JP4664123B2 - 検出器 - Google Patents

検出器 Download PDF

Info

Publication number
JP4664123B2
JP4664123B2 JP2005167179A JP2005167179A JP4664123B2 JP 4664123 B2 JP4664123 B2 JP 4664123B2 JP 2005167179 A JP2005167179 A JP 2005167179A JP 2005167179 A JP2005167179 A JP 2005167179A JP 4664123 B2 JP4664123 B2 JP 4664123B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
stripe
type semiconductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005167179A
Other languages
English (en)
Other versions
JP2006344673A (ja
Inventor
祥雅 片桐
弘幸 篠島
浩 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005167179A priority Critical patent/JP4664123B2/ja
Publication of JP2006344673A publication Critical patent/JP2006344673A/ja
Application granted granted Critical
Publication of JP4664123B2 publication Critical patent/JP4664123B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

本発明は、情報通信技に用いる検出器に関するものであり、特に、超高速パルス光信号などの各種信号を検出する検出器に関するものである。
近年、情報通信の技術分野では、例えば100Gbpsを越える光信号処理など超高速の信号の処理が望まれており、種々の基盤技術の検討が盛んに行われている。この一つには、例えば光ゲートスイッチなどの非線形光機能回路が挙げられる。この回路においては、光パルスを電気的に検出して、光回路による処理と電気回路による処理を融合させることが重要である。
光パルスを電気的に検出する光検出器としては、従来よりフォトダイオードが知られている。しかしながら、フォトダイオードは、測定光の強度に比例してフォトカレントが発生するため、超高速で微弱な光パルスを検出しようとすると、暗電流など光信号とは無関係な雑音が相対的に増大し、S/N比が大幅に劣化してしまう。
このため、非線形光機能回路には、光出力の増大に対して非線形に信号出力が増大する非線形型の光検出器を用いて光パルスを電気的に検出することが望ましい。この非線形型光検出器では、光パルスの頂点近傍のみを選択的に出力できるので、小さい雑音成分の影響を除去し、上述したようなフォトダイオードに関連する問題を解決することが可能である。このような非線形型の光検出器には、第二高調波発生(Second-Harmonic Generation:SHG)を用いたものや多光子吸収過程を用いたものがある。
SHGでは、熱交換率が入射光強度の自乗に比例するので、効率よく雑音成分を除去することができる。ところが、SHGは、回転非対称な結晶や変換光と入射光の位相整合が必要であるなどの種々の制限があるため、これを光検出器に適用することは困難であった。
このため、近年では、多光子吸収過程による非線形光学効果を利用した光検出器が注目されている。多光子吸収過程とは、3次の非線形過程であり、大小を問わなければ殆どの光学材料が有している性質である。この多光子吸収過程のうち、光検出に用いられるのは主に2光子吸収過程である。例えば、価電子帯と伝導帯のエネルギー分布が図9に示すような物質において、一般に、バンドギャップエネルギーよりもエネルギーが小さい光子はその物質に吸収されない。しかしながら、光子2つのエネルギーの和がバンドギャップエネルギーを越えると、光子はその物質に吸収され、電子と正孔が発生する。これを2光子吸収過程という。この2光子吸収過程により発生したキャリアは、各々独立に半導体中を移動できる。このような2光子吸収過程を用いた光検出器を図10に示す。
光検出器100は、クラッドとなる絶縁体基板101と、この絶縁体基板101上に形成されたSiからなるコア102と、絶縁体基板101上においてコア102の一方の側面に隣接して形成されn型不純物が導入された半導体からなるn型領域103と、絶縁体基板101上おいてn型領域103と対向するコア102の他方の側面に隣接して形成されp型不純物が導入された半導体からなるp型領域104と、n型領域103およびp型領域104上にそれぞれ形成された電極105,106とを有する。ここで、コア102中を伝播する光は、絶縁体基板101と平行で、かつ、n型領域103とp型領域104とを結ぶ方向と直交する方向に進行する。
このような光検出器100において、コア102中を伝播する光パルスにより2光子吸収過程が起こりキャリア、すなわち電子と正孔の対が発生する。この電子および正孔は、電極105,106間にバイアスを印加することにより、それぞれn型領域103とp型領域104とに捕捉される。この捕捉された電子および正孔を電極105,106から電流として検出することにより、光検出器100は、コア102を伝播する光パルスを検出する。
T. K. Liang, et al. 、"Silicon waveguide two-photon absorption detector at 1.5mm wavelength for autocorrelation"、Appl. Phys. Lett.、Vol. 81, pp.1323-1325、2002年
一般に、光導波路では、コアの中心部を光が伝播するので、例えば単一モードのエネルギー分布は、コアの中心部が最も強度の高い単峰性の分布となる。このため、2光子吸収過程で発生する電子と正孔の密度は、コアの中心部が最も高くなる。したがって、上述した従来の光検出器100において、コア102の中心部で発生した電子および正孔をコア102に隣接して形成されたn型領域103およびp型領域104で捕捉するためには、その電子および正孔をコア102の中心部分から周縁部まで移動させなければならない。しかしながら、従来の光導波路のコアでは、屈折率が高いとはいえ、単一モードの導波路でも数百ナノメートルの幅を有する。このため、コア102の中心部分から周縁部への電子および正孔の移動に必要な時間が長くなり、結果として高速応答を実現することが困難であった。
このように、光導波路などを用いた従来の検出器では、信号を高速に検出することが困難であった。そこで、本願発明は、従来の検出器では実現できなかった高速応答を実現できる検出器を提供することを目的とする。
上述したような課題を解決するために、本発明にかかる検出器は、正の誘電率を有する第1の層と、この第1の層に接し負の誘電率を有する第2の層とを少なくとも有するポラリトン導波路と、このポラリトン導波路を伝播する電磁波によりキャリアを発生させるキャリア発生部と、このキャリア発生部からキャリアを取り出す電極部とを備えることを特徴とする。ここで、上記キャリアは、キャリア発生手段における多光子吸収過程により発生する電子と正孔である。
上記検出器において、キャリア発生部は、半導体から構成され、第1の層は、半導体からなる基板上に形成され、第2の層は、第1の層上に形成され、電極は、第1の層直下の基板内にそれぞれ離間して形成されたp型半導体領域およびn型半導体領域から構成されるようにしてもよい。これにより、第1の層と第2の層の界面を伝播する電磁波は、第1の層の下にあるキャリア発生手段でキャリアを発生させる。このキャリアは、第1の層直下のキャリア発生手段に形成されたp型半導体層およびn型半導体層から抽出される。ここで、第1の層は、10nm以下のSiO2から構成されるようにしてもよい。
また、上記検出器において、互いに略平行なポラリトン導波路を少なくとも1対備え、キャリア発生部は、2つのポラリトン導波路の間に設けられているようにしてもよい。ここで、ポラリトン導波路は、p型半導体層を第1の層とする第1のポラリトン導波路と、n型半導体層を第1の層とする第2のポラリトン導波路とからなり、キャリア発生部は、p型半導体層とn型半導体層との間に形成された半導体層であり、電極部は、p型半導体層およびn型半導体層を含むようにしてもよい。これにより、第2の層の間隙に発生する電磁波は、第2の層の間に配設されたキャリア発生手段でキャリアを発生させる。このキャリアは、キャリア発生手段に隣接するp型半導体層およびn型半導体層から抽出される。
また、上記検出器において、第1の層およびキャリア発生部は、共通の半導体層であるようにしてもよい。ここで、電極部は、第1の層にそれぞれ隣接して形成されたp型半導体層およびn型半導体層から構成されるようにしてもよい。これにより、第1の層と第2の層の間隙に発生する電磁波は、キャリア発生手段として機能する第1の層でキャリアを発生させる。このキャリアは、第1の層に隣接するp型半導体層およびn型半導体層から抽出される。
本発明によれば、正の誘電率を有する第1の層と、この第1の層に接し負の誘電率を有する第2の層と少なくとも有するポラリトン導波路と、このポラリトン導波路を伝播する電磁波によりキャリアを発生させるキャリア発生部と、このキャリア発生手段からキャリアを取り出す電極部とを設けることにより、キャリア発生手段で発生するキャリアを検出手段により高速に検出することができるので、高速応答が実現できる。
[第1の実施の形態]
以下、図面を参照して、本発明の第1の実施の形態について詳細に説明する。図1は、本実施の形態にかかる光検出器の構成を示す断面図、図2は、図1の平面図である。なお、図1および図2において、図1を正面視した際に、上方を上側、下方を下側とする。
本実施の形態にかかる光検出器10は、半導体基板11と、この半導体基板11上面から半導体基板11中に形成されたp型の不純物領域(p型領域)12と、半導体基板11上面から半導体基板11中にp型領域12と離間して形成されたn型の不純物領域(n型領域)13と、半導体基板11上に形成されp型領域12およびn型領域13の少なくとも一部を覆う平面視略帯状または短冊状の絶縁層14と、この絶縁層14上に形成された平面視略帯状または短冊状の金属膜(以下、「金属ストライプ」という)15と、p型領域12の一部を含む半導体基板11上に形成された電極16と、n型領域13の一部を含む半導体基板11上に形成された電極17とを有する。本実施の形態においては、絶縁層14と金属ストライプ15とが所定の方向に延在し、これらの絶縁層14および金属ストライプ15とが界面を有することにより、直線状のポラリトン導波路が構成される。このポラリトン導波路とは、表面プラズモン・ポラリトン波(以下、「SPP(Surface Plasmon-Polariton)波」と呼ぶ)を伝播させるものである。このSPP波について、以下に説明する。なお、図1における○×印は、SPP波の伝播方向を意味する。
金属と誘電体の界面に局在可能な電磁波であるSPP波は、界面から離れるにつれて外側に向かって指数関数的に電場と磁場とが減衰する2次元的な形状の特殊な電磁波である。これは、金属の自由電子を電子気体として近似したときに得られる誘電率が下式(1)で表され、波長の比較的大きな近赤外線領域では、金属の誘電率が負となることに起因する。なお、下式(1)において、εmは比誘電率、ωpはプラズマ振動数、ωは光波の角周波数、Nは電子数密度、eは電気素量、mは電子質量、ε0は真空中の誘電率を意味する。
Figure 0004664123
すなわち、このような負誘電体としての金属の界面に通常の正の誘電率(ε1)を有する誘電体を配置し、Maxwell方程式をこの境界条件のもとに解くと、下式(2)に示す形式の解を導出することができる。なお、下式(2)において、Eは光波の電場、Hは界面内の磁場、βは伝搬係数、yは界面内の磁場と垂直方向、zは界面内の磁場の進行方向を意味する。
Figure 0004664123
この解は、例えば、下式(3)、(4)に示す式で表すことができる。ここで、S1,S2は減衰パラメータ、k0は波数を意味する。
Figure 0004664123
Figure 0004664123
電場と磁場の各成分のうち界面に平行な成分は、連続の条件により金属、誘電体側でともに等しいが、界面に垂直な電場強度の比は(εm/ε12となる。例えば、図3に示すように、波長1.55μmで、金属−空気界面に局在するSPP波の垂直電場強度比は約10000となり、誘電体側で電場が飛躍的に増強される。
このように、SPP波は、金属と誘電体との界面に局在する波である。このため、半導体を正の誘電体とみなしたとき、この半導体を金属と隣接させ、SPP波の中心部で発生するキャリアを捕獲するためのソース・ドレイン領域をその半導体界面近傍に形成することにより、ソース・ドレインへの電子または正孔の移動時間は大幅に短縮され、高速応答が可能な光検出器を実現できる。
そこで、本実施の形態では、絶縁層14および金属ストライプ15により構成されるポラリトン導波路の途中でSPP波により半導体基板11で発生したキャリアを抽出するため、ポラリトン導波路の任意の箇所近傍にp型領域12およびn型領域13を形成している。このような本実施の形態にかかる光検出器1の詳細について、以下に説明する。
半導体基板11は、例えばSiなどからなる空乏領域となる低ドープの半導体基板から構成される。このような半導体基板11の材料としては、後述するSPP波に対応する光信号を担う光子のエネルギーよりもバンドギャップエネルギーが大きくなければならないが、その光子エネルギーの2倍以下である必要はない。なお、この光子エネルギーの2倍以下という条件を満たす場合は、多光子吸収過程の中でも最も効率の高い2光子吸収過程による光吸収が半導体基板11で発生する。
図4は、半導体基板11、絶縁層14および金属ストライプ15におけるエネルギー分布を示す模式図である。SPP波の吸収により半導体基板11において発生したキャリアは、半導体基板11表面に形成される空乏層11aに閉じ込められる。したがって、キャリアは3次元的に拡散することなくソースおよびドレインへ高速に輸送される。なお、半導体基板11は、上述したように低ドープであり、p型領域12およびn型領域13に対して空乏層として作用する。また、絶縁層14は、キャリアがトンネルにより金属ストライプ15へ流入しない程度の厚さに形成される。
p型領域12は、半導体基板11の上面から半導体基板11中にかけて形成されたp型の不純物領域である。このようなp型領域12は、半導体基板11の上面側から例えばBなどの不純物を導入することにより形成される。このp型領域12上には、絶縁層14および電極16が形成される。
n型領域13は、半導体基板11の上面から半導体基板11中にかけて形成されたn型の不純物領域である。このようなn型領域13は、半導体基板11の上面側から例えばPなどの不純物を導入することにより形成される。このn型領域13上には、絶縁層14および電極17が形成される。
これらのp型領域12およびn型領域13は、金属ストライプ15を挟んだ両側にそれぞれ設けられる。
絶縁層14は、図2に示すように、所定の方向に延在して形成される。このような絶縁層14は、各種酸化膜などの絶縁物質から構成され、特にポテンシャル障壁が最も高いSiO2を用いるのが望ましい。なお、絶縁層14には、上述した材料のみならず、金属ストライプ15を構成する材料に対して誘電率が正となる物質であれば各種物質を用いることができる。また、上述したように絶縁層14は、SPP波により半導体基板11で発生したキャリアが金属ストライプ15へのトンネルによる流入が阻止できる程度の厚さ、例えば50nm以下、より望ましくは10nm以下に形成される。
金属ストライプ15は、図1に示すように、矩形断面を有する金属から構成され、絶縁層14上に形成される。このような金属ストライプ15には、SPP波に対応する光信号の光周波数において誘電率が負であれば各種金属を用いることができるが、金、銀、白金などの貴金属や銅、アルミニウムなどが望ましい。例えば、光周波数が200THz程度(近赤外領域)の場合、金属ストライプ15の幅は数μm程度に形成される。
電極16,17は、金属等の誘電体からなり、半導体基板11上においてそれぞれp型領域12またはn型領域13に接するように形成される。このような電極16,17を介して外部回路により電流が検出される。
次に、上述した光検出器10による信号検出動作について説明する。まず、絶縁層14および金属ストライプ15の長手方向の一端に光パルス等の光信号が外部から入力されると、絶縁層14および金属ストライプ15の界面近傍において、その光信号に対応するSPP波が発生する。このSPP波は、絶縁層14および金属ストライプ15の界面の金属ストライプ15表面を伝播し、絶縁層14および金属ストライプ15の他端に到達する。この他端に到達したSPP波は、そのままの状態または光信号に変換されて外部回路に出力される。
本実施の形態において、ポラリトン導波路を伝播するSPP波の電場や磁場の強度は、金属ストライプ15直下の絶縁層14の誘電率に支配される。したがって、絶縁層14の厚さを10nm程度と光の波長に比べて大幅に小さく形成することにより、絶縁層14と金属ストライプ15の界面に発生するSPP波の電場と磁場の大部分を半導体基板11側に染み出させることができる。例えば、図5(a)に示すように、Au/SiO2界面に発生するSPP波の電場や磁場の強度は、絶縁層14側にμmオーダーの分布を有し、高々数十nmの絶縁層14の厚さよりも遙かに大きい。このため、SPPが持つエネルギーの大部分は、半導体基板11側に染み出し、半導体基板11に影響を及ぼす。
また、半導体基板11側に染み出したSPP波のエネルギーは、半導体基板11の誘電率の影響も受ける。例えば、半導体基板11にSi、絶縁層14にSiO2、金属ストライプ15にAuを用いた場合、図5(a)を参照して説明したように、絶縁層14と金属ストライプ15との界面(Au/SiO2界面)には、500nm以上に亘ってSPP波のエネルギーが分布する。また、このエネルギーの影響により、半導体基板11と絶縁層14との界面(Au/Si界面)には、図5(b)に示すように100〜200nm程度のSPP波のエネルギーが分布する。
これらの結果、SPP波のエネルギーの半導体基板11側への染み出しは、絶縁層14と金属ストライプ15との界面および半導体基板11と絶縁層14との界面に発生するSPP波のエネルギー分布の中間程度、すなわち数百nmとなる。この値は、上述したように絶縁層14の厚さよりも遙かに大きい。したがって、その半導体基板11側に染み出したSPP波のエネルギーにより半導体基板11が励起し、多光子吸収過程などによりキャリアが発生する。
半導体基板11で発生したキャリアは、p型領域12およびn型領域13近傍の金属ストライプ15にバイアス電圧を印加することにより、それぞれp型領域12およびn型領域13に取り込まれ、電極16,17を介してから電流として検出される。これにより、ポラリトン導波路を伝播するSPP波が検出される、すなわち、外部回路においてそのSPP波に対応する光信号が検出されることとなる。
SPP波の染み出し電場が最も強いのは、金属/絶縁体界面、すなわち、絶縁層14と金属ストライプ15との界面に近い領域である。したがって、半導体基板11で発生するキャリアは、その界面近傍、すなわち半導体基板11と絶縁層14との界面近傍に局在する。このため、本実施の形態では、絶縁層14直下に半導体基板11を挟むようにp型領域12とn型領域13とを形成している。このように、半導体基板11と絶縁層14との界面近傍にp型領域12およびn型領域13が設けることにより、半導体基板11で発生するキャリアを高速に取り込むことができる。
なお、絶縁層14および金属ストライプ15の幅は例えば数μm程度など比較的広く形成されるが、導波路の底面に形成するp型領域12とn型領域13の間隔は、絶縁層14および金属ストライプ15の幅に影響されず、数百nm程度に狭く形成することが可能である。したがって、絶縁層14および金属ストライプ15の幅は、光検出器10の検出動作の高速化を阻害しない。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図6は、本実施の形態にかかる光検出器の構成を示す要部断面図である。なお、本実施の形態において、第1の実施の形態と同等の構成要素については同じ名称および符号を付し、適宜説明を省略する。
本実施の形態にかかる光検出器20は、半導体基板11と、この半導体基板11の上面側に形成されたp型領域12と、半導体基板11の上面側にp型領域12と離間して形成されたn型領域13と、半導体基板11のn型領域13と接して形成され所定の方向に延在する平面視略帯状または短冊状の金属からなる下側金属ストライプ21と、この下側金属ストライプ21上に形成されn型の不純物が導入された半導体(n型半導体層)22と、このn型半導体層22上に形成された半導体層23と、この半導体層23上に形成されp型の不純物が導入された半導体(p型半導体層)24と、このp型半導体層24上に形成され平面視略帯状または短冊状の金属からなる上側金属ストライプ25と、この上側金属ストライプ25とp型領域12とを接続する配線26と、p型領域12の一部を含む半導体基板11上に形成された電極16と、n型領域13の一部を含む半導体基板11上に形成された電極17とを有する。ここで、少なくとも下側金属ストライプ21とn型半導体層22とから第1のポラリトン導波路が、また、p型半導体層24と上側金属ストライプ25とから第2のポラリトン導波路が構成される。これら2つのポラリトン導波路は、互いに略平行に形成されている。これらポラリトン導波路の任意の箇所の近傍には、ポラリトン導波路を伝播するSPP波により半導体層23で発生するキャリアを取り出すためのp型領域12、n型領域13、電極16,17および配線26が形成される。なお、図6において、図6を正面視した際に、上方を上側、下方を下側とする。また、図6に示す○×印は、SPP波の伝播方向を意味する。
下側金属ストライプ21は、SPP波に対応する光信号の光周波数において誘電率が負であれば各種金属を用いることができるが、金、銀、白金などの貴金属や銅、アルミニウムなどが望ましい。また、下側金属ストライプ21の幅は、伝播させるSPP波の光周波数に対応して形成される。
n型半導体層22は、下側金属ストライプ21と同等の形状を有し、下側金属ストライプ21の上面に形成された例えばPなどの不純物が導入された半導体領域である。このn型半導体層22には、下側金属ストライプ21を構成する材料に対して誘電率が正となる半導体物質であれば各種物質を用いることができる。
半導体層23は、下側金属ストライプ21と同等の形状を有し、n型半導体層22の上面に形成された例えばSiなどからなる低ドープの半導体領域である。
p型半導体層24は、下側金属ストライプ21と同等の形状を有し、半導体層23の上面に形成された例えばBなどの不純物が導入された半導体領域である。このp型半導体層24には、上側金属ストライプ25を構成する材料に対して誘電率が正となる半導体物質であれば各種物質を用いることができる。
上側金属ストライプ25は、下側金属ストライプ21と同等の形状を有し、p型半導体層23の上面に形成される。このような上側金属ストライプ25には、下側金属ストライプ21と同様、SPP波に対応する光信号の光周波数において誘電率が負であれば各種金属を用いることができるが、金、銀、白金などの貴金属や銅、アルミニウムなどが望ましい。また、上側金属ストライプ25の幅は、下側金属ストライプ21の場合と同様、伝播させるSPP波の光周波数に対応して形成される。
配線26は、p型領域12と上側金属ストライプ25とを電気的に接続する金属線路から構成される。なお、配線26は、図6に示すような3次元配線構造のみならず、例えばワイヤーボンディングやビアホールなど、p型領域12と上側金属ストライプ25とを電気的に接続できるのであれば、どのような接続方法を用いてもよい。
次に、上述した光検出器20による信号検出動作について説明する。まず、第1のポラリトン導波路を構成する下側金属ストライプ21とn型半導体層22、および、第2のポラリトン導波路を構成するp型半導体層24と上側金属ストライプ25の長手方向の一端に光パルス等の光信号が外部から入力されると、下側金属ストライプ21とn型半導体層22との界面、および、p型半導体層24と上側金属ストライプ25との界面にその光信号に対応するSPP波が発生する。このSPP波は、それらの界面を伝播し、下側金属ストライプ21、n型半導体層22、p型半導体層24および上側金属ストライプ25の長手方向の他端に到達する。この他端に到達したSPP波は、SPP波のまま、または、光信号に変換されて外部回路に出力される。
本実施の形態のように2つの金属ストライプが対向配置された場合は、それぞれの金属ストライプの表面を伝播するSPP波のエネルギーが結合する。特に、下式(5)で示す電場となる非対称モード、すなわち、界面に垂直な方向に対して、異なる符号の表面電荷が各々の金属ストライプ表面に発生する場合は、カットオフがなく、金属ストライプ間の幅をいくら小さくしてもSPP波のエネルギーが伝播する。このような非対称モードでは、金属ストライプの間隙を伝播する電磁波のエネルギー密度は極めて高くなる。なお、下式(5)において、hは2つの金属ストライプに挟まれた部材の厚さを意味する。
Figure 0004664123
また、金属ストライプ21,25の間隔が波長に比べて十分小さくなると、金属ストライプ21,25の間隙では、SPP波のエネルギーがほぼ一定となる。例えば、図7に示すように、真空波長1.55μmに対応した光周波数を有するSPPは、厚さ200nmのAu/SiO2/Au間隙では、ほぼ平坦な強度分布を有し、金属側の数nmの領域で急激に減衰する。したがって、低ドープの半導体層23中心部でのSPP波の強度の分布の窪みは無視でき、高効率のキャリア発生が可能となる。このため、下側金属ストライプ21と上側金属ストライプとの間隔は、高々1.5μmが望ましい。
上述したようなSPP波が伝播している状態において、p型領域12およびn型領域13近傍の下側金属ストライプ21と上側金属ストライプ25との間にバイアス電圧を印加すると、半導体23で発生したキャリアは移動する。具体的には、電子は、n型半導体層22に取り込まれ、下側金属ストライプ21およびn型領域13を介して、電極17から外部回路に出力される。一方、正孔は、p型半導体層24に取り込まれ、上側金属ストライプ25、配線26およびp型領域12を介して、電極16から外部回路に出力される。これにより、ポラリトン導波路を伝播するSPP波が電流値として検出され、結果として、外部回路においてSPP波に対応する光信号が検出されることとなる。
このように、本実施の形態によれば、下側金属ストライプ21および上側金属ストライプ25の間にn型半導体層22、半導体層23およびp型半導体層24を設けることにより、下側金属ストライプ21および上側金属ストライプ25の間隙を伝播するSPP波により効率的にキャリアを発生させるとともに、このキャリアを半導体層23に隣接するn型半導体層22およびp型半導体層24から高速に取り込むことができるので、結果として高速応答が実現できる。
なお、本実施の形態において、半導体層23で発生したキャリアは、n型領域13およびp型領域13を介さずに、下側金属ストライプ21および上側金属ストライプ25から直接に取り出すようにしてもよい。この場合、下側金属ストライプ21および上側金属ストライプ25それぞれにキャリア取り出し用の電極を接続することにより実現することができる。
また、半導体層23で発生したキャリアは、下側金属ストライプ21および上側金属ストライプ25を介さずに、n型半導体層22およびp型半導体層24から直接に取り出すようにしてもよい。この場合には、n型半導体層22およびp型半導体層24それぞれにキャリア取り出し用の電極を接続することによって実現することができる。
[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。図8は、本実施の形態にかかる光検出器の構成を示す要部断面図である。なお、本実施の形態において、第1,2の実施の形態と同等の構成要素については同じ名称および符号を付し、適宜説明を省略する。
本実施の形態にかかる光検出器30は、半導体基板11と、この半導体基板11の上面に埋設され所定の方向に延在する平面視略帯状または短冊状の形状を有する金属ストライプ31と、この金属ストライプ31を含む半導体基板11上において金属ストライプ31に沿って形成された断面矩形の半導体ストライプ32と、半導体基板11上において半導体ストライプ32の一方の側面に形成されたn型領域33と、半導体基板11上において半導体ストライプ32の他方の側面に形成されたp型領域34と、半導体基板11の上面並びにn型領域33の側面および上面に亘って形成された電極35と、半導体基板11の上面並びにp型領域34の側面および上面に亘って形成された電極36とを有する。ここで、少なくとも金属ストライプ31および半導体ストライプ32により、直線状のポラリトン導波路が構成される。ポラリトン導波路の任意の箇所の近傍には、ポラリトン導波路を伝播するSPP波により半導体ストライプ32で発生したキャリアを取り出すためのn型領域33、p型領域34および電極35,36により取り出される。なお、図8において、図8を正面視した際に、上方を上側、下方を下側とする。また、図8に示す○×印は、SPP波の伝播方向を意味する。
半導体基板11は、例えばSiなどからなるp型半導体基板などの絶縁体基板から構成される。
金属ストライプ31は、図8に示すように、矩形断面を有し、半導体基板11に埋め込まれたような状態に形成される。このとき、金属ストライプ31の上面は、金属ストライプ31が埋め込まれた部分を除く半導体基板11の上面と同一平面を構成する。このような金属ストライプ31には、SPP波に対応する光信号の光周波数において誘電率が負であれば各種金属を用いることができるが、金、銀、白金などの貴金属や銅、アルミニウムなどが望ましい。また、金属ストライプ31の幅は、伝播させるSPP波の光周波数に対応させて形成される。
半導体ストライプ32は、平面視略帯状または短冊状で、かつ、矩形断面を有するノンドープの半導体領域であり、金属ストライプ31上を含む半導体基板11上に形成され、金属ストライプ31の長手方向と同じ方向に延在する。この半導体ストライプ32には、金属ストライプ31を構成する材料に対して誘電率が正となる半導体物質であれば各種物質を用いることができる。
n型領域33は、半導体ストライプ32の長手方向に沿った一方の側面に隣接して形成され、例えばPなどの不純物が導入された半導体領域である。
p型領域34は、半導体ストライプ32の他方の側面に隣接して形成され、例えばBなどの不純物が導入された半導体領域である。
これらのn型領域33およびp型領域34は、半導体ストライプ32を挟むように半導体ストライプ31の両側に形成される。
電極35は、金属からなり、半導体基板11の上面並びにn型領域33の側面および上面にかけて形成される。電極36は、金属からなり、半導体基板11の上面並びにp型領域34の側面および上面にかけて形成される。ここで、電極35および電極36は、それぞれn型領域33またはp型領域34とオーミックコンタクトしている。このような電極35,36に接続された外部回路により、電流値が検出される。
次に、上述した光検出器30による信号検出動作について説明する。ます、ポラリトン導波路を構成する金属ストライプ31および半導体ストライプ32の長手方向の一端に光パルス等の光信号が外部から入力されると、金属ストライプ31と半導体ストライプ32の界面にその光信号に対応するSPP波が発生する。このSPP波は、金属ストライプ31および半導体ストライプ32の界面の金属ストライプ31表面を伝播し、金属ストライプ31および半導体ストライプ32の他端に到達する。この他端に到達したSPP波は、そのままの状態、または、光信号に変換されて外部回路に出力される。
ポラリトン導波路を伝播するSPP波は、半導体ストライプ32側の電場を増強する。これにより、半導体ストライプ32は励起状態となり、多光子吸収過程などによりキャリアが発生する。このキャリアは、n型領域33およびp型領域34近傍の金属ストライプ31にバイアス電圧を印加することにより、n型領域33およびp型領域34に取り込まれ、電極35,36から電流として外部回路に出力される。これにより、ポラリトン導波路を伝播するSPP波が外部回路に検出され、結果として、そのSPP波に対応する光信号が検出されることとなる。
このように本実施の形態によれば、金属ストライプ31上に半導体ストライプ32を設け、この半導体ストライプ32の側面にn型領域33およびp型領域34を設けることにより、ポラリトン導波路を伝播するSPP波により半導体ストライプ32に発生するキャリアをn型領域33およびp型領域34に高速に取り込むことができるので、結果として高速応答が実現できる。
なお、本実施の形態において、電極35,36は、半導体基板11の誘電率を考慮し、インピーダンス整合したマイクロストリップ線路とするようにしてもよい。
また、第1〜第3の実施の形態では、光信号に対応するSPP波を検出する光検出器について説明したが、本発明は、光信号のみならず、SPP波として検出可能な信号であれば各種信号の検出することができる。
本発明の第1の実施の形態の光検出器の構成を示す断面図である。 図1の平面図である。 金属/誘電体界面に発生するSPPを説明する図である。 金属/絶縁層/半導体層におけるエネルギーダイアグラムと光吸収によるキャリア発生を説明するための図である。 (a)Au/SiO2界面に発生するSPP波の強度分布を示す図、(b)Au/Si界面に発生するSPP波の強度分布を示す図である。 本発明の第2の実施の形態の光検出器の構成を示す断面図である。 Au/SiO2/Au間隙に発生するSPP波の強度分布を示す図である。 本発明の第3の実施の形態の光検出器の構成を示す断面図である。 多光子吸収過程を説明する図である。 従来の光検出器の構成を示す断面図である。
符号の説明
10,20,30…光検出器、11…半導体基板、11a…空乏層、12…p型領域、13…n型領域、14…絶縁層、15…金属ストライプ、16,17,35,36…電極、21…下側金属ストライプ、22…n型半導体層、23…半導体層、24…p型半導体層、25…上側金属ストライプ、26…配線、31…金属ストライプ、32…半導体ストライプ、33…n型領域、34…p型領域。

Claims (8)

  1. 正の誘電率を有する第1の層と、この第1の層に接し負の誘電率を有する第2の層とを少なくとも有するポラリトン導波路と、
    このポラリトン導波路を伝播する電磁波によりキャリアを発生させるキャリア発生部と、
    このキャリア発生部から前記キャリアを取り出す電極部と
    を備えることを特徴とする検出器。
  2. 前記キャリアは、前記キャリア発生部における多光子吸収過程により発生する電子と正孔である
    ことを特徴とする請求項1記載の検出器。
  3. 前記キャリア発生部は、半導体から構成され、
    前記第1の層は、前記半導体からなる基板上に形成され、
    前記第2の層は、前記第1の層上に形成され、
    前記電極は、前記第1の層直下の前記基板内にそれぞれ離間して形成されたp型半導体領域およびn型半導体領域から構成される
    ことを特徴とする請求項1または2記載の検出器。
  4. 前記第1の層は、10nm以下のSiO2から構成される
    ことを特徴とする請求項3記載の検出器。
  5. 互いに略平行な前記ポラリトン導波路を少なくとも1対備え、
    前記キャリア発生部は、2つの前記ポラリトン導波路の間に設けられている
    ことを特徴とする請求項1または2記載の検出器。
  6. 前記ポラリトン導波路は、p型半導体層を前記第1の層とする第1のポラリトン導波路と、n型半導体層を前記第1の層とする第2のポラリトン導波路とからなり、
    前記キャリア発生部は、前記p型半導体層と前記n型半導体層との間に形成された半導体層であり、
    前記電極部は、前記p型半導体層および前記n型半導体層を含む
    ことを特徴とする請求項5記載の検出器。
  7. 前記第1の層および前記キャリア発生部は、共通の半導体層である
    ことを特徴とする請求項1または2記載の検出器。
  8. 前記電極部は、前記第1の層にそれぞれ隣接して形成されたp型半導体層およびn型半導体層から構成される
    ことを特徴とする請求項7記載の検出器。
JP2005167179A 2005-06-07 2005-06-07 検出器 Expired - Fee Related JP4664123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167179A JP4664123B2 (ja) 2005-06-07 2005-06-07 検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167179A JP4664123B2 (ja) 2005-06-07 2005-06-07 検出器

Publications (2)

Publication Number Publication Date
JP2006344673A JP2006344673A (ja) 2006-12-21
JP4664123B2 true JP4664123B2 (ja) 2011-04-06

Family

ID=37641433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167179A Expired - Fee Related JP4664123B2 (ja) 2005-06-07 2005-06-07 検出器

Country Status (1)

Country Link
JP (1) JP4664123B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061586B4 (de) * 2006-12-27 2009-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbindungsnetzwerk zwischen Halbleiterstrukturen sowie damit ausgestatteter Schaltkreis und Verfahren zur Datenübertragung
US8809834B2 (en) 2009-07-06 2014-08-19 University Of Seoul Industry Cooperation Foundation Photodetector capable of detecting long wavelength radiation
JP5374643B2 (ja) * 2009-07-06 2013-12-25 ユニバーシティ オブ ソウル インダストリー コーポレーション ファウンデーション 長波長放射を検出することができる光検出器
US8748862B2 (en) 2009-07-06 2014-06-10 University Of Seoul Industry Cooperation Foundation Compound semiconductors
US8227793B2 (en) 2009-07-06 2012-07-24 University Of Seoul Industry Cooperation Foundation Photodetector capable of detecting the visible light spectrum
US8368990B2 (en) 2009-08-21 2013-02-05 University Of Seoul Industry Cooperation Foundation Polariton mode optical switch with composite structure
WO2019171622A1 (ja) * 2018-03-06 2019-09-12 三菱電機株式会社 電磁波検出器及びそれを備えた電磁波検出器アレイ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374028A (ja) * 1986-09-18 1988-04-04 Canon Inc 光変調装置
JPH04104130A (ja) * 1990-08-23 1992-04-06 Hitachi Ltd 波長多重光素子、波長多重光学系及び光変調方法
JPH095686A (ja) * 1995-06-26 1997-01-10 Hitachi Ltd 半導体装置
JPH0961759A (ja) * 1995-08-25 1997-03-07 Univ Osaka 超低電圧駆動光波変調器
JP2005114768A (ja) * 2003-10-02 2005-04-28 Fdk Corp プラズモンモード光導波路
JP2005123516A (ja) * 2003-10-20 2005-05-12 Murata Mfg Co Ltd ヒューズ機能付きコンデンサモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374028A (ja) * 1986-09-18 1988-04-04 Canon Inc 光変調装置
JPH04104130A (ja) * 1990-08-23 1992-04-06 Hitachi Ltd 波長多重光素子、波長多重光学系及び光変調方法
JPH095686A (ja) * 1995-06-26 1997-01-10 Hitachi Ltd 半導体装置
JPH0961759A (ja) * 1995-08-25 1997-03-07 Univ Osaka 超低電圧駆動光波変調器
JP2005114768A (ja) * 2003-10-02 2005-04-28 Fdk Corp プラズモンモード光導波路
JP2005123516A (ja) * 2003-10-20 2005-05-12 Murata Mfg Co Ltd ヒューズ機能付きコンデンサモジュール

Also Published As

Publication number Publication date
JP2006344673A (ja) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4664123B2 (ja) 検出器
Karnetzky et al. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters
Guo et al. High-performance silicon− graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm
Muench et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors
Ma et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity
Furchi et al. Microcavity-integrated graphene photodetector
JP2928532B2 (ja) 量子干渉光素子
Urich et al. Intrinsic response time of graphene photodetectors
Gan et al. Chip-integrated ultrafast graphene photodetector with high responsivity
Wang et al. Graphene integrated photodetectors and opto-electronic devices—a review
US8554022B1 (en) Silicon-graphene waveguide photodetectors, optically active elements and microelectromechanical devices
Gosciniak et al. Ultrafast plasmonic graphene photodetector based on the channel photothermoelectric effect
Gao et al. Graphene-on-silicon nitride waveguide photodetector with interdigital contacts
Srisonphan Hybrid graphene–Si-based nanoscale vacuum field effect phototransistors
JP2009531847A (ja) 光検出器
Gosciniak et al. On-chip ultrafast plasmonic graphene hot electron bolometric photodetector
US20200119205A1 (en) Waveguide-integrated photodetector
JP2021530858A (ja) イントリンシック・プラズモン−励起子ポラリトンに基づく光電子デバイス
Azad et al. Carrier dynamics in InGaAs with embedded ErAs nanoislands
Edelstein et al. Waveguide-integrated mid-IR photodetector and all-optical modulator based on interlayer excitons absorption in a WS2/HfS2 heterostructure
Kim et al. High-performance near-infrared photodetectors based on gate-controlled graphene–germanium Schottky junction with split active junction
Zhao et al. Silicon waveguide-integrated carbon nanotube photodetector with low dark current and 48 GHz bandwidth
KR20150082728A (ko) 광검출기
US10254479B2 (en) Highly efficent on-chip direct electronic-plasmonic transducers
CN113785404A (zh) 波导集成等离子体激元辅助场发射检测器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R151 Written notification of patent or utility model registration

Ref document number: 4664123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees