JP4661633B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP4661633B2
JP4661633B2 JP2006055763A JP2006055763A JP4661633B2 JP 4661633 B2 JP4661633 B2 JP 4661633B2 JP 2006055763 A JP2006055763 A JP 2006055763A JP 2006055763 A JP2006055763 A JP 2006055763A JP 4661633 B2 JP4661633 B2 JP 4661633B2
Authority
JP
Japan
Prior art keywords
correction amount
fuel ratio
internal combustion
opening
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006055763A
Other languages
Japanese (ja)
Other versions
JP2007231864A (en
Inventor
隆秀 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006055763A priority Critical patent/JP4661633B2/en
Publication of JP2007231864A publication Critical patent/JP2007231864A/en
Application granted granted Critical
Publication of JP4661633B2 publication Critical patent/JP4661633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の空燃比が目標空燃比になるように内燃機関に供給される燃料の量を調整すると共に、可変バルブタイミング制御を行う内燃機関制御装置に関するものである。   The present invention relates to an internal combustion engine control device that adjusts the amount of fuel supplied to an internal combustion engine so that the air-fuel ratio of the internal combustion engine becomes a target air-fuel ratio and performs variable valve timing control.

従来、内燃機関から排出される排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)および窒素酸化物(NOx)等の不要成分を酸化還元する三元触媒を排気系に配置しることによって、排気ガスに含まれる不要成分を低減させると共に、三元触媒の上流側と下流側とに酸素濃度センサを設け、これらセンサの検出値に基づいて空燃比を制御するものが広く知られている。   Conventionally, a three-way catalyst that oxidizes and reduces unnecessary components such as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) contained in exhaust gas discharged from an internal combustion engine is disposed in the exhaust system. Therefore, it is widely known to reduce unnecessary components contained in the exhaust gas and to provide oxygen concentration sensors on the upstream side and the downstream side of the three-way catalyst and control the air-fuel ratio based on the detection values of these sensors. ing.

上述した三元触媒では、排気ガスに含まれる一酸化炭素や炭化水素と水(H2O)とが反応して、水素(H2)と二酸化炭素(CO2)とを生成する水性ガス反応が起きるため、三元触媒の下流側では、水素濃度が高くなる傾向がある。   In the above-described three-way catalyst, carbon monoxide or hydrocarbons contained in the exhaust gas react with water (H 2 O) to cause a water gas reaction that generates hydrogen (H 2) and carbon dioxide (CO 2). On the downstream side of the three-way catalyst, the hydrogen concentration tends to increase.

さらに、水素は、酸素より拡散速度が速いため、水素濃度が高くなることによって、酸素が酸素濃度センサに到達することが阻害され、三元触媒の下流側に設けられた酸素濃度センサの検出値が、実際の酸素濃度より低くなるため、空燃比制御の精度が低下してしまう。   Furthermore, since hydrogen has a higher diffusion rate than oxygen, the hydrogen concentration becomes high, which prevents oxygen from reaching the oxygen concentration sensor, and the detection value of the oxygen concentration sensor provided downstream of the three-way catalyst. However, since it becomes lower than the actual oxygen concentration, the accuracy of the air-fuel ratio control is lowered.

この水性ガス反応による影響に対応するものとして、例えば、内燃機関の排気系に設けられた触媒手段の上流側の酸素濃度を検出する最上流検出手段と、触媒手段の下流側の酸素濃度を検出する最下流検出手段と、内燃機関に供給する混合気の目標空燃比を設定する目標空燃比設定手段と、最上流検出手段の出力を用いて混合気の空燃比が目標空燃比と一致するようにフィードバック制御するフィードバック制御手段と、最下流検出手段の出力が所定値を越える場合のみ、目標空燃比設定手段により設定された目標空燃比を、最下流検出手段の出力に応じて補正する目標空燃比補正手段とを備え、触媒手段で起こる水性ガス反応によって発生する水素の影響で酸素濃度の検出精度が劣化することを考慮して目標空燃比を補正するものがある(例えば、特許文献1参照)。
特開2001−182595号公報
In order to cope with the influence of this water gas reaction, for example, the most upstream detection means for detecting the oxygen concentration upstream of the catalyst means provided in the exhaust system of the internal combustion engine and the oxygen concentration downstream of the catalyst means are detected. The most downstream detection means, the target air-fuel ratio setting means for setting the target air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine, and the output of the most upstream detection means so that the air-fuel ratio of the air-fuel mixture matches the target air-fuel ratio. The target air-fuel ratio that is set by the target air-fuel ratio setting means is corrected according to the output of the most downstream detection means only when the output of the feedback control means that performs feedback control and the output of the most downstream detection means exceeds a predetermined value. And a fuel ratio correction unit that corrects the target air-fuel ratio in consideration of deterioration in the accuracy of oxygen concentration detection due to the influence of hydrogen generated by the water gas reaction occurring in the catalyst unit ( In example, see Patent Document 1).
JP 2001-182595 A

しかしながら、このような従来の技術では、吸気バルブおよび排気バルブの開閉タイミングを内燃機関の回転数に応じて調整する可変バルブタイミング制御(Variable Valve Timing制御、以下、単に「VVT制御」という。)を内燃機関に施した場合には、VVT制御の作動状況に応じて排気ガスの水素濃度が変化するため、目標空燃比を最適に補正できないといった問題があった。   However, in such a conventional technique, variable valve timing control (variable valve timing control, hereinafter simply referred to as “VVT control”) for adjusting the opening / closing timing of the intake valve and the exhaust valve in accordance with the rotational speed of the internal combustion engine. When applied to an internal combustion engine, there is a problem that the target air-fuel ratio cannot be optimally corrected because the hydrogen concentration of the exhaust gas changes according to the operating state of the VVT control.

本発明は、従来の問題を解決するためになされたもので、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる内燃機関制御装置を提供することを目的とする。   The present invention has been made to solve the conventional problems, and provides an internal combustion engine control apparatus capable of optimally correcting a target air-fuel ratio even when VVT control is performed on the internal combustion engine. Objective.

本発明の内燃機関制御装置は、内燃機関の空燃比が目標空燃比になるように前記内燃機関に供給される燃料の量を調整する内燃機関制御装置において、前記内燃機関が有する吸気バルブおよび排気バルブの少なくとも一方の開閉タイミングを前記内燃機関の運転状態に応じて調整するバルブ調整手段と、前記吸気バルブおよび前記排気バルブの少なくとも一方の開閉タイミングに基づい排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定する補正量決定手段と、前記補正量に基づいて前記目標空燃比を補正する目標空燃比補正手段とを備えた構成を有している。 An internal combustion engine control apparatus according to the present invention is an internal combustion engine control apparatus that adjusts the amount of fuel supplied to the internal combustion engine so that the air-fuel ratio of the internal combustion engine becomes a target air-fuel ratio. A valve adjusting means for adjusting an opening / closing timing of at least one of the valves in accordance with an operating state of the internal combustion engine; and according to an amount of hydrogen in the exhaust gas based on an opening / closing timing of at least one of the intake valve and the exhaust valve. A correction amount determining unit that determines a correction amount of the target air-fuel ratio; and a target air-fuel ratio correcting unit that corrects the target air-fuel ratio based on the correction amount.

この構成により、本発明の内燃機関制御装置は、吸気バルブや排気バルブの開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   With this configuration, the internal combustion engine control apparatus according to the present invention corrects the target air-fuel ratio according to the amount of hydrogen in the exhaust gas calculated based on the opening / closing timing of the intake valve and the exhaust valve, so that the VVT control is performed on the internal combustion engine. Even in the case of applying, the target air-fuel ratio can be optimally corrected.

なお、本発明の内燃機関制御装置は、前記開閉タイミングを検出する開閉タイミング検出手段を備え、前記補正量決定手段は、前記開閉タイミング検出手段によって検出された開閉タイミングに基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定するようにしてもよい。 The internal combustion engine controller according to the present invention includes an opening / closing timing detecting means for detecting the opening / closing timing, and the correction amount determining means is configured to detect hydrogen in exhaust gas based on the opening / closing timing detected by the opening / closing timing detecting means. The correction amount of the target air-fuel ratio may be determined in accordance with the amount of .

この構成により、本発明の内燃機関制御装置は、吸気バルブや排気バルブの実際の開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   With this configuration, the internal combustion engine control apparatus of the present invention corrects the target air-fuel ratio in accordance with the amount of hydrogen in the exhaust gas calculated based on the actual opening / closing timing of the intake valve and the exhaust valve. Even when VVT control is performed, the target air-fuel ratio can be optimally corrected.

また、前記補正量決定手段は、前記バルブ調整手段によって調整される開閉タイミングの目標量に基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定するようにしてもよい。 The correction amount determination means may determine the correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas based on the target amount of the opening / closing timing adjusted by the valve adjustment means. .

この構成により、本発明の内燃機関制御装置は、吸気バルブや排気バルブの開閉タイミングの目標量に基づいて算出される排気ガス中の水素の量に応じて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   With this configuration, the internal combustion engine control device of the present invention corrects the target air-fuel ratio in accordance with the amount of hydrogen in the exhaust gas calculated based on the target amount of the opening / closing timing of the intake valve and the exhaust valve. Even when the VVT control is applied to the target air-fuel ratio, the target air-fuel ratio can be optimally corrected.

また、本発明の内燃機関制御装置は、前記開閉タイミングと、前記開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて定められた前記目標空燃比の補正量との対応を表す補正量マップを記憶する補正量マップ記憶手段を備え、前記補正量決定手段は、前記補正量マップに基づいて前記目標空燃比の補正量を決定するようにしてもよい。   Further, the internal combustion engine control device of the present invention represents a correspondence between the opening / closing timing and the correction amount of the target air-fuel ratio determined according to the amount of hydrogen in the exhaust gas calculated based on the opening / closing timing. Correction amount map storage means for storing a correction amount map may be provided, and the correction amount determination means may determine the correction amount of the target air-fuel ratio based on the correction amount map.

この構成により、本発明の内燃機関制御装置は、吸気バルブや排気バルブの開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて定められた補正量マップに基づいて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   With this configuration, the internal combustion engine controller according to the present invention sets the target air-fuel ratio based on the correction amount map determined according to the amount of hydrogen in the exhaust gas calculated based on the opening / closing timing of the intake valve and the exhaust valve. Therefore, even when VVT control is applied to the internal combustion engine, the target air-fuel ratio can be optimally corrected.

また、前記バルブ調整手段は、前記開閉タイミングを前記内燃機関の回転数および負荷率に応じて調整するようにしてもよい。   The valve adjusting means may adjust the opening / closing timing in accordance with the rotational speed and load factor of the internal combustion engine.

また、前記補正量決定手段は、前記吸気バルブの開閉タイミングの位相と基準角との差を表す吸気バルブ制御量と、前記排気バルブの開閉タイミングの位相と基準角との差を表す排気バルブ制御量との少なくとも一方を前記開閉タイミングとして前記目標空燃比の補正量を決定するようにしてもよい。   Further, the correction amount determination means includes an intake valve control amount that represents a difference between a phase of the opening / closing timing of the intake valve and a reference angle, and an exhaust valve control that represents a difference between the phase of the opening / closing timing of the exhaust valve and a reference angle. The correction amount of the target air-fuel ratio may be determined using at least one of the amount as the opening / closing timing.

ここで、前記補正量決定手段は、前記吸気バルブの位相の基準角を最遅角とし、前記排気バルブの位相の基準角を最進角としてもよい。   Here, the correction amount determining means may set the reference angle of the phase of the intake valve as the most retarded angle and the reference angle of the phase of the exhaust valve as the most advanced angle.

本発明の内燃機関制御方法は、内燃機関の空燃比が目標空燃比になるように前記内燃機関に供給される燃料の量を調整する内燃機関制御方法において、バルブ調整手段が、前記内燃機関が有する吸気バルブおよび排気バルブの少なくとも一方の開閉タイミングを前記内燃機関の運転状態に応じて調整するバルブ調整ステップと、補正量決定手段が、前記吸気バルブおよび前記排気バルブの少なくとも一方の開閉タイミングに基づい排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定する補正量決定ステップと、目標空燃比補正手段が、前記補正量に基づいて前記目標空燃比を補正する目標空燃比補正ステップとを有する。 The internal combustion engine control method according to the present invention is the internal combustion engine control method for adjusting the amount of fuel supplied to the internal combustion engine so that the air-fuel ratio of the internal combustion engine becomes a target air-fuel ratio. A valve adjustment step for adjusting an opening / closing timing of at least one of the intake valve and the exhaust valve according to an operating state of the internal combustion engine, and a correction amount determination means based on the opening / closing timing of at least one of the intake valve and the exhaust valve. A correction amount determining step for determining a correction amount of the target air-fuel ratio in accordance with the amount of hydrogen in the exhaust gas, and a target air-fuel ratio in which the target air-fuel ratio correction means corrects the target air-fuel ratio based on the correction amount A correction step.

この方法により、吸気バルブや排気バルブの開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて目標空燃比が補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   By this method, the target air-fuel ratio is corrected according to the amount of hydrogen in the exhaust gas calculated based on the opening / closing timing of the intake valve and the exhaust valve. Therefore, even when VVT control is performed on the internal combustion engine, the target air-fuel ratio is corrected. The air-fuel ratio can be optimally corrected.

なお、本発明の内燃機関制御方法は、開閉タイミング検出が、前記開閉タイミングを検出する開閉タイミング検出ステップを有し、前記補正量決定ステップでは、前記補正量決定手段が、前記開閉タイミング検出ステップで検出された開閉タイミングに基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定するようにしてもよい。 In the internal combustion engine control method according to the present invention, the opening / closing timing detection includes an opening / closing timing detection step for detecting the opening / closing timing, and in the correction amount determination step, the correction amount determination means includes the opening / closing timing detection step. The target air-fuel ratio correction amount may be determined according to the amount of hydrogen in the exhaust gas based on the detected opening / closing timing.

この方法により、吸気バルブや排気バルブの実際の開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   Even when VVT control is applied to the internal combustion engine, this method corrects the target air-fuel ratio in accordance with the amount of hydrogen in the exhaust gas calculated based on the actual opening / closing timing of the intake valve or the exhaust valve. The target air-fuel ratio can be optimally corrected.

また、前記補正量決定ステップでは、前記補正量決定手段が、前記バルブ調整ステップで調整される開閉タイミングの目標量に基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定するようにしてもよい。 In the correction amount determination step, the correction amount determination means sets the correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas based on the target amount of the opening / closing timing adjusted in the valve adjustment step. It may be determined .

この方法により、吸気バルブや排気バルブの開閉タイミングの目標量に基づいて算出される排気ガス中の水素の量に応じて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   In this method, the VVT control is applied to the internal combustion engine in order to correct the target air-fuel ratio according to the amount of hydrogen in the exhaust gas calculated based on the target amount of the opening / closing timing of the intake valve or the exhaust valve. In addition, the target air-fuel ratio can be corrected optimally.

また、前記開閉タイミングと、前記開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて定められた前記目標空燃比の補正量との対応を表す補正量マップを記憶媒体に記憶しておき、前記補正量決定ステップでは、前記補正量決定手段が、前記補正量マップに基づいて前記目標空燃比の補正量を決定するようにしてもよい。   In addition, a correction amount map representing the correspondence between the opening / closing timing and the correction amount of the target air-fuel ratio determined according to the amount of hydrogen in the exhaust gas calculated based on the opening / closing timing is stored in a storage medium. In the correction amount determination step, the correction amount determination means may determine the correction amount of the target air-fuel ratio based on the correction amount map.

この方法により、吸気バルブや排気バルブの開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて定められた補正量マップに基づいて目標空燃比を補正するため、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   By this method, the VVT control is performed on the internal combustion engine in order to correct the target air-fuel ratio based on the correction amount map determined in accordance with the amount of hydrogen in the exhaust gas calculated based on the opening / closing timing of the intake valve or the exhaust valve. Even in the case of applying, the target air-fuel ratio can be optimally corrected.

また、前記バルブ調整ステップでは、前記バルブ調整手段が、前記開閉タイミングを前記内燃機関の回転数および負荷率に応じて調整するようにしてもよい。   In the valve adjustment step, the valve adjustment means may adjust the opening / closing timing according to the rotational speed and load factor of the internal combustion engine.

また、前記補正量決定ステップでは、前記補正量決定手段が、前記吸気バルブの開閉タイミングの位相と基準角との差を表す吸気バルブ制御量と、前記排気バルブの開閉タイミングの位相と基準角との差を表す排気バルブ制御量との少なくとも一方を前記開閉タイミングとして前記目標空燃比の補正量を決定するようにしてもよい。   In the correction amount determination step, the correction amount determination means includes an intake valve control amount that represents a difference between the phase of the opening / closing timing of the intake valve and a reference angle, and the phase and reference angle of the opening / closing timing of the exhaust valve. The correction amount of the target air-fuel ratio may be determined using at least one of the exhaust valve control amount representing the difference between the two as the opening / closing timing.

ここで、前記補正量決定ステップでは、前記補正量決定手段が、前記吸気バルブの位相の基準角を最遅角とし、前記排気バルブの位相の基準角を最進角としてもよい。   Here, in the correction amount determination step, the correction amount determination means may set the reference angle of the phase of the intake valve as the most retarded angle and the reference angle of the phase of the exhaust valve as the most advanced angle.

本発明は、内燃機関にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる内燃機関制御装置を提供することができる。   The present invention can provide an internal combustion engine control apparatus that can optimally correct a target air-fuel ratio even when VVT control is performed on an internal combustion engine.

以下、本発明の実施の形態について、図面を参照して説明する。なお、本実施の形態においては、本発明に係る内燃機関制御装置を適用したエンジンについて説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, an engine to which the internal combustion engine control device according to the present invention is applied will be described.

図1に示すように、エンジン1は、車両に搭載される多気筒の内燃機関によって構成され、各気筒2には、ピストン3で仕切られた燃焼室4が形成されている。また、気筒2には、燃焼室4内に燃料を噴射するインジェクタ5と、燃焼室4内に電極部が露出するように設けられた点火プラグ6と、ピストン3のストローク、すなわち、エンジン1の回転に応動するカム7、8にそれぞれ連動する吸気バルブ9および排気バルブ10とが設けられている。   As shown in FIG. 1, the engine 1 is constituted by a multi-cylinder internal combustion engine mounted on a vehicle, and a combustion chamber 4 partitioned by a piston 3 is formed in each cylinder 2. The cylinder 2 has an injector 5 for injecting fuel into the combustion chamber 4, a spark plug 6 provided so that an electrode portion is exposed in the combustion chamber 4, and a stroke of the piston 3, that is, the engine 1. There are provided an intake valve 9 and an exhaust valve 10 respectively linked to cams 7 and 8 that respond to rotation.

ピストン3は、クランクシャフト11を回転駆動するようになっており、クランクシャフト11の近傍には、エンジン1の回転数を検出するエンジン回転数センサ12が設けられている。また、カム7、8の近傍には、カム7、8の回転角を検出する回転角センサ13、14がそれぞれ設けられている。   The piston 3 is configured to rotationally drive the crankshaft 11, and an engine speed sensor 12 that detects the speed of the engine 1 is provided in the vicinity of the crankshaft 11. Further, rotation angle sensors 13 and 14 for detecting the rotation angle of the cams 7 and 8 are provided in the vicinity of the cams 7 and 8, respectively.

吸気バルブ9は、空気を燃焼室4に導くための吸気管15内と燃焼室4とを連通または遮断するよう開閉するようになっており、吸気管15内には、燃焼室4に導く空気の量を図示しないアクセルペダルの操作に応じて調節するスロットルバルブ16が設けられている。また、吸気管15には、吸気管15内の気圧を検出する吸気圧センサ17と、スロットルバルブ16の開度を検出するスロットルポジションセンサ18とが設けられている。   The intake valve 9 is configured to open and close so as to communicate or block the intake pipe 15 for guiding air to the combustion chamber 4 and the combustion chamber 4. There is provided a throttle valve 16 for adjusting the amount of the engine according to the operation of an accelerator pedal (not shown). Further, the intake pipe 15 is provided with an intake pressure sensor 17 that detects the atmospheric pressure in the intake pipe 15 and a throttle position sensor 18 that detects the opening of the throttle valve 16.

排気バルブ10は、燃焼室4内に生じる排気ガスを排気するための排気管19内と燃焼室4とを連通または遮断するよう開閉するようになっており、排気管19には、排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)および窒素酸化物(NOx)を浄化する三元触媒20と、三元触媒20の上流側の酸素(O2)濃度を検出する上流側O2センサ21と、三元触媒20の下流側の酸素濃度を検出する下流側O2センサ22とが設けられている。   The exhaust valve 10 opens and closes so that the exhaust chamber 19 for exhausting the exhaust gas generated in the combustion chamber 4 and the combustion chamber 4 communicate with each other. A three-way catalyst 20 that purifies carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) contained therein, and an upstream O2 sensor that detects an oxygen (O2) concentration upstream of the three-way catalyst 20 21 and a downstream O2 sensor 22 for detecting the oxygen concentration downstream of the three-way catalyst 20 are provided.

また、図2に示すように、エンジン1には、ECU(Engine Control Unit)23が設けられている。ECU23には、エンジン回転数センサ12、回転角センサ13、14、吸気圧センサ17、スロットルポジションセンサ18、上流側O2センサ21および下流側O2センサ22等の各種センサが接続されている。   Further, as shown in FIG. 2, the engine 1 is provided with an ECU (Engine Control Unit) 23. The ECU 23 is connected to various sensors such as an engine speed sensor 12, rotation angle sensors 13 and 14, an intake pressure sensor 17, a throttle position sensor 18, an upstream O2 sensor 21, and a downstream O2 sensor 22.

ECU23は、CPU(Central Processing Unit)24と、RAM(Random Access Memory)25と、ROM(Read Only Memory)26とを有している。このCPU24が、ROM26に記憶されたプログラムをRAM25に読み込んで、RAM25に読み込んだプログラムを実行することによって、ECU23は、各種センサによる検出値等に基づいて、インジェクタ5、点火プラグ6、カム7、8をそれぞれ駆動する油圧コントローラ27、28およびスロットルバルブ16等のエンジン1の各部を制御するようになっている。   The ECU 23 includes a CPU (Central Processing Unit) 24, a RAM (Random Access Memory) 25, and a ROM (Read Only Memory) 26. When the CPU 24 reads the program stored in the ROM 26 into the RAM 25 and executes the program read into the RAM 25, the ECU 23 performs the injector 5, spark plug 6, cam 7, 8 controls each part of the engine 1 such as the hydraulic controllers 27 and 28 and the throttle valve 16.

特に、ECU23は、エンジン回転数センサ12によって検出されたエンジン1の回転数、スロットルポジションセンサ18によって検出されるスロットルバルブ16の開度または吸気圧センサ17によって検出される吸気管15内の気圧に基づいて定まるエンジン1の負荷、および図示しない水温計によって計測されるエンジン1の温度等のエンジン1の運転状態に応じた目標量を算出し、油圧コントローラ27、28を制御してカム7、8の位相が目標量となるように調整することにより、吸気バルブ9および排気バルブ10の開閉タイミングを調整するVVT制御を行うようになっている。   In particular, the ECU 23 adjusts the engine speed detected by the engine speed sensor 12, the opening of the throttle valve 16 detected by the throttle position sensor 18, or the air pressure in the intake pipe 15 detected by the intake pressure sensor 17. A target amount corresponding to the operating state of the engine 1 such as the load of the engine 1 determined based on the temperature and the temperature of the engine 1 measured by a water thermometer (not shown) is calculated, and the cams 7 and 8 are controlled by controlling the hydraulic controllers 27 and 28. VVT control is performed to adjust the opening / closing timings of the intake valve 9 and the exhaust valve 10 by adjusting so that the phase of the valve becomes the target amount.

また、ECU23のROM26には、図3(a)に示すように、エンジン回転数センサ12によって検出されるエンジン1の回転数と、エンジン1の負荷とに応じた目標空燃比を表す空燃比マップが記憶されている。なお、図3(a)において、目標空燃比A乃至Dは、A>B>C>Dを満たすものとする。特に、ストイキ燃焼を目的とした場合には、目標空燃比A乃至Dは、15≧A>B>C>D≧14を満たすことが望ましい。   Further, as shown in FIG. 3A, the ROM 26 of the ECU 23 has an air-fuel ratio map representing a target air-fuel ratio according to the engine speed detected by the engine speed sensor 12 and the load of the engine 1. Is remembered. In FIG. 3A, the target air-fuel ratios A to D satisfy A> B> C> D. In particular, when the purpose is stoichiometric combustion, the target air-fuel ratios A to D desirably satisfy 15 ≧ A> B> C> D ≧ 14.

ECU23は、この空燃比マップによって定められる目標空燃比を、下流側O2センサ22によって検出された酸素濃度の単位時間あたりの変化量等の経時的変化と、VVT制御の作動量とに基づいて補正するようになっている。さらに、ECU23は、上流側O2センサ21によって検出された酸素濃度に基づいて算出される燃焼室4内の空燃比が、補正した目標空燃比になるようインジェクタ5による燃料の噴射時間を調整することによって燃焼室4に供給される燃料の量を調節するようになっている。   The ECU 23 corrects the target air-fuel ratio determined by the air-fuel ratio map based on a change over time such as a change amount per unit time of the oxygen concentration detected by the downstream O2 sensor 22 and an operation amount of the VVT control. It is supposed to be. Further, the ECU 23 adjusts the fuel injection time by the injector 5 so that the air-fuel ratio in the combustion chamber 4 calculated based on the oxygen concentration detected by the upstream O2 sensor 21 becomes the corrected target air-fuel ratio. Thus, the amount of fuel supplied to the combustion chamber 4 is adjusted.

ここで、VVT制御の作動量とは、吸気バルブ9の開閉タイミングの位相を基準角である最遅角からの進角で表す吸気バルブ制御量と、排気バルブ10の開閉タイミングの位相を基準角である最進角からの遅角で表す排気バルブ制御量とのことをいう。ECU23は、回転角センサ13、14によってそれぞれ検出されるカム7、8の回転角から吸気バルブ制御量および排気バルブ制御量をそれぞれ算出するようになっている。   Here, the operation amount of the VVT control refers to the intake valve control amount that represents the phase of the opening / closing timing of the intake valve 9 by the advance angle from the most retarded angle that is the reference angle, and the phase of the opening / closing timing of the exhaust valve 10 as the reference angle. This is the exhaust valve control amount expressed by the retard angle from the most advanced angle. The ECU 23 calculates the intake valve control amount and the exhaust valve control amount from the rotation angles of the cams 7, 8 detected by the rotation angle sensors 13, 14, respectively.

また、ECU23のROM26には、図3(b)に示すように、吸気バルブ制御量(IN.VVT)および排気バルブ制御量(Ex.VVT)と、目標空燃比の補正量との対応を表す補正量マップが記憶されている。なお、図3(b)において、補正量E乃至Iは、1≧E>F>G>H>I≧0.95を満たすものとする。   Further, in the ROM 26 of the ECU 23, as shown in FIG. 3B, the correspondence between the intake valve control amount (IN.VVT) and the exhaust valve control amount (Ex.VVT) and the target air-fuel ratio correction amount is shown. A correction amount map is stored. In FIG. 3B, correction amounts E to I satisfy 1 ≧ E> F> G> H> I ≧ 0.95.

この補正量マップは、吸気バルブ制御量および排気バルブ制御量に基づいて算出される排気ガス中の水素の量に応じて定められ、例えば、VVT制御を行わなかったときの上流側O2センサ21および下流側O2センサ22の出力に対して、VVT制御を行ったときの上流側O2センサ21および下流側O2センサ22の出力の変化を補償するような補正量を実験的に求めることによって定められる。   This correction amount map is determined according to the amount of hydrogen in the exhaust gas calculated based on the intake valve control amount and the exhaust valve control amount. For example, the upstream O2 sensor 21 when the VVT control is not performed and It is determined by experimentally obtaining a correction amount that compensates for changes in the outputs of the upstream O2 sensor 21 and the downstream O2 sensor 22 when the VVT control is performed on the output of the downstream O2 sensor 22.

ECU23は、この補正量マップに基づいて目標空燃比の補正量を決定し、決定した補正量で目標空燃比を補正するようになっている。   The ECU 23 determines a correction amount for the target air-fuel ratio based on this correction amount map, and corrects the target air-fuel ratio with the determined correction amount.

以上のように、回転角センサ13、14は、吸気バルブ9および排気バルブ10の開閉タイミングを検出する開閉タイミング検出手段を構成し、ECU23は、VVT制御を行うバルブ調整手段と、補正量マップを記憶する補正量マップ記憶手段と、目標空燃比の補正量を決定する補正量決定手段と、目標空燃比を補正する目標空燃比補正手段とを構成する。   As described above, the rotation angle sensors 13 and 14 constitute opening / closing timing detection means for detecting the opening / closing timing of the intake valve 9 and the exhaust valve 10, and the ECU 23 includes the valve adjustment means for performing VVT control and the correction amount map. The correction amount map storing means for storing, the correction amount determining means for determining the correction amount of the target air-fuel ratio, and the target air-fuel ratio correcting means for correcting the target air-fuel ratio are configured.

このように構成されたエンジン1について、ECU23による目標空燃比の補正動作について図4を参照して説明する。   With respect to the engine 1 configured as described above, the correction operation of the target air-fuel ratio by the ECU 23 will be described with reference to FIG.

まず、ECU23は、ECU23のROM26に記憶された空燃比マップ上でエンジン1の回転数とエンジン1の負荷とに対応する目標空燃比を選択して、選択した目標空燃比を下流側O2センサ22によって検出された酸素濃度の経時的変化に基づいて補正したベース目標空燃比aを算出する(S1)。   First, the ECU 23 selects a target air-fuel ratio corresponding to the rotational speed of the engine 1 and the load of the engine 1 on the air-fuel ratio map stored in the ROM 26 of the ECU 23, and the selected target air-fuel ratio is selected from the downstream O2 sensor 22. The base target air-fuel ratio a corrected based on the change over time of the oxygen concentration detected by the above is calculated (S1).

次に、ECU23は、吸気バルブ制御量と排気バルブ制御量とに補正量マップ上で対応する補正量bを選択し(S2)、選択した補正量bをベース目標空燃比aに乗じることによってベース目標空燃比aを補正し、補正したベース目標空燃比a×bを目標空燃比としてインジェクタ5による燃料の噴射時間を調整する(S3)。   Next, the ECU 23 selects a correction amount b corresponding to the intake valve control amount and the exhaust valve control amount on the correction amount map (S2), and multiplies the selected correction amount b by the base target air-fuel ratio a. The target air-fuel ratio a is corrected, and the fuel injection time by the injector 5 is adjusted using the corrected base target air-fuel ratio a × b as the target air-fuel ratio (S3).

このような本発明の一実施の形態のエンジン1は、吸気バルブ9および排気バルブ10の開閉タイミングに基づいて算出される排気ガス中の水素の量に応じて目標空燃比を補正するため、エンジン1にVVT制御を施す場合であっても、目標空燃比を最適に補正することができる。   The engine 1 according to the embodiment of the present invention corrects the target air-fuel ratio according to the amount of hydrogen in the exhaust gas calculated based on the opening / closing timings of the intake valve 9 and the exhaust valve 10. Even when the VVT control is performed on the target 1, the target air-fuel ratio can be optimally corrected.

なお、本実施の形態において、ECU23は、吸気バルブ9および排気バルブ10の開閉タイミングを調整するものとして説明したが、本発明においては、吸気バルブ9および排気バルブ10の何れか一方の開閉タイミングを調整するようにしてもよい。   In the present embodiment, the ECU 23 is described as adjusting the opening / closing timing of the intake valve 9 and the exhaust valve 10, but in the present invention, the opening / closing timing of either the intake valve 9 or the exhaust valve 10 is set. You may make it adjust.

また、本実施の形態において、ECU23は、吸気バルブ制御量と排気バルブ制御量とに基づいて算出される排気ガス中の水素の量に応じて目標空燃比の補正量を決定するものとして説明したが、エンジン1によって排出される排気ガス中の水素の量が排気バルブ制御量によらず吸気バルブ制御量によって変化する場合には、ECU23は、吸気バルブ制御量に基づいて算出される排気ガス中の水素の量に応じて目標空燃比の補正量を決定するようにしてもよい。   Further, in the present embodiment, the ECU 23 has been described as determining the correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas calculated based on the intake valve control amount and the exhaust valve control amount. However, when the amount of hydrogen in the exhaust gas exhausted by the engine 1 varies depending on the intake valve control amount regardless of the exhaust valve control amount, the ECU 23 calculates the exhaust gas in the exhaust gas calculated based on the intake valve control amount. The target air-fuel ratio correction amount may be determined according to the amount of hydrogen.

一方、エンジン1によって排出される排気ガス中の水素の量が吸気バルブ制御量によらず排気バルブ制御量によって変化する場合には、ECU23は、排気バルブ制御量に基づいて算出される排気ガス中の水素の量に応じて目標空燃比の補正量を決定するようにしてもよい。   On the other hand, when the amount of hydrogen in the exhaust gas exhausted by the engine 1 varies depending on the exhaust valve control amount regardless of the intake valve control amount, the ECU 23 calculates the exhaust gas in the exhaust gas calculated based on the exhaust valve control amount. The target air-fuel ratio correction amount may be determined according to the amount of hydrogen.

また、本実施の形態において、ECU23は、回転角センサ13、14によって検出されたVVT制御の作動量に基づいて算出される排気ガス中の水素の量に応じて目標空燃比の補正量を決定するものとして説明したが、本発明においては、VVT制御の目標量に基づいて算出される排気ガス中の水素の量に応じて目標空燃比の補正量を決定するようにしてもよい。   Further, in the present embodiment, the ECU 23 determines the correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas calculated based on the operation amount of the VVT control detected by the rotation angle sensors 13 and 14. In the present invention, the correction amount of the target air-fuel ratio may be determined according to the amount of hydrogen in the exhaust gas calculated based on the target amount of VVT control.

また、本実施の形態において、ECU23は、補正量マップを用いて目標空燃比の補正量を決定するものとして説明したが、本発明においては、VVT制御の作動量や目標量から排気ガス中の水素の量を算出し、算出した水素の量に応じて目標空燃比の補正量を決定するようにしてもよい。   In the present embodiment, the ECU 23 has been described as determining the correction amount of the target air-fuel ratio using the correction amount map. However, in the present invention, the ECU 23 determines the amount of exhaust gas from the operating amount of VVT control and the target amount. The amount of hydrogen may be calculated, and the target air-fuel ratio correction amount may be determined according to the calculated amount of hydrogen.

また、本実施の形態においては、下流側O2センサ22によって検出された酸素濃度の単位時間あたりの変化量等の経時的変化と、VVT制御の作動量とに基づいて目標空燃比を補正し、上流側O2センサ21によって検出された酸素濃度に基づいて算出される燃焼室4内の空燃比が、補正した目標空燃比になるようインジェクタ5による燃料の噴射時間を調整するエンジンに本発明に係る内燃機関制御装置を適用した例を説明したが、O2センサを用いて空燃比制御を行う何れの内燃機関にも、本発明に係る内燃機関制御装置を適用することができる。   Further, in the present embodiment, the target air-fuel ratio is corrected based on the temporal change such as the amount of change per unit time of the oxygen concentration detected by the downstream O2 sensor 22 and the operating amount of the VVT control, The present invention relates to an engine that adjusts the fuel injection time by the injector 5 so that the air-fuel ratio in the combustion chamber 4 calculated based on the oxygen concentration detected by the upstream O2 sensor 21 becomes the corrected target air-fuel ratio. Although an example in which the internal combustion engine control device is applied has been described, the internal combustion engine control device according to the present invention can be applied to any internal combustion engine that performs air-fuel ratio control using an O2 sensor.

本発明の一実施の形態におけるエンジンのブロック図1 is a block diagram of an engine according to an embodiment of the present invention. 本発明の一実施の形態におけるエンジンの制御回路のブロック図The block diagram of the control circuit of the engine in one embodiment of the present invention 本発明の一実施の形態におけるエンジンを構成するECUによって参照される空燃比マップおよび補正量マップの例を示すテーブルThe table which shows the example of the air fuel ratio map and correction amount map which are referred by ECU which comprises the engine in one embodiment of this invention 本発明の一実施の形態におけるエンジンの目標空燃比の補正動作を説明するためのフローチャートThe flowchart for demonstrating the correction | amendment operation | movement of the target air fuel ratio of the engine in one embodiment of this invention

符号の説明Explanation of symbols

1 エンジン
2 気筒
3 ピストン
4 燃焼室
5 インジェクタ
6 点火プラグ
7、8 カム
9 吸気バルブ
10 排気バルブ
11 クランクシャフト
12 エンジン回転数センサ
13、14 回転角センサ
15 吸気管
16 スロットルバルブ
17 吸気圧センサ
18 スロットルポジションセンサ
19 排気管
20 三元触媒
21 上流側O2センサ
22 下流側O2センサ
23 ECU
24 CPU
25 RAM
26 ROM
27、28 油圧コントローラ
DESCRIPTION OF SYMBOLS 1 Engine 2 Cylinder 3 Piston 4 Combustion chamber 5 Injector 6 Spark plug 7, 8 Cam 9 Intake valve 10 Exhaust valve 11 Crankshaft 12 Engine speed sensor 13, 14 Rotation angle sensor 15 Intake pipe 16 Throttle valve 17 Intake pressure sensor 18 Throttle Position sensor 19 Exhaust pipe 20 Three-way catalyst 21 Upstream O2 sensor 22 Downstream O2 sensor 23 ECU
24 CPU
25 RAM
26 ROM
27, 28 Hydraulic controller

Claims (9)

内燃機関の空燃比が目標空燃比になるように前記内燃機関に供給される燃料の量を調整する内燃機関制御装置において、
前記内燃機関が有する吸気バルブおよび排気バルブの少なくとも一方の開閉タイミングを前記内燃機関の運転状態に応じて調整するバルブ調整手段と、
前記吸気バルブおよび前記排気バルブの少なくとも一方の開閉タイミングに基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定する補正量決定手段と、
前記補正量に基づいて前記目標空燃比を補正する目標空燃比補正手段とを備えたことを特徴とする内燃機関制御装置。
In the internal combustion engine control device for adjusting the amount of fuel supplied to the internal combustion engine so that the air-fuel ratio of the internal combustion engine becomes a target air-fuel ratio,
A valve adjusting means for adjusting an opening / closing timing of at least one of an intake valve and an exhaust valve of the internal combustion engine according to an operating state of the internal combustion engine;
Correction amount determining means for determining a correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas based on the opening / closing timing of at least one of the intake valve and the exhaust valve;
An internal combustion engine control apparatus comprising: a target air-fuel ratio correcting unit that corrects the target air-fuel ratio based on the correction amount.
前記開閉タイミングを検出する開閉タイミング検出手段を備え、
前記補正量決定手段は、前記開閉タイミング検出手段によって検出された開閉タイミングに基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定することを特徴とする請求項1に記載の内燃機関制御装置。
An opening / closing timing detecting means for detecting the opening / closing timing;
The correction amount determination unit determines the correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas based on the opening / closing timing detected by the opening / closing timing detection unit. The internal combustion engine control apparatus described.
前記補正量決定手段は、前記バルブ調整手段によって調整される開閉タイミングの目標量に基づいた排気ガス中の水素の量に応じて前記目標空燃比の補正量を決定することを特徴とする請求項1に記載の内燃機関制御装置。   The correction amount determination unit determines the correction amount of the target air-fuel ratio according to the amount of hydrogen in the exhaust gas based on the target amount of the opening / closing timing adjusted by the valve adjustment unit. 2. The internal combustion engine control device according to 1. 前記開閉タイミングと、前記開閉タイミングに基づいた排気ガス中の水素の量に応じて定められた前記目標空燃比の補正量との対応を表す補正量マップを記憶する補正量マップ記憶手段を備え、
前記補正量決定手段は、前記補正量マップに基づいて前記目標空燃比の補正量を決定することを特徴とする請求項1に記載の内燃機関制御装置。
A correction amount map storage means for storing a correction amount map representing a correspondence between the opening / closing timing and a correction amount of the target air-fuel ratio determined according to the amount of hydrogen in the exhaust gas based on the opening / closing timing;
2. The internal combustion engine control apparatus according to claim 1, wherein the correction amount determination means determines a correction amount of the target air-fuel ratio based on the correction amount map.
前記補正量決定手段は、前記開閉タイミングに基づいて、排気ガス中の水素の量に応じて予め定められた前記目標空燃比の補正量を決定することを特徴とする請求項1に記載の内燃機関制御装置。   2. The internal combustion engine according to claim 1, wherein the correction amount determination unit determines a correction amount of the target air-fuel ratio that is determined in advance according to the amount of hydrogen in the exhaust gas based on the opening / closing timing. Engine control device. 前記バルブ調整手段は、前記開閉タイミングを前記内燃機関の回転数および負荷率に応じて調整することを特徴とする請求項1乃至請求項5の何れかに記載の内燃機関制御装置。   6. The internal combustion engine control device according to claim 1, wherein the valve adjusting means adjusts the opening / closing timing in accordance with a rotational speed and a load factor of the internal combustion engine. 前記補正量決定手段は、前記吸気バルブの開閉タイミングの位相と基準角との差を表す吸気バルブ制御量と、前記排気バルブの開閉タイミングの位相と基準角との差を表す排気バルブ制御量との少なくとも一方を前記開閉タイミングとして前記目標空燃比の補正量を決定することを特徴とする請求項1乃至請求項6の何れかに記載の内燃機関制御装置。   The correction amount determination means includes an intake valve control amount that represents a difference between the phase of the opening / closing timing of the intake valve and a reference angle, and an exhaust valve control amount that represents a difference between the phase of the opening / closing timing of the exhaust valve and a reference angle; The internal combustion engine control apparatus according to any one of claims 1 to 6, wherein a correction amount of the target air-fuel ratio is determined using at least one of the opening / closing timing as the opening / closing timing. 前記補正量決定手段は、前記吸気バルブの位相の基準角を最遅角とし、前記排気バルブの位相の基準角を最進角とすることを特徴とする請求項7に記載の内燃機関制御装置。   8. The internal combustion engine control device according to claim 7, wherein the correction amount determining means sets the reference angle of the phase of the intake valve as the most retarded angle and sets the reference angle of the phase of the exhaust valve as the most advanced angle. . 前記内燃機関に設けられた排気管内の酸素濃度を検出する酸素濃度センサを備え、
前記補正量決定手段は、前記開閉タイミングが制御されなかったときの前記酸素濃度センサの出力に対して、前記開閉タイミングが制御されたときの前記酸素濃度センサの出力の変化を補償するよう前記目標空燃比の補正量を決定することを特徴とする請求項1乃至請求項8の何れかに記載の内燃機関制御装置。
An oxygen concentration sensor for detecting an oxygen concentration in an exhaust pipe provided in the internal combustion engine;
The correction amount determining means compensates for a change in the output of the oxygen concentration sensor when the opening / closing timing is controlled with respect to an output of the oxygen concentration sensor when the opening / closing timing is not controlled. 9. The internal combustion engine control apparatus according to claim 1, wherein a correction amount of the air-fuel ratio is determined.
JP2006055763A 2006-03-02 2006-03-02 Internal combustion engine control device Expired - Fee Related JP4661633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055763A JP4661633B2 (en) 2006-03-02 2006-03-02 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055763A JP4661633B2 (en) 2006-03-02 2006-03-02 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2007231864A JP2007231864A (en) 2007-09-13
JP4661633B2 true JP4661633B2 (en) 2011-03-30

Family

ID=38552701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055763A Expired - Fee Related JP4661633B2 (en) 2006-03-02 2006-03-02 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4661633B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8484956B2 (en) * 2010-02-12 2013-07-16 Woodward, Inc. Diesel particulate filter regeneration control using a wide band oxygen sensor
WO2012066645A1 (en) * 2010-11-17 2012-05-24 トヨタ自動車株式会社 Control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319822A (en) * 1995-05-29 1996-12-03 Toyota Motor Corp Exhaust emission control catalyst of internal combustion engine
JP2001182595A (en) * 1999-12-28 2001-07-06 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319822A (en) * 1995-05-29 1996-12-03 Toyota Motor Corp Exhaust emission control catalyst of internal combustion engine
JP2001182595A (en) * 1999-12-28 2001-07-06 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007231864A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US7440836B2 (en) Control system for internal combustion engine
US20040050036A1 (en) Catalyst deterioration suppressing apparatus and method
JP2009115084A (en) Control method and control system for engine
JP2011027059A (en) Engine cotrol apparatus
US10443520B2 (en) Control apparatus for internal combustion engine
US7680585B2 (en) Internal EGR control device for internal combustion engine
JP2006170075A (en) Variable valve control device for internal combustion engine
JP2015007396A (en) Engine controller
JP2005330856A (en) Control device for automobile
JP4661633B2 (en) Internal combustion engine control device
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP7064319B2 (en) Internal combustion engine control device
JP2004076668A (en) Control unit for internal combustion engine
JP4947019B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008115817A (en) Ignition timing detector
JP2008180184A (en) Control device for cylinder injection type spark ignition internal combustion engine
JP4788632B2 (en) Internal combustion engine control system
JP4923803B2 (en) Fuel injection control system for internal combustion engine
JP3944720B2 (en) Exhaust air-fuel ratio control device for internal combustion engine
JP2007239481A (en) Method for controlling ignition timing of engine and device for controlling ignition timing of engine
JP5260770B2 (en) Engine control device
JP2004100471A (en) Controller of internal combustion engine
JP4110534B2 (en) Variable valve control device for internal combustion engine
JP4310013B2 (en) Control device for internal combustion engine
JP2009236049A (en) Engine control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees