JP4664786B2 - Insolubilization of heavy metal contaminated soil - Google Patents

Insolubilization of heavy metal contaminated soil Download PDF

Info

Publication number
JP4664786B2
JP4664786B2 JP2005276246A JP2005276246A JP4664786B2 JP 4664786 B2 JP4664786 B2 JP 4664786B2 JP 2005276246 A JP2005276246 A JP 2005276246A JP 2005276246 A JP2005276246 A JP 2005276246A JP 4664786 B2 JP4664786 B2 JP 4664786B2
Authority
JP
Japan
Prior art keywords
heavy metals
contaminated soil
soil
insolubilizing
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005276246A
Other languages
Japanese (ja)
Other versions
JP2007083183A (en
Inventor
徹 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005276246A priority Critical patent/JP4664786B2/en
Publication of JP2007083183A publication Critical patent/JP2007083183A/en
Application granted granted Critical
Publication of JP4664786B2 publication Critical patent/JP4664786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各所各分野において発生する重金属等含有汚染土壌、すなわち水銀、ヒ素、鉛、セレン、クロム、カドミウム、ホウ素あるいはフッ素等を含有する汚染土壌あるいは焼却灰を不溶化処理することにより、これら重金属等が環境へ溶出するのを抑制して無害化する方法に関する。   The present invention is to insolubilize contaminated soil containing heavy metals, etc. generated in various fields, that is, contaminated soil containing mercury, arsenic, lead, selenium, chromium, cadmium, boron or fluorine, or incinerated ash. It is related with the method of detoxifying by suppressing elution to the environment.

各種の化学薬品や農薬等を取り扱う現場の装置、設備等から漏洩あるいは廃棄等によりもたらされる重金属等含有汚染土壌を無害化するために数多の技術が開発され実用化されている。その中で化学的に処理するものとしては、加熱や洗浄による重金属等の除去あるいはキレート剤等の薬剤添加による重金属等の不溶化処理が広く採用されている。   Numerous technologies have been developed and put to practical use in order to detoxify contaminated soil containing heavy metals caused by leakage or disposal from on-site equipment and facilities that handle various chemicals and agricultural chemicals. Among them, as a chemical treatment, an insolubilization treatment of heavy metals or the like by removing heavy metals or the like by heating or washing or adding a chemical agent such as a chelating agent is widely adopted.

加熱処理法として、下記特許文献1は、ヒ素汚染土壌を還元処理によりヒ素を揮発除去する方法を、また特許文献2は、重金属汚染土壌に塩素含有廃棄物を混合し、高温加熱で重金属分を塩化揮発する方法をそれぞれ開示する。しかし、これらの方法は、カドミウムやクロムの揮発除去ができず、適用対象が限定される。   As a heat treatment method, Patent Document 1 below describes a method of volatilizing and removing arsenic by reducing arsenic-contaminated soil, and Patent Document 2 mixes chlorine-containing waste with heavy metal-contaminated soil and heats heavy metal content by high-temperature heating. Each of the methods for volatilizing chloride is disclosed. However, these methods cannot remove cadmium and chromium by volatilization, and the application target is limited.

また、特許文献3は、重金属汚染土壌に硫酸を加えて焙焼し、一部の重金属分をガス化および他は硫酸塩化する硫酸化焙焼処理法を示すが、腐食性の硫酸の大量使用および酸素の低濃度化の必要性から、処理および設備の費用面で不経済である。   Patent Document 3 shows a sulfation roasting method in which sulfuric acid is added to a heavy metal-contaminated soil and roasted to gasify some heavy metals, and others are sulfated, but a large amount of corrosive sulfuric acid is used. In addition, it is uneconomical in terms of processing and equipment costs due to the need for low oxygen concentrations.

一方、薬剤添加により重金属を除去あるいは不溶化する方法として、特許文献4は、キレート剤により重金属を溶解してから、イオン交換樹脂で重金属イオンをキレート剤から脱離し、その再生をはかる方法を開示する。この方法は鉛の溶出抑制に有効であるが、水銀やカドミウム等の不溶化効果は不明であり、またイオン交換樹脂が高価であるため処理費用の点で不経済である。   On the other hand, as a method for removing or insolubilizing heavy metals by adding chemicals, Patent Document 4 discloses a method in which heavy metals are dissolved with a chelating agent and then desorbed from the chelating agent with an ion exchange resin to regenerate it. . This method is effective for suppressing the elution of lead, but the effect of insolubilization of mercury, cadmium, etc. is unclear, and the ion exchange resin is expensive, which is uneconomical in terms of processing costs.

また、特許文献5は、硫酸第二鉄および凝集剤で重金属類を不溶化し、酸またはアルカリにより中和する方法を開示するが、大量の水を必要とするために設備が大規模になる問題がある。   Patent Document 5 discloses a method of insolubilizing heavy metals with ferric sulfate and a flocculant and neutralizing them with an acid or an alkali. However, since a large amount of water is required, the facility becomes large-scale. There is.

その他、特許文献6は、水銀やカドミウムを硫化ナトリウムで硫化して不溶化する方法を開示するが、硫化剤の水溶液と土壌とが十分効率的に接触することの確認が困難なために、未処理のまま残存して溶出するおそれがあり、したがって多量の硫化剤を余分に使用しなければならない。   In addition, Patent Document 6 discloses a method for insolubilizing mercury or cadmium with sodium sulfide, but it is difficult to confirm that the aqueous solution of the sulfiding agent and the soil are in contact with each other sufficiently. There is a risk that it will remain and elute, so a large amount of sulfiding agent must be used in excess.

なお、これらの方法とは異なり、汚染土壌の埋め戻しや遮水性の材料で隔離する方法等もあるが、信頼性に疑問を残し、なお重金属溶出の危険を残しているのは周知のとおりである。   Unlike these methods, there are methods such as backfilling contaminated soil and segregating with water-proof materials, but it is well known that there are still doubts about reliability and the risk of elution of heavy metals. is there.

特許文献7は、上記の問題点を改善する目的でなされた本発明者の発明になる方法であって、鉛、クロムおよびカドミウム等を含有する土壌に結晶性のカルシウムシリケートを形成させることにより、これらの重金属類を固定して溶出を抑制する方法である。 ところが、更なる研究によると、高濃度の水銀を含有する汚染土壌に適用しようとする場合、その溶出抑制効果がなお不十分なために環境基準値である0.0005mg/L以下にまで水銀を確実に低減することが困難であることがわかった。
特開2001−104932号公報 特開平8−182983号公報 特開2003−326246号公報 特開2003−159583号公報 特開2002−233858号公報 特開平7−24441号公報 特開2002−320952号公報
Patent Document 7 is a method of the inventors' invention made for the purpose of improving the above problems, by forming crystalline calcium silicate in soil containing lead, chromium, cadmium and the like, This is a method of fixing these heavy metals to suppress elution. However, according to further research, when applying to contaminated soil containing high concentrations of mercury, the elution suppression effect is still insufficient, so that mercury is reduced to the environmental standard value of 0.0005 mg / L or less. It turned out to be difficult to reduce reliably.
JP 2001-104932 A JP-A-8-182983 JP 2003-326246 A Japanese Patent Laid-Open No. 2003-159583 JP 2002-233858 A Japanese Patent Laid-Open No. 7-24441 JP 2002-320952 A

本発明は、汚染土壌に含まれる水銀、ヒ素、鉛、セレン、クロム、カドミウム、ホウ素あるいはフッ素等、とくにヒ素および水銀を不溶化処理することにより、環境への溶出を抑制して無害化する場合、不溶化率を十分にして溶出量を環境基準値以下に確保し、未処理のまま残存して溶出する危険を防止し、しかも処理および設備面での経済性を向上する手段を提供することを課題とする。   In the present invention, mercury, arsenic, lead, selenium, chromium, cadmium, boron, fluorine, etc. contained in the contaminated soil, especially arsenic and mercury are insolubilized to suppress desolation to the environment, Providing means to ensure the insolubilization rate and ensure the elution amount is below the environmental standard value, to prevent the risk of elution by remaining untreated, and to improve the economics of treatment and equipment And

(1) 重金属等汚染土壌に、不溶化剤として硫化ナトリウムまたは水硫化ナトリウムを、汚染土壌中に含まれる重金属等の化学等量に対し、0.01〜1倍混合して前記重金属等を硫化物に転換したのち、カルシウム化合物、もしくはカルシウム化合物とシリカ化合物の両化合物を、前記硫化物に転換後の混合土壌に酸化カルシウム量換算で3〜30重量%添加し、ついでこれらの混合物をオートクレーブ中で130〜300℃の温度で水熱処理してケイ酸カルシウム結晶に転換することを特徴とする重金属等汚染土壌の不溶化処理法、
(2)不溶化剤混合前の 汚染土壌を、あらかじめ加水してスラリー化することを特徴とする上記(1)に記載された重金属等汚染土壌の不溶化処理法、
(3)不溶化剤混合前の汚染土壌にあらかじめアルカリ剤を添加してpH値をアルカリ性に調整しておく上記(1) または(2)に記載された重金属等汚染土壌の不溶化処理法である。
(1) Sodium sulfide or sodium hydrosulfide as an insolubilizing agent in soil contaminated with heavy metals, etc. is mixed 0.01 to 1 times the chemical equivalent of heavy metals, etc. contained in the contaminated soil, and the heavy metals are sulfided. Then, calcium compound or both compounds of calcium compound and silica compound are added to the mixed soil after conversion to the sulfide in an amount of 3 to 30% by weight in terms of calcium oxide, and then these mixtures are added in an autoclave. A method for insolubilizing heavy metals and other contaminated soil, characterized by being converted to calcium silicate crystals by hydrothermal treatment at a temperature of 130 to 300 ° C .;
(2) The method for insolubilizing contaminated soil such as heavy metals as described in (1) above, wherein the contaminated soil before mixing with the insolubilizing agent is slurried in advance.
(3) The method for insolubilizing contaminated soil such as heavy metals described in (1) or (2) above, wherein an alkaline agent is added to the contaminated soil before mixing the insolubilizing agent to adjust the pH value to alkaline.

本発明は、上述したように、重金属等による汚染土壌を処理してこれらの有害な重金属等をまず硫化ナトリウムまたは水硫化ナトリウからなる不溶化剤により不溶性の硫化物に転換したのち、カルシウム化合物を投与し、さらに水熱処理してこれらをトバモライト等のケイ酸カルシウム結晶に転換し、これによって上記不溶性の硫化物を封止するため、重金属等が確実に環境基準値以下に抑制でき、しかも処理、設備面はきわめて経済的である。 As described above, the present invention treats contaminated soil with heavy metals and the like, converts these harmful heavy metals and the like into insoluble sulfides with an insolubilizing agent consisting of sodium sulfide or sodium hydrosulfide, and then converts the calcium compound to Administration, further hydrothermal treatment to convert these to calcium silicate crystals such as tobermorite, thereby sealing the insoluble sulfide, so that heavy metals can be reliably suppressed below the environmental standard value, and treatment, The equipment is very economical.

図1に本発明を実施するための基本的手段をフローで示す。対象とする処理されるべき汚染土壌は、水銀、ヒ素、鉛、セレン、クロム、カドミウム、ホウ素あるいはフッ素等を含有するもの、とりわけ水銀およびヒ素あるいはカドミウムを重点的に含む土壌である。本発明はこれらの重金属等を含有する焼却灰等に対しても同様に重金属等の不溶化処理が適用できる。   FIG. 1 shows a flow of basic means for carrying out the present invention. The target contaminated soil to be treated is soil containing mercury, arsenic, lead, selenium, chromium, cadmium, boron, fluorine, etc., especially soil that contains mercury and arsenic or cadmium. In the present invention, insolubilization treatment of heavy metals and the like can be similarly applied to incineration ash and the like containing these heavy metals and the like.

上記汚染土壌にまず重金属等の不溶化剤を混合し、同重金属等を低溶解度の難溶性化合物に変化させる。不溶化剤には硫化ナトリウムもしくは水硫化ナトリウムを使用するのがよいが、硫化水素を用いることも可能である。本工程で生成する重金属等の硫化物は、たとえば硫化カドミウム:5.010^(‐27)、硫化鉛:3.010^(‐28)あるいは硫化水銀:110^(‐53)のように水に対して難溶性で、ここで基本的に不溶処化理が行われる。 First, an insolubilizing agent such as heavy metal is mixed in the contaminated soil, and the heavy metal or the like is changed to a poorly soluble compound with low solubility. As the insolubilizing agent, sodium sulfide or sodium hydrosulfide is preferably used, but hydrogen sulfide can also be used. Sulfides such as heavy metals generated in this step are, for example, cadmium sulfide: 5.0 * 10 ^ (− 27), lead sulfide: 3.0 * 10 ^ (− 28), or mercury sulfide: 1 * 10 ^ (− As shown in 53), it is hardly soluble in water, and basically an insoluble treatment is performed here.

この不溶化剤の添加量は汚染土壌中の重金属等の化学等量に対し、0.01〜1倍等量、好ましくは0.1〜1倍等量でよい。汚染土壌や焼却灰等に含まれる重金属等は、その化学構造や形態が多種多様で不明確なものが大半であり、含有量のみから計算される化学量論値の不溶化剤が必ずしも必要としない場合もある。従って、重金属等の溶出量を環境基準値以下に低減化するのに必要最低限の不溶化剤は上記の下限値相当の添加量を使用すればよい。一方、不溶化剤の添加量が上記の上限値を超えて多すぎると、後工程の水熱処理時に硫化水素を発生させるおそれがある。なお、上記範囲で不溶化剤の添加量を決定するには、あらかじめ簡単な小規模実験を実施すればよい。   The amount of the insolubilizing agent added may be 0.01 to 1 time equivalent, preferably 0.1 to 1 time equivalent to the chemical equivalent of heavy metal in the contaminated soil. Most of the heavy metals contained in contaminated soil and incinerated ash have a variety of chemical structures and forms that are unclear, and do not necessarily require a stoichiometric insolubilizer calculated from the content alone. In some cases. Therefore, the minimum amount of insolubilizing agent required to reduce the elution amount of heavy metals or the like below the environmental standard value may be used in an amount corresponding to the above lower limit value. On the other hand, if the addition amount of the insolubilizing agent exceeds the above upper limit and is too large, hydrogen sulfide may be generated during hydrothermal treatment in the subsequent step. In addition, what is necessary is just to implement a simple small-scale experiment beforehand in order to determine the addition amount of an insolubilizing agent in the said range.

ついで本発明は、上記不溶処化理を終えた汚染土壌にカルシウム化合物、もしくはカルシウム化合物とシリカ化合物の両方を混合し、さらに水熱処理をおこなう。この反応によりトバモライト等のケイ酸カルシウム結晶を生成するとともに、これらは前工程でできた難溶性の重金属等の硫化物を封じこめ、溶出抑制効果を確保することができる。カルシウム化合物としては生石灰、消石灰、セメントあるいは石膏等を、またシリカ化合物としては、石英、石粉、ガラス粉あるいは水ガラス等を使用し、セメント、石炭灰あるいは焼却灰等は両化合物源として共通する。そして、処理すべき汚染土壌中のシリカ分が不十分な場合は、石粉や石炭灰を使用するとよい。 Next, in the present invention, the calcium compound or both of the calcium compound and the silica compound are mixed into the contaminated soil after the insolubilization treatment, and further hydrothermal treatment is performed. By this reaction, calcium silicate crystals such as tobermorite are produced, and these encapsulate sulfides such as poorly soluble heavy metals formed in the previous step, thereby ensuring an elution suppressing effect. As the calcium compound, quick lime, slaked lime, cement, gypsum, or the like is used, and as the silica compound, quartz, stone powder, glass powder, water glass, or the like is used, and cement, coal ash, incinerated ash, or the like is common as both compound sources. And when the silica content in the contaminated soil to be treated is insufficient, stone powder or coal ash may be used.

カルシウム化合物、もしくはカルシウム化合物とシリカ化合物の両化合物の配合量は、混合土壌中の酸化カルシウム量換算で3〜30重量%にすることにより、最終的に得られる処理ずみ土壌の嵩高を抑制することができる。 The compounding amount of the calcium compound or both of the calcium compound and the silica compound is 3 to 30% by weight in terms of the amount of calcium oxide in the mixed soil, thereby suppressing the bulk of the treated soil finally obtained. Can do.

カルシウム化合物、もしくはカルシウム化合物とシリカ化合物の両化合物を配合した汚染土壌の水熱処理は、オートクレーブ中で130〜300℃、好ましくは150〜200℃の温度で、反応時間(養生時間)は1〜24時間、好ましくは2〜8時間がよく、処理圧力は飽和水蒸気圧が好適である。この条件下で水熱処理することにより、とりわけ高強度のトバモライトが大量に生成できる。 Hydrothermal treatment of contaminated soil containing a calcium compound or both a calcium compound and a silica compound is carried out in an autoclave at a temperature of 130 to 300 ° C., preferably 150 to 200 ° C., and the reaction time (curing time) is 1 to 1. 24 hours, preferably 2 to 8 hours is sufficient, and the processing pressure is preferably saturated water vapor pressure. By performing hydrothermal treatment under these conditions, a particularly large amount of tobermorite can be produced.

図2は汚染土壌を硫化処理するまえに加水して汚染土壌をスラリー化する本発明法を示す。この方法は、各種汚染土壌の含水率が不定であるため、あらかじめスラリー化して汚染土壌の粘性を低下させることにより、硫化剤を均一に混合することができ、不溶化処理が汚染土壌全体にわたって十分に遂行できる利点がある。したがって加水量は実験的に適宜決定すればよく、特定の必要はない。   FIG. 2 illustrates the method of the present invention in which the contaminated soil is slurried by hydration prior to sulfidation. In this method, the moisture content of various contaminated soils is indeterminate, so the slurry can be mixed in advance to reduce the viscosity of the contaminated soil. There are benefits that can be carried out. Therefore, the amount of water may be determined appropriately experimentally and does not need to be specified.

図3は加水後にか性ソーダ等のアルカリ剤を追添して汚染土壌スラリーのpHをアルカリ性に調整する本発明法を示す。この方法は、次工程の硫化処理時における硫化作用をアルカリ性のもとで効率よく進行させ、硫化効果を向上するためであって、酸性条件下では硫化イオン(S2‐)が硫化水素になって遊離し、硫化効果を損なう。アルカリ剤の添加量は実験的に適宜決定すればよく、特定の必要はない。
(実施例)本発明および比較例に共通使用した汚染土壌相当の原料土は、ヒ素および水銀の溶出量がいずれも環境基準を超えたものである。すなわち、重金属等の溶出量は、環境庁告示第46号「土壌の汚染に係わる環境基準について」付表に準拠して分析した結果による下記の値である。
FIG. 3 shows the method of the present invention in which an alkaline agent such as caustic soda is added after water addition to adjust the pH of the contaminated soil slurry to alkaline. This method is intended to efficiently advance the sulfiding action during the sulfidation process in the next step under alkalinity and improve the sulfiding effect. Under acidic conditions, sulfide ions (S 2− ) become hydrogen sulfide. Liberates and impairs the sulfurization effect. The addition amount of the alkaline agent may be appropriately determined experimentally and does not need to be specified.
(Example) The raw soil equivalent to the contaminated soil commonly used in the present invention and the comparative example has arsenic and mercury elution amounts exceeding the environmental standards. That is, the amount of elution of heavy metals and the like is the following value based on the result of analysis in accordance with the attached table of Environmental Agency Notification No. 46 “Environmental Standards Concerning Soil Contamination”.

As 0.045mg/L
Hg 0.76mg/L
また、原料土の水銀含有量は乾燥土基準で3900mg/kgであった。
As 0.045mg / L
Hg 0.76mg / L
The mercury content of the raw soil was 3900 mg / kg on a dry soil basis.

表1は本発明の実施例4種の実施条件および結果を示す。いずれも、図2のプロセスにしたがって、まず原料土に加水して含水率を30%に調節してから、不溶化剤の硫化ナトリウムを混合したのち、カルシウム化合物として生石灰25重量%を混合し、オートクレーブ中において飽和水蒸気圧下で200℃・5時間の水熱処理をおこなった。硫化ナトリウムは原料土の乾燥重量に対し、0.001〜0.05%の範囲で4段階に分けて投与した。 Table 1 shows the implementation conditions and results of the four examples of the present invention. Both according to the process of FIG. 2, first add water to the raw soil material from by adjusting the water content of 30%, were mixed with sodium sulfide insolubilizing agent, mixing quicklime 25 weight percent calcium of compound Then, hydrothermal treatment was performed at 200 ° C. for 5 hours under saturated steam pressure in an autoclave. Sodium sulfide was administered in four stages within a range of 0.001 to 0.05% with respect to the dry weight of the raw soil.

Figure 0004664786
Figure 0004664786

表2は比較例4種の実施条件および結果を示す。比較例1はセメントを混合して常温で養生するのみの例、同2は硫化剤およびセメントを混合して常温で養生するのみの例、同3は生石灰を混合して水熱処理した例、そして同4はキレート剤および生石灰を混合して水熱処理した例である。   Table 2 shows the implementation conditions and results of four comparative examples. Comparative Example 1 is an example in which cement is mixed and cured at room temperature, 2 is an example in which sulfurizing agent and cement are mixed and cured at room temperature, 3 is an example in which quick lime is mixed and hydrothermally treated, and 4 is an example in which a chelating agent and quicklime are mixed and hydrothermally treated.

Figure 0004664786
Figure 0004664786

両表を比較すると、ヒ素の溶出量はいずれも0.001mg/L以下で実質的に差はみとめられないが、水銀の溶出量は比較例に対し、本発明では極微量に激減して溶出効果がきわめて顕著であることがわかる。これはいうまでもなく、汚染土壌中の重金属の硫化による不溶化とトバモライト結晶によるそれらの封止との相乗効果によるものである。すなわち、比較例の方法では水銀の溶出量が環境基準以下に抑制できないが、本発明ではそれ以下に確実に低減できている。ただし、実施例4の結果は 同1〜3の結果に比較し、ヒ素および水銀の不溶化効果が若干劣っていることから、硫化剤の配合量を0.0025%以上にすると確実である。また、原料土の水銀含有量は、乾燥土基準で3900mg/kg(0.39%)であったことから、含有水銀に等しい化学量論値の硫化ナトリウムの所要量は、乾燥土の重量に対し0.15%となるが、実施例1〜3のいずれも同化学量論値相当量よりかなり少ないのに水銀溶出が抑制できている。これはあきらかにトバモライト結晶による封止効果が寄与していることを明示するものである。   Comparing the two tables, the arsenic elution amount is 0.001 mg / L or less, and no substantial difference can be seen, but the mercury elution amount is significantly reduced in the present invention compared to the comparative example. It turns out that an effect is very remarkable. Needless to say, this is due to a synergistic effect of insolubilization of heavy metals in contaminated soil by sulfidation and their sealing with tobermorite crystals. That is, in the method of the comparative example, the elution amount of mercury cannot be suppressed below the environmental standard, but in the present invention, it can be surely reduced below that. However, the result of Example 4 is slightly inferior to the results of 1 to 3 in that the effect of insolubilizing arsenic and mercury is slightly inferior. In addition, since the mercury content of the raw soil was 3900 mg / kg (0.39%) on a dry soil basis, the required amount of sodium sulfide having a stoichiometric value equal to the mercury content was equal to the dry soil weight. However, although all of Examples 1 to 3 are considerably smaller than the equivalent amount of the same stoichiometric value, mercury elution can be suppressed. This clearly shows that the sealing effect by the tobermorite crystal contributes.

本発明方法の基本的なフローチャートを示す。2 shows a basic flowchart of the method of the present invention. 本発明方法の発展的なフローチャートを示す。Fig. 3 shows an evolutionary flowchart of the method according to the invention. 本発明方法のさらに発展的なフローチャートを示す。2 shows a further development flowchart of the method of the invention.

Claims (3)

重金属等汚染土壌に、不溶化剤として硫化ナトリウムまたは水硫化ナトリウムを、汚染土壌中に含まれる重金属等の化学等量に対し、0.01〜1倍混合して前記重金属等を硫化物に転換したのち、カルシウム化合物、もしくはカルシウム化合物とシリカ化合物の両化合物を、前記硫化物に転換後の混合土壌に酸化カルシウム量換算で3〜30重量%添加し、ついでこれらの混合物をオートクレーブ中で130〜300℃の温度で水熱処理してケイ酸カルシウム結晶に転換することを特徴とする重金属等汚染土壌の不溶化処理法。 Sodium sulfide or sodium hydrosulfide as an insolubilizing agent was mixed in the soil contaminated with heavy metals, etc., in an amount 0.01 to 1 times the chemical equivalent of heavy metals contained in the contaminated soil, and the heavy metals were converted to sulfides. After that, the calcium compound or both the calcium compound and the silica compound are added to the mixed soil after conversion to the sulfide in an amount of 3 to 30% by weight in terms of calcium oxide, and then the mixture is added in an autoclave at 130 to 300%. A method for insolubilizing soils contaminated with heavy metals, which is converted to calcium silicate crystals by hydrothermal treatment at a temperature of ℃. 不溶化剤混合前の 汚染土壌を、あらかじめ加水してスラリー化することを特徴とする請求項1に記載の重金属等汚染土壌の不溶化処理法。   The method for insolubilizing contaminated soil such as heavy metals according to claim 1, wherein the contaminated soil before mixing with the insolubilizing agent is slurried in advance. 不溶化剤混合前の汚染土壌にあらかじめアルカリ剤を添加してpH値をアルカリ性に調整しておくことを特徴とする請求項1または2に記載の重金属等汚染土壌の不溶化処理法。   3. The method for insolubilizing contaminated soil such as heavy metals according to claim 1 or 2, wherein an alkaline agent is added to the contaminated soil before mixing the insolubilizer to adjust the pH value to alkaline.
JP2005276246A 2005-09-22 2005-09-22 Insolubilization of heavy metal contaminated soil Expired - Fee Related JP4664786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276246A JP4664786B2 (en) 2005-09-22 2005-09-22 Insolubilization of heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276246A JP4664786B2 (en) 2005-09-22 2005-09-22 Insolubilization of heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2007083183A JP2007083183A (en) 2007-04-05
JP4664786B2 true JP4664786B2 (en) 2011-04-06

Family

ID=37970705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276246A Expired - Fee Related JP4664786B2 (en) 2005-09-22 2005-09-22 Insolubilization of heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4664786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881349A (en) * 2017-03-24 2017-06-23 中国科学院生态环境研究中心 A kind of method of preparation and use of the PCBs contaminated soil in-situ immobilization agent based on abandoned biomass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201286A (en) * 2009-02-27 2010-09-16 Dowa Eco-System Co Ltd Soil treating method
JP5857447B2 (en) * 2010-06-24 2016-02-10 株式会社大林組 Treatment method of organic mercury contaminated soil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074051A (en) * 2002-08-20 2004-03-11 Ngk Insulators Ltd Method for insolubilizing heavy metal
JP2005138074A (en) * 2003-11-10 2005-06-02 Kawasaki Heavy Ind Ltd Material obtained by stabilizing waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714634B2 (en) * 1993-12-16 2005-11-09 日本曹達株式会社 Method for immobilizing heavy metals by hydrothermal treatment of fly ash
JP3198850B2 (en) * 1995-01-09 2001-08-13 日本鋼管株式会社 Detoxification method of incineration fly ash
JPH11165147A (en) * 1997-12-02 1999-06-22 Nippon Kayaku Co Ltd Method for stabilizing heavy metal-containing waste treating agent and heavy metal-containing waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074051A (en) * 2002-08-20 2004-03-11 Ngk Insulators Ltd Method for insolubilizing heavy metal
JP2005138074A (en) * 2003-11-10 2005-06-02 Kawasaki Heavy Ind Ltd Material obtained by stabilizing waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881349A (en) * 2017-03-24 2017-06-23 中国科学院生态环境研究中心 A kind of method of preparation and use of the PCBs contaminated soil in-situ immobilization agent based on abandoned biomass
CN106881349B (en) * 2017-03-24 2021-05-25 中国科学院生态环境研究中心 Preparation and use methods of PCBs contaminated soil in-situ remediation agent based on waste biomass

Also Published As

Publication number Publication date
JP2007083183A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP5205844B2 (en) Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method
CN105683097B (en) Agent for treating hazardous substance
JP2006328498A (en) Method for making recyclable neutral sediment generated in water treatment stage for acid mining waste water
CN111035882A (en) Method for the synergistic treatment of arsenic-containing waste and barium-containing waste for stabilization and solidification
JP4664786B2 (en) Insolubilization of heavy metal contaminated soil
JP3718066B2 (en) Solid waste treatment method
JP2000301103A (en) Detoxification treatment of incineration ash or fly ash
JP2000301101A (en) Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
JPWO2008152855A1 (en) Soil improvement method and land shielding method
JP3867002B2 (en) Detoxification method for contaminated soil
JP4598743B2 (en) Method for producing a drug mainly composed of polysulfide (however, Sx (x = 2 to 12))
JP2003334568A (en) Method for treating drain containing heavy metal
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
JP3920874B2 (en) Heavy metal immobilization treatment agent, method for producing the same heavy metal immobilization treatment agent, and heavy metal immobilization treatment method
JP2004025115A (en) Method for insolubilizing heavy metal in treated material of organic halide-polluted body
JP2008279349A (en) Remediation method of acidified soil
JP5280405B2 (en) Method for insolubilizing and detoxifying hexavalent chromium
JP2008290059A (en) Method for decontaminating soil by combining oxidation promotor with soil solidifying material
JP5147146B2 (en) Waste incineration fly ash treatment method
CN107010800B (en) Chemical stabilizing agent and chemical stabilizing method for arsenic and selenium in lead-zinc smelting wastewater treatment sludge
JP4078200B2 (en) Detoxification method for incineration fly ash, etc. (low temperature)
JP2005144255A (en) Method of processing sludge or soil for detoxification
JP2006346663A (en) Method for treating contaminated soil and soil solidifying material
JP4164047B2 (en) Sulfuric acid pitch treatment agent
JP2005199221A (en) Detoxicating processing method for sludge or soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees