JP4661189B2 - Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device - Google Patents

Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device Download PDF

Info

Publication number
JP4661189B2
JP4661189B2 JP2004345125A JP2004345125A JP4661189B2 JP 4661189 B2 JP4661189 B2 JP 4661189B2 JP 2004345125 A JP2004345125 A JP 2004345125A JP 2004345125 A JP2004345125 A JP 2004345125A JP 4661189 B2 JP4661189 B2 JP 4661189B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
coil
coils
good conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004345125A
Other languages
Japanese (ja)
Other versions
JP2006095259A (en
Inventor
浩都 草加
武 中山
充志 阿部
洋之 渡邊
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004345125A priority Critical patent/JP4661189B2/en
Publication of JP2006095259A publication Critical patent/JP2006095259A/en
Application granted granted Critical
Publication of JP4661189B2 publication Critical patent/JP4661189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は超電導磁石装置、及び超電導磁石装置を備えた磁気共鳴イメージング(MRI)装置,核磁気共鳴(NMR)分析装置に関する。   The present invention relates to a superconducting magnet device, and a magnetic resonance imaging (MRI) device and a nuclear magnetic resonance (NMR) analyzer provided with the superconducting magnet device.

磁気共鳴イメージング装置は、生体の大部分を構成する水素原子核の核磁気共鳴(NMR)現象が組織によって異なることを利用して、生体組織を画像化するもので、共鳴の強さや、共鳴の時間的変化の速さが画像のコントラストとして現われる。生体組織の画像を撮像するためには、0.3T以上の強い磁場強度と10ppm程度の高い静磁場均一度,高い磁場安定性が必要であるので超電導磁石が使用されている。   A magnetic resonance imaging device uses the fact that the nuclear magnetic resonance (NMR) phenomenon of the hydrogen nuclei that make up most of the living body to vary from tissue to tissue, and images biological tissue. The speed of the change is shown as the contrast of the image. In order to take an image of a living tissue, a superconducting magnet is used because it requires a strong magnetic field strength of 0.3 T or more, a high static magnetic field uniformity of about 10 ppm, and a high magnetic field stability.

〔特許文献1〕には、超電導磁石装置の静磁場発生源を均一磁場の発生領域を挟んで対向配置された2組の超電導コイルで構成し、各組のコイル群は、一定の方向の電流を流す主コイルと、主コイルとは逆方向の電流を流す打ち消しコイルと、磁場均一度を補正する補正用コイルで構成した超電導磁石装置が記載されている。   In [Patent Document 1], a static magnetic field generation source of a superconducting magnet device is composed of two sets of superconducting coils arranged opposite to each other across a uniform magnetic field generation region, and each group of coils has a current in a certain direction. A superconducting magnet device is described that includes a main coil that flows current, a canceling coil that flows current in a direction opposite to the main coil, and a correction coil that corrects the magnetic field uniformity.

〔特許文献2〕には、円筒状の超電導コイルと、この超電導コイルを包囲するように配置され軸方向に複数本のスリットを適宜の間隔で設けた円筒体からなる輻射シールドと、超電導コイル及び輻射シールドを同軸的に収納し、中央部に常温ボアを有する真空容器を備えたMRI装置用超電導マグネットが記載されている。   [Patent Document 2] includes a cylindrical superconducting coil, a radiation shield composed of a cylindrical body disposed so as to surround the superconducting coil and provided with a plurality of slits in the axial direction at appropriate intervals, a superconducting coil, and There is described a superconducting magnet for an MRI apparatus that includes a vacuum vessel that coaxially houses a radiation shield and has a normal temperature bore in the center.

〔特許文献3〕には、最大経験磁場と中心磁場との比が1.3 以下でコイルの中心軸が水平方向になるように横置きされたスプリット型多層円筒超電導コイル系の中心軸に第1の室温空間をクライオスタットを貫通して形成し、第1の温室空間には磁場均一度を良くするための室温シムコイル系を配置し、鉛直方向にスプリットギャップの中心を通る第2の室温空間をクライオスタットを貫通して形成させ、第2の室温空間に被測定試料およびソレノイド型プローブコイルを有するNMRプローブを挿入したNMR分析装置が記載されている。   [Patent Document 3] states that the center axis of a split type multi-layer cylindrical superconducting coil system is placed horizontally so that the ratio of the maximum empirical magnetic field to the central magnetic field is 1.3 or less and the central axis of the coil is horizontal. 1 room temperature space is formed through the cryostat, a room temperature shim coil system is arranged in the first greenhouse space to improve the magnetic field uniformity, and a second room temperature space passing through the center of the split gap in the vertical direction is formed. An NMR analyzer is described that is formed by penetrating a cryostat and inserting a sample to be measured and an NMR probe having a solenoid type probe coil in a second room temperature space.

特開平9−153408号公報Japanese Patent Laid-Open No. 9-153408 特開平7−22231号公報JP 7-22231 A 特開2003−329755号公報JP 2003-329755 A

MRI装置においては、被験者に圧迫感を与えない開放感と、被験者へ容易にアクセスできる構造が望まれており、真空容器間を可能な限り広げて配置する必要がある。一方、強力で均一な磁場を撮像空間に形成するためには、対向して配置されている超電導コイルを互いに近づける必要がある。そのため、被験者に圧迫感を与えない程度に測定空間を確保し、超電導コイルはできるだけ撮像空間に近い位置に配置する構造になるように設計される。   In the MRI apparatus, a feeling of opening that does not give the subject a feeling of pressure and a structure that allows easy access to the subject are desired, and it is necessary to arrange the vacuum containers as wide as possible. On the other hand, in order to form a strong and uniform magnetic field in the imaging space, it is necessary to bring the superconducting coils arranged facing each other closer to each other. Therefore, the measurement space is secured to such an extent that the subject does not feel pressure, and the superconducting coil is designed to be arranged as close to the imaging space as possible.

しかし、〔特許文献1〕に記載のMRI装置においては、一般的には、図13に示すように電流の向きが同じ2つの超電導コイル25A,26Aが同軸で対向する位置に配置される。この場合、励消磁時及び励磁後の運転時(以下、定格運転時という)には、超電導コイル25A,26Aに同じ方向の電流が流れているので、矢印7,8で示すZ方向に電磁力が働く。   However, in the MRI apparatus described in [Patent Document 1], generally, as shown in FIG. 13, two superconducting coils 25 </ b> A and 26 </ b> A having the same current direction are coaxially arranged at positions facing each other. In this case, during excitation and demagnetization and during operation after excitation (hereinafter referred to as rated operation), current in the same direction flows through the superconducting coils 25A and 26A. Therefore, electromagnetic force is applied in the Z direction indicated by arrows 7 and 8. Work.

一方、超電導コイル26Aがクエンチした時には、コイルの周囲で電気伝導度が一番高い輻射シールド3Aの撮像空間側に渦電流が流れ磁場との相互作用によって、矢印9で示すように定格運転時と逆向きの電磁力が働く。このため、超電導コイル26Aの撮像空間側にも支持部材11Aを設ける必要があり、この支持部材11Aがあるため超電導コイルを撮像空間に近い位置に配置することができないという問題がある。   On the other hand, when the superconducting coil 26A is quenched, an eddy current flows in the imaging space side of the radiation shield 3A having the highest electrical conductivity around the coil, and interaction with the magnetic field causes a rated operation as indicated by an arrow 9. Reverse electromagnetic force works. For this reason, it is necessary to provide the support member 11A also on the imaging space side of the superconducting coil 26A, and there is a problem that the superconducting coil cannot be disposed at a position close to the imaging space because of the support member 11A.

又、超電導コイル25A,26Aには矢印7,8で示す方向に互いに引き合う電磁力が働くため、超電導コイル25A,26Aの間に設けられる口出し線10は支持部材11A側に出ている。よって、クエンチ時に逆向きの電磁力によって超電導コイル26Aが矢印9の方向に動くと、超電導コイル26Aの口出し線10が切れるという問題も発生する。又、クエンチ時の渦電流によって、輻射シールド3が破損或いは変形するという問題も発生する。MRI装置の場合、輻射シールドの破損,変形によって断熱性能が低下するだけでなく、傾斜磁場の印加により輻射シールド3に渦電流が流れると、電磁力による僅かな振動によって実用に堪える撮像ができないという問題が発生する。   Further, since the electromagnetic forces attracting each other in the directions indicated by the arrows 7 and 8 act on the superconducting coils 25A and 26A, the lead wire 10 provided between the superconducting coils 25A and 26A protrudes to the support member 11A side. Therefore, if the superconducting coil 26A moves in the direction of the arrow 9 due to the reverse electromagnetic force at the time of quenching, there also arises a problem that the lead wire 10 of the superconducting coil 26A is broken. Moreover, the problem that the radiation shield 3 is damaged or deform | transformed by the eddy current at the time of quenching also arises. In the case of the MRI apparatus, not only the heat insulation performance is deteriorated due to the breakage or deformation of the radiation shield, but also when an eddy current flows through the radiation shield 3 due to application of a gradient magnetic field, it is said that imaging that can withstand practical use cannot be performed due to slight vibration caused by electromagnetic force. A problem occurs.

そこで、〔特許文献2〕に記載のように、輻射シールドにスリットを入れ、かつスリットに電気絶縁物等を嵌め込むことによって剛性強度が強化されるので、渦電流による電磁力が発生しても変形及び振動が起きず、実用に堪え得る撮像が可能となる。しかし、輻射シールドの伝熱性能が低下して高温になるという問題があった。   Therefore, as described in [Patent Document 2], since the rigidity strength is enhanced by inserting a slit in the radiation shield and fitting an electric insulator or the like into the slit, even if electromagnetic force due to eddy current is generated. Imaging that can withstand practical use is possible without deformation and vibration. However, there has been a problem that the heat transfer performance of the radiation shield is lowered and the temperature becomes high.

一方、NMR分析装置にも、MRI装置と同様に測定空間に均一な静磁場を発生させるための超電導磁石が用いられる。NMR分析装置は、測定する試料に電磁波を照射した時に発生する水素原子核の核磁気共鳴現象を利用して、試料の物理的,化学的性質を解析する装置である。現在、タンパク質などの複雑な分子構造を持つ有機化合物を感度良く分析するニーズが高まっている。   On the other hand, a superconducting magnet for generating a uniform static magnetic field in the measurement space is used for the NMR analyzer as well as the MRI apparatus. An NMR analyzer is an apparatus that analyzes the physical and chemical properties of a sample using the nuclear magnetic resonance phenomenon of hydrogen nuclei that occurs when an electromagnetic wave is irradiated to the sample to be measured. Currently, there is an increasing need for sensitive analysis of organic compounds having complex molecular structures such as proteins.

しかし、感度を向上させるためには、10T以上の高磁場、0.1ppm以下の測定空間の高均一磁場化が必要であり、装置が大型化するという問題があった。そこで、〔特許文献3〕に記載のような設置性,操作性に優れたコンパクトな高分解能NMR分析装置の開発が進められている。   However, in order to improve the sensitivity, a high magnetic field of 10 T or more and a highly uniform magnetic field in a measurement space of 0.1 ppm or less are necessary, which causes a problem that the apparatus becomes large. Therefore, development of a compact high-resolution NMR analyzer excellent in installation property and operability as described in [Patent Document 3] has been underway.

NMR装置においても、一般的には、図14に示すように電流の向きが同じで径が異なる2つの超電導コイル系36a,36bが同心で配置される。この場合、定格運転時には、超電導コイル系36a,36bに同じ方向の電流が流れているので、矢印44,45で示すように半径方向に電磁力が働く。   Also in the NMR apparatus, generally, as shown in FIG. 14, two superconducting coil systems 36a and 36b having the same current direction and different diameters are arranged concentrically. In this case, during rated operation, currents in the same direction flow through the superconducting coil systems 36a and 36b, so that electromagnetic force acts in the radial direction as indicated by arrows 44 and 45.

超電導コイル系36aがクエンチした際には、コイルの周囲で電気伝導度が一番高い輻射シールド33の径方向の外側に渦電流が流れ、磁場との相互作用によって矢印46で示すように定格運転時と逆向きの電磁力が働く。このため、超電導コイル系36aの径方向外側を支持する必要が生じ、装置のコンパクト化が図れないという問題があった。   When the superconducting coil system 36a is quenched, an eddy current flows outside the radial shield 33 having the highest electrical conductivity around the coil, and the rated operation is performed as indicated by an arrow 46 due to the interaction with the magnetic field. Electromagnetic force in the opposite direction to time works. For this reason, it is necessary to support the radially outer side of the superconducting coil system 36a, and there is a problem that the apparatus cannot be made compact.

本発明の第1の目的は、輻射シールドの伝熱性能を良好に保ち、超電導コイルがクエンチした場合の電磁力の向きを、定格運転時と同方向にすることによって、無駄な支持部材を省いたMRI装置を提供することにある。   The first object of the present invention is to save wasteful support members by maintaining good heat transfer performance of the radiation shield and by making the direction of electromagnetic force when the superconducting coil is quenched to be the same direction as during rated operation. It is to provide a conventional MRI apparatus.

本発明の第2の目的は、十分な測定空間を確保して高磁場化,測定空間の高均一磁場化をしたMRI装置を提供することにある。   A second object of the present invention is to provide an MRI apparatus that secures a sufficient measurement space, increases the magnetic field, and increases the measurement space.

本発明の第3の目的は、超電導コイルがクエンチした場合の電磁力の向きを、定格運転時と同方向にすることによって、無駄な支持部材を省いたコンパクトなNMR分析装置を提供することにある。   The third object of the present invention is to provide a compact NMR analyzer that eliminates useless support members by setting the direction of electromagnetic force when the superconducting coil is quenched to the same direction as during rated operation. is there.

上記の目的を達成するために、本発明は、定格運転時の電流の向きが同じで互いに引き合う電磁力が働いている少なくとも2個の超電導コイルを含み、撮像空間に均一磁場を発生するための複数の超電導コイル及び超電導コイルを支持する支持部材を収納する一対の冷媒容器と、該各冷媒容器を覆う一対の輻射シールドを備え、前記輻射シールドより前記超電導コイルに近い位置で前記2個の超電導コイルの間に非磁性良導体を配置するものである。   In order to achieve the above object, the present invention includes at least two superconducting coils having the same direction of current during rated operation and an electromagnetic force attracting each other, and for generating a uniform magnetic field in an imaging space. A plurality of superconducting coils and a pair of refrigerant containers that house a supporting member that supports the superconducting coils, and a pair of radiation shields that cover the refrigerant containers, the two superconducting coils at positions closer to the superconducting coils than the radiation shields A nonmagnetic good conductor is disposed between the coils.

超電導コイルのクエンチ時に発生する渦電流の大部分が非磁性良導体に流れるので、渦電流が輻射シールドのみに流れた場合に起こる輻射シールドの破損や変形による断熱性能の低下を防ぐことができる。   Since most of the eddy current generated during quenching of the superconducting coil flows through the non-magnetic good conductor, it is possible to prevent the heat insulation performance from being deteriorated due to damage or deformation of the radiation shield that occurs when the eddy current flows only through the radiation shield.

その結果、装置の安定性を確保でき、輻射シールドに強度を持たせるためのコスト及びコイルの支持部材に要するコストを低減できる。   As a result, the stability of the apparatus can be ensured, and the cost required to give the radiation shield strength and the cost required for the coil support member can be reduced.

又、超電導コイルがクエンチした場合においても、超電導コイルに働く電磁力の向きは定格運転時と変わらないので、超電導コイルと撮像空間の間の支持部材が不要となる。これによって、感度を向上させるための高磁場化,測定空間の高均一磁場化を図る上で、測定空間が狭くなるのを防ぐことができる。また、コイルの口出し線が切れるのを防止できる。   Further, even when the superconducting coil is quenched, the direction of the electromagnetic force acting on the superconducting coil is not changed from that during rated operation, so that a support member between the superconducting coil and the imaging space becomes unnecessary. As a result, it is possible to prevent the measurement space from becoming narrower in order to increase the magnetic field for improving the sensitivity and to increase the uniformity of the measurement space. Moreover, it can prevent that the lead wire of a coil cuts.

本発明の第1の実施例を図1から図6により説明する。図1はMRI装置の縦断面図で、図2はその外観を示す斜視図である。但し、図2では主コイル21A,21Bを図示しており、その他の超電導コイルは省略して図示している。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of an MRI apparatus, and FIG. 2 is a perspective view showing an appearance thereof. However, in FIG. 2, the main coils 21A and 21B are shown, and the other superconducting coils are omitted.

図1,図2に示すように、磁場中心軸12方向にZ軸をとり、Z軸に垂直な水平方向にX軸,Y軸をとっている。被験者は、自身の検査領域が撮像領域1の中に納まるようにベッドに横たわる。矢印6で示すZ方向に形成される均一磁場の発生源は、撮像領域1を挟んで対向位置に配置された3組の超電導コイルで構成される。3組の超電導コイルは、一定方向の電流を流す主コイル21A,21B、主コイル21A,21Bとは逆方向の電流を流す打ち消しコイル22A,22B、磁場均一度を補正する補正コイル23A,23Bである。3組の超電導コイルは、Z軸の周りに超電導線材を巻回してコイルが形成されている。   As shown in FIGS. 1 and 2, the Z axis is taken in the direction of the magnetic field central axis 12, and the X axis and the Y axis are taken in the horizontal direction perpendicular to the Z axis. The test subject lies on the bed so that his / her examination area fits in the imaging area 1. The generation source of the uniform magnetic field formed in the Z direction indicated by the arrow 6 is composed of three sets of superconducting coils arranged at opposing positions with the imaging region 1 in between. Three sets of superconducting coils are composed of main coils 21A and 21B for flowing a current in a certain direction, cancellation coils 22A and 22B for flowing a current in the opposite direction to the main coils 21A and 21B, and correction coils 23A and 23B for correcting the magnetic field uniformity. is there. The three sets of superconducting coils are formed by winding a superconducting wire around the Z-axis.

主コイル21A,打ち消しコイル22A,補正コイル23Aは冷却用の冷媒とともに冷媒容器2Aに収納され、冷媒容器2Aの周囲には輻射シールド3Aが設けられ、輻射シールド3Aは真空容器4Aに収納されている。多くの場合、低温で熱伝導が高い材料は電気伝導度も高くなることが知られており、輻射シールド3A,3Bには、熱伝導性が良い材料、例えばアルミニウムが使用される。主コイル21B,打ち消しコイル22B,補正コイル23Bも同様に冷却用の冷媒とともに冷媒容器2Bに収納され、冷媒容器2Bの周囲には輻射シールド3Bが設けられ、輻射シールド3Bは真空容器4Bに収納されている。真空容器4Aと真空容器4Bとは対向された状態で支柱5により連結されている。   The main coil 21A, the cancellation coil 22A, and the correction coil 23A are housed in a refrigerant container 2A together with a cooling refrigerant. A radiation shield 3A is provided around the refrigerant container 2A, and the radiation shield 3A is housed in a vacuum container 4A. . In many cases, it is known that a material having a high thermal conductivity at a low temperature has a high electric conductivity. For the radiation shields 3A and 3B, a material having a good thermal conductivity, for example, aluminum is used. Similarly, the main coil 21B, the cancellation coil 22B, and the correction coil 23B are housed in the refrigerant container 2B together with the cooling refrigerant. A radiation shield 3B is provided around the refrigerant container 2B, and the radiation shield 3B is housed in the vacuum container 4B. ing. The vacuum vessel 4 </ b> A and the vacuum vessel 4 </ b> B are connected by the support column 5 in a state of facing each other.

真空容器4A,4Bの撮像領域1側には、位置情報を得るために、均一磁場に重畳する形で磁場を空間的に変化させる傾斜磁場コイル24A,24Bが配置されている。傾斜磁場コイル24A,24Bは、Z軸の周りに超電導線材を巻回して形成したコイルと、図示していないX方向,Y方向に傾斜磁場を発生するコイルが設置されている。   On the imaging region 1 side of the vacuum vessels 4A and 4B, gradient magnetic field coils 24A and 24B for spatially changing the magnetic field in a form superimposed on a uniform magnetic field are arranged in order to obtain position information. The gradient magnetic field coils 24A and 24B are provided with a coil formed by winding a superconducting wire around the Z axis and a coil that generates a gradient magnetic field in the X and Y directions (not shown).

図3は、真空容器4Aの縦断面図で、図1のX>0,Z>0の領域の一部を示している。真空容器4Aの内部には輻射シールド3Aが支持部材17を介して設置されており、輻射シールド3Aの内部には支持部材17を介して冷媒容器2Aが設置されている。これらの支持部材17は、外部から熱が侵入しないように低熱伝導の材料、例えばFRP(繊維強化プラスチック)が用いられ、十分な強度が確保できる範囲で各容器との接触面積が小さくなるように設定している。   FIG. 3 is a longitudinal sectional view of the vacuum vessel 4A and shows a part of the region of X> 0, Z> 0 in FIG. A radiation shield 3A is installed inside the vacuum container 4A via a support member 17, and a refrigerant container 2A is installed inside the radiation shield 3A via a support member 17. These support members 17 are made of a low thermal conductivity material such as FRP (fiber reinforced plastic) so that heat does not enter from the outside, and the contact area with each container is reduced within a range where sufficient strength can be secured. It is set.

冷媒容器2Aの内部には複数の超電導コイルが設置されるが、図3では複数ある超電導コイルのうち、定格運転時の電流の向きが同じで、互いに引き合う電磁力が働いている超電導コイル25A,26Aを図示している。超電導コイル25A,26Aは、支持部材
11内に同軸で互いに対向して配置されている。
A plurality of superconducting coils are installed inside the refrigerant container 2A. In FIG. 3, among the plurality of superconducting coils, the superconducting coils 25A, which have the same current direction during rated operation and have electromagnetic forces attracting each other, 26A is illustrated. Superconducting coils 25 </ b> A and 26 </ b> A are coaxially arranged in support member 11 so as to face each other.

図3に示すように、超電導コイル25Aと超電導コイル26Aとの間で、超電導コイル25A又は超電導コイル26Aのいずれかと支持部材11との間には、例えばアルミ,アルミ合金,銅,低温でアルミ相当の電気伝導度を有する材料で形成された円環状の非磁性良導体13が配置されている。又、超電導コイル26Aと非磁性良導体13との距離が、超電導コイル26Aと輻射シールド3Aとの距離よりも短くなるように設定されている。すなわち、超電導コイル25A又は26Aと非磁性良導体13との距離が、超電導コイル25A又は26Aと輻射シールド3Aとの距離よりも短くなるように設定されている。   As shown in FIG. 3, between the superconducting coil 25A and the superconducting coil 26A, between the superconducting coil 25A or the superconducting coil 26A and the support member 11, for example, aluminum, aluminum alloy, copper, or aluminum at a low temperature is equivalent. An annular nonmagnetic good conductor 13 made of a material having the electrical conductivity of is arranged. The distance between the superconducting coil 26A and the nonmagnetic good conductor 13 is set to be shorter than the distance between the superconducting coil 26A and the radiation shield 3A. That is, the distance between the superconducting coil 25A or 26A and the nonmagnetic good conductor 13 is set to be shorter than the distance between the superconducting coil 25A or 26A and the radiation shield 3A.

非磁性良導体13は円環形状である。図4に示すように、支持部材11に非磁性良導体13を重ね、外周部分を複数個のボルト16で固定している。ネジ穴15は、クエンチ時の発熱によって非磁性良導体13が熱膨張することを考慮した大きさ分ボルト16の径より大きな径とし、コイルと非磁性良導体13が接する面、支持部材11と非磁性良導体
13が接する面には剥離処理及び絶縁処理を施している。
The nonmagnetic good conductor 13 has an annular shape. As shown in FIG. 4, the nonmagnetic good conductor 13 is stacked on the support member 11 and the outer peripheral portion is fixed with a plurality of bolts 16. The screw hole 15 has a diameter larger than the diameter of the bolt 16 in consideration of the thermal expansion of the nonmagnetic good conductor 13 due to heat generation at the time of quenching, the surface where the coil and the nonmagnetic good conductor 13 are in contact, the support member 11 and the nonmagnetic The surface that is in contact with the good conductor 13 is subjected to peeling treatment and insulation treatment.

このように、非磁性良導体13と超電導コイル26Aとの距離が、輻射シールド3Aと超電導コイル26Aとの距離より短いため、超電導コイルのクエンチ時に発生する渦電流は非磁性良導体13を流れる。このため、超電導コイル26Aに働く電磁力は、定格運転時と同じ方向のZ方向の上向きとなり、超電導コイル26Aの下側部分に支持部材11Aを設ける必要がない。この結果、超電導コイル26Aと、撮像領域1の下方に配置されている超電導コイルとの距離を小さくできるので、撮像領域1に高い磁場均一度と強い磁場強度の磁場を形成でき、高い開放度を確保することができる。又、コイルの口出し線が切れるという問題も解決できる。又、非磁性良導体13が絶縁層を介して超電導コイルの周囲に配置されているため、超電導コイルのクエンチ発生時にクエンチバックの効果が期待できる。   Thus, since the distance between the nonmagnetic good conductor 13 and the superconducting coil 26A is shorter than the distance between the radiation shield 3A and the superconducting coil 26A, the eddy current generated when the superconducting coil is quenched flows through the nonmagnetic good conductor 13. For this reason, the electromagnetic force acting on the superconducting coil 26A is upward in the Z direction in the same direction as during rated operation, and there is no need to provide the support member 11A on the lower portion of the superconducting coil 26A. As a result, since the distance between the superconducting coil 26A and the superconducting coil disposed below the imaging region 1 can be reduced, a magnetic field with high magnetic field uniformity and strong magnetic field strength can be formed in the imaging region 1, and high openness can be achieved. Can be secured. Moreover, the problem that the lead wire of the coil is cut can be solved. Further, since the nonmagnetic good conductor 13 is disposed around the superconducting coil via the insulating layer, a quench back effect can be expected when the superconducting coil is quenched.

次に、図5に示すように、超電導コイル25A,26Aが撮像領域1から離れた位置に、同軸で互いに対向して配置されている場合についても同様に、例えばアルミ,アルミ合金,銅,低温でアルミ相当の電気伝導度を持つ材料である非磁性良導体13を配置することにより、超電導コイル25Aに働く電磁力の向きが定格運転時と同じZ方向の下向きになるので、支持部材が不要となりコイルの口出し線が切れるという問題も解決できる。又、非磁性良導体13が絶縁層を介して超電導コイルの周囲に配置されているため、超電導コイルのクエンチ時にクエンチバックの効果が期待できる。   Next, as shown in FIG. 5, when the superconducting coils 25A and 26A are coaxially arranged opposite to each other at a position away from the imaging region 1, similarly, for example, aluminum, aluminum alloy, copper, low temperature By arranging the non-magnetic good conductor 13 which is a material having electrical conductivity equivalent to aluminum, the direction of the electromagnetic force acting on the superconducting coil 25A becomes downward in the same Z direction as in rated operation, so a support member becomes unnecessary. The problem that the coil lead wire is broken can also be solved. Moreover, since the nonmagnetic good conductor 13 is disposed around the superconducting coil via the insulating layer, a quench back effect can be expected when the superconducting coil is quenched.

又、図6に示すように、径の異なる超電導コイル25A,26Aを同心で配置した場合、超電導コイル25A又は超電導コイル26Aのいずれかと支持部材11との間に非磁性良導体13を配置することによって、超電導コイル25Aに働く電磁力の向きを定格運転時と同方向になるので、支持部材が不要となり、コイルの口出し線が切れるという問題が解決でき、非磁性良導体13が絶縁層を介して超電導コイルの周囲に配置されているため、超電導コイルのクエンチ時にクエンチバックの効果が期待できる。   Further, as shown in FIG. 6, when superconducting coils 25A and 26A having different diameters are arranged concentrically, the nonmagnetic good conductor 13 is arranged between the supporting member 11 and either the superconducting coil 25A or the superconducting coil 26A. Since the direction of the electromagnetic force acting on the superconducting coil 25A is the same as that during rated operation, the problem that the lead wire of the coil is cut off can be solved, and the nonmagnetic good conductor 13 is superconducted through the insulating layer. Since it is arranged around the coil, a quench back effect can be expected when the superconducting coil is quenched.

本発明の第2の実施例を図7により説明する。図7は、真空容器4Aの縦断面図で、図1のX>0,Z>0の領域の一部を示している。図3と同様に、冷媒容器2Aの内部には複数の超電導コイルが設置されるが、図7では複数ある超電導コイルのうち、定格運転時の電流の向きが同じで、互いに引き合う電磁力が働いている超電導コイル25A,26Aを図示している。超電導コイル25A,26Aは、支持部材11内に同軸で互いに対向して配置されている。   A second embodiment of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view of the vacuum vessel 4A and shows a part of the region of X> 0, Z> 0 in FIG. As in FIG. 3, a plurality of superconducting coils are installed inside the refrigerant container 2 </ b> A. In FIG. 7, among the plurality of superconducting coils, the current direction during rated operation is the same, and electromagnetic forces attracting each other work. The superconducting coils 25A and 26A are shown. Superconducting coils 25 </ b> A and 26 </ b> A are coaxially arranged in support member 11 so as to face each other.

図7に示すように、本実施例の円環状の非磁性良導体13は、超電導コイル25A,
26Aで挟まれた部分の支持部材11内に配置している。超電導コイル26Aと非磁性良導体13との距離は、超電導コイル26Aと輻射シールド3Aとの距離よりも短くなるように配置されている。
As shown in FIG. 7, the annular nonmagnetic good conductor 13 of this embodiment includes a superconducting coil 25 </ b> A,
It arrange | positions in the support member 11 of the part pinched | interposed by 26A. The distance between the superconducting coil 26A and the nonmagnetic good conductor 13 is arranged to be shorter than the distance between the superconducting coil 26A and the radiation shield 3A.

又、図8は、図7で示す例の変形例である。図8で示す例は、図7で示す例と同様に構成されているが、この例では、非磁性良導体13は、超電導コイル25A,26Aで挟まれた部分の支持部材11の外周側に配置し、外周側から複数個のボルト16で固定されている。内周側にスペースがある場合は支持部材11の内周側に固定してもよい。超電導コイル26Aと非磁性良導体13との距離は、超電導コイル26Aと輻射シールド3Aとの距離よりも短くなるように配置されている。   FIG. 8 is a modification of the example shown in FIG. The example shown in FIG. 8 is configured in the same manner as the example shown in FIG. 7, but in this example, the nonmagnetic good conductor 13 is arranged on the outer peripheral side of the support member 11 in the portion sandwiched between the superconducting coils 25A and 26A. And it is being fixed with the some volt | bolt 16 from the outer peripheral side. If there is a space on the inner peripheral side, it may be fixed on the inner peripheral side of the support member 11. The distance between the superconducting coil 26A and the nonmagnetic good conductor 13 is arranged to be shorter than the distance between the superconducting coil 26A and the radiation shield 3A.

図3に示す例と同様に、非磁性良導体13は円環形状である。図4に示すように、支持部材11に非磁性良導体13を重ね、外周部分を複数個のボルト16で固定している。ネジ穴15は、クエンチ時の発熱によって非磁性良導体13が熱膨張することを考慮した大きさ分ボルト16の径より大きな径とし、支持部材11と非磁性良導体13が接する面には剥離処理及び絶縁処理を施している。その他の部分は、図3に示す例と同様に構成されている。   Similar to the example shown in FIG. 3, the nonmagnetic good conductor 13 has an annular shape. As shown in FIG. 4, the nonmagnetic good conductor 13 is stacked on the support member 11, and the outer peripheral portion is fixed with a plurality of bolts 16. The screw hole 15 has a diameter larger than the diameter of the bolt 16 in consideration of the thermal expansion of the nonmagnetic good conductor 13 due to heat generation at the time of quenching, and the surface where the support member 11 and the nonmagnetic good conductor 13 are in contact with each other is peeled off. Insulation treatment is applied. Other portions are configured in the same manner as the example shown in FIG.

本実施例においても非磁性良導体13と超電導コイル26Aとの距離が、輻射シールド3Aと超電導コイル26Aとの距離より短いため、超電導コイルのクエンチ時に発生する渦電流は非磁性良導体13を流れる。よって、超電導コイル26Aに働く電磁力は定格運転時と同じのZ方向の上向きとなるので、超電導コイル26Aの下側部分の支持部材は必要でない。   Also in this embodiment, since the distance between the nonmagnetic good conductor 13 and the superconducting coil 26A is shorter than the distance between the radiation shield 3A and the superconducting coil 26A, the eddy current generated when the superconducting coil is quenched flows through the nonmagnetic good conductor 13. Therefore, since the electromagnetic force acting on the superconducting coil 26A is upward in the same Z direction as that during rated operation, a support member for the lower portion of the superconducting coil 26A is not necessary.

この結果、超電導コイル26Aと、撮像領域1の下方に配置されている超電導コイルとの距離を小さくできるので、撮像領域1に高い磁場均一度と強い磁場強度の磁場を形成でき、高い開放度を確保することができる。又、コイルの口出し線が切れるという問題も解決できる。   As a result, since the distance between the superconducting coil 26A and the superconducting coil disposed below the imaging region 1 can be reduced, a magnetic field with high magnetic field uniformity and strong magnetic field strength can be formed in the imaging region 1, and high openness can be achieved. Can be secured. Moreover, the problem that the lead wire of the coil is cut can be solved.

又、本実施例においても、図5に示すように超電導コイル25A,26Aを撮像領域1から離れた位置に同軸で対向して配置した場合、図5で説明した作用,効果を奏する。又、図6に示すように、径の異なる超電導コイル25A,26Aを同心で配置した場合も、図6で説明した作用,効果を奏する。   Also in this embodiment, when the superconducting coils 25A and 26A are arranged coaxially and oppositely at positions away from the imaging region 1 as shown in FIG. 5, the operations and effects described in FIG. Further, as shown in FIG. 6, even when superconducting coils 25A and 26A having different diameters are arranged concentrically, the operation and effect described in FIG.

本発明の第3の実施例について、図9により説明する。図9の例は、図3に示す例と同様に構成されているが、図9に示す例では、支持部材11の一部、すなわち超電導コイル25Aと26Aとの間の領域、を円環状の非磁性良導体13で形成し、非磁性良導体13は周方向に内周側から複数個のボルト16で支持部材11に固定されている点が異なる。   A third embodiment of the present invention will be described with reference to FIG. 9 is configured in the same manner as the example shown in FIG. 3, but in the example shown in FIG. 9, a part of the support member 11, that is, a region between the superconducting coils 25A and 26A is formed in an annular shape. The nonmagnetic good conductor 13 is different from the nonmagnetic good conductor 13 in that the nonmagnetic good conductor 13 is fixed to the support member 11 with a plurality of bolts 16 from the inner peripheral side in the circumferential direction.

本実施例においても非磁性良導体13と超電導コイル26Aとの距離が、輻射シールド3Aと超電導コイル26Aとの距離より短いため、超電導コイルのクエンチ時に発生する渦電流は非磁性良導体13を流れ、超電導コイル26Aに働く電磁力は定格運転時と同じZ方向の上向きとなるので、超電導コイル26Aの下側部分の支持部材は必要でない。   Also in this embodiment, since the distance between the nonmagnetic good conductor 13 and the superconducting coil 26A is shorter than the distance between the radiation shield 3A and the superconducting coil 26A, the eddy current generated during quenching of the superconducting coil flows through the nonmagnetic good conductor 13 and superconducting. Since the electromagnetic force acting on the coil 26A is upward in the same Z direction as in rated operation, a support member for the lower portion of the superconducting coil 26A is not necessary.

この結果、超電導コイル26Aと、撮像領域1の下方に配置されている超電導コイルとの距離を小さくできるので、撮像領域1に高い磁場均一度と強い磁場強度の磁場を形成でき、高い開放度を確保することができる。又、コイルの口出し線が切れるという問題も解決できる。又、非磁性良導体13が絶縁層を介して超電導コイルの周囲に配置されているため、超電導コイルのクエンチ時にクエンチバックの効果が期待できる。   As a result, since the distance between the superconducting coil 26A and the superconducting coil disposed below the imaging region 1 can be reduced, a magnetic field with high magnetic field uniformity and strong magnetic field strength can be formed in the imaging region 1, and high openness can be achieved. Can be secured. Moreover, the problem that the lead wire of the coil is cut can be solved. Moreover, since the nonmagnetic good conductor 13 is disposed around the superconducting coil via the insulating layer, a quench back effect can be expected when the superconducting coil is quenched.

又、本実施例においても、図5に示すように超電導コイル25A,26Aを撮像領域1から離れた位置に同軸で対向して配置した場合、図5で説明した作用,効果を奏する。又、図6に示すように、径の異なる超電導コイル25A,26Aを同心で配置した場合も、図6で説明した作用,効果を奏する。   Also in this embodiment, when the superconducting coils 25A and 26A are arranged coaxially and oppositely at positions away from the imaging region 1 as shown in FIG. 5, the operations and effects described in FIG. Further, as shown in FIG. 6, even when superconducting coils 25A and 26A having different diameters are arranged concentrically, the operation and effect described in FIG.

本発明の第4の実施例について、図15を用いて説明する。図15はスリットを設けた上側輻射シールドの撮像領域側の面を示した図である。第1,第2,第3の実施例で示した非磁性良導体13の配置構造に加えて、輻射シールド3Aの撮像領域側の面に、複数本のスリット47を周方向に適宜の間隔で設ける。これにより、輻射シールド3Aに発生する渦電流をさらに低減する効果が期待できる。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a view showing the surface on the imaging region side of the upper radiation shield provided with the slits. In addition to the arrangement structure of the nonmagnetic good conductor 13 shown in the first, second, and third embodiments, a plurality of slits 47 are provided at appropriate intervals in the circumferential direction on the surface of the radiation shield 3A on the imaging region side. . Thereby, the effect of further reducing the eddy current generated in the radiation shield 3A can be expected.

又、本実施例においても、図5に示すように超電導コイル25A,26Aを撮像領域1から離れた位置に同軸で対向して配置した場合、図5で説明した作用,効果を奏する。又、図6に示すように、径の異なる超電導コイル25A,26Aを同心で配置した場合も、図6で説明した作用,効果を奏する。   Also in this embodiment, when the superconducting coils 25A and 26A are arranged coaxially and oppositely at positions away from the imaging region 1 as shown in FIG. 5, the operations and effects described in FIG. Further, as shown in FIG. 6, even when superconducting coils 25A and 26A having different diameters are arranged concentrically, the operation and effect described in FIG.

次に、NMR分析装置に適用した例について、図10から図12を用いて説明する。図10はNMR分析装置の一例を示す縦断面図で、図11はその外観を示す斜視図である。但し、図11では超電導コイル系36を左右に1つずつ図示しその他は省略している。   Next, an example applied to the NMR analyzer will be described with reference to FIGS. FIG. 10 is a longitudinal sectional view showing an example of the NMR analyzer, and FIG. 11 is a perspective view showing the appearance thereof. However, in FIG. 11, one superconducting coil system 36 is shown on the left and right, and the others are omitted.

図10に示すように、磁場中心軸方向にZ軸をとり、Z軸に垂直な方向にX軸,Y軸をとっている。矢印35で示すZ方向に形成される均一磁場の発生源は超電導コイル系36である。各超電導コイル系36は、図12に示すように、Z軸周りに超電導線材を巻回して形成される。NMR分析装置は、超電導コイル系36を図示しない冷媒とともに収容した冷媒容器32と、冷媒容器32を覆う輻射シールド33と、輻射シールド33を覆うクライオスタット34で構成される。クライオスタット34には、Z軸に沿ってクライオスタット34を貫く第1の室温空間37と、X軸に沿ってクライオスタット34を貫く第2の室温空間38と、Y軸に沿ってクライオスタット34を貫く図示しない第3の室温空間が形成されている。第1,第2,第3の温室空間の交点部分には、被測定試料31が設置される。輻射シールド33には、主に熱伝導性が良い材料、例えばアルミニウムが使用されている。多くの場合、低温で熱伝導が高い材料は電気伝導度も高くなることが知られている。NMR分析装置においては、図示はしていないが、NMRプローブ,超電導シムコイル系,電磁波照射系,電磁波検出系などが設けられる。   As shown in FIG. 10, the Z axis is taken in the direction of the magnetic field center axis, and the X axis and Y axis are taken in the direction perpendicular to the Z axis. The source of the uniform magnetic field formed in the Z direction indicated by the arrow 35 is the superconducting coil system 36. As shown in FIG. 12, each superconducting coil system 36 is formed by winding a superconducting wire around the Z axis. The NMR analyzer includes a refrigerant container 32 that houses a superconducting coil system 36 together with a refrigerant (not shown), a radiation shield 33 that covers the refrigerant container 32, and a cryostat 34 that covers the radiation shield 33. The cryostat 34 includes a first room temperature space 37 penetrating the cryostat 34 along the Z axis, a second room temperature space 38 penetrating the cryostat 34 along the X axis, and a cryostat 34 penetrating along the Y axis (not shown). A third room temperature space is formed. A sample to be measured 31 is placed at the intersection of the first, second, and third greenhouse spaces. The radiation shield 33 is mainly made of a material having good thermal conductivity, such as aluminum. In many cases, it is known that a material having a high thermal conductivity at a low temperature has a high electric conductivity. In the NMR analyzer, although not shown, an NMR probe, a superconducting shim coil system, an electromagnetic wave irradiation system, an electromagnetic wave detection system, and the like are provided.

図12は、輻射シールド33の縦断面図で、図10のX>0,Z>0の領域の一部を示している。輻射シールド33の内部には支持部材43を介して冷媒容器32が設置されている。これらの支持部材17は、外部から熱が侵入しないように低熱伝導の材料、例えばFRP(繊維強化プラスチック)が用いられ、十分な強度が確保できる範囲で各容器との接触面積が小さくなるように設定している。   FIG. 12 is a longitudinal sectional view of the radiation shield 33 and shows a part of the region of X> 0, Z> 0 in FIG. A refrigerant container 32 is installed inside the radiation shield 33 via a support member 43. These support members 17 are made of a low thermal conductivity material such as FRP (fiber reinforced plastic) so that heat does not enter from the outside, and the contact area with each container is reduced within a range where sufficient strength can be secured. It is set.

冷媒容器32の内部には複数の超電導コイルが設置されるが、図12では複数ある超電導コイルのうち、定格運転時の電流の向きが同じで、互いに引き合う電磁力が働いている超電導コイル系36a,36bを含む超電導コイル系36を図示している。径の異なる超電導コイル系36a,36bは、支持部材39内に同心で配置されている。   A plurality of superconducting coils are installed inside the refrigerant container 32. In FIG. 12, among the plurality of superconducting coils, the direction of current during rated operation is the same, and a superconducting coil system 36a in which electromagnetic forces attracting each other work. , 36b, a superconducting coil system 36 is shown. The superconducting coil systems 36 a and 36 b having different diameters are disposed concentrically within the support member 39.

図12に示すように、超電導コイル系36aと超電導コイル系36bとの間で、超電導コイル系36a又は超電導コイル系36bのいずれかと支持部材39との間には、例えばアルミ,アルミ合金,銅,低温でアルミ相当の電気伝導度を有する材料で形成された円環状の非磁性良導体40が配置されている。又、超電導コイル系36aと非磁性良導体40との距離が、超電導コイル系36aと輻射シールド33との距離よりも短くなるように設定されている。   As shown in FIG. 12, between the superconducting coil system 36a and the superconducting coil system 36b, between either the superconducting coil system 36a or the superconducting coil system 36b and the support member 39, for example, aluminum, aluminum alloy, copper, An annular nonmagnetic good conductor 40 made of a material having an electrical conductivity equivalent to aluminum at a low temperature is disposed. Further, the distance between the superconducting coil system 36 a and the nonmagnetic good conductor 40 is set to be shorter than the distance between the superconducting coil system 36 a and the radiation shield 33.

非磁性良導体40は円環形状である。図12に示すように、非磁性良導体40は外周部分を複数個のボルト41で支持部材39に固定されている。ネジ穴42は、クエンチ時の発熱によって非磁性良導体40が熱膨張することを考慮した大きさ分ボルト41の径より大きな径とし、コイルと非磁性良導体40が接する面、支持部材39と非磁性良導体40が接する面には剥離処理及び絶縁処理を施している。   The nonmagnetic good conductor 40 has an annular shape. As shown in FIG. 12, the outer periphery of the nonmagnetic good conductor 40 is fixed to a support member 39 with a plurality of bolts 41. The screw hole 42 has a diameter larger than the diameter of the bolt 41 in consideration of the thermal expansion of the nonmagnetic good conductor 40 due to heat generation at the time of quenching, the surface where the coil and the nonmagnetic good conductor 40 are in contact, the support member 39 and the nonmagnetic The surface that is in contact with the good conductor 40 is subjected to peeling treatment and insulation treatment.

冷媒容器32と輻射シールド33との間の支持部材43は、外部から熱が侵入しないように、低い熱伝導性の材料、例えばFRP(繊維強化プラスチック)を使用し、強度が保てる範囲内で各容器との接触面積を小さくしている。非磁性良導体40と超電導コイル系
36aとの距離は、輻射シールド33と超電導コイル系36aとの距離より短いため、クエンチ時に発生する渦電流は非磁性良導体40を流れ、超電導コイル系36aに働く電磁力は定格運転時と同じZ方向下向きとなる。この結果、超電導コイル系36aの上部の領域は支持部材を設ける必要がなくなる。又、非磁性良導体40が絶縁層を介して超電導コイルの周囲に配置されているため、超電導コイルのクエンチ時にクエンチバックの効果が期待できる。
The support member 43 between the refrigerant container 32 and the radiation shield 33 uses a low thermal conductivity material, for example, FRP (fiber reinforced plastic) so that heat does not enter from the outside. The contact area with the container is reduced. Since the distance between the nonmagnetic good conductor 40 and the superconducting coil system 36a is shorter than the distance between the radiation shield 33 and the superconducting coil system 36a, the eddy current generated at the time of quenching flows through the nonmagnetic good conductor 40 and acts on the superconducting coil system 36a. The force is downward in the Z direction, the same as during rated operation. As a result, it is not necessary to provide a support member in the upper region of the superconducting coil system 36a. Further, since the nonmagnetic good conductor 40 is disposed around the superconducting coil via the insulating layer, a quench back effect can be expected when the superconducting coil is quenched.

なお、超電導コイル,非磁性良導体は、同軸,円環状で説明したが、厳密に同軸でなく非円形でもよい。又、第2の実施例,第3の実施例,第4の実施例はNMR装置にも適用できる。   In addition, although the superconducting coil and the nonmagnetic good conductor have been described as being coaxial and annular, they may not be strictly coaxial but may be noncircular. The second embodiment, the third embodiment, and the fourth embodiment can also be applied to an NMR apparatus.

以上説明したように、各実施例によれば、超電導コイルのクエンチ時に発生する渦電流が非磁性良導体に流れるので、渦電流が輻射シールドに流れた場合に起こる輻射シールドの破損や変形による断熱性能の低下を防ぐことができる。   As described above, according to each embodiment, since the eddy current generated at the time of quenching the superconducting coil flows to the non-magnetic good conductor, the heat insulation performance due to the breakage or deformation of the radiation shield that occurs when the eddy current flows to the radiation shield. Can be prevented.

その結果、装置の安定性を確保でき、輻射シールドに強度を持たせるためのコスト及びコイルの支持部材に要するコストを低減できる。   As a result, the stability of the apparatus can be ensured, and the cost required to give the radiation shield strength and the cost required for the coil support member can be reduced.

又、超電導コイルがクエンチした場合においても、超電導コイルに働く電磁力の向きは定格運転時と変わらないので、撮像空間側の超電導コイルを支持する支持部材が不要となり、超電導コイルと撮像空間の下方に配置されている超電導コイルとの距離を小さくできるので、撮像空間に高い磁場均一度と強い磁場強度の磁場を形成でき、高い開放度を確保することができる。この結果、被験者の開放感と被験者へのアクセス性を向上させることができる。   In addition, even when the superconducting coil is quenched, the direction of the electromagnetic force acting on the superconducting coil is not different from that during rated operation, so a support member for supporting the superconducting coil on the imaging space side is unnecessary, and the superconducting coil and the imaging space below Since the distance from the superconducting coil arranged in the can be reduced, a magnetic field with high magnetic field uniformity and strong magnetic field strength can be formed in the imaging space, and a high degree of openness can be ensured. As a result, the subject's feeling of opening and accessibility to the subject can be improved.

又、コイルの口出し線が切れるという問題も解決できる。又、非磁性良導体が絶縁層を介して超電導コイルと接している場合は、超電導コイルのクエンチ時にクエンチバックの効果が期待できる。   Moreover, the problem that the lead wire of the coil is cut can be solved. In addition, when the nonmagnetic good conductor is in contact with the superconducting coil through the insulating layer, a quench back effect can be expected when the superconducting coil is quenched.

このように、高画質の画像が得られ、被験者へのアクセス性と測定空間の解放性が高いMRI装置を安価に作ることができる。又、NMR装置においても、上述した効果と同様の効果を奏し、超電導コイルがクエンチした場合においても、超電導コイルに働く電磁力の向きは定格運転時と変わらないので、支持部材の量が低減される。これによって、感度を向上させるための高磁場化及び測定空間の高均一磁場化を図る上で、装置の大型化を抑えることができる。このように、高感度でコンパクトなNMR分析装置を安価に作ることができる。   In this way, a high-quality image can be obtained, and an MRI apparatus having high accessibility to the subject and high measurement space can be manufactured at low cost. Also, the NMR apparatus has the same effect as described above, and even when the superconducting coil is quenched, the direction of the electromagnetic force acting on the superconducting coil is the same as that during rated operation, so the amount of the support member is reduced. The This can suppress an increase in the size of the apparatus in order to achieve a high magnetic field for improving sensitivity and a highly uniform magnetic field in the measurement space. Thus, a highly sensitive and compact NMR analyzer can be made at low cost.

本発明の第1の実施例であるMRI装置の縦断面図である。1 is a longitudinal sectional view of an MRI apparatus according to a first embodiment of the present invention. MRI装置の一部の構成を示す斜視図である。It is a perspective view which shows the structure of a part of MRI apparatus. 図1に示すMRI装置の一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of MRI apparatus shown in FIG. 非磁性良導体のネジ止めの一例を示す斜視図である。It is a perspective view which shows an example of the screwing of a nonmagnetic good conductor. 超電導コイルが撮像領域から離れた位置に同軸で互いに対向して配置されている例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example by which the superconducting coil is coaxially arrange | positioned in the position away from the imaging region and mutually opposing. 径の異なる超電導コイルを同心で配置した例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example which has arrange | positioned the superconducting coil from which a diameter differs concentrically. 本発明の第2の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd Example of this invention. 図7の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of FIG. 本発明の第3の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 3rd Example of this invention. NMR分析装置の縦断面図である。It is a longitudinal cross-sectional view of an NMR analyzer. NMR分析装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of a NMR analyzer. 図10の一部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of structure of FIG. 従来のMRI装置の定格運転時とクエンチ時の超電導コイルに働く電磁力の向きを示した図である。It is the figure which showed the direction of the electromagnetic force which acts on the superconducting coil at the time of rated operation and quenching of the conventional MRI apparatus. 従来のNMR分析装置の定格運転時とクエンチ時の超電導コイルに働く電磁力の向きを示した図である。It is the figure which showed the direction of the electromagnetic force which acts on the superconducting coil at the time of the rated operation and quenching of the conventional NMR analyzer. 輻射シールドの撮像領域側の面を示した図である。It is the figure which showed the surface by the side of the imaging region of a radiation shield.

符号の説明Explanation of symbols

1…撮像領域、2A,2B,32…冷媒容器、3,3A,3B,33…輻射シールド、4A,4B…真空容器、5…支柱、10…口出し線、11,17,39,43…支持部材、13,40…非磁性良導体、14…測定空間、15,42…ネジ穴、16,41…ボルト、21A,21B…主コイル、22A,22B…打ち消しコイル、23A,23B…補正コイル、24A,24B…傾斜磁場コイル、25A,26A…超電導コイル、31…被測定試料、34…クライオスタット、36,36a,36b…超電導コイル系、37…第1の室温空間、38…第2の室温空間、44,45,46…電磁力、47…スリット。   DESCRIPTION OF SYMBOLS 1 ... Imaging region, 2A, 2B, 32 ... Refrigerant container, 3, 3A, 3B, 33 ... Radiation shield, 4A, 4B ... Vacuum container, 5 ... Post, 10 ... Lead wire, 11, 17, 39, 43 ... Support Member, 13, 40 ... non-magnetic good conductor, 14 ... measurement space, 15, 42 ... screw hole, 16, 41 ... bolt, 21A, 21B ... main coil, 22A, 22B ... cancellation coil, 23A, 23B ... correction coil, 24A , 24B ... gradient magnetic field coil, 25A, 26A ... superconducting coil, 31 ... sample to be measured, 34 ... cryostat, 36, 36a, 36b ... superconducting coil system, 37 ... first room temperature space, 38 ... second room temperature space, 44, 45, 46 ... electromagnetic force, 47 ... slit.

Claims (9)

被検者の検査領域である撮像空間を挟んで対向するように配置された輻射シールドと、
前記輻射シールド内に設置される冷媒容器と、
前記冷媒容器内に収納され、定格運転時の電流の向きが同じで互いに引き合う電磁力が作用するように配置された第1の超電導コイル及び第2の超電導コイルと、
前記第1の超電導コイル及び前記第2の超電導コイルと接してこれらを支持する支持部材と、
前記第1の超電導コイルと前記第2の超電導コイルの間に設けられた非磁性良導体とを備え、
前記第1の超電導コイル及び前記第2の超電導コイルのいずれか一方が、前記冷媒容器に接してさらに支持され、
前記第1又は第2の超電導コイルと前記非磁性良導体との距離を、前記輻射シールドと前記第1又は第2の超電導コイルとの距離より短くしたことを特徴とするMRI装置。
A radiation shield arranged so as to face each other across an imaging space which is an examination area of the subject,
A refrigerant container installed in the radiation shield;
A first superconducting coil and a second superconducting coil which are housed in the refrigerant container and arranged so that electromagnetic forces attracting each other act in the same direction of current during rated operation;
A support member that contacts and supports the first superconducting coil and the second superconducting coil;
A nonmagnetic good conductor provided between the first superconducting coil and the second superconducting coil;
Either one of the first superconducting coil and the second superconducting coil is further supported in contact with the refrigerant container,
An MRI apparatus, wherein a distance between the first or second superconducting coil and the nonmagnetic good conductor is shorter than a distance between the radiation shield and the first or second superconducting coil.
定格運転時の電流の向きが同じで互いに引き合う電磁力が作用し、支持部材内に同軸状に配置された径の異なる第1の超電導コイル及び第2の超電導コイルと、
前記第1の超電導コイル及び第2の超電導コイルを収容する冷媒容器と、
前記冷媒容器を覆う輻射シールドと、
該輻射シールドを覆うクライオスタットと、
前記第1の超電導コイル及び第2の超電導コイルの間に設けられる非磁性良導体とを備え、
前記支持部材が前記第1の超電導コイル及び前記第2の超電導コイルと接してこれらを支持し、
前記第1の超電導コイル及び前記第2の超電導コイルのいずれか一方が、前記冷媒容器に接してさらに支持され、
前記第1又は第2の超電導コイルと前記非磁性良導体との距離を、前記輻射シールドと前記第1又は第2の超電導コイルとの距離より短くしたことを特徴とするNMR分析装置。
A first superconducting coil and a second superconducting coil having different diameters, which are arranged coaxially in the support member, in which the electromagnetic force attracting each other acts in the same direction of current during rated operation;
A refrigerant container containing the first superconducting coil and the second superconducting coil;
A radiation shield covering the refrigerant container;
A cryostat covering the radiation shield;
A nonmagnetic good conductor provided between the first superconducting coil and the second superconducting coil,
The support member is in contact with and supports the first superconducting coil and the second superconducting coil;
Either one of the first superconducting coil and the second superconducting coil is further supported in contact with the refrigerant container,
An NMR analyzer characterized in that a distance between the first or second superconducting coil and the nonmagnetic good conductor is shorter than a distance between the radiation shield and the first or second superconducting coil.
撮像空間を挟んで対向するように配置された輻射シールド内に設置される冷媒容器内に収納された複数の超電導コイルのうち、支持部材内に定格運転時の電流の向きが同じで互いに引き合う電磁力が作用するように配置された第1の超電導コイル及び第2の超電導コイルと、
前記第1の超電導コイル及び前記第2の超電導コイルの間に設けられた非磁性良導体とを備え、
前記支持部材が前記第1の超電導コイル及び前記第2の超電導コイルと接してこれらを支持し、
前記第1の超電導コイル及び前記第2の超電導コイルのいずれか一方が、前記冷媒容器に接してさらに支持され、
前記第1又は第2の超電導コイルと前記非磁性良導体との距離を、前記輻射シールドと前記第1又は第2の超電導コイルとの距離より短くしたことを特徴とする超電導磁石装置。
Among a plurality of superconducting coils housed in a refrigerant container installed in a radiation shield arranged so as to face each other with an imaging space interposed therebetween, electromagnetic waves attracting each other with the same current direction during rated operation in a support member A first superconducting coil and a second superconducting coil arranged so that a force acts;
A nonmagnetic good conductor provided between the first superconducting coil and the second superconducting coil,
The support member is in contact with and supports the first superconducting coil and the second superconducting coil;
Either one of the first superconducting coil and the second superconducting coil is further supported in contact with the refrigerant container,
A superconducting magnet apparatus, wherein a distance between the first or second superconducting coil and the nonmagnetic good conductor is shorter than a distance between the radiation shield and the first or second superconducting coil.
撮像空間を挟んで対向するように配置された輻射シールド内に設置される冷媒容器内に収納された複数の超電導コイルのうち、支持部材内に定格運転時の電流の向きが同じで互いに引き合う電磁力が作用するように配置された第1の超電導コイル及び第2の超電導コイルと、
前記第1の超電導コイルと第2の超電導コイルの間に設けられた非磁性良導体とを備え、
前記支持部材が前記第1の超電導コイル及び前記第2の超電導コイルと接してこれらを支持し、
前記第1の超電導コイル及び前記第2の超電導コイルのいずれか一方が、前記冷媒容器に接してさらに支持され、
前記第1又は第2の超電導コイルと前記非磁性良導体との距離を、前記輻射シールドと前記第1又は第2の超電導コイルとの距離より短くしたことを特徴とする超電導磁石装置。
Among a plurality of superconducting coils housed in a refrigerant container installed in a radiation shield arranged so as to face each other with an imaging space interposed therebetween, electromagnetic waves attracting each other with the same current direction during rated operation in a support member A first superconducting coil and a second superconducting coil arranged so that a force acts;
A nonmagnetic good conductor provided between the first superconducting coil and the second superconducting coil;
The support member is in contact with and supports the first superconducting coil and the second superconducting coil;
Either one of the first superconducting coil and the second superconducting coil is further supported in contact with the refrigerant container,
A superconducting magnet apparatus , wherein a distance between the first or second superconducting coil and the nonmagnetic good conductor is shorter than a distance between the radiation shield and the first or second superconducting coil .
定格運転時の電流の向きが同じで互いに引き合う電磁力が働く少なくとも2個の超電導コイルを含む複数の超電導コイルと、
前記複数の超電導コイルのそれぞれと接してこれらを支持する支持部材を収納する一対の冷媒容器と、
該各冷媒容器を覆う一対の輻射シールドと、
前記複数の超電導コイルのうち2個の超電導コイルの間に配置された非磁性良導体を備え
前記2個の超電導コイルのいずれか一方が、前記冷媒容器に接してさらに支持され、
前記2個の超電導コイルと前記非磁性良導体との距離を、前記輻射シールドと前記2個の超電導コイルとの距離より短くしたことを特徴とする超電導磁石装置。
A plurality of superconducting coils including at least two superconducting coils in which the electromagnetic directions attracting each other with the same current direction during rated operation;
A pair of refrigerant containers for accommodating a support member that contacts and supports each of the plurality of superconducting coils;
A pair of radiation shields covering each of the refrigerant containers;
A non-magnetic good conductor disposed between two superconducting coils of the plurality of superconducting coils ;
Either one of the two superconducting coils is further supported in contact with the refrigerant container,
A superconducting magnet apparatus , wherein a distance between the two superconducting coils and the nonmagnetic good conductor is shorter than a distance between the radiation shield and the two superconducting coils .
前記非磁性良導体は、
前記第1,第2の超電導コイルのいずれかと前記支持部材との間、前記第1,第2の超電導コイルの間に設けられた支持部材の中、前記第1,第2の超電導コイルの間に設けられた支持部材の内周側あるいは外周側のいずれかの位置に設置されている、又は前記第1,第2の超電導コイルの間に絶縁層を介して設置されていることを特徴とする請求項1に記載のMRI装置。
The nonmagnetic good conductor is
Between one of the first and second superconducting coils and the support member, among the support members provided between the first and second superconducting coils, between the first and second superconducting coils. It is installed in the position of either the inner peripheral side or the outer peripheral side of the support member provided in, or is installed via the insulating layer between the first and second superconducting coils. The MRI apparatus according to claim 1.
前記非磁性良導体は、
前記第1,第2の超電導コイルのいずれかと前記支持部材との間、前記第1,第2の超電導コイルの間に設けられた支持部材の中、前記第1,第2の超電導コイルの間に設けられた支持部材の内周側あるいは外周側のいずれかの位置に設置されている、又は前記第1,第2の超電導コイルの間に絶縁層を介して設置されていることを特徴とする請求項2に記載のNMR分析装置。
The nonmagnetic good conductor is
Between one of the first and second superconducting coils and the support member, among the support members provided between the first and second superconducting coils, between the first and second superconducting coils. It is installed in the position of either the inner peripheral side or the outer peripheral side of the support member provided in, or is installed via the insulating layer between the first and second superconducting coils. The NMR analyzer according to claim 2.
請求項3乃至5のいずれか1項に記載の超電導磁石装置であって、
一定方向の電流を流す主コイルと、前記主コイルとは逆方向の電流を流す打ち消しコイルと、撮像空間の磁場均一度を補正する補正コイルと、撮像空間の位置情報を得るために磁場を空間的に変化させる傾斜磁場コイルとを有する前記超導磁石装置を備えたMRI装置。
A superconducting magnet apparatus according to any one of claims 3 to 5,
A main coil for supplying a constant current direction, the the main coil cancel flowing reverse current and the coil, and a correction coil for correcting the magnetic homogeneity of the imaging space, space a magnetic field to obtain a location information of the imaging space MRI apparatus having the greater conductivity magnet apparatus having a magnetic field gradient coil for to change.
請求項3乃至5のいずれか1項に記載の超電導磁石装置であって、
前記輻射シールドを覆うクライオスタットと、該クライオスタットを貫く複数の温室空間とを有する前記超導磁石装置を備えたNMR分析装置。
A superconducting magnet apparatus according to any one of claims 3 to 5,
A cryostat for covering the radiation shield, NMR analyzer having the greater conductivity magnet device having a plurality of greenhouse space penetrating the cryostat.
JP2004345125A 2004-09-01 2004-11-30 Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device Expired - Fee Related JP4661189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345125A JP4661189B2 (en) 2004-09-01 2004-11-30 Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004253708 2004-09-01
JP2004345125A JP4661189B2 (en) 2004-09-01 2004-11-30 Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2006095259A JP2006095259A (en) 2006-04-13
JP4661189B2 true JP4661189B2 (en) 2011-03-30

Family

ID=36235618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345125A Expired - Fee Related JP4661189B2 (en) 2004-09-01 2004-11-30 Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device

Country Status (1)

Country Link
JP (1) JP4661189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6262417B2 (en) * 2012-07-31 2018-01-17 川崎重工業株式会社 Magnetic field generator and superconducting rotating machine equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190913A (en) * 1996-01-10 1997-07-22 Hitachi Medical Corp Superconducting magnet device and magnetic resonance imaging apparatus using this device
JPH1097919A (en) * 1996-09-19 1998-04-14 Toshiba Corp Superconducting coil
JPH10340811A (en) * 1997-06-09 1998-12-22 Mitsubishi Electric Corp Superconducting magnet apparatus
JPH11318858A (en) * 1998-03-05 1999-11-24 General Electric Co <Ge> Open type superconducting magnet
JP2000040615A (en) * 1998-07-09 2000-02-08 General Electric Co <Ge> Superconductive magnet for making open structured magnetic resonance image
JP2003329755A (en) * 2002-05-08 2003-11-19 Hitachi Ltd Nmr analyzer
JP2004229853A (en) * 2003-01-30 2004-08-19 Hitachi Ltd Superconducting magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190913A (en) * 1996-01-10 1997-07-22 Hitachi Medical Corp Superconducting magnet device and magnetic resonance imaging apparatus using this device
JPH1097919A (en) * 1996-09-19 1998-04-14 Toshiba Corp Superconducting coil
JPH10340811A (en) * 1997-06-09 1998-12-22 Mitsubishi Electric Corp Superconducting magnet apparatus
JPH11318858A (en) * 1998-03-05 1999-11-24 General Electric Co <Ge> Open type superconducting magnet
JP2000040615A (en) * 1998-07-09 2000-02-08 General Electric Co <Ge> Superconductive magnet for making open structured magnetic resonance image
JP2003329755A (en) * 2002-05-08 2003-11-19 Hitachi Ltd Nmr analyzer
JP2004229853A (en) * 2003-01-30 2004-08-19 Hitachi Ltd Superconducting magnet

Also Published As

Publication number Publication date
JP2006095259A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
JP3711659B2 (en) Open magnetic resonance imaging magnet
US7336077B2 (en) Magnet for NMR analyzer and NMR analyzer using the same
US5410287A (en) Open MRI magnet with uniform magnetic field
JP3673556B2 (en) Open magnetic resonance imaging magnet with superconducting shield
US5414360A (en) Gradient coils for therapy tomographs
US5721523A (en) Compact MRI superconducting magnet
JP3654463B2 (en) Magnetic resonance imaging system
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
GB2243218A (en) Superconducting NMR magnet system
JP4928477B2 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus using the same, and nuclear magnetic resonance apparatus
US5568110A (en) Closed MRI magnet having reduced length
JP4661189B2 (en) Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device
US5521571A (en) Open MRI magnet with uniform imaging volume
JP5224888B2 (en) Superconducting magnet and magnet device including the same
JP2005181046A (en) Superconducting magnet device
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP2007189082A (en) Superconductive electromagnetic apparatus
JP4056967B2 (en) Nuclear magnetic resonance apparatus
JPH09276246A (en) Superconducting magnet device
JP2004325252A (en) Magnet for nuclear magnetic resonance device, and nuclear magnetic resonance analytical device using it
JP4034223B2 (en) Superconducting magnet for NMR apparatus and NMR apparatus
JP2005109144A (en) Magnet for generating uniform magnetic field
JP4651236B2 (en) Magnetic resonance imaging system
JP5298056B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees