極に印加する電圧印加部を備え、
該受信手段が、送信側電極に対面する受信側電極、該受信側電極を介して受信した信号を復調する復調部を備えたことを特徴とする測定装置。
The measuring apparatus according to claim 5, wherein
The transmission means modulates a signal output from the transmission side electrode, the oscillation circuit of the crystal resonator, and a voltage application unit that applies a voltage corresponding to the signal modulated in the modulation unit to the transmission side electrode With
A measuring apparatus, wherein the receiving means includes a receiving electrode facing the transmitting electrode, and a demodulator that demodulates a signal received via the receiving electrode.
請求項1乃至2記載の測定装置であって、
該送信手段に非接触で電力を供給する手段を有することを特徴とする測定装置。
The measuring device according to claim 1, wherein
A measuring apparatus comprising means for supplying power to the transmitting means in a contactless manner.
請求項7記載の測定装置において、
該非接触で電力を供給する手段が電力送信用コイルおよび電力受信用コイルを備え、該電力送信用コイルが生成する磁束が電磁結合により該電力受信用コイルと鎖交し、誘起電圧を励起することにより該送信手段に電力が供給されることを特徴とする測定装置。
The measuring device according to claim 7, wherein
The contactless power supply means includes a power transmission coil and a power reception coil, and a magnetic flux generated by the power transmission coil is linked to the power reception coil by electromagnetic coupling to excite an induced voltage. The measuring device is characterized in that power is supplied to the transmitting means.
請求項2乃至8いずれか記載の測定装置において、
該成膜手段はスパッタ電極に配設したターゲット材料を通電により基板上に堆積させるスパッタ手段であることを特徴とする測定装置。
The measuring apparatus according to any one of claims 2 to 8,
The film forming means is a sputtering means for depositing a target material disposed on a sputtering electrode on a substrate by energization.
真空槽、基板の成膜手段、該基板の搬送用トレー、該真空槽に固定配置された防着板、該基板の近接位置に配置された水晶振動子、該水晶振動子の発振回路、該水晶振動子の発振回路に接続し得られた信号を変調する変調部、該変調部により変調された信号を増幅する送信側増幅部、該送信側増幅部により増幅された信号を電波として送信する送信側アンテナ、該送信側アンテナから送信された電波を受信する受信側アンテナ、該受信アンテナが受信した信号を増幅する受信側増幅部、および該受信側増幅部により増幅された信号を検波する検波部を備え、
該水晶振動子、該変調部、該送信側増幅部および該送信側アンテナが該搬送用トレーに配設され、
少なくとも該基板への成膜時に該搬送用トレーが移動する移動経路と平行に該防着板が覆設され、
該防着板が該受信側アンテナとして該受信側増幅部に接続され、
該水晶振動子上に堆積する物質の膜厚又は膜厚変化量をモニタすることにより、該基板上への成膜中に膜厚又は成膜速度が測定又は監視されるよう構成されたことを特徴とする測定装置。
A vacuum chamber, a substrate film forming means, a tray for transporting the substrate, a deposition plate fixedly disposed in the vacuum chamber, a crystal resonator disposed in the proximity of the substrate, an oscillation circuit of the crystal resonator, A modulation unit that modulates a signal obtained by connecting to an oscillation circuit of a crystal resonator, a transmission side amplification unit that amplifies the signal modulated by the modulation unit, and a signal that is amplified by the transmission side amplification unit is transmitted as a radio wave. A transmission-side antenna, a reception-side antenna that receives radio waves transmitted from the transmission-side antenna, a reception-side amplification unit that amplifies a signal received by the reception antenna, and detection that detects a signal amplified by the reception-side amplification unit Part
The crystal resonator, the modulation unit, the transmission side amplification unit, and the transmission side antenna are disposed on the transport tray,
The deposition plate is provided parallel to a moving path along which the transfer tray moves at least during film formation on the substrate;
The deposition plate is connected to the receiving-side amplifier as the receiving-side antenna;
By monitoring the film thickness or film thickness change amount of the substance deposited on the crystal resonator, the film thickness or film forming speed is measured or monitored during film formation on the substrate. Characteristic measuring device.
請求項1乃至10いずれか記載の測定装置を備える成膜装置であって、
該測定装置の測定結果を基に成膜速度を制御する手段を設けたことを特徴とする成膜装置。
A film forming apparatus comprising the measurement apparatus according to claim 1,
A film forming apparatus comprising means for controlling a film forming speed based on a measurement result of the measuring apparatus.
水晶振動子上への薄膜形成時における膜厚又は膜厚変化量の測定方法であって、
送信手段が該水晶振動子の振動周波数を検出して伝送する送信ステップ、
駆動手段が該水晶振動子および該送信手段を連動させて移動経路に沿って位置変化させる駆動ステップ、並びに
該移動経路に平行に配設された受信部を有する受信手段が、該送信手段から送信された該水晶振動子の振動周波数を受信する受信ステップ
を備えることを特徴とする測定方法。
A method for measuring a film thickness or a film thickness change amount when forming a thin film on a crystal resonator,
A transmitting step in which the transmitting means detects and transmits the vibration frequency of the crystal unit;
The driving means causes the quartz crystal vibrator and the transmission means to move together to change the position along the movement path, and the reception means having a receiving unit arranged in parallel with the movement path transmits from the transmission means. And a receiving step of receiving a vibration frequency of the crystal resonator.
基板上への薄膜形成時における膜厚および膜厚変化量の測定方法であって、
送信手段が、該基板の近接位置に配置された水晶振動子の振動周波数を検出して伝送する送信ステップ、
駆動手段が該基板、該水晶振動子および該送信手段を連動させて移動経路に沿って位置変化させる駆動ステップ、並びに
該移動経路に平行に配設された受信部を有する受信手段が、該送信手段から送信された該水晶振動子の振動周波数を受信する受信ステップ
を備えることを特徴とする測定方法。
A method of measuring a film thickness and a film thickness change amount when forming a thin film on a substrate,
A transmitting step in which the transmitting means detects and transmits the vibration frequency of the crystal resonator disposed in the proximity position of the substrate;
A driving unit that drives the substrate, the quartz crystal unit, and the transmission unit in conjunction with each other to change the position along the moving path; and a receiving unit that includes a receiving unit disposed in parallel with the moving path. A measuring method comprising a receiving step of receiving a vibration frequency of the crystal resonator transmitted from the means.
JP2005021207A 2005-01-28 2005-01-28 Apparatus and method for measuring film forming speed in film forming apparatus Active JP4665160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021207A JP4665160B2 (en) 2005-01-28 2005-01-28 Apparatus and method for measuring film forming speed in film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021207A JP4665160B2 (en) 2005-01-28 2005-01-28 Apparatus and method for measuring film forming speed in film forming apparatus

Publications (3)

Publication Number Publication Date
JP2006206969A JP2006206969A (en) 2006-08-10
JP2006206969A5 JP2006206969A5 (en) 2008-02-28
JP4665160B2 true JP4665160B2 (en) 2011-04-06

Family

ID=36964142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021207A Active JP4665160B2 (en) 2005-01-28 2005-01-28 Apparatus and method for measuring film forming speed in film forming apparatus

Country Status (1)

Country Link
JP (1) JP4665160B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112037A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method using the same
JP5888919B2 (en) 2010-11-04 2016-03-22 キヤノン株式会社 Film forming apparatus and film forming method
KR102096049B1 (en) * 2013-05-03 2020-04-02 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
JP6918554B2 (en) * 2017-04-06 2021-08-11 東京エレクトロン株式会社 Movable body structure and film forming equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159300A (en) * 1986-01-07 1987-07-15 株式会社日立製作所 Electric output signal detector from rotary sensor
JPH09256155A (en) * 1996-03-18 1997-09-30 Miyota Kk Film forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159300A (en) * 1986-01-07 1987-07-15 株式会社日立製作所 Electric output signal detector from rotary sensor
JPH09256155A (en) * 1996-03-18 1997-09-30 Miyota Kk Film forming device

Also Published As

Publication number Publication date
JP2006206969A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US6651488B2 (en) Systems and methods of monitoring thin film deposition
JP4665160B2 (en) Apparatus and method for measuring film forming speed in film forming apparatus
US9199516B2 (en) Inductive power transfer for wireless sensor systems inside a tire
Oruganti et al. Wireless power-data transmission for industrial internet of things: Simulations and experiments
US20220299583A1 (en) Acoustic excitation and detection of spin waves
US20180224318A1 (en) Apparatus for determining and/or monitoring at least one process variable
Zangl et al. Wireless communication and power supply strategy for sensor applications within closed metal walls
US20070170170A1 (en) Temperature measuring device, thermal processor having temperature measurement function and temperature measurement method
TWI447826B (en) The heat treatment apparatus of the object to be processed, the heat treatment method of the object to be processed, and the memory medium of the memory computer readable program
JP2010016124A (en) Plasma treatment device, and plasma treatment method
US6943543B2 (en) Inductive displacement sensor with a measuring head comprising a passive resonant circuit
JP2012112943A (en) Sensor assembly and methods of measuring proximity of machine component to sensor
JP2020077408A (en) Wireless tag system
EP2561543B1 (en) Sensing of plasma process parameters
KR20180113452A (en) Movable structure and film forming apparatus
US20100050938A1 (en) Plasma processing apparatus
JP5738857B2 (en) Electromechanical coupling unit with force sensor
JP2006206969A5 (en)
CN111052531B (en) Wireless charging method for assembly line
JP3948636B2 (en) Object conveying device provided with object levitation device
JP6049165B2 (en) Non-contact power transmission device and electronic device
KR20100115497A (en) An apparatus for detecting fine metal
JP2005527985A (en) Method and apparatus for monitoring film deposition in a process chamber
TW202111759A (en) Magnet bar with attached sensor
JP2000329510A (en) Device for detecting thickness of paper leaves

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250