JP4663909B2 - Drive motor control device for electric auxiliary vehicle - Google Patents

Drive motor control device for electric auxiliary vehicle Download PDF

Info

Publication number
JP4663909B2
JP4663909B2 JP2001145389A JP2001145389A JP4663909B2 JP 4663909 B2 JP4663909 B2 JP 4663909B2 JP 2001145389 A JP2001145389 A JP 2001145389A JP 2001145389 A JP2001145389 A JP 2001145389A JP 4663909 B2 JP4663909 B2 JP 4663909B2
Authority
JP
Japan
Prior art keywords
value
abnormality determination
motor
battery
determination value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001145389A
Other languages
Japanese (ja)
Other versions
JP2002345101A (en
Inventor
孝幸 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2001145389A priority Critical patent/JP4663909B2/en
Publication of JP2002345101A publication Critical patent/JP2002345101A/en
Application granted granted Critical
Publication of JP4663909B2 publication Critical patent/JP4663909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動補助車両の駆動モータ制御装置に関し、詳細には駆動モータや駆動モータ駆動回路が正常であるにも関わらず異常停止がなされることのないようにした駆動モータ制御装置の改善に関する。
【0002】
【従来の技術】
例えば、ペダル踏力に応じた補助電流を駆動モータに供給し、該駆動モータからの補助動力を上記ペダル踏力と共に駆動輪に供給するようにした電動補助自転車においては、駆動モータ及びモータ駆動回路の保護を図るために、モータ電流指令値とモータフィードバック電流値との差が予め設定された異常判定値より大きくなるとモータ出力異常と判断し、上記駆動モータへの補助電流の供給を停止し、もって補助動力の供給を停止するようにした異常停止システムが採用されている。
【0003】
【発明が解決しようとする課題】
しかしバッテリ残容量,バッテリ電圧の低下、バッテリ劣化等が原因となってモータ電流指令値通りに電流を供給できなくなる場合がある。このような場合には、モータ電流指令値とモータフィードバック電流値との差が大きくなり、駆動モータ及びモータ駆動回路が正常であるにも関わらず異常停止してしまう場合がある。
【0004】
本発明は、上記従来の問題点に鑑みてなされたものであり、バッテリ残容量,電圧低下,バッテリ劣化等のために異常停止してしまうことのない電動補助車両の駆動モータ制御装置を提供することを課題としている。
【0005】
【課題を解決するための手段】
請求項1の発明は、モータ電流指令値とモータフィードバック電流値との差が予め設定された異常判定値より大の場合にモータ出力異常と判断するようにした電動補助車両の駆動モータ制御装置において、上記異常判定値を、バッテリの残容量低下,あるいは電圧低下のバッテリ異常に基づいて、変化させるようにしたことを特徴としている。
【0007】
請求項の発明は、請求項において、バッテリ残容量が所定値以下の範囲にある場合には該バッテリ残容量が小さいほど上記異常判定値を大きくすることを特徴としている。
【0008】
請求項の発明は、請求項において、バッテリ電圧が所定値以下の範囲にある場合には該バッテリ電圧が小さいほど上記異常判定値を大きくすることを特徴としている。
【0009】
請求項の発明は、請求項1ないしの何れかにおいて、バッテリ初期容量に対するバッテリ最大残容量の割合が所定値より小さいこと等によりバッテリ劣化と判断した場合には、上記モータ出力異常の判断処理を停止することを特徴としている。
【0010】
請求項の発明は、請求項1において、モータ回転数が高い場合の上記異常判定値をモータ回転数が低い場合の上記異常判定値より大きくすることを特徴としている。
【0011】
請求項の発明は、モータ電流指令値とモータフィードバック電流値との差が予め設定された異常判定値より大の場合にモータ出力異常と判断するようにした電動補助車両の駆動モータ制御装置において、電流積算値,走行時間積算値,あるいは走行距離積算値が大きい場合の上記異常判定値を小さい場合の異常判定値より大きくすることを特徴としている。
【0012】
【発明の作用効果】
請求項1の発明によれば、モータ出力異常と判断する場合の基準となる異常判定値を、バッテリの残容量低下あるいは電圧低下のバッテリ異常に基づいて変化させるようにしたので、駆動モータやモータ駆動回路が正常であるにも関わらずバッテリ状態等で直ちに異常停止となる問題を回避でき、結果的にモータ出力異常判定を正確行なうことができる。
【0013】
また請求項の発明によれば、バッテリ残容量が所定値以下の範囲にある場合には該バッテリ残容量が小さいほど上記異常判定値を大きくし、請求項の発明によれば、バッテリ電圧が所定値以下の範囲にある場合には該バッテリ電圧が小さいほど上記異常判定値を大きくし、さらに請求項の発明によれば、バッテリ劣化の場合には上記モータ出力異常の判断処理そのものを停止するようにしたので、バッテリ状態の悪化によって直ちに異常停止となる問題を回避できる。即ち、バッテリ残容量低下及びバッテリ電圧低下のバッテリ異常の場合には、モータ出力指令値通りの電流を流せなくなり、フィードバック電流値との差が大きくなるが、この場合には異常判定値も大きく設定されているので、直ちにモータ出力異常と判断されることはない。
【0014】
請求項の発明によれば、モータ回転数が高い場合の上記異常判定値をモータ回転数が低い場合の上記異常判定値より大きくしたので、モータ回転数が高いことに起因してモータ電流指令値とモータフィードバック電流値との差が大きくなっても直ちに異常停止することはない。
【0015】
請求項の発明によれば、電流積算値,走行時間積算値,あるいは走行距離積算値が大きい場合の上記異常判定値を小さい場合の異常判定値より大きくしたので、経年変化に起因してモータ電流指令値とモータフィードバック電流値との差が大きくなっても直ちに異常停止することはない。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図1〜図4は本発明の第1実施形態を説明するための図であり、図1は本実施形態制御装置を搭載した電動補助自転車の模式側面図、図2はモータ出力異常判定ブロック図、図3はモータ出力異常判定フローチャートを示す図、図4は異常判定値マップを示す図である。
【0017】
図1において、1は電動補助車両としての電動補助自転車であり、これの車体フレーム2はヘッドパイプ3と、該ヘッドパイプ3から車体後方斜め下方に延びるダウンチューブ4と、該ダウンチューブ4の後端から上方に起立して延びるシートチューブ5と、上記ダウンチューブ4の後端から後方に略水平に延びる左,右一対のチェーンステー6と、該両チェーンステー6の後端部と上記シートチューブ5の上端部とを結合する左,右一対のシートステー7と、上記ヘッドパイプ3から水平に延びる水平チューブ8とを備えている。
【0018】
上記ヘッドパイプ3にはフロントフォーク9が左右に回動可能に支持されている。このフロントフォーク9の下端には前輪10が軸支されており、上端には操向ハンドル11が固着されている。また上記シートチューブ5の上端にはサドル12が装着されている。さらに上記チェーンステー6の後端には後輪13が軸支されている。
【0019】
上記車体フレーム2の中央下端部には変速機構を内蔵するペダルユニット14が配設されている。このペダルユニット14は、運転者によりペダル15aに加えられた踏力によりクランクアーム15bを介してクランク軸15cを回転駆動し、該クランク軸15cの回転を内蔵する変速機構の変速段に応じた変速比で変速して出力し、該出力をチェーン16により後輪13のハブ18に伝達するようになっている。
【0020】
なお、上記変速機構として第1速及び第2速を有する2段変速式のものが採用されている。また上記ペダルユニット14内には上記ペダル15aに加えられる踏力を連続的に検出する踏力センサ17が配設されている。この踏力センサ17は上記踏力の大きさに応じた踏力電圧を発生する。
【0021】
上記後輪13のハブ18内には駆動モータが配設されている。この駆動モータはバッテリ19から供給されるモータ補助電流値に応じた補助動力を発生する。この補助動力と上記変速機構を経た後チェーン16を介して伝達された踏力とが合力されて上記ハブ18ひいては後輪13を駆動することとなる。
【0022】
またバッテリ19の収容ケースの底部にはバッテリマネージメントコントローラ20が配設されており、また上記ペダルユニット14内にはモータコントローラ21が配設されている。
【0023】
上記バッテリマネージメントコントローラ20はバッテリ19の充電状態及び放電状態を管理するためのものであり、例えば該バッテリ19の種類判別、残容量計算処理、バッテリ電圧の監視、バッテリ保護のための最大放電電流値計算処理、放電停止判断、放電禁止判断及び故障診断のためのダイアグ情報処理、その他の演算処理を行なう。
【0024】
上記モータコントローラ21は、上記駆動モータの運転制御を行なうためのものであり、上記踏力センサ17で検出されたペダル踏力に対応したモータ補助動力を発生させるためのモータ電流指令値を求め、駆動モータに供給される補助電流値がこのモータ電流指令値と一致するようにフィードバック制御を行う。これによりペダル踏力に所定のアシスト比(通常1.0)を乗じてなるモータ補助動力を発生させ、該モータ補助動力を上記踏力と共に後輪13に供給するように構成されている。
【0025】
上記モータ電流値フィードバック制御においては、上記モータ電流指令値と検出されたフィードバック電流値との差が所定の異常判定値より大となった場合には、モータ出力状態が異常であると判断して上記駆動モータによるモータ補助動力の供給を停止するようになっている。
【0026】
そして本実施形態では、上記モータ出力異常の判断の基準となる異常判定値はバッテリ状態に応じた可変値となっている。即ち、図2に示すように、上記モータコントローラ21は、上記バッテリマネージメントコントローラ20からのバッテリ種類情報a,バッテリ残容量情報b,及びバッテリ劣化情報cが入力され、バッテリの種類に応じたバッテリ残容量−異常判定値マップを選択し、該マップ上においてバッテリ残容量に対応した異常判定値を決定し、上記モータ電流指令値とフィードバック電流値との差が上記決定した異常判定値以上になった場合には、モータ補助動力の供給を停止する異常停止処理を行なう。
【0027】
またバッテリ劣化情報cによりバッテリ19が劣化していると判断された場合には、モータ出力異常判定は行なわれない。なお、バッテリ19が劣化していると判断されるのは、例えば満充電時のバッテリ最大残容量がバッテリ初期容量に対して40%以下である場合等である。
【0028】
上記モータ出力異常判定手順を図3のフローチャートに沿って説明する。
上記コントローラ21により、バッテリ劣化情報cに基づいてバッテリ19が劣化しているか否かが判断され、劣化していないと判断された場合(ステップS1)にはバッテリ種類情報aからバッテリの種類が判断され(ステップS2)、Ni−MHバッテリである場合には図4に破線で示すニッケル水素異常判定値マップAにより異常判定値が決定され(ステップS3)、Ni−CDバッテリである場合には図4に実線で示すニカド異常判定値マップBにより異常判定値が決定される(ステップS4)。そして上記モータ電流指令値とフィードバック電流値との差が上記決定された異常判定値より大きい場合には異常状態であると判定するモータ出力異常判定が行なわれる(ステップS5)。
【0029】
なお、ステップS1において、バッテリ19が劣化していると判断された場合には、上記モータ出力異常判定自体が行なわれない。また上記モータ出力異常と判断された場合には駆動モータからの補助動力の供給は停止される。
【0030】
このように本実施形態では、モータ出力異常判定を行なう場合の基準となる異常判定値を、バッテリ残容量の初期容量に対する割合が所定値(40%又は20%)を越える範囲では従来と同様の基準値に固定し、バッテリ残容量が上記所定値以下の場合には、該残容量が小さくなるほど上記異常判定値を大きい側に変化させたので、駆動モータ及び該モータの駆動回路は正常であるにもかかわらずバッテリ残容量が少ないことが起因してモータ電流指令値を流せない場合に直ちにモータ出力異常として補助動力の供給を停止してしまう、といった問題を回避できる。
【0031】
またバッテリの種類に応じた異常判定値マップを選択して使用するようにしたので、バッテリの特性に応じた異常判定値でもってモータ出力異常の判断を行なうことができる。即ち、Ni−MHバッテリの場合には、バッテリ残容量が40%を下回ると流せる電流値が減少し、フィードバック電流値がモータ指令電流値より大きく落ち込む特性があり、そのためバッテリ残容量が40%以下の範囲では該残容量が小さくなるほと異常判定値を大きくするようにした。一方、Ni−CDバッテリの場合には、バッテリ残容量が20%までは上記落ち込みがそれほど大きくならないので、バッテリ残容量が20%となるまで異常判定値を固定し、これ以下では異常判定値を大きくした。
【0032】
図5〜図7は、本発明の第2実施形態を説明するための図であり、本第2実施形態では、バッテリ電圧に基づいて異常判定値を可変としている。即ち、図5に示すように、上記モータコントローラ21は、上記バッテリマネージメントコントローラ20からのバッテリ種類情報a,バッテリ電圧情報d,及びバッテリ劣化情報cが入力され、バッテリの種類に応じたバッテリ電圧−異常判定値マップを選択し、該マップ上においてバッテリ電圧に対応した異常判定値を決定し、上記モータ電流指令値とフィードバック電流値との差が上記決定した異常判定値以上になった場合には、モータ補助動力の供給を停止する異常停止処理を行なう。またバッテリ劣化情報cによりバッテリ19が劣化していると判断された場合 には、モータ出力異常判定処理は行なわれない。
【0033】
上記モータ出力異常判定手順を図6のフローチャートに沿って説明する。
上記コントローラ21により、バッテリ劣化情報cに基づいてバッテリ19が劣化しているか否かが判断され、劣化していないと判断された場合(ステップS11)にはバッテリ種類情報aからバッテリの種類が判断され(ステップS12)、Ni−MHバッテリである場合には図7に破線で示すニッケル水素異常判定値マップCにより異常判定値が決定され(ステップS13)、Ni−CDバッテリである場合には図7に実線で示すニカド異常判定値マップDにより異常判定値が決定される(ステップS14)。そして上記モータ電流指令値とフィードバック電流値との差が上記決定された異常判定値より大きい場合には異常状態であると判定するモータ出力異常判定が行なわれる(ステップS15)。なお、ステップS11でバッテリが劣化していないと判断された場合には上記モータ出力異常判定処理は行なわれない。
【0034】
このように本第2実施形態では、バッテリ電圧が所定値を越える範囲では従来と同様の基準値に固定し、バッテリ電圧が上記所定値以下の場合には、該電圧が小さくなるほど上記異常判定値を大きい側に変化させたので、駆動モータ及び該モータの駆動回路は正常であるにもかかわらずバッテリ電圧が低いことが起因してモータ電流指令値を流せない場合に直ちにモータ出力異常として補助動力の供給を停止してしまう、といった問題を回避でき、結果的にモータ出力異常判定を正確に行なうことができる。
【0035】
またバッテリの種類に応じた異常判定値マップを選択して使用するようにしたので、バッテリの特性に応じた異常判定値でもってモータ出力異常判断を正確に行なうことができる。
【0036】
図8〜図11は本発明の第3実施形態を説明するための図であり、本第3実施形態では、モータ回転数に基づいて異常判定値を可変としている。即ち、図8に示すように、上記モータコントローラ21は、モータ回転数センサからのモータ回転数情報eが入力され、モータ回転数−異常判定値マップ上において入力されたモータ回転数に対応した異常判定値を決定し、上記モータ電流指令値とフィードバック電流値との差が上記決定した異常判定値以上になった場合には、モータ補助動力の供給を停止する異常停止処理を行なう。
【0037】
上記モータ出力異常判定手順を図9のフローチャートに沿って説明する。
上記コントローラ21により、図10に示す異常判定値マップ上でモータ回転数情報eに対応した異常判定値が決定される(ステップS21)。そして上記モータ電流指令値とフィードバック電流値との差が上記決定された異常判定値より大きい場合には異常状態であると判定するモータ出力異常判定が行なわれる(ステップS22)。
【0038】
このように本第3実施形態では、異常判定値を、モータ回転数が所定値(例えば1700rpm)未満の場合には従来と同じ基準値に固定し、上記所定値を越えると例えば1900rpmまで急激に増加させ、1900rpm以上では上記基準値の2倍以上の値に固定するようにしたので、駆動モータ及び該モータの駆動回路は正常であるにもかかわらずモータ回転数が高いことが起因してモータ電流指令値を流せない場合に直ちにモータ出力異常として補助動力の供給を停止してしまう、といった問題を回避できる。
【0039】
即ち、例えばバッテリ残容量の低下,電圧低下によってモータ回転数が低下するという現象があり、また当該電動補助自転車では、所定車速を越えると上述のアシスト比を徐々に小さくする、いわゆる高速漸減機能が採用されていることからこの場合にもモータ回転数が低下する(図11参照)。
【0040】
このようにモータ回転数が低下すると、モータ電流指令値とモータフィードバック電流値との差が大きくなり、異常判定値が固定の場合には異常停止になり易いといった問題があったが、本実施形態ではこの問題を回避できる。
【0041】
なお、上記実施形態では、バッテリ残容量,バッテリ電圧等のバッテリ状態に応じて、あるいはモータ回転数に応じて異常判定値を可変としたが、本発明は、これらに限らず、その他の車両状態に応じて異常判定値を可変とすることもできる。例えば、電流積算値,走行時間積算値,あるいは走行距離積算値が大きい場合の上記異常判定値を小さい場合の異常判定値より大きくすることもできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る駆動モータ制御装置を備えた電動補助自転車の模式側面図である。
【図2】上記駆動モータ制御装置(モータコントローラ)のブロック図である。
【図3】上記駆動モータ制御装置の動作を説明するためのフローチャートである。
【図4】バッテリ残容量による異常判定値マップである。
【図5】本発明の第2実施形態に係る駆動モータ制御装置(モータコントローラ)のブロック図である。
【図6】上記駆動モータ制御装置の動作を説明するためのフローチャートである。
【図7】バッテリ電圧による異常判定値マップである。
【図8】本発明の第3実施形態に係る駆動モータ制御装置(モータコントローラ)のブロック図である。
【図9】上記駆動モータ制御装置の動作を説明するためのフローチャートである。
【図10】モータ回転数による異常判定値マップである。
【図11】高速漸減を含むモータN−T特性である。
【符号の説明】
1 電動補助自転車
19 バッテリ
21 モータコントローラ(駆動モータ制御装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive motor control device for an electric auxiliary vehicle, and more particularly, to an improvement of a drive motor control device that prevents an abnormal stop from being made despite a normal drive motor or drive motor drive circuit. .
[0002]
[Prior art]
For example, in a battery-assisted bicycle in which an auxiliary current corresponding to the pedal depression force is supplied to the drive motor and the auxiliary power from the drive motor is supplied to the drive wheels together with the pedal depression force, the drive motor and the motor drive circuit are protected. Therefore, when the difference between the motor current command value and the motor feedback current value becomes larger than a preset abnormality determination value, it is determined that the motor output is abnormal, and the supply of auxiliary current to the drive motor is stopped, thereby assisting. An abnormal stop system is adopted in which the supply of power is stopped.
[0003]
[Problems to be solved by the invention]
However, current may not be supplied according to the motor current command value due to the remaining battery capacity, battery voltage drop, battery deterioration, and the like. In such a case, the difference between the motor current command value and the motor feedback current value becomes large, and the motor may stop abnormally even though the drive motor and the motor drive circuit are normal.
[0004]
The present invention has been made in view of the above-described conventional problems, and provides a drive motor control device for a battery-assisted vehicle that does not stop abnormally due to remaining battery capacity, voltage drop, battery deterioration, and the like. It is an issue.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a drive motor control device for an electrically assisted vehicle that determines that the motor output is abnormal when the difference between the motor current command value and the motor feedback current value is larger than a preset abnormality determination value. The abnormality determination value is changed on the basis of a remaining battery capacity drop or a battery abnormality due to a voltage drop .
[0007]
The invention of claim 2 is characterized in that, in the case of claim 1 , when the remaining battery capacity is within a predetermined value or less, the abnormality determination value is increased as the remaining battery capacity is reduced.
[0008]
A third aspect of the invention is characterized in that, in the first aspect , when the battery voltage is within a predetermined value or less, the abnormality determination value is increased as the battery voltage is decreased.
[0009]
According to a fourth aspect of the present invention, in the case of any one of the first to third aspects, when it is determined that the battery is deteriorated because the ratio of the maximum remaining battery capacity to the initial battery capacity is smaller than a predetermined value, etc. It is characterized by stopping the processing.
[0010]
The invention of claim 5 is characterized in that, in claim 1, the abnormality determination value when the motor rotational speed is high is made larger than the abnormality determination value when the motor rotational speed is low.
[0011]
According to a sixth aspect of the present invention, there is provided a drive motor control device for an electrically assisted vehicle in which a motor output abnormality is determined when a difference between a motor current command value and a motor feedback current value is larger than a preset abnormality determination value. is characterized in that larger than the abnormality determination value is smaller current accumulated value, the running time integrated value or the abnormality determination value when the travel distance accumulated value is large.
[0012]
[Effects of the invention]
According to the first aspect of the present invention, the abnormality determination value, which is a reference for determining the motor output abnormality, is changed based on the remaining battery capacity decrease or the battery abnormality due to the voltage decrease. Although the drive circuit is normal, it is possible to avoid the problem of an abnormal stop immediately due to a battery condition or the like, and as a result, the motor output abnormality determination can be performed accurately.
[0013]
According to the invention of claim 2, to increase the extent the abnormality determination value the remaining battery capacity is small when the battery residual capacity is in the range of less than a predetermined value, according to the invention of claim 3, the battery voltage When the battery voltage is smaller than the predetermined value, the abnormality determination value is increased as the battery voltage is smaller. Further, according to the invention of claim 4 , in the case of battery deterioration, the motor output abnormality determination process itself is performed. Since the operation is stopped, it is possible to avoid the problem of an abnormal stop immediately due to the deterioration of the battery state. In other words, in the case of battery abnormalities such as low remaining battery capacity and low battery voltage , it becomes impossible to flow the current according to the motor output command value, and the difference from the feedback current value becomes large. In this case, the abnormality judgment value is also set large. Therefore, it is not immediately determined that the motor output is abnormal.
[0014]
According to the invention of claim 5, since the abnormality determination value when the motor rotational speed is high is made larger than the abnormality determination value when the motor rotational speed is low, a motor current command is generated due to the high motor rotational speed. Even if the difference between the value and the motor feedback current value becomes large, it does not immediately stop abnormally.
[0015]
According to the invention of claim 6, since the abnormality determination value when the current integrated value, the travel time integrated value, or the travel distance integrated value is large is larger than the abnormality determination value when the current integrated value is small, the motor is caused by secular change. Even if the difference between the current command value and the motor feedback current value increases, an abnormal stop does not occur immediately.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1 to 4 are diagrams for explaining a first embodiment of the present invention. FIG. 1 is a schematic side view of a battery-assisted bicycle equipped with the control device of the present embodiment. FIG. 2 is a block diagram for determining motor output abnormality. 3 is a view showing a motor output abnormality determination flowchart, and FIG. 4 is a view showing an abnormality determination value map.
[0017]
In FIG. 1, reference numeral 1 denotes an electrically assisted bicycle as an electrically assisted vehicle, and a body frame 2 of the body assisted bicycle 2 includes a head pipe 3, a down tube 4 extending obliquely downward from the head pipe 3 toward the rear of the body, A seat tube 5 extending upright from the end; a pair of left and right chain stays 6 extending substantially horizontally rearward from the rear end of the down tube 4; rear end portions of the chain stays 6 and the seat tube 5 is provided with a pair of left and right seat stays 7 that join the upper end of 5 and a horizontal tube 8 that extends horizontally from the head pipe 3.
[0018]
A front fork 9 is supported on the head pipe 3 so as to be rotatable left and right. A front wheel 10 is pivotally supported at the lower end of the front fork 9, and a steering handle 11 is fixed to the upper end. A saddle 12 is mounted on the upper end of the seat tube 5. Further, a rear wheel 13 is pivotally supported at the rear end of the chain stay 6.
[0019]
A pedal unit 14 having a built-in speed change mechanism is disposed at the central lower end of the body frame 2. The pedal unit 14 rotationally drives the crankshaft 15c via the crank arm 15b by the pedaling force applied to the pedal 15a by the driver, and the gear ratio according to the gear position of the transmission mechanism incorporating the rotation of the crankshaft 15c. The gear is shifted and output, and the output is transmitted to the hub 18 of the rear wheel 13 by the chain 16.
[0020]
A two-speed transmission mechanism having a first speed and a second speed is employed as the speed change mechanism. A pedaling force sensor 17 for continuously detecting the pedaling force applied to the pedal 15a is disposed in the pedal unit 14. The pedal force sensor 17 generates a pedal force voltage corresponding to the magnitude of the pedal force.
[0021]
A drive motor is disposed in the hub 18 of the rear wheel 13. The drive motor generates auxiliary power corresponding to the motor auxiliary current value supplied from the battery 19. The auxiliary power and the pedaling force transmitted through the rear chain 16 after passing through the speed change mechanism are combined to drive the hub 18 and thus the rear wheel 13.
[0022]
A battery management controller 20 is disposed at the bottom of the storage case of the battery 19, and a motor controller 21 is disposed in the pedal unit 14.
[0023]
The battery management controller 20 is for managing the charging state and discharging state of the battery 19. For example, the type of the battery 19, the remaining capacity calculation process, the battery voltage monitoring, and the maximum discharge current value for battery protection Calculation processing, discharge stop determination, discharge inhibition determination, diagnosis information processing for failure diagnosis, and other arithmetic processing are performed.
[0024]
The motor controller 21 is for controlling the operation of the drive motor. The motor controller 21 obtains a motor current command value for generating motor auxiliary power corresponding to the pedal depression force detected by the pedal force sensor 17, and drives the drive motor. The feedback control is performed so that the auxiliary current value supplied to the motor matches the motor current command value. As a result, motor assist power is generated by multiplying the pedal effort by a predetermined assist ratio (usually 1.0), and the motor assist power is supplied to the rear wheel 13 together with the pedal effort.
[0025]
In the motor current value feedback control, when the difference between the motor current command value and the detected feedback current value is larger than a predetermined abnormality determination value, it is determined that the motor output state is abnormal. The supply of motor auxiliary power by the drive motor is stopped.
[0026]
In the present embodiment, the abnormality determination value serving as a reference for determining the motor output abnormality is a variable value corresponding to the battery state. That is, as shown in FIG. 2, the motor controller 21 receives the battery type information a, the remaining battery capacity information b, and the battery deterioration information c from the battery management controller 20 and receives the remaining battery power corresponding to the battery type. The capacity-abnormality judgment value map is selected, an abnormality judgment value corresponding to the remaining battery capacity is determined on the map, and the difference between the motor current command value and the feedback current value is greater than or equal to the determined abnormality judgment value. In this case, an abnormal stop process for stopping the supply of motor auxiliary power is performed.
[0027]
If it is determined from the battery deterioration information c that the battery 19 is deteriorated, the motor output abnormality determination is not performed. It is determined that the battery 19 is deteriorated, for example, when the maximum remaining battery capacity at full charge is 40% or less with respect to the initial battery capacity.
[0028]
The motor output abnormality determination procedure will be described with reference to the flowchart of FIG.
The controller 21 determines whether or not the battery 19 is deteriorated based on the battery deterioration information c. If it is determined that the battery 19 is not deteriorated (step S1), the battery type is determined from the battery type information a. If the battery is a Ni-MH battery, the abnormality determination value is determined by the nickel hydrogen abnormality determination value map A shown by the broken line in FIG. 4 (step S3). An abnormality determination value is determined by the Nikado abnormality determination value map B indicated by a solid line in FIG. 4 (step S4). If the difference between the motor current command value and the feedback current value is larger than the determined abnormality determination value, motor output abnormality determination is performed to determine that the state is abnormal (step S5).
[0029]
When it is determined in step S1 that the battery 19 has deteriorated, the motor output abnormality determination itself is not performed. When it is determined that the motor output is abnormal, the supply of auxiliary power from the drive motor is stopped.
[0030]
As described above, in the present embodiment, the abnormality determination value serving as a reference in determining the motor output abnormality is the same as that in the past in a range where the ratio of the remaining battery capacity to the initial capacity exceeds a predetermined value (40% or 20%). When the remaining battery capacity is fixed to the reference value and below the predetermined value, the abnormality determination value is changed to the larger side as the remaining capacity decreases, so that the drive motor and the motor drive circuit are normal. Nevertheless, it is possible to avoid the problem that the supply of auxiliary power is immediately stopped as a motor output abnormality when the motor current command value cannot be flowed due to a small remaining battery capacity.
[0031]
Further, since the abnormality determination value map corresponding to the type of battery is selected and used, it is possible to determine the motor output abnormality with the abnormality determination value corresponding to the battery characteristics. That is, in the case of a Ni-MH battery, when the remaining battery capacity is less than 40%, the current value that can be flowed decreases, and the feedback current value drops more than the motor command current value, so that the remaining battery capacity is 40% or less. In this range, the abnormality determination value is increased as the remaining capacity decreases. On the other hand, in the case of a Ni-CD battery, the above-mentioned drop does not become so large until the remaining battery capacity is 20%. Therefore, the abnormality determination value is fixed until the remaining battery capacity reaches 20%. Increased.
[0032]
5 to 7 are diagrams for explaining the second embodiment of the present invention. In the second embodiment, the abnormality determination value is variable based on the battery voltage. That is, as shown in FIG. 5, the motor controller 21 receives the battery type information a, the battery voltage information d, and the battery deterioration information c from the battery management controller 20 and receives the battery voltage − according to the type of battery. When an abnormality determination value map is selected, an abnormality determination value corresponding to the battery voltage is determined on the map, and the difference between the motor current command value and the feedback current value is greater than or equal to the determined abnormality determination value Then, an abnormal stop process for stopping the supply of the motor auxiliary power is performed. If it is determined from the battery deterioration information c that the battery 19 is deteriorated, the motor output abnormality determination process is not performed.
[0033]
The motor output abnormality determination procedure will be described with reference to the flowchart of FIG.
The controller 21 determines whether or not the battery 19 is deteriorated based on the battery deterioration information c. When it is determined that the battery 19 is not deteriorated (step S11), the battery type is determined from the battery type information a. If the battery is a Ni-MH battery, an abnormality determination value is determined by the nickel hydrogen abnormality determination value map C shown by the broken line in FIG. 7 (step S13). An abnormality determination value is determined by the Nikkado abnormality determination value map D indicated by a solid line in FIG. 7 (step S14). When the difference between the motor current command value and the feedback current value is larger than the determined abnormality determination value, motor output abnormality determination is performed to determine that the state is abnormal (step S15). If it is determined in step S11 that the battery has not deteriorated, the motor output abnormality determination process is not performed.
[0034]
As described above, in the second embodiment, when the battery voltage exceeds the predetermined value, the reference value is fixed to the same as the conventional value. When the battery voltage is equal to or lower than the predetermined value, the abnormality determination value decreases as the voltage decreases. When the motor current command value cannot be sent due to the low battery voltage even though the drive motor and the drive circuit of the motor are normal, the auxiliary power is immediately Can be avoided, and as a result, the motor output abnormality determination can be performed accurately.
[0035]
In addition, since the abnormality determination value map corresponding to the type of battery is selected and used, the motor output abnormality determination can be accurately performed with the abnormality determination value corresponding to the characteristics of the battery.
[0036]
FIGS. 8-11 is a figure for demonstrating 3rd Embodiment of this invention, In this 3rd Embodiment, the abnormality determination value is made variable based on the motor rotation speed. That is, as shown in FIG. 8, the motor controller 21 receives the motor rotation speed information e from the motor rotation speed sensor, and an abnormality corresponding to the motor rotation speed input on the motor rotation speed-abnormality determination value map. A determination value is determined, and when the difference between the motor current command value and the feedback current value is equal to or greater than the determined abnormality determination value, an abnormal stop process for stopping the supply of motor auxiliary power is performed.
[0037]
The motor output abnormality determination procedure will be described with reference to the flowchart of FIG.
The controller 21 determines an abnormality determination value corresponding to the motor rotation speed information e on the abnormality determination value map shown in FIG. 10 (step S21). If the difference between the motor current command value and the feedback current value is larger than the determined abnormality determination value, motor output abnormality determination is performed to determine that the state is abnormal (step S22).
[0038]
Thus, in the third embodiment, the abnormality determination value is fixed to the same reference value as before when the motor rotation speed is less than a predetermined value (for example, 1700 rpm), and suddenly increases to, for example, 1900 rpm when the predetermined value is exceeded. Increased and fixed at a value more than twice the reference value at 1900 rpm or higher, so that the motor rotation speed is high despite the motor and the motor drive circuit being normal. When the current command value cannot be flowed, it is possible to avoid the problem that the supply of auxiliary power is immediately stopped as a motor output abnormality.
[0039]
That is, for example, there is a phenomenon that the motor speed decreases due to a decrease in remaining battery capacity and voltage, and the battery-assisted bicycle has a so-called high-speed gradual decrease function that gradually decreases the assist ratio when a predetermined vehicle speed is exceeded. In this case, the motor rotational speed is reduced because it is employed (see FIG. 11).
[0040]
As described above, when the motor rotation speed decreases, the difference between the motor current command value and the motor feedback current value increases, and there is a problem that an abnormal stop is likely to occur when the abnormality determination value is fixed. So this problem can be avoided.
[0041]
In the above embodiment, the abnormality determination value is variable according to the battery state such as the remaining battery capacity and battery voltage, or according to the motor rotation speed. However, the present invention is not limited to these, and other vehicle states The abnormality determination value can be made variable according to the above. For example, the abnormality determination value when the current integrated value, the travel time integrated value, or the travel distance integrated value is large can be made larger than the abnormality determination value when the current integrated value is small.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a battery-assisted bicycle provided with a drive motor control device according to a first embodiment of the present invention.
FIG. 2 is a block diagram of the drive motor control device (motor controller).
FIG. 3 is a flowchart for explaining the operation of the drive motor control device;
FIG. 4 is an abnormality determination value map based on remaining battery capacity.
FIG. 5 is a block diagram of a drive motor control device (motor controller) according to a second embodiment of the present invention.
FIG. 6 is a flowchart for explaining the operation of the drive motor control device.
FIG. 7 is an abnormality determination value map based on battery voltage.
FIG. 8 is a block diagram of a drive motor control device (motor controller) according to a third embodiment of the present invention.
FIG. 9 is a flowchart for explaining the operation of the drive motor control device;
FIG. 10 is an abnormality determination value map based on motor rotation speed.
FIG. 11 is a motor NT characteristic including high-speed gradual decrease.
[Explanation of symbols]
1 battery-assisted bicycle 19 battery 21 motor controller (drive motor controller)

Claims (6)

モータ電流指令値とモータフィードバック電流値との差が予め設定された異常判定値より大の場合にモータ出力異常と判断するようにした電動補助車両の駆動モータ制御装置において、上記異常判定値を、バッテリの残容量低下,あるいは電圧低下のバッテリ異常に基づいて変化させるようにしたことを特徴とする電動補助車両の駆動モータ制御装置。In the drive motor control device for an electrically assisted vehicle that determines that the motor output is abnormal when the difference between the motor current command value and the motor feedback current value is greater than a preset abnormality determination value, the abnormality determination value is: A drive motor control device for a battery-assisted vehicle characterized in that it is changed based on a battery abnormality due to a decrease in remaining battery capacity or a voltage drop . 請求項において、バッテリ残容量が所定値以下の範囲にある場合には該バッテリ残容量が小さいほど上記異常判定値を大きくすることを特徴とする電動補助車両の駆動モータ制御装置。2. The drive motor control device for an electrically assisted vehicle according to claim 1, wherein when the remaining battery capacity is within a predetermined value or less, the abnormality determination value is increased as the remaining battery capacity is smaller. 請求項において、バッテリ電圧が所定値以下の範囲にある場合には該バッテリ電圧が小さいほど上記異常判定値を大きくすることを特徴とする電動補助車両の駆動モータ制御装置。2. The drive motor control device for an electrically assisted vehicle according to claim 1, wherein when the battery voltage is in a range equal to or less than a predetermined value, the abnormality determination value is increased as the battery voltage is decreased. 請求項1ないしの何れかにおいて、バッテリ初期容量に対するバッテリ最大残容量の割合が所定値より小さいこと等によりバッテリ劣化と判断した場合には、上記モータ出力異常の判断処理を停止することを特徴とする電動補助車両の駆動モータ制御装置。4. The motor output abnormality determination process according to any one of claims 1 to 3 , wherein when it is determined that the battery has deteriorated due to a ratio of the battery maximum remaining capacity to the initial battery capacity being smaller than a predetermined value, the motor output abnormality determination process is stopped. A drive motor control device for an electric auxiliary vehicle. 請求項1において、モータ回転数が高い場合の上記異常判定値をモータ回転数が低い場合の上記異常判定値より大きくすることを特徴とする電動補助車両の駆動モータ制御装置。 2. The drive motor control device for an electrically assisted vehicle according to claim 1, wherein the abnormality determination value when the motor rotational speed is high is larger than the abnormality determination value when the motor rotational speed is low. モータ電流指令値とモータフィードバック電流値との差が予め設定された異常判定値より大の場合にモータ出力異常と判断するようにした電動補助車両の駆動モータ制御装置において、
電流積算値,走行時間積算値,あるいは走行距離積算値が大きい場合の上記異常判定値を小さい場合の異常判定値より大きくすることを特徴とする電動補助車両の駆動モータ制御装置。
In the drive motor control device for a motor-assisted vehicle that determines that the motor output is abnormal when the difference between the motor current command value and the motor feedback current value is larger than a preset abnormality determination value,
A drive motor control device for an electrically assisted vehicle, wherein the abnormality determination value when the current integrated value, the travel time integrated value, or the travel distance integrated value is large is made larger than the abnormality determination value when the current integrated value is small.
JP2001145389A 2001-05-15 2001-05-15 Drive motor control device for electric auxiliary vehicle Expired - Fee Related JP4663909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145389A JP4663909B2 (en) 2001-05-15 2001-05-15 Drive motor control device for electric auxiliary vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145389A JP4663909B2 (en) 2001-05-15 2001-05-15 Drive motor control device for electric auxiliary vehicle

Publications (2)

Publication Number Publication Date
JP2002345101A JP2002345101A (en) 2002-11-29
JP4663909B2 true JP4663909B2 (en) 2011-04-06

Family

ID=18991208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145389A Expired - Fee Related JP4663909B2 (en) 2001-05-15 2001-05-15 Drive motor control device for electric auxiliary vehicle

Country Status (1)

Country Link
JP (1) JP4663909B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726012B2 (en) 2011-08-02 2015-05-27 オムロンオートモーティブエレクトロニクス株式会社 Motor control device
IT201600080244A1 (en) * 2016-07-29 2018-01-29 Campagnolo Srl Method of controlling an engine of a derailleur of an electronic bicycle gearshift and component adapted to perform this method
KR102029845B1 (en) * 2017-11-14 2019-10-08 현대자동차 주식회사 Method and appratus of determining performance of battery for mild hybrid electric vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172721A (en) * 1994-12-19 1996-07-02 Yamaha Motor Co Ltd Abnormality detection apparatus of motor output system
JPH10164702A (en) * 1996-12-02 1998-06-19 Nissan Motor Co Ltd Motor driving controller for electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172721A (en) * 1994-12-19 1996-07-02 Yamaha Motor Co Ltd Abnormality detection apparatus of motor output system
JPH10164702A (en) * 1996-12-02 1998-06-19 Nissan Motor Co Ltd Motor driving controller for electric vehicle

Also Published As

Publication number Publication date
JP2002345101A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
JP5842105B2 (en) Electric assist bicycle
TWI531506B (en) Motor drive control device
JP4744283B2 (en) Vehicle with auxiliary power
JP6014159B2 (en) Regenerative brake control system for electric vehicles
WO2012090253A1 (en) Regeneration control system for electric vehicle
TW200523146A (en) Electrically-driven vehicle
JPH0733069A (en) Vehicle with electric motor
US11840311B2 (en) Human-powered vehicle control device, suspension system, and human-powered vehicle
JP3953932B2 (en) Electric power steering device
JPH11146505A (en) Control device for charging battery for motorized vehicle
JP4663909B2 (en) Drive motor control device for electric auxiliary vehicle
KR101473183B1 (en) Electric vehicle
JP4365113B2 (en) Auxiliary force control device for electric auxiliary vehicle
JP4300820B2 (en) Electric power steering device
JP5025851B2 (en) Auxiliary power control device for electric auxiliary vehicle
JP6192811B2 (en) Electric system and transport equipment including the same
JP6391846B2 (en) Electric assist bicycle
JP3440729B2 (en) Electric bicycle
JP5508839B2 (en) Vehicle and state determination method of power storage device provided in vehicle
JP2001122181A (en) Small-sized vehicle with motor assist function
JPH08322159A (en) Overdischarging prevention unit
JP7276172B2 (en) VEHICLE CONTROL DEVICE, METHOD, PROGRAM, AND VEHICLE
JP7158446B2 (en) Electric bicycle and motor control device
JP5150317B2 (en) Electric bicycle
JP2005145309A (en) Battery discharge control method for motor-assisted bicycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees