JP4663041B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP4663041B2
JP4663041B2 JP32054598A JP32054598A JP4663041B2 JP 4663041 B2 JP4663041 B2 JP 4663041B2 JP 32054598 A JP32054598 A JP 32054598A JP 32054598 A JP32054598 A JP 32054598A JP 4663041 B2 JP4663041 B2 JP 4663041B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
measuring
zero point
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32054598A
Other languages
Japanese (ja)
Other versions
JP2000146638A (en
Inventor
文一 ▲しば▼
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32054598A priority Critical patent/JP4663041B2/en
Priority to TW89109055A priority patent/TW514719B/en
Publication of JP2000146638A publication Critical patent/JP2000146638A/en
Application granted granted Critical
Publication of JP4663041B2 publication Critical patent/JP4663041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスなどの流体の流量を測定する流量計測装置に関するものである。
【0002】
【従来の技術】
気体や液体などの流体の流量や流速を測定する装置には多くの方式が知られているが、特にエレクトロニクス技術の進歩により信頼性の高い超音波を利用する流速・流量測定装置の開発が目覚しい。そして超音波を利用した流速・流量測定装置は燃料ガスのメータ、工業用計測器、医療用の血流計、海洋や大気中の流速の測定など多方面にわたる活用分野がある。この超音波を利用する流速・流量測定装置には直接超音波を利用する場合のみならず、多の測定原理に基づく測定装置の検出部として間接的に利用する場合がある。
【0003】
また、超音波利用流速・流量測定装置に限らず流速・流量測定装置には流量センサ、抵抗値センサ、温度センサ、電圧センサなど多くのセンサが利用されている。そしてこれらの電気信号を発信するセンサは、外部の条件に影響されて感度が変化したりすることがある。そのため燃料ガスのメータ等に使用される流量測定装置は僅かな流量変化、例えば3リットル/時のような微小変化でもこれを測定することが要求されていて、この様な微小変化を正確に把握することができる為には測定のゼロ点補正を行うことができる測定装置としなければならない。
【0004】
以上の観点から特開平8−271307号公報に開示された技術は、ゼロ点補正を行うのが適切か否かを所定時間間隔をおいて判断し、その判断に基づいてゼロ点補正を実行する手段を備えたガス流量計であり、有用な技術としてガス器具業界では高く評価されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記したガス流量計は、所定時間の間隔をおいてゼロ点補正を実施する必要があるかどうかを判定し、その上で必要な時にゼロ点補正を実施するものであり、常に流体の流れが跡切れることのない機器においては流路を閉止することがいつまでもできないため、ゼロ点補正を行えないことにもなる。
【0006】
そこで、本発明は前記従来例の問題点に鑑み、複数の流路を有する構成で、流体流量の計測を行っていない流路のゼロ点を補正しておくことで、流体計測のため流路を開成する時はゼロ点補正を行った流路を用いるようにすることを課題とするものである。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するために、流入口と流出口の間に設けた複数の流路と、前記複数の流路を個々開閉する複数の開閉手段と、少なくとも1つの流路の流量を計測する計測手段と、前記開閉手段と前記計測手段とを制御する制御手段を有し、前記制御手段は前記開閉手段が閉止している流路にある前記計測手段のゼロ値を検出しゼロ値補正を行うゼロ点検定手段を備えた流量計測装置としたものである。
【0008】
本発明によれば、複数の流路を有する構成で、流体流量の計測範囲を大きくすると共に、流量が跡切れないような機器においても、流体流量の計測を行っていない流路のゼロ点を補正しておき、開閉手段を切り替えることで、ゼロ点補正の終了している流路で流体計測を行うことが可能になる。
【0009】
【発明の実施の形態】
本発明は、例えば都市ガス、プロパンガス等の燃料ガスのメータに実施して極めて有用である。それは燃料ガスにおけるメータは1時間あたり3リットルを越える流量変化を的確に把握することが、わが国においては必要とされているからである。そこで本発明は、流量の変化が極めて少ない場合から1時間あたり何万リットルという様な広範囲にわたって、ゼロ点補正により正確に流量を計測できる便利なものとしたものである。以上の趣旨に沿う正確な流量を計測する必要のある各分野において本発明は実施して有用なものである。
【0010】
そして、当業者が本発明を実施するには各請求項に記載した構成とすることにより実現できるものであるが、本発明の内容の理解を助けて容易に実施形態を把握することができるように各請求項の作用効果を手段、構成に加えて以下に説明する。
【0021】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0022】
(実施例1)
図1(a)は請求項1および請求項2に係る実施例1に関する流量計測装置の構成ブロック図、図1(b)は流量検出手段の模式図、図2は計測手段のブロック図である。
【0023】
図において、1は流入路、2は流出路、3は流路、4は流路を開閉する開閉手段、5は流路の流量を計測する計測手段、7は前記開閉手段4および計測手段5を制御する制御手段である。制御手段の内部にはゼロ点検定手段6を有している。
【0024】
次に動作、作用について説明する。図1において、流路3は3本からなる構成とし、各流路にそれぞれ開閉手段4と計測手段5が取り付けられている。流入路1から入ってくる流体は開成している開閉手段4を通過し計測手段5によりその流量を測定する。開閉手段4、計測手段5は制御手段7により制御されている。そして個々の流路に対し開閉手段4は開成、閉止を行うことができる。そして開成した開閉手段4の存在する流路の計測手段5が流量を測定する。流入路1から流出路2までの総流量は個々の計測手段5の流量を制御手段7で合算して求める。
【0025】
複数の流路は全部を開成すると大流量を流すことが可能となり、かつそれを計測することが可能である。1つの流路のみ開成すれば小流量の場合に対応できる。このように開閉手段4を用いることにより流量等に応じた流路選択を容易にし流量域の広い範囲で計測を可能にできる。
【0026】
なお、流路3は均等な断面積の流路を複数本組み合わせることで汎用性を高めメンテナンスを容易にしてもよいし、また断面積を異なるようにし流量等によってその流路の最適な選択を行う構成としてもよい。本発明では流路を3本としているが別に取りたてて数字に意味があるわけでもない。2本以上であれば何本でも良い。
【0027】
一方複数の流路からなる流量演算手段20の動作としては、上記の各流路で行う計測手段5の動作で全体を流れている流体流路3の流量を合計する演算も行っている。ここで求めた総合流量をQとして、前記開閉手段4が開成している流路3a,3b,3cに設置した流量検出手段5a,5b、5cで求めて演算した流量をそれぞれqa,qb,qcとするとQはqa+qb+qc=Σqである。
【0028】
この流量演算を行いながら、開閉手段4aが閉止しているとすると流路3aは流体が流れていない。このため計測手段5aで流体流量を計測すると開閉手段4aが閉止しているため流量は0のはずである。しかし、温度などの外部からの影響や経年変化等で計測手段5aのゼロ点がずれていることもあり、ここで測定した値を流量演算手段20の値を元にゼロ点検定手段6で補正する。補正としては計測手段5aで計測した値を基本値としておき、次に開閉手段4aが開成した時に計測手段5aで計測した値に対して増減することで成立する。このゼロ点検定は閉止している開閉手段4を有する流路3に設置している計測手段5で各々行うことができる。
【0029】
この際、ゼロ点が大きくずれてしまっている場合等は報知手段等を用いて使用者にその異常を知らせることも有効である。さらに通信手段等を利用して外部の管理者に報知するとさらに異常状態の復旧を早く行うことが可能になり有用である。
【0030】
なお、流路3は均等な断面積の流路を複数本組み合わせることで汎用性を高めメンテナンスを容易にしてもよいし、また断面積を異なるようにし流量等によってその流路の最適な選択を行う構成としてもよい。本発明では流路を3本としているが別に取りたてて数字に意味があるわけでもない。2本以上であれば何本でも良い。
【0031】
また、図1において白抜矢印で示す流路Aにおける流量検出手段1は同図(b)に示すように流体流路3の一部に第1超音波振動子10と第2超音波振動子11とを流体の流れの方向に相対して設けて構成されている。そして図2に示すように、12は第1振動子10への送信回路、13は第2振動子11で受信した信号の増幅回路で、この増幅された信号は基準信号と比較回路で比較され、基準信号以上の信号が検出されたとき設定された回数だけ繰り返し手段で遅延手段によって信号を遅延させた後超音波信号を繰り返し送信する。超音波の送信が設定された回数が繰り返されて終了したときの時間をタイマカウンタのような計時手段18で求める。
【0032】
次に切り替え手段19で第1振動子10と第2振動子11の発信受信を切り換えて、第2振動子11から第1振動子10すなわち下流から上流に向かって超音波を送信し、この送信を前述のように繰り返しをの時間を計時する。そしてその時間差から流体の速度を演算し、流体流路3の断面積と前記流体の速度より制御手段7内部の流量演算手段20によって流量を演算する。
【0033】
このように計測手段に超音波を用いることにより流体の流れを乱すことなく流量を測定するとともに、複数の流路を組み合わせることで広い範囲で瞬時に流量を精度良く測定することができる。
【0034】
(実施例2)
以下、請求項3に係る実施例2に関する本発明の流量計測装置について図面を参照しながら説明する。
【0035】
本実施例の構成を示すブロック図は実施例1と同じ図1を用いる。なお、実施例1と同じ構成要素には同一番号を付与して詳細な説明を省略する。図3に制御手段のブロック図、図4に動作のタイミングチャートを示す。
【0036】
そして実施例2は開閉手段を一定時間間隔で切り替えるために時間管理をする第1のタイマ手段21を備えている点が実施例1とは異なる。
【0037】
動作を説明する。図4(a)のように制御手段7は開閉手段4aを開成して流路3aに流体を流している。この開閉手段4aを開成する時、図4(d)のように第1のタイマ手段20は動作を開始し、一定時間(ここではT1)経過ごとに信号を制御手段7に送出する。制御手段7は第1のタイマ手段21からの信号により、図4(b)のように開閉手段4bを開成し、その後開閉手段4aを閉止する。この時開閉手段4bを開成する前に計測手段5bはゼロ点の補正を済ませているものとする。さらにT1経過すると同様に次は図4(c)のように開閉手段4cを開成し、その後開閉手段4bを閉止する。このように一定時間経過するたびに流体を計測する流路を入れ替えていく。
【0038】
これにより、流体の流れがあり流量を計測している場合でも、開閉手段4が閉止している流路3の計測手段5はゼロ点補正を行うことによりゼロ点の補正を済ませておき、計測中の流路が経時変化によるゼロ点の変化が生じていても開閉手段4を介して流路3を切り替えることで一定時間間隔以内に安定度が良く、ゼロ点のずれの無い計測を可能にし、精度が不安定になることを防止することができる。
【0039】
(実施例3)
以下、請求項4および請求項5に係る実施例3に関する本発明の流量計測装置について図面を参照しながら説明する。
【0040】
本実施例の構成を示すブロック図は実施例1と同じ図1を用いる。なお、実施例1と同じ構成要素には同一番号を付与して詳細な説明を省略する。図5に制御手段のブロック図、図6に動作のタイミングチャートを示す。
【0041】
そして実施例3は計測した流体流量があらかじめ定めた流量より少ない場合にゼロ点検定手段6に検定を開始し、反対にあらかじめ定めた流量より多い場合にはゼロ点検定手段6に検定を止めるよう信号を送出する流量判定手段22を備えている点が実施例1および実施例2とは異なる。
【0042】
動作を説明する。制御手段7は図6時刻t1で開閉手段4aを開成して流路3aに流体を流している。そして流量演算手段20で流れている流体の流量を求めている。ここで流量判定手段22は流量演算手段で求めた流量があらかじめ定めた値(図6Q1)より少なくなると(時刻t2)制御手段7に信号を送出して閉止している開閉手段4b、4c等の有する流路の計測手段5b、5cのゼロ点を補正する。これは、流量が少なくなってきたことで、開閉手段4を開成して他の流路3bに流体を流し複数の流路を用いて流量計測をするという可能性が少なくなるためである。
【0043】
さらに流量が少ないため開閉手段4を閉止している流路3においても流体の流れが少なく下流から外乱で誤差を含むことのない場合にゼロ点の検定を行うことができるからである。本実施例では流量がQ1より少なくなるとすぐにゼロ点の検定を行うようにしているが流量信号にも雑音が重畳したり、流量自体も変動するため流量がQ1以下になってから一定時間経過後からゼロ点の検定を行うようにするとさらに安定して補正ができるようになる。
【0044】
また、流量判定手段22は流量演算手段20で求めた流量があらかじめ定めた値(図6Q2)より多くなる(図6時刻t3)と制御手段7に信号を送出して閉止している開閉手段4b、4c等の有する流路の計測手段5b、5cのゼロ点を補正する動作を止めるようにする。これは流量が多くなったため開閉手段4を閉止している流路3の下流から大流量による外乱が入り、せっかく行っている計測手段5のゼロ点補正に影響が生じたり、また大流量を計測するために開閉手段を開成して流路に流体を流す必要がある可能性が高いためゼロ点検定を停止しておくことで、すぐに流量計測にかかる準備をしておくためである。
【0045】
(実施例4)
以下、請求項6に係る実施例4に関する本発明の流量計測装置について図面を参照しながら説明する。
【0046】
本実施例の構成を示すブロック図は実施例1と同じ図1を用いる。なお、実施例1と同じ構成要素には同一番号を付与して詳細な説明を省略する。図7に制御手段のブロック図、図8に動作のタイミングチャートを示す。
【0047】
そして実施例4は一定時間ごとに閉止している流路の計測手段のゼロ点を補正するよう時間管理をする第2のタイマ手段23を備えている点が実施例1、実施例2および実施例3とは異なる。
【0048】
実施例4では第2のタイマ手段23を備えているため、図8(c)時刻t1で開閉手段4aを開成して流路3aに流体を流している時、時刻t1に動作を開始した第2のタイマ手段23は一定時間T2経過ごとに信号を送出しこの信号に応じて制御手段7内のゼロ点検定手段6は閉止している流路3bにある計測手段5bのゼロ点を検定する。この際、流路3cにある計測手段5cの検定を同様に行っても良い。また、時刻t2で開閉手段4aが閉止し(図8(a))、開閉手段4bが開成(図8(b))すると同様に時刻t2から第2のタイマ手段22は動作を開始しT2間隔で信号を送出する。ゼロ点検定手段6はこの信号に応じて今度は流路3aにある計測手段5aのゼロ点を検定する。
【0049】
このように開閉手段4を閉止している流路3における計測手段5を一定時間間隔T2でゼロ点補正することができ温度や湿度等の外乱が入った経時変化等によるゼロ点のずれが発生しても一定時間以内に修正し変動を小さくすることが可能になり、突発的に流量が増加し、流路を開成して使用しなければならないことが発生しても十分対応することができる。
【0050】
(実施例5)
以下、請求項7および請求項8に係る実施例5に関する本発明の流量計測装置について図面を参照しながら説明する。
【0051】
本実施例の構成を示すブロック図は実施例1と同じ図1を用いる。なお、実施例1と同じ構成要素には同一番号を付与して詳細な説明を省略する。図9に制御手段のブロック図を示す。
【0052】
そして実施例5は制御手段に計時手段、記憶手段を備えている点が実施例1、実施例2、実施例3および実施例4とは異なる。
【0053】
次に動作を説明する。制御手段7は複数の開閉手段4を開成し流体を流している。そしてその際、閉止している開閉手段4を有する流路の計測手段5のゼロ点を補正している。
【0054】
ここで制御手段7は計時手段24を有し、この計時手段24が予め定めた時刻においてゼロ点検定手段に信号を送出し、閉止している流路3における計測手段5のゼロ点を補正する。これにより、流量計測装置の設置されたシステム特有の流量状態を予め測定し、例えば流量の少ない時刻にゼロ点を補正することで計測手段5の精度を最適な時刻に調節することが可能になる。さらに予め定める時刻は統計的に定めても良いし、家庭用のガス流量手段であれば朝、昼の食事時や夕方から夜にかけての風呂、シャワー使用時を除く時刻に設定しておけば、被検出流体であるガスがほとんど流れない時間であり、その回数と時刻を予め設定しておくことで、ゼロ点の検定誤差も少なくて調整することが可能になる。
【0055】
また、制御手段7は計時手段24と記憶手段25を有することにより、前記計時手段24により一定流量以下の安定した流量Qが継続して存在する時刻を前記記憶手段25に記憶しておき、閉止している流路における計測手段5のゼロ点を補正する動作を前記記憶手段25に記憶した時刻に行うことで、そのシステムの取り付けられた固有の使用条件、状態を予め記憶しておき、安定した状態の時間に計測手段5のゼロ点状態を調べることでより精度良く計測手段5調節することが可能になる。
【0056】
例えば、家庭用のガス流量計に利用すると朝、昼の食事時、夕方から夜中にかけての風呂利用時、また暖房使用時刻等は各家庭の生活様式により一定していない。これを計測手段5により流量が予め定めた値以下になる時刻を測定し、それを繰り返して記憶しながら学習することにより、制御手段7は計測手段5のゼロ点を検定する時刻を計時手段23を用いて判断する。またカレンダ機能を有すると平日と週末ではガスの使用時間が大きく異なることがあり、それも記憶手段で判定材料として組み立てることが可能となる。
【0057】
(実施例6)
以下、請求項9に係る実施例6に関する本発明の流量計測装置について図面を参照しながら説明する。
【0058】
本実施例の構成を示すブロック図は実施例1と同じ図1を用いる。なお、実施例1と同じ構成要素には同一番号を付与して詳細な説明を省略する。図10に制御手段のブロック図を示す。
【0059】
そして実施例6は制御手段に通信手段を備えている点が実施例1、実施例2、実施例3、実施例4および実施例5とは異なる。
【0060】
実施例6では制御手段7に通信手段26を備えている。通常、制御手段7は複数の開閉手段4を開成し流体を流している。そしてその際、閉止している開閉手段4を有する流路の計測手段5のゼロ点を補正している。このゼロ点を補正するタイミングは例えば制御手段7内部のタイマ手段23等を用いて自動制御しても良いが利用者や外部の機関が任意の時間に確認動作を行いたい場合がある。その時のため図10の通信手段26を用いて流量計測装置は外部と通信ができるようにしておく。利用者は外部から例えばスイッチやリモコン、設定手段を用いて確認動作開始を指示し、制御手段7はこの信号により閉止している開閉手段4を有する流路の計測手段5のゼロ点を補正する。
【0061】
これにより、任意の時間に外部から利用者が計測手段のゼロ点を補正することができ、突発的な外乱等による系の不安定現象が発生したとしても利用者の手動でゼロ点を補正する信号を送出することが可能になる。
【0062】
さらに、ゼロ点を補正するよう要求する信号を発生する外部信号源としては流出路の下流側に設置してある機器、例えばガス器具であればガス給湯機27等を用いることも可能である。ガス給湯機にあるガス流量計測手段等でガス流量を推定し、一定以下の流体(ここではガス)が流れていると判定した場合に流量計測装置の制御手段7に通信手段26を介しゼロ点補正を要求する。これにより確実に流体流量が少ない場合に外部からの信号でゼロ点補正を検定することが可能になる。
【0063】
同様に外部信号源としては流入路1の上流側に設置してある機器、例えば大型供給施設における出力部の流量計測手段28等としても良い。そうすると、この流量計測手段はそれ自体が一定以下の流体が流れていると判定した場合に通信手段26を介して流量計測装置の制御手段7にゼロ点の補正動作を要求する。これにより確実に流体流体が少ない場合に外部からの信号でゼロ点補正を検定することが可能になる。また、外部信号はそれ自体内部において計時手段を有する機器や、機器集中検針盤としても良い。これにより、外部から一定時間以内にゼロ点の補正を要求することが可能になる。
【0064】
なお、本発明についての実施例1ないし6例にわたって説明したが、これらの実施例は複数組み合わせることができることは言うまでもない。また、流量演算手段の値が異常値を示したと判断したときのみゼロ点を補正して、不要なゼロ点補正を行わないようにし、消費電力を低減することができる。そして所定の流量値以下の場合にはぜロ値の変化と判断してゼロ補正を行い微小な流体の漏洩時に対応する実施例も当業者であれば容易に実現できるものである。
【0065】
そして、複数の流路を用いることにより微小流量から大流量まで流量を計測するとともに、閉止している流路における計測手段のゼロ点を検定することで常に精度良く流量計測を行うことが可能となるものである。また、定期的に開閉手段を動作することは開閉手段の流路への固着等を防止することもでき、さらに信頼性も向上することができる。
【0066】
【発明の効果】
以上のように本発明の流量計測装置によれば次の効果が得られる。
【0067】
(1)複数の流路を有する構成で、流量が跡切れない場合でも流量の計測を行っていない流路のゼロ点を補正しておき、開閉手段を切り替えることで、ゼロ点補正の終了した流路で流体計測を行うことが可能になる。このためこの流路を開成する時には測定系の安定度が良く、ゼロ点のずれの無い計測を可能にし、精度が不安定になることを防止することができる。
【0068】
(2)計測手段として流路に設けられた超音波信号を送受信する方式を用いることで、流体の流れを乱すことなく流量を測定するとともに、複数の流路を組み合わせることで広い範囲で瞬時に流量を精度良く測定することができる。
【0069】
(3)閉止中の計測手段はゼロ点の補正を済ませておき、流量計測中の流路における計測手段に経時変化等によるゼロ点の変化があったとしても、タイマ手段により一定時間間隔で流路を切り換えることで、一定時間以内に安定度が良くゼロ点のずれの無い計測を可能にし、精度が不安定になることを防止することができる。
【0070】
(4)流体流量が流量判定手段においてあらかじめ定めた流量以下になったと判定すると、流体の流れが少なく下流からの外乱が少ないため開閉手段を閉止している流路において下流からの影響による誤差を含むこと無くゼロ点の検定を行うことが可能になる。
【0071】
(5)流体流量が流量判定手段においてあらかじめ定めた流量より多くなったと判定すると、下流から大流量による外乱が入り閉止している流露における計測手段のゼロ点補正動作に悪影響が及ぼしたり、また大流量を計測するために開閉手段を開成して流路に流体を流す必要がある可能性が高いためゼロ点の検定を停止することで、ゼロ点の精度を落とすこと無く、さらにすぐに流量計測にかかる準備をすることが可能になる。
【0072】
(6)タイマ手段により開閉手段を閉止している流路における計測手段を一定時間間隔でゼロ点補正することができ、温度や湿度等の外乱が入った経時変化等によるゼロ点のずれが発生しても一定時間以内に修正し変動を小さくすることが可能になり、突発的に流量が増加し、流路を開成して使用しなければならないことが発生しても十分対応することができる。
【0073】
(7)流量計測装置の設置されたシステム特有の流量状態を予め測定し、例えば計時手段の設定を流量の少ない時に定めておき、その時刻にゼロ点を補正することで計測手段の精度を最適な時刻に調節することが可能になる。
【0074】
(8)計時手段により一定流量以下の安定した流量が継続して存在する時刻を記憶手段に記憶しておき、閉止している流路における計測手段のゼロ点を補正する動作を記憶手段に記憶した時刻に行うことで、そのシステムの取り付けられた固有の使用条件、状態等を考慮した安定した状態の時間に計測手段のゼロ点状態を調べることでより精度良く計測手段調節することが可能になる。
【0075】
(9)通信手段を用いることで任意の時間に外部から利用者が計測手段のゼロ点を補正することができ、突発的な外乱等による系の不安定現象が発生したとしても手動でゼロ点を補正する信号を送出することが可能になる。
【図面の簡単な説明】
【図1】(a)本発明の実施例1の流量計測装置を示すブロック図
(b)同装置の流量検出手段の模式図
【図2】同装置の計測手段を示すブロック図
【図3】本発明の実施例2のおける流量計測装置の制御手段を示すブロック図
【図4】(a)同装置の開閉手段4aの動作を示すタイミングチャート
(b)同装置の開閉手段4bの動作を示すタイミングチャート
(c)同装置の開閉手段4cの動作を示すタイミングチャート
(d)同装置の第1のタイマ手段の動作を示すタイミングチャート
【図5】本発明の実施例3における流量計測装置の制御手段を示すブロック図
【図6】同装置の制御手段の処理を示すタイミングチャート
【図7】本発明の実施例4における流量計測装置の制御手段を示すブロック図
【図8】(a)同装置の開閉手段4aの動作を示すタイミングチャート
(b)同装置の開閉手段4bの動作を示すタイミングチャート
(c)同装置の第2のタイマ手段の動作を示すタイミングチャート
【図9】本発明の実施例5における流量計測装置の制御手段を示すブロック図
【図10】本発明の実施例6における流量計測装置の制御手段を示すブロック図
【符号の説明】
1 流入路
2 流出路
3 流路
4 開閉手段
5 計測手段
6 ゼロ点検定手段
7 制御手段
10 第1振動子
11 第2振動子
12 送信手段
13 受信手段
20 流量演算手段
21 第1のタイマ手段
22 流量判定手段
23 第2のタイマ手段
24 計時手段
25 記憶手段
26 通信手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device that measures the flow rate of a fluid such as a gas.
[0002]
[Prior art]
Many methods are known for measuring the flow rate and flow rate of fluids such as gas and liquid, but the development of flow rate and flow rate measurement devices that use highly reliable ultrasonic waves is particularly remarkable due to advances in electronics technology. . Ultrasonic flow velocity / flow rate measuring devices have a wide range of application fields such as fuel gas meters, industrial measuring instruments, medical blood flow meters, and measurement of flow rates in the ocean and the atmosphere. The flow velocity / flow rate measuring device using ultrasonic waves is not only used directly for ultrasonic waves but also indirectly used as a detection unit of a measuring device based on many measurement principles.
[0003]
Moreover, many sensors such as a flow rate sensor, a resistance value sensor, a temperature sensor, and a voltage sensor are used for the flow rate / flow rate measurement device as well as the ultrasonic flow rate / flow rate measurement device. And the sensor which transmits these electric signals may be influenced by external conditions and a sensitivity may change. For this reason, a flow measuring device used for a fuel gas meter or the like is required to measure even a slight change in flow rate, for example, a minute change such as 3 liters / hour, and such a minute change can be accurately grasped. In order to be able to do this, the measurement device must be capable of correcting the zero point of the measurement.
[0004]
From the above viewpoint, the technique disclosed in Japanese Patent Laid-Open No. 8-271307 determines whether it is appropriate to perform zero point correction at predetermined time intervals, and executes zero point correction based on the determination. It is a gas flow meter equipped with means, and is highly evaluated in the gas appliance industry as a useful technique.
[0005]
[Problems to be solved by the invention]
However, the gas flow meter described above determines whether or not zero point correction needs to be performed at a predetermined time interval, and performs zero point correction when necessary. Since the flow path cannot be closed indefinitely in a device in which the flow is not traced, zero point correction cannot be performed.
[0006]
Therefore, in view of the problems of the conventional example, the present invention has a structure having a plurality of flow paths, and corrects the zero point of the flow path where the fluid flow rate is not measured, thereby allowing the flow path for fluid measurement. It is an object of the present invention to use a flow path that has been subjected to zero point correction.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a plurality of flow paths provided between an inlet and an outlet, a plurality of open / close means for individually opening and closing the plurality of flow paths, and a flow rate of at least one flow path. Measuring means for measuring, and control means for controlling the opening / closing means and the measuring means, wherein the control means detects a zero value of the measuring means in a flow path in which the opening / closing means is closed to detect a zero value. This is a flow rate measuring device provided with a zero point verification means for performing correction.
[0008]
According to the present invention, with a configuration having a plurality of flow paths, the measurement range of the fluid flow rate is enlarged, and even in a device where the flow rate is not traced, the zero point of the flow path where the fluid flow rate is not measured is set. By correcting and switching the opening / closing means, it becomes possible to perform fluid measurement in the flow path where the zero point correction has been completed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is extremely useful when applied to a fuel gas meter such as city gas and propane gas. This is because it is required in Japan that the fuel gas meter accurately grasps the flow rate change exceeding 3 liters per hour. Therefore, the present invention is convenient in that the flow rate can be accurately measured by the zero point correction over a wide range such as tens of thousands of liters per hour since the change in the flow rate is extremely small. The present invention is useful when implemented in various fields where it is necessary to measure an accurate flow rate in accordance with the above-described purpose.
[0010]
Those skilled in the art can implement the present invention by adopting the configuration described in each claim, but the embodiments can be easily grasped by helping understanding of the contents of the present invention. In addition to the means and configuration, the effects of the claims will be described below.
[0021]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
Example 1
FIG. 1A is a block diagram showing the configuration of a flow rate measuring apparatus according to the first embodiment according to claim 1 and claim 2, FIG. 1B is a schematic diagram of the flow rate detecting means, and FIG. 2 is a block diagram of the measuring means. .
[0023]
In the figure, 1 is an inflow path, 2 is an outflow path, 3 is a flow path, 4 is an opening / closing means for opening and closing the flow path, 5 is a measuring means for measuring the flow rate of the flow path, 7 is the opening / closing means 4 and the measuring means 5. It is a control means to control. A zero point test means 6 is provided inside the control means.
[0024]
Next, the operation and action will be described. In FIG. 1, the flow path 3 is composed of three lines, and an opening / closing means 4 and a measuring means 5 are attached to each flow path. The fluid entering from the inflow path 1 passes through the open / close means 4 and the flow rate is measured by the measuring means 5. The opening / closing means 4 and the measuring means 5 are controlled by the control means 7. The opening / closing means 4 can be opened and closed with respect to each flow path. Then, the flow rate measuring means 5 in which the opened opening / closing means 4 is present measures the flow rate. The total flow rate from the inflow path 1 to the outflow path 2 is obtained by adding the flow rates of the individual measuring means 5 by the control means 7.
[0025]
When all of the plurality of flow paths are opened, it is possible to flow a large flow rate and to measure it. If only one flow path is opened, a small flow rate can be handled. By using the opening / closing means 4 as described above, it is possible to easily select a flow path according to the flow rate and to perform measurement in a wide range of the flow rate region.
[0026]
The flow path 3 may be combined with a plurality of channels having an equal cross-sectional area to increase versatility and facilitate maintenance, and the cross-sectional area may be made different so that the optimum flow path is selected depending on the flow rate. It is good also as a structure to perform. In the present invention, the number of flow paths is three, but it is not necessarily meaningful to take numbers separately. Any number of two or more may be used.
[0027]
On the other hand, as the operation of the flow rate calculation means 20 composed of a plurality of flow paths, the flow rate of the fluid flow path 3 that flows through the whole is also calculated by the operation of the measurement means 5 performed in each flow path described above. The total flow rate obtained here is Q, and the flow rates obtained and calculated by the flow rate detection means 5a, 5b, 5c installed in the flow paths 3a, 3b, 3c opened by the opening / closing means 4 are qa, qb, qc, respectively. Then, Q is qa + qb + qc = Σq.
[0028]
If the opening / closing means 4a is closed while performing this flow rate calculation, no fluid flows through the flow path 3a. Therefore, when the fluid flow rate is measured by the measuring means 5a, the flow rate should be 0 because the opening / closing means 4a is closed. However, the zero point of the measuring means 5a may be shifted due to external influences such as temperature or aging, and the measured value is corrected by the zero point verification means 6 based on the value of the flow rate calculating means 20. To do. The correction is established by setting the value measured by the measuring means 5a as a basic value and then increasing / decreasing the value measured by the measuring means 5a when the opening / closing means 4a is opened next time. This zero point test can be performed by the measuring means 5 installed in the flow path 3 having the closed opening / closing means 4.
[0029]
At this time, when the zero point is greatly deviated, it is also effective to notify the user of the abnormality using a notification means or the like. In addition, if an external administrator is notified using a communication means or the like, it is possible to quickly recover from an abnormal state, which is useful.
[0030]
The flow path 3 may be combined with a plurality of channels having an equal cross-sectional area to increase versatility and facilitate maintenance, and the cross-sectional area may be made different so that the optimum flow path is selected depending on the flow rate. It is good also as a structure to perform. In the present invention, the number of flow paths is three, but it is not necessarily meaningful to take numbers separately. Any number of two or more may be used.
[0031]
In addition, the flow rate detection means 1 in the flow path A indicated by the white arrow in FIG. 1 includes a first ultrasonic transducer 10 and a second ultrasonic transducer in a part of the fluid flow path 3 as shown in FIG. 11 is provided so as to be opposed to the direction of fluid flow. As shown in FIG. 2, 12 is a transmission circuit to the first vibrator 10, 13 is an amplification circuit for a signal received by the second vibrator 11, and the amplified signal is compared with a reference signal by a comparison circuit. When a signal equal to or higher than the reference signal is detected, the ultrasonic signal is repeatedly transmitted after the signal is delayed by the delay means by the repeat means for the set number of times. The time when the set number of ultrasonic transmissions is repeated and finished is obtained by the time measuring means 18 such as a timer counter.
[0032]
Next, transmission / reception of the first vibrator 10 and the second vibrator 11 is switched by the switching means 19, and ultrasonic waves are transmitted from the second vibrator 11 to the first vibrator 10, that is, from downstream to upstream. Repeat the time as described above. Then, the fluid velocity is calculated from the time difference, and the flow rate is calculated by the flow rate calculation means 20 inside the control means 7 from the cross-sectional area of the fluid flow path 3 and the fluid speed.
[0033]
As described above, the flow rate can be measured without disturbing the flow of the fluid by using the ultrasonic wave in the measuring means, and the flow rate can be measured instantaneously and accurately in a wide range by combining a plurality of flow paths.
[0034]
(Example 2)
Hereinafter, a flow rate measuring device according to a second embodiment of the present invention relating to claim 3 will be described with reference to the drawings.
[0035]
The block diagram showing the configuration of the present embodiment uses the same FIG. 1 as in the first embodiment. In addition, the same number is attached | subjected to the same component as Example 1, and detailed description is abbreviate | omitted. FIG. 3 shows a block diagram of the control means, and FIG. 4 shows an operation timing chart.
[0036]
The second embodiment is different from the first embodiment in that the first timer means 21 for managing the time in order to switch the opening / closing means at regular time intervals is provided.
[0037]
The operation will be described. As shown in FIG. 4 (a), the control means 7 opens the opening / closing means 4a and allows fluid to flow through the flow path 3a. When the opening / closing means 4a is opened, the first timer means 20 starts its operation as shown in FIG. 4 (d), and sends a signal to the control means 7 after a certain time (here, T1). In response to a signal from the first timer means 21, the control means 7 opens the opening / closing means 4b as shown in FIG. 4B, and then closes the opening / closing means 4a. At this time, the measuring means 5b is assumed to have corrected the zero point before opening the opening / closing means 4b. When T1 further elapses, the opening / closing means 4c is opened as shown in FIG. 4C, and then the opening / closing means 4b is closed. In this way, the flow path for measuring the fluid is replaced every time a certain time elapses.
[0038]
Thereby, even when there is a fluid flow and the flow rate is measured, the measuring means 5 of the flow path 3 in which the opening / closing means 4 is closed has already corrected the zero point by performing the zero point correction, and the measurement is performed. Even if there is a change in the zero point due to aging in the inner flow path, switching the flow path 3 via the opening / closing means 4 ensures good stability within a certain time interval and enables measurement without deviation of the zero point. It is possible to prevent the accuracy from becoming unstable.
[0039]
(Example 3)
Hereinafter, a flow rate measuring device according to a third embodiment of the present invention relating to claims 4 and 5 will be described with reference to the drawings.
[0040]
The block diagram showing the configuration of the present embodiment uses the same FIG. 1 as in the first embodiment. In addition, the same number is attached | subjected to the same component as Example 1, and detailed description is abbreviate | omitted. FIG. 5 shows a block diagram of the control means, and FIG. 6 shows an operation timing chart.
[0041]
In the third embodiment, when the measured fluid flow rate is smaller than the predetermined flow rate, the zero point verification unit 6 starts the verification. On the contrary, when the measured fluid flow rate is higher than the predetermined flow rate, the zero point verification unit 6 stops the verification. The point which is provided with the flow volume determination means 22 which sends out a signal differs from Example 1 and Example 2. FIG.
[0042]
The operation will be described. The control means 7 opens the opening / closing means 4a at time t1 in FIG. 6 to flow a fluid through the flow path 3a. Then, the flow rate of the fluid flowing in the flow rate calculation means 20 is obtained. Here, the flow rate determination means 22 sends a signal to the control means 7 when the flow rate obtained by the flow rate calculation means becomes smaller than a predetermined value (FIG. 6Q1) (time t2). The zero point of the measuring means 5b, 5c of the flow path having is corrected. This is because the possibility that the flow rate is reduced and the opening / closing means 4 is opened to allow the fluid to flow through the other flow path 3b and the flow rate to be measured using a plurality of flow paths is reduced.
[0043]
In addition, since the flow rate is small, even in the flow path 3 that closes the opening / closing means 4, the zero point can be verified when the flow of fluid is small and there is no error due to disturbance from the downstream. In the present embodiment, the zero point is verified as soon as the flow rate becomes less than Q1, but noise is superimposed on the flow rate signal or the flow rate itself fluctuates, so that a certain time has elapsed since the flow rate became Q1 or less. If the zero point test is performed later, the correction can be performed more stably.
[0044]
Further, the flow rate determination means 22 sends a signal to the control means 7 and closes when the flow rate obtained by the flow rate calculation means 20 exceeds a predetermined value (FIG. 6Q2) (time t3 in FIG. 6). The operation for correcting the zero point of the flow path measuring means 5b, 5c of 4c, etc. is stopped. This is because the flow rate is increased, so that disturbance due to a large flow rate enters from the downstream of the flow path 3 that closes the opening / closing means 4, and the zero point correction of the measuring means 5 that has been performed is affected, and the large flow rate is measured. This is because it is highly likely that the opening / closing means must be opened to allow fluid to flow through the flow path, so that the zero point verification is stopped and preparations for flow rate measurement are made immediately.
[0045]
Example 4
Hereinafter, the flow rate measuring device according to the fourth embodiment of the present invention will be described with reference to the drawings.
[0046]
The block diagram showing the configuration of the present embodiment uses the same FIG. 1 as in the first embodiment. In addition, the same number is attached | subjected to the same component as Example 1, and detailed description is abbreviate | omitted. FIG. 7 shows a block diagram of the control means, and FIG. 8 shows an operation timing chart.
[0047]
The fourth embodiment is provided with second timer means 23 for managing the time so as to correct the zero point of the measuring means of the flow path that is closed at regular intervals. Different from Example 3.
[0048]
Since the second timer means 23 is provided in the fourth embodiment, when the opening / closing means 4a is opened at time t1 in FIG. 8C and a fluid is flowing through the flow path 3a, the operation is started at time t1. The second timer means 23 sends a signal every time the predetermined time T2 elapses, and in response to this signal, the zero point verification means 6 in the control means 7 verifies the zero point of the measuring means 5b in the closed flow path 3b. . At this time, the measuring means 5c in the flow path 3c may be similarly tested. Similarly, when the opening / closing means 4a is closed at time t2 (FIG. 8 (a)) and the opening / closing means 4b is opened (FIG. 8 (b)), the second timer means 22 starts its operation from time t2 and starts at the interval T2. Send a signal with. In response to this signal, the zero point verification means 6 now verifies the zero point of the measurement means 5a in the flow path 3a.
[0049]
In this way, the measuring means 5 in the flow path 3 that is closing the opening / closing means 4 can be zero-corrected at a constant time interval T2, and a zero point shift occurs due to a change with time including disturbances such as temperature and humidity. Even within a certain period of time, it becomes possible to reduce the fluctuations, and even if the flow rate suddenly increases and the flow path must be opened and used, it can sufficiently cope with it. .
[0050]
(Example 5)
Hereinafter, the flow rate measuring device according to the fifth embodiment of the present invention relating to claims 7 and 8 will be described with reference to the drawings.
[0051]
The block diagram showing the configuration of the present embodiment uses the same FIG. 1 as in the first embodiment. In addition, the same number is attached | subjected to the same component as Example 1, and detailed description is abbreviate | omitted. FIG. 9 shows a block diagram of the control means.
[0052]
The fifth embodiment is different from the first, second, third, and fourth embodiments in that the control means includes a timing means and a storage means.
[0053]
Next, the operation will be described. The control means 7 opens the plurality of opening / closing means 4 and allows fluid to flow. At that time, the zero point of the measuring means 5 of the flow path having the closed opening / closing means 4 is corrected.
[0054]
Here, the control means 7 has a time measuring means 24, which sends a signal to the zero point test means at a predetermined time, and corrects the zero point of the measuring means 5 in the closed flow path 3. . As a result, the flow rate characteristic of the system in which the flow rate measuring device is installed is measured in advance, and the accuracy of the measuring means 5 can be adjusted to the optimal time by correcting the zero point at a time when the flow rate is low, for example. . In addition, the predetermined time may be set statistically, or if it is a gas flow rate method for home use, it can be set to a time except for morning, noon meals, evening to night baths, showers, This is the time during which the gas that is the fluid to be detected hardly flows. By setting the number of times and the time in advance, the zero point calibration error can be reduced and adjusted.
[0055]
Further, the control means 7 includes the time measuring means 24 and the storage means 25, so that the time when the stable flow rate Q continuously below a predetermined flow rate is continuously stored by the time measuring means 24 is stored in the storage means 25, and is closed. By performing the operation for correcting the zero point of the measuring means 5 in the flow path at the time stored in the storage means 25, the inherent use condition and state to which the system is attached are stored in advance, and stable. It is possible to adjust the measuring means 5 with higher accuracy by examining the zero point state of the measuring means 5 at the time of the state.
[0056]
For example, when used in a home gas flow meter, the morning, noon meal, bath use from evening to midnight, heating use time, etc. are not constant depending on the lifestyle of each home. By measuring the time when the flow rate becomes equal to or less than a predetermined value by the measuring unit 5 and learning while repeatedly storing it, the control unit 7 determines the time when the zero point of the measuring unit 5 is verified. Judge using If the calendar function is provided, the usage time of the gas may be greatly different between weekdays and weekends, and it can be assembled as a judgment material by the storage means.
[0057]
(Example 6)
Hereinafter, the flow rate measuring device according to the sixth embodiment of the present invention will be described with reference to the drawings.
[0058]
The block diagram showing the configuration of the present embodiment uses the same FIG. 1 as in the first embodiment. In addition, the same number is attached | subjected to the same component as Example 1, and detailed description is abbreviate | omitted. FIG. 10 shows a block diagram of the control means.
[0059]
The sixth embodiment is different from the first, second, third, fourth, and fifth embodiments in that the control unit includes a communication unit.
[0060]
In the sixth embodiment, the control unit 7 includes a communication unit 26. Usually, the control means 7 opens the plurality of opening / closing means 4 and allows fluid to flow. At that time, the zero point of the measuring means 5 of the flow path having the closed opening / closing means 4 is corrected. The timing for correcting the zero point may be automatically controlled using, for example, the timer means 23 in the control means 7, but the user or an external engine may want to perform a confirmation operation at an arbitrary time. At that time, the flow rate measuring device is configured to be able to communicate with the outside using the communication means 26 of FIG. The user instructs the start of the confirmation operation from the outside using, for example, a switch, a remote controller, or setting means, and the control means 7 corrects the zero point of the measuring means 5 of the flow path having the opening / closing means 4 closed by this signal. .
[0061]
As a result, the user can correct the zero point of the measuring means from the outside at an arbitrary time, and even if a system instability due to sudden disturbance or the like occurs, the user manually corrects the zero point. A signal can be transmitted.
[0062]
Furthermore, as an external signal source that generates a signal for requesting correction of the zero point, it is also possible to use equipment installed on the downstream side of the outflow path, for example, a gas water heater 27 if it is a gas appliance. When the gas flow rate is estimated by a gas flow rate measuring unit or the like in the gas water heater, and it is determined that a fluid (here, gas) below a certain level is flowing, the zero point is set via the communication unit 26 to the control unit 7 of the flow rate measuring device Request correction. This makes it possible to verify the zero point correction with an external signal when the fluid flow rate is small.
[0063]
Similarly, the external signal source may be a device installed on the upstream side of the inflow channel 1, for example, a flow rate measuring means 28 of an output unit in a large supply facility. Then, when it is determined that a fluid below a certain level is flowing, this flow rate measuring means requests the zero point correction operation to the control means 7 of the flow rate measuring apparatus via the communication means 26. This makes it possible to verify the zero point correction with an external signal when the amount of fluid is surely small. Further, the external signal itself may be a device having a timekeeping means inside, or a device centralized meter reading board. This makes it possible to request zero point correction within a certain time from the outside.
[0064]
In addition, although it demonstrated over Example 1 thru | or 6 example about this invention, it cannot be overemphasized that these Examples can combine two or more. Further, the zero point is corrected only when it is determined that the value of the flow rate calculation means indicates an abnormal value, so that unnecessary zero point correction is not performed, and power consumption can be reduced. A person skilled in the art can easily realize an embodiment corresponding to the time of leakage of a minute fluid by determining that the zero value has changed when the flow rate is equal to or less than a predetermined flow rate value and performing zero correction.
[0065]
And by using a plurality of channels, it is possible to measure the flow rate from a minute flow rate to a large flow rate, and to always measure the flow rate with high accuracy by verifying the zero point of the measuring means in the closed flow channel. It will be. Further, periodically operating the opening / closing means can prevent the opening / closing means from adhering to the flow path, and can further improve the reliability.
[0066]
【The invention's effect】
As described above, according to the flow rate measuring apparatus of the present invention, the following effects can be obtained.
[0067]
(1) In a configuration having a plurality of flow paths, even if the flow rate is not traceable, the zero point of the flow path where the flow rate is not measured is corrected, and the zero point correction is completed by switching the opening / closing means. Fluid measurement can be performed in the flow path. For this reason, when the flow path is opened, the measurement system has good stability, enables measurement without deviation of the zero point, and prevents the accuracy from becoming unstable.
[0068]
(2) By using a method for transmitting and receiving ultrasonic signals provided in the flow path as a measuring means, the flow rate is measured without disturbing the flow of the fluid, and a plurality of flow paths are combined to instantly in a wide range. The flow rate can be measured with high accuracy.
[0069]
(3) The measuring means in the closed state has already been corrected for the zero point, and even if there is a change in the zero point due to a change over time in the measuring means in the flow path during the flow rate measurement, By switching the path, it is possible to perform measurement with good stability and no zero point deviation within a certain time, and it is possible to prevent the accuracy from becoming unstable.
[0070]
(4) If it is determined that the fluid flow rate is equal to or lower than the predetermined flow rate in the flow rate determining means, the flow of fluid is small and the disturbance from the downstream is small, so that the error due to the influence from the downstream in the flow path closing the opening and closing means It becomes possible to perform the zero point test without including it.
[0071]
(5) If it is determined that the fluid flow rate is higher than the predetermined flow rate in the flow rate determination means, the zero point correction operation of the measurement means in the dew flow that is closed by a large flow rate disturbance from the downstream side may be adversely affected. Since there is a high possibility that it is necessary to open the opening and closing means to measure the flow rate, and to flow the fluid through the flow path, stopping the zero point verification makes it possible to measure the flow rate more quickly without reducing the accuracy of the zero point. It will be possible to prepare for this.
[0072]
(6) The zero point can be corrected at regular intervals by measuring means in the flow path where the opening / closing means is closed by the timer means, and the deviation of the zero point due to changes over time due to disturbances such as temperature and humidity occurs. Even within a certain period of time, it becomes possible to reduce the fluctuations, and even if the flow rate suddenly increases and the flow path must be opened and used, it can sufficiently cope with it. .
[0073]
(7) Measure the flow rate peculiar to the system where the flow measurement device is installed in advance, for example, set the timing means when the flow is low, and optimize the precision of the measurement means by correcting the zero point at that time It becomes possible to adjust to the correct time.
[0074]
(8) The time at which a stable flow rate equal to or lower than a constant flow rate is continuously stored in the storage unit by the time measuring unit, and the operation for correcting the zero point of the measuring unit in the closed flow path is stored in the storage unit. It is possible to adjust the measuring means more accurately by examining the zero point state of the measuring means in a stable state time considering the unique usage conditions and conditions attached to the system. Become.
[0075]
(9) By using the communication means, the user can correct the zero point of the measuring means from the outside at an arbitrary time, and even if a system instability due to sudden disturbance occurs, the zero point is manually set. It is possible to send a signal for correcting the above.
[Brief description of the drawings]
FIG. 1A is a block diagram showing a flow rate measuring apparatus according to a first embodiment of the present invention.
(B) Schematic diagram of flow rate detection means of the apparatus
FIG. 2 is a block diagram showing measurement means of the apparatus
FIG. 3 is a block diagram showing control means of a flow rate measuring device according to Embodiment 2 of the present invention.
FIG. 4A is a timing chart showing the operation of the opening / closing means 4a of the apparatus.
(B) Timing chart showing the operation of the opening / closing means 4b of the apparatus.
(C) Timing chart showing the operation of the opening / closing means 4c of the apparatus
(D) Timing chart showing the operation of the first timer means of the apparatus
FIG. 5 is a block diagram showing control means of a flow rate measuring device according to Embodiment 3 of the present invention.
FIG. 6 is a timing chart showing processing of control means of the apparatus
FIG. 7 is a block diagram showing a control means of a flow rate measuring device in Embodiment 4 of the present invention.
FIG. 8A is a timing chart showing the operation of the opening / closing means 4a of the apparatus.
(B) Timing chart showing the operation of the opening / closing means 4b of the apparatus.
(C) Timing chart showing the operation of the second timer means of the apparatus
FIG. 9 is a block diagram showing control means of a flow rate measuring device according to Embodiment 5 of the present invention.
FIG. 10 is a block diagram showing control means of a flow rate measuring device in Embodiment 6 of the present invention.
[Explanation of symbols]
1 Inflow channel
2 Outflow channel
3 Flow path
4 Opening and closing means
5 Measuring means
6 Zero point test method
7 Control means
10 First vibrator
11 Second vibrator
12 Transmission means
13 Receiving means
20 Flow rate calculation means
21 First timer means
22 Flow rate judging means
23 Second timer means
24 Timekeeping
25 Memory means
26 Communication means

Claims (2)

流入口と流出口の間に設けた複数の流路と、
前記複数の流路を個々に開閉する複数の開閉手段と、
前記複数の流路の流量を個々に計測する計測手段と、
前記開閉手段と前記計測手段とを制御する制御手段と、を有し、
前記計測手段は、流路に設けられた超音波信号を送受信する第1振動子と第2振動子と、前記振動子へ周期的駆動振動を送出する送信回路と、前記振動子間の超音波の伝搬時間に基づいて流量を算出する流量演算手段とを備え、
前記制御手段は前記開閉手段が閉止している流路にある前記計測手段のゼロ値を検出しゼロ値補正を行うゼロ点検定手段と、開成している流路の流量演算手段の信号があらかじめ定めた流量より少ない場合に閉止している流路のゼロ点検定手段にゼロ値補正を開始する信号を送出する流量判定手段と、を備えた流量計測装置。
A plurality of flow paths provided between the inlet and the outlet;
A plurality of opening / closing means for individually opening and closing the plurality of flow paths;
Measuring means for individually measuring the flow rates of the plurality of flow paths;
And a control means for controlling said measuring means and said switching means,
The measuring means includes a first vibrator and a second vibrator that transmit and receive an ultrasonic signal provided in the flow path, a transmission circuit that sends periodic drive vibration to the vibrator, and an ultrasonic wave between the vibrators. and a flow rate calculation means for calculating a flow rate based on the propagation time,
The control means, the signal of the zero-point assay means for detecting zero-value correction zero value of the measuring means, the flow path being open flow rate calculating means in the flow path of the switching means is closed is A flow rate measuring device comprising: a flow rate determining means for sending a signal for starting zero value correction to a zero point verification means for a closed channel when the flow rate is lower than a predetermined flow rate.
流入口と流出口の間に設けた複数の流路と、
前記複数の流路を個々に開閉する複数の開閉手段と、
前記複数の流路の流量を個々に計測する計測手段と、
前記開閉手段と前記計測手段とを制御する制御手段と、を有し、
前記計測手段は、流路に設けられた超音波信号を送受信する第1振動子と第2振動子と、前記振動子へ周期的駆動振動を送出する送信回路と、前記振動子間の超音波の伝搬時間に基づいて流量を算出する流量演算手段と、を備え、
前記制御手段は、前記開閉手段が閉止している流路にある前記計測手段のゼロ値を検出しゼロ値補正を行うゼロ点検定手段と、ゼロ点検出中に開成している流路の流量演算手段の信号があらかじめ定めた流量より多くなると閉止している流路のゼロ点検定手段にゼロ値補正を止める信号を送出する流量判定手段と、を備えた流量計測装置。
A plurality of flow paths provided between the inlet and the outlet;
A plurality of opening / closing means for individually opening and closing the plurality of flow paths;
Measuring means for individually measuring the flow rates of the plurality of flow paths;
Control means for controlling the opening and closing means and the measuring means,
The measuring means includes a first vibrator and a second vibrator that transmit and receive an ultrasonic signal provided in the flow path, a transmission circuit that sends periodic drive vibration to the vibrator, and an ultrasonic wave between the vibrators. Flow rate calculation means for calculating the flow rate based on the propagation time of
The control means includes a zero point verification means for detecting a zero value of the measuring means in the flow path in which the opening / closing means is closed and correcting the zero value, and a flow rate of the flow path opened during the zero point detection. A flow rate measurement device comprising: a flow rate determination unit that sends a signal for stopping zero value correction to a zero point verification unit of a closed flow path when the signal of the calculation unit exceeds a predetermined flow rate.
JP32054598A 1998-11-11 1998-11-11 Flow measuring device Expired - Fee Related JP4663041B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32054598A JP4663041B2 (en) 1998-11-11 1998-11-11 Flow measuring device
TW89109055A TW514719B (en) 1998-11-11 2000-05-10 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32054598A JP4663041B2 (en) 1998-11-11 1998-11-11 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2000146638A JP2000146638A (en) 2000-05-26
JP4663041B2 true JP4663041B2 (en) 2011-03-30

Family

ID=18122637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32054598A Expired - Fee Related JP4663041B2 (en) 1998-11-11 1998-11-11 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4663041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667418B (en) * 2009-12-16 2015-06-10 松下电器产业株式会社 Flow rate measuring device
CN109668600B (en) * 2019-01-30 2020-03-24 深圳市普颂电子有限公司 Wide-range-ratio rotor flow meter

Also Published As

Publication number Publication date
JP2000146638A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
KR100446397B1 (en) Flowmeter
JP3638252B2 (en) Gas type discrimination system
CN100585346C (en) Low power ultrasonic flow measurement
EP1243901A1 (en) Flowmeter
JP4174878B2 (en) Flow measuring device
JP4663041B2 (en) Flow measuring device
JP4069521B2 (en) Flow measuring device
JP3637628B2 (en) Flow measuring device
JP2006343292A (en) Ultrasonic flowmeter
JP3695031B2 (en) Flow measuring device
JP3640334B2 (en) Flow meter and gas meter
JP2000180223A (en) Flow rate measuring apparatus
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP2008180741A (en) Flow measuring instrument
JP4178625B2 (en) Gas shut-off device
JPH09304151A (en) Mass flowmeter
JP5990770B2 (en) Ultrasonic measuring device
JP2010217073A (en) Flow measuring device
JP2002236040A (en) Flow rate measuring apparatus
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP2003307443A (en) Flowmeter
JP2010286250A (en) Flow measurement control apparatus
JP4623488B2 (en) Fluid flow measuring device
JP2001241984A (en) Gas safety device
JP2001165740A (en) Flow rate measurement device and electronic gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees