JP2005109144A - Magnet for generating uniform magnetic field - Google Patents

Magnet for generating uniform magnetic field Download PDF

Info

Publication number
JP2005109144A
JP2005109144A JP2003340564A JP2003340564A JP2005109144A JP 2005109144 A JP2005109144 A JP 2005109144A JP 2003340564 A JP2003340564 A JP 2003340564A JP 2003340564 A JP2003340564 A JP 2003340564A JP 2005109144 A JP2005109144 A JP 2005109144A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
coil group
superconducting
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003340564A
Other languages
Japanese (ja)
Inventor
Tsugutoshi Tsuchiya
貢俊 土屋
Takeshi Wakuta
毅 和久田
Tomomi Kikuta
知美 菊田
Koji Maki
牧  晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003340564A priority Critical patent/JP2005109144A/en
Publication of JP2005109144A publication Critical patent/JP2005109144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet for generating a uniform magnetic field, wherein the magnetic field in the direction of the magnet axis is made smaller, to bring a superconducting connection portion near the central magnetic field generating position, in the magnet for generating the uniform magnetic field by a coil group where a plurality of superconducting coils are subjected to superconducting connection. <P>SOLUTION: This uniform magnetic field generating magnet comprises a first coil group and a second coil group, each consisting of a plurality of superconducting coils wound around a certain axis line as a common central axis. Respective coil groups are arranged so as to opposite and be spaced apart from each other. Each coil group comprises a plurality of magnetic shield coils, each generating a magnetic field opposite to the direction of the central magnetic field, and at least one shielding coil is disposed outside the coil group in the direction of the magnet axis as seen from the magnetic field generating position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の超電導コイルが超電導接続されているコイル群による均一磁場発生マグネットに関し、特に、マグネット軸方向の磁場を小さくすることで超電導接続部を中心磁場発生位置に近づけることが可能な均一磁場発生マグネットに関する。   The present invention relates to a uniform magnetic field generating magnet by a coil group in which a plurality of superconducting coils are superconductingly connected, and in particular, a uniform magnetic field capable of bringing a superconducting connection portion closer to a central magnetic field generating position by reducing the magnetic field in the magnet axial direction. The present invention relates to a magnetic field generating magnet.

複数の超電導コイルが超電導接続されているコイル群による均一磁場発生マグネットを必要とするものとしてNMR装置がある。   There is an NMR apparatus that requires a uniform magnetic field generating magnet by a coil group in which a plurality of superconducting coils are superconductingly connected.

図2は、従来型NMR装置の超電導コイル群と超電導接続部の模式断面図を示す。一般的に従来型NMR装置では、超電導コイル群21はソレノイド型であり、超電導コイル群21に含まれる各超電導コイルは、口出し線23を介して超電導接続24によって接続されている。   FIG. 2 is a schematic cross-sectional view of a superconducting coil group and a superconducting connection portion of a conventional NMR apparatus. In general, in the conventional NMR apparatus, the superconducting coil group 21 is a solenoid type, and each superconducting coil included in the superconducting coil group 21 is connected by a superconducting connection 24 via a lead wire 23.

超電導接続24は、その特徴である微小な接続抵抗を実現するためには経験磁場を小さくすることが必須である。従来型では縦置き(中心磁場の向きが縦方向)のため超電導コイル群21より軸方向遠方に超電導コイルの冷媒となる液体ヘリウムの液溜めがあった。   The superconducting connection 24 is required to reduce the empirical magnetic field in order to realize the minute connection resistance that is a feature of the superconducting connection 24. In the conventional type, there is a liquid helium reservoir serving as a refrigerant for the superconducting coils in the axial direction away from the superconducting coil group 21 because of vertical installation (the direction of the central magnetic field is vertical).

コイル容器(クライオスタット)は、この液溜めまで含めた大きさにするため軸方向には空間的な余裕ができ、超電導接続24を磁場発生位置から離れた位置(経験磁場が小さい位置)に配置することは大きな問題にはならなかった。さらに、磁場発生位置から離れた位置にあるコイルは磁場均一度に殆ど影響を与えないため、各超電導接続24はそれぞれにシールドコイルを配置することも可能であった。従来型のNMR装置に関する詳細は、非特許文献1に記載されている。   Since the coil container (cryostat) is sized to include the liquid reservoir, there is a space in the axial direction, and the superconducting connection 24 is arranged at a position away from the magnetic field generation position (position where the empirical magnetic field is small). That was not a big problem. Further, since the coil located at a position away from the magnetic field generating position hardly affects the magnetic field uniformity, each superconducting connection 24 can be provided with a shield coil. Details on the conventional NMR apparatus are described in Non-Patent Document 1.

荒田洋治著「タンパク質のNMR」共立出版(1996年)Yoji Arata "Protein NMR" Kyoritsu Shuppan (1996)

一方、図3に示す模式断面図のスプリット型NMR装置では、従来型の縦置きとは違い横置き(中心磁場の向きが横方向)である。そのため軸方向の大きさは、超電導接続の位置で決まることになり、口出し線33を長くして超電導接続34の位置を磁場発生位置から遠ざけることは装置の大型化につながる。   On the other hand, the split-type NMR apparatus of the schematic cross-sectional view shown in FIG. 3 is horizontally placed (the direction of the central magnetic field is transverse) unlike the conventional vertically placed device. Therefore, the size in the axial direction is determined by the position of the superconducting connection, and extending the lead wire 33 and moving the position of the superconducting connection 34 away from the magnetic field generation position leads to an increase in the size of the apparatus.

大型化を避けるために、従来型のように各超電導接続34をそれぞれにシールドコイルを配置すると、経験磁場の問題は解決されるものの、磁場発生位置から離れていないことや、超電導接続の数だけコイルを必要とするために、磁場発生位置の磁場均一度に大きく影響を与えてしまう。   In order to avoid an increase in size, if a shield coil is arranged for each superconducting connection 34 as in the conventional type, the problem of the empirical magnetic field is solved, but it is not far from the magnetic field generation position or the number of superconducting connections. Since a coil is required, the magnetic field uniformity at the magnetic field generation position is greatly affected.

本発明は、スプリット型NMR装置では特に問題となる超電導接続部の、経験磁場を磁場発生位置の磁場均一度に影響を与えずに、小さくするものである。   The present invention reduces the empirical magnetic field of the superconducting connection, which is a particular problem in the split NMR apparatus, without affecting the magnetic field uniformity at the magnetic field generation position.

また、本発明は、超電導コイルから超電導接続部までの口出し線の長さを、短尺化するものである。   Moreover, this invention shortens the length of the lead wire from a superconducting coil to a superconducting connection part.

さらに、本発明は、スプリット型NMR装置を小型化するものである。   Furthermore, the present invention reduces the size of a split-type NMR apparatus.

本発明の第1の発明に関する均一磁場発生マグネットは、ある軸線を共通の中心軸線として巻かれた複数の超電導コイルから構成され、該超電導コイルは、立ち上げ線を介して個々のコイルが超電導的に接続されている第1のコイル群と、該中心軸線を共通の中心軸線として巻かれた複数の超電導コイルから構成される。   The uniform magnetic field generating magnet according to the first aspect of the present invention is composed of a plurality of superconducting coils wound around a certain axis as a common central axis, and each of the superconducting coils is superconducting via a rising line. And a plurality of superconducting coils wound with the central axis as a common central axis.

該超電導コイルは、立ち上げ線を介して個々のコイルが超電導的に接続されている第2のコイル群があり、前記第1のコイル群と第2のコイル群は互いに離れて対向するように配置され、該第1のコイル群と該第2のコイル群に、永久電流モードで電流を流すマグネットにおいて、中心磁場に対して逆向きの磁場を発生させるような磁気シールドコイルを該第1のコイル群と該第2のコイル群のそれぞれに複数備えており、該シールドコイルのうちの少なくとも1つが、該第1のコイル群および該第2のコイル群よりも、磁場発生位置からみて、前記軸方向外側にあることを特徴とする。   The superconducting coil has a second coil group in which individual coils are superconductingly connected via a rising line, and the first coil group and the second coil group are separated from each other and face each other. A magnetic shield coil arranged to generate a magnetic field in a direction opposite to a central magnetic field in a magnet that allows a current to flow in a permanent current mode to the first coil group and the second coil group. Each of the coil group and the second coil group is provided with a plurality, and at least one of the shield coils is more than the first coil group and the second coil group, as viewed from the magnetic field generation position. It exists in the axial direction outer side.

本発明の第2の発明に関する均一磁場発生マグネットは、上記第1の発明において、前記シールドコイルが前記第1のコイル群および前記第2のコイル群と共通の中心軸線で巻かれていることを特徴とする。   The uniform magnetic field generating magnet according to the second invention of the present invention is the magnet according to the first invention, wherein the shield coil is wound around a central axis common to the first coil group and the second coil group. Features.

本発明の第3の発明に関する均一磁場発生マグネットは、上記第1および第2の発明において、前記シールドコイルが超電導コイルであり、前記第1のコイル群あるいは前記第2のコイル群と超電導的に接続されていることを特徴とする。   A uniform magnetic field generating magnet according to a third invention of the present invention is the above-described first and second inventions, wherein the shield coil is a superconducting coil, and is superconductive with the first coil group or the second coil group. It is connected.

本発明の第4の発明に関する均一磁場発生マグネットは、上記第1または第2の発明において、前記シールドコイルが超電導コイルであり、磁場調整用超電導コイルと超電導的に接続されていることを特徴とする。   A homogeneous magnetic field generating magnet according to a fourth invention of the present invention is characterized in that, in the first or second invention, the shield coil is a superconducting coil and is superconductingly connected to the magnetic field adjusting superconducting coil. To do.

本発明の第5の発明に関する均一磁場発生マグネットは、上記第1〜4の発明のいずれかにおいて、超電導接続部を前記軸方向の1T以下の領域に配置することを特徴とする。 本発明の第6の発明に関する均一磁場発生マグネットは、上記第1〜5の発明のいずれかにおいて、磁場発生位置から前記中心軸方向に0.5mの位置で1T以下を達成することを特徴とする。   The homogeneous magnetic field generating magnet according to the fifth invention of the present invention is characterized in that, in any of the first to fourth inventions, the superconducting connection portion is arranged in a region of 1T or less in the axial direction. A uniform magnetic field generating magnet according to a sixth invention of the present invention is characterized in that, in any one of the first to fifth inventions, 1T or less is achieved at a position of 0.5 m from the magnetic field generating position in the central axis direction. To do.

本発明の第7の発明に関する均一磁場発生マグネットは、上記第1〜5の発明のいずれかにおいて、前記第1のコイル群、前記第2のコイル群、前記シールドコイルを備えているスプリット型マグネットに替えて、前記第1のコイル群および前記第1のコイル群のシールドコイルを備えているソレノイド型のものである。   A uniform magnetic field generating magnet according to a seventh invention of the present invention is the split magnet according to any one of the first to fifth inventions, comprising the first coil group, the second coil group, and the shield coil. Instead of the above, a solenoid type including the first coil group and the shield coil of the first coil group.

本発明の第8の発明に関するNMR装置は、上記1〜7の発明のいずれかの均一磁場発生マグネットを用いたNMR装置にある。   An NMR apparatus according to an eighth aspect of the present invention is an NMR apparatus using the uniform magnetic field generating magnet according to any one of the first to seventh aspects of the present invention.

本発明では、中心磁場に対して逆向きの磁場を発生させるような磁気シールドコイルをマグネット軸方向外側に備えており、軸方向の漏洩磁場を小さくすることができる。   In the present invention, a magnetic shield coil that generates a magnetic field in the opposite direction to the central magnetic field is provided on the outer side in the magnet axial direction, and the leakage magnetic field in the axial direction can be reduced.

また、軸方向の漏洩磁場を抑えることによって、超電導接続部の経験磁場を小さくすること、並びに、口出し線を短尺化して、超電導接続部を磁場発生位置に近づけることが可能になる。   In addition, by suppressing the leakage magnetic field in the axial direction, it is possible to reduce the empirical magnetic field of the superconducting connection part, shorten the lead wire, and bring the superconducting connection part closer to the magnetic field generation position.

さらに、口出し線の短尺化は、スプリット型NMR装置ではマグネット軸方向の大きさを低減することでもあるので、クライオスタットの小型化、重量の軽量化、熱侵入量の低減につながる。   Furthermore, shortening the lead wire also reduces the size of the split-type NMR apparatus in the magnet axis direction, leading to miniaturization of the cryostat, weight reduction, and reduction of the heat penetration amount.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔実施例 1〕
図1は超電導コイルとシールドコイル、口出し線、超電導接続部を備えた本発明のスプリット型均一磁場発生マグネットの一部を断面した模式斜視図である。
[Example 1]
FIG. 1 is a schematic perspective view of a part of a split type uniform magnetic field generating magnet of the present invention provided with a superconducting coil, a shield coil, a lead wire, and a superconducting connection.

図1では、図が煩雑になることを避けるために、右側のコイル群の口出し線および超電導接続は示していないが、実施する際にはこれらは必要である。   In FIG. 1, the lead wire and superconducting connection of the right coil group are not shown in order to avoid the drawing from becoming complicated, but these are necessary for implementation.

超電導コイル11は複数個あり、これらが口出し線13を介し超電導接続14によって接続されている。   There are a plurality of superconducting coils 11, and these are connected by superconducting connections 14 through lead wires 13.

さらに、左右のコイル群それぞれにシールドコイル12,15を備えており、左右のコイル群は、ほぼ共通の中心軸に関して巻線されており、垂直な中央面に関してほぼ鏡面対称になっている。   Further, shield coils 12 and 15 are provided in the left and right coil groups, respectively, and the left and right coil groups are wound with respect to a substantially common central axis and are substantially mirror-symmetric with respect to a vertical central plane.

また、シールドコイル12,15は、中心磁場に対して逆向きの磁場が発生するような方向に電流を流す。シールドコイル12,15共に超電導コイルであり、シールドコイル12,15共に図1に示すように超電導コイル11と口出し線13を介して超電導接続される。   The shield coils 12 and 15 pass a current in such a direction that a magnetic field opposite to the central magnetic field is generated. Both the shield coils 12 and 15 are superconducting coils, and both the shield coils 12 and 15 are superconductingly connected to the superconducting coil 11 via the lead wire 13 as shown in FIG.

また、超電導コイル11、シールドコイル12,15、口出し線13は電気的に直列に接続されており、永久電流モードで電流を流すことによって運転される。以下では本発明のスプリット型均一磁場発生マグネットを、NMR装置で用いることを想定して説明するが、必ずしもNMR装置に限定されるものではない。   The superconducting coil 11, the shield coils 12, 15 and the lead wire 13 are electrically connected in series, and are operated by passing a current in the permanent current mode. Hereinafter, the split type uniform magnetic field generating magnet of the present invention will be described assuming that it is used in an NMR apparatus, but the present invention is not necessarily limited to the NMR apparatus.

本実施例のNMR装置では、均一磁場発生マグネット以外に誤差磁場を補償するためのシムコイル群、永久電流モードで運転するための永久電流スイッチ、超電導コイルがクエンチした際に焼失することを防ぐ保護回路、コイル群を冷却する際の冷媒となる液体ヘリウム、それを保持する液体ヘリウム容器、液体ヘリウム容器への熱侵入量を低減するための輻射シールドおよび断熱真空層、輻射シールド層を冷却するための液体窒素層を備えている。   In the NMR apparatus of this embodiment, in addition to the uniform magnetic field generating magnet, a shim coil group for compensating the error magnetic field, a permanent current switch for operating in the permanent current mode, and a protection circuit for preventing the superconducting coil from being burned out when quenched. , Liquid helium as a refrigerant when cooling the coil group, liquid helium container holding the coil, radiation shield and heat insulation vacuum layer for reducing the amount of heat intrusion into the liquid helium container, for cooling the radiation shield layer It has a liquid nitrogen layer.

さらに、NMR信号を検出・計測するために、検出用アンテナコイル、電磁波照射用のRF照射コイル、試料の温度調節機構、サンプルを保持,回転させる機構、それらの信号処理装置、制御装置などを備えている。   Furthermore, in order to detect and measure NMR signals, it is equipped with a detection antenna coil, an RF irradiation coil for electromagnetic wave irradiation, a temperature control mechanism for the sample, a mechanism for holding and rotating the sample, a signal processing device, a control device, etc. ing.

また、超電導コイル群は9個の超電導コイルから構成されており、それぞれのコイルは経験磁場強度に応じて適切な超電導線材となるように、半径方向内側の6個のコイルはNbSn線材、外側の3個のコイルはNbTi線材によって巻かれている。 Further, the superconducting coil group is composed of nine superconducting coils, and the six coils on the radially inner side are Nb 3 Sn wire, so that each coil becomes an appropriate superconducting wire according to the empirical magnetic field strength. The three outer coils are wound with NbTi wire.

これらのコイル群の内半径は約80mm、外半径は約365mmであり、コイル群の内側にNbSn線材で構成されたシムコイル群、外側にNbTi線材で構成されたシムコイル群を配置することにより、誤差磁場を補償すると共に、高次項の磁場も補償している。 The inner radius of these coil groups is about 80 mm and the outer radius is about 365 mm. By arranging a shim coil group composed of Nb 3 Sn wire inside the coil group and a shim coil group composed of NbTi wire outside In addition to compensating for the error magnetic field, it also compensates for higher order magnetic fields.

図4は、本実施例で中心磁場強度約14.1T(プロトン共鳴周波数約600MHz)が発生した際の漏洩磁場分布を示したグラフ図であり、図5は、中心磁場強度は殆ど変わらないがシールドコイルはシールドコイル52のみ配置し、超電導コイルより外側にはシールドコイルを配置しない場合の漏洩磁場分布を示したグラフ図である。   FIG. 4 is a graph showing a leakage magnetic field distribution when a central magnetic field strength of about 14.1 T (proton resonance frequency of about 600 MHz) is generated in this embodiment, and FIG. 5 shows that the central magnetic field strength hardly changes. FIG. 5 is a graph showing a leakage magnetic field distribution when only the shield coil 52 is arranged as a shield coil and no shield coil is arranged outside the superconducting coil.

図4で示した超電導コイル41と図5で示した超電導コイル51は、全く同じ配置である。   The superconducting coil 41 shown in FIG. 4 and the superconducting coil 51 shown in FIG.

また図6は、図4に示した本実施例で発生した1Tラインと超電導接続の位置を示した模式図である。さらに図7は、図5に示した構成のスプリット型均一磁場発生マグネットで発生した1Tラインと超電導接続の位置を示した模式図である。   FIG. 6 is a schematic diagram showing the positions of the 1T line generated in the present embodiment shown in FIG. 4 and the superconducting connection. Further, FIG. 7 is a schematic diagram showing the position of the 1T line generated by the split type uniform magnetic field generating magnet having the configuration shown in FIG. 5 and the position of the superconducting connection.

図4では、シールドコイル45による中心軸方向の漏洩磁場を小さくする効果が現れているため、図5では、中心軸上の1Tライン56はマグネット中心から約0.60mの位置になるのに対して、図4での1Tライン46は約0.48mの位置である。   In FIG. 4, since the effect of reducing the leakage magnetic field in the central axis direction by the shield coil 45 appears, in FIG. 5, the 1T line 56 on the central axis is at a position of about 0.60 m from the magnet center. The 1T line 46 in FIG. 4 is at a position of about 0.48 m.

ここで超電導接続は経験磁場が1T以下の位置に配置することを考えると、図6および図7に示したように、超電導接続は1Tラインまで近づけることができるので、シールドコイル65の効果で、超電導接続64の位置は超電導接続74よりもマグネット中心に約0.12m近づけることができる。   Here, considering that the superconducting connection is arranged at a position where the empirical magnetic field is 1T or less, as shown in FIGS. 6 and 7, the superconducting connection can be brought close to the 1T line. The position of the superconducting connection 64 can be closer to the center of the magnet than the superconducting connection 74 by about 0.12 m.

言い換えれば、口出し線63の長さを口出し線73よりも約0.12m短尺化することが可能となるので、スプリット型NMR装置の軸方向長さは約0.24m短くすることができ、クライオスタットの小型化になる。   In other words, since the length of the lead wire 63 can be shortened by about 0.12 m from the lead wire 73, the axial length of the split-type NMR apparatus can be shortened by about 0.24 m. Downsizing.

さらに、クライオスタットの小型化は、重量の軽量化および熱侵入量の低減につながる。   Further, the miniaturization of the cryostat leads to a reduction in weight and a reduction in the amount of heat penetration.

〔実施例 2〕
前記実施例1では、超電導接続は経験磁場が1T以下の位置に配置することを考えたが、経験磁場の上限は1Tに限ったものではない。使用する超電導線材の性能や超電導接続技術の向上など、様々な理由によって超電導接続の経験磁場に対する要求は異なるので、その要求に応じた位置に超電導接続を配置すればよい。
Example 2
In Example 1, it was considered that the superconducting connection is disposed at a position where the empirical magnetic field is 1T or less, but the upper limit of the empirical magnetic field is not limited to 1T. The requirements for the empirical magnetic field of the superconducting connection are different for various reasons such as the performance of the superconducting wire to be used and the improvement of the superconducting connection technology. Therefore, the superconducting connection may be arranged at a position corresponding to the requirement.

さらに、各超電導接続それぞれに、シールドコイルを備える従来型の方法と併用することも可能である。   Furthermore, each superconducting connection can be used in combination with a conventional method including a shield coil.

本発明によって、マグネット軸方向の漏洩磁場は抑えられているため、各超電導接続に備えるシールドコイルは、中心磁場強度に殆ど影響を及ぼすことはない。   Since the leakage magnetic field in the magnet axial direction is suppressed by the present invention, the shield coil provided for each superconducting connection hardly affects the central magnetic field strength.

本発明のスプリット型均一磁場発生マグネットの一部を断面した斜視図である。It is the perspective view which sectioned a part of split type uniform magnetic field generation magnet of the present invention. 従来型NMR装置のマグネットの模式断面図である。It is a schematic cross section of the magnet of a conventional NMR apparatus. 本発明の構成ではないスプリット型マグネットの模式断面図である。It is a schematic cross section of the split type magnet which is not the structure of this invention. 本発明の実施例における中心磁場強度14.1Tが発生する際の漏洩磁場分布のグラフ図である。It is a graph of the leakage magnetic field distribution when the central magnetic field strength of 14.1T is generated in the embodiment of the present invention. 本発明の構成ではないスプリット型マグネットで中心磁場強度14.1Tが発生する際の漏洩磁場分布の一例を示すグラフ図である。It is a graph which shows an example of the leakage magnetic field distribution when center magnetic field intensity | strength 14.1T generate | occur | produces with the split type magnet which is not the structure of this invention. 本発明の実施例における1Tラインと超電導接続位置を示す模式断面図である。It is a schematic cross section which shows the 1T line and superconducting connection position in the Example of this invention. 本発明の構成ではないスプリット型マグネットでの1Tラインと超電導接続位置を示す模式断面図である。It is a schematic cross section which shows the 1T line and superconducting connection position in the split type magnet which is not the structure of this invention.

符号の説明Explanation of symbols

11,41,51…超電導コイル、21,31,61,71…超電導コイル群、12,15,22,32,42,45,52,62,65,72…シールドコイル、13,23,33,63,73…口出し線、14,24,34,64,74…超電導接続、46,56,66,76…1Tライン、   11, 41, 51 ... superconducting coils, 21, 31, 61, 71 ... superconducting coil groups, 12, 15, 22, 32, 42, 45, 52, 62, 65, 72 ... shield coils, 13, 23, 33, 63, 73 ... lead wire, 14, 24, 34, 64, 74 ... superconducting connection, 46, 56, 66, 76 ... 1T line,

Claims (8)

ある軸線を共通の中心軸線として巻かれた複数の超電導コイルから構成され、該超電導コイルは立ち上げ線を介して個々のコイルが超電導的に接続されている第1のコイル群と、該中心軸線を共通の中心軸線として巻かれた複数の超電導コイルから構成され、該超電導コイルは立ち上げ線を介して個々のコイルが超電導的に接続されている第2のコイル群があり、該第1のコイル群と該第2のコイル群は互いに離れて対向するように配置され、該第1のコイル群と該第2のコイル群に永久電流モードで電流を流すマグネットにおいて、中心磁場に対して逆向きの磁場を発生させるような磁気シールドコイルを該第1のコイル群と該第2のコイル群それぞれに複数備えており、該シールドコイルのうち少なくとも1つが該第1のコイル群及び該第2のコイル群よりも磁場発生位置からみて前記軸方向外側にあることを特徴とする均一磁場発生マグネット。   A first coil group composed of a plurality of superconducting coils wound with a certain axis as a common central axis, the superconducting coils being superconductingly connected to each other via a rising line, and the central axis Is composed of a plurality of superconducting coils wound around a common central axis, and the superconducting coil has a second coil group in which the individual coils are superconductingly connected via rising wires, and the first coil The coil group and the second coil group are arranged so as to face each other apart from each other, and in a magnet that allows current to flow through the first coil group and the second coil group in a permanent current mode, the coil group and the second coil group are opposite to the central magnetic field. The first coil group and the second coil group each include a plurality of magnetic shield coils that generate a magnetic field in the direction, and at least one of the shield coils includes the first coil group and the second coil group. 2 homogeneous magnetic field generating magnet, characterized in that than coils as viewed from the magnetic field generation position in the axial direction outside. 前記シールドコイルが前記第1のコイル群及び前記第2のコイル群と共通の中心軸線で巻かれている請求項1に記載の均一磁場発生マグネット。   The uniform magnetic field generating magnet according to claim 1, wherein the shield coil is wound around a central axis common to the first coil group and the second coil group. 前記シールドコイルが超電導コイルであり、前記第1のコイル群あるいは前記第2のコイル群と超電導的に接続されている請求項1または2に記載の均一磁場発生マグネット。   The uniform magnetic field generating magnet according to claim 1 or 2, wherein the shield coil is a superconducting coil, and is superconductively connected to the first coil group or the second coil group. 前記シールドコイルが超電導コイルであり、磁場調整用超電導コイルと超電導的に接続されている請求項1または2に記載の均一磁場発生マグネット。   The uniform magnetic field generating magnet according to claim 1, wherein the shield coil is a superconducting coil, and is superconductively connected to the magnetic field adjusting superconducting coil. 前記第1のコイル群と前記第2のコイル群において口出し線を介して個々のコイルが超電導的に接続している部分を超電導接続部とすると、該超電導接続部を前記軸方向の1T以下の領域に配置する請求項1〜4のいずれかに記載の均一磁場発生マグネット。   When a portion where the individual coils are superconductively connected via lead wires in the first coil group and the second coil group is a superconductive connection portion, the superconductive connection portion is 1T or less in the axial direction. The uniform magnetic field generating magnet according to any one of claims 1 to 4, which is disposed in the region. 磁場発生位置から前記中心軸方向に0.5mの位置で1T以下を達成する請求項1〜5のいずれかに記載の均一磁場発生マグネット。   The uniform magnetic field generating magnet according to claim 1, wherein 1T or less is achieved at a position of 0.5 m in the central axis direction from the magnetic field generating position. 前記第1のコイル群、前記第2のコイル群、前記シールドコイルを備えているスプリット型マグネットに替えて、前記第1のコイル群および前記第1のコイル群のシールドコイルを備えている請求項1〜5のいずれかに記載のソレノイド型の均一磁場発生マグネット。   The shield coil of the 1st coil group and the 1st coil group is provided instead of the split type magnet provided with the 1st coil group, the 2nd coil group, and the shield coil. The solenoid-type uniform magnetic field generating magnet according to any one of 1 to 5. 請求項1〜7のいずれかに記載の均一磁場発生マグネットを用いたことを特徴とするNMR装置。
An NMR apparatus using the uniform magnetic field generating magnet according to claim 1.
JP2003340564A 2003-09-30 2003-09-30 Magnet for generating uniform magnetic field Pending JP2005109144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340564A JP2005109144A (en) 2003-09-30 2003-09-30 Magnet for generating uniform magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340564A JP2005109144A (en) 2003-09-30 2003-09-30 Magnet for generating uniform magnetic field

Publications (1)

Publication Number Publication Date
JP2005109144A true JP2005109144A (en) 2005-04-21

Family

ID=34535421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340564A Pending JP2005109144A (en) 2003-09-30 2003-09-30 Magnet for generating uniform magnetic field

Country Status (1)

Country Link
JP (1) JP2005109144A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171309A1 (en) * 2011-06-14 2012-12-20 中国科学院电工研究所 Self-shield open magnetic resonance imaging superconducting magnet
US20130102472A1 (en) * 2011-10-25 2013-04-25 Massachusetts Institute Of Technology Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
WO2013085147A1 (en) * 2011-12-06 2013-06-13 Korea Basic Science Institute Double pancake-type superconducting magnet having auxiliary coils
JP2021162587A (en) * 2020-03-31 2021-10-11 ブルーカー スウィッツァーランド アー・ゲーBruker Switzerland AG Shim device, magnet assembly, and method for charging shim device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171309A1 (en) * 2011-06-14 2012-12-20 中国科学院电工研究所 Self-shield open magnetic resonance imaging superconducting magnet
US8996083B2 (en) 2011-06-14 2015-03-31 Institute Of Electrical Engineering, Chinese Academy Of Sciences Self-shield open magnetic resonance imaging superconducting magnet
US20130102472A1 (en) * 2011-10-25 2013-04-25 Massachusetts Institute Of Technology Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
WO2013063257A1 (en) * 2011-10-25 2013-05-02 Massachusetts Institute Of Technology Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
US8965468B2 (en) 2011-10-25 2015-02-24 Massachusetts Institute Of Technology Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
WO2013085147A1 (en) * 2011-12-06 2013-06-13 Korea Basic Science Institute Double pancake-type superconducting magnet having auxiliary coils
KR101343594B1 (en) * 2011-12-06 2013-12-20 한국기초과학지원연구원 Double pancake-type superconductive magnet having auxiliary coils
JP2021162587A (en) * 2020-03-31 2021-10-11 ブルーカー スウィッツァーランド アー・ゲーBruker Switzerland AG Shim device, magnet assembly, and method for charging shim device
US11391800B2 (en) 2020-03-31 2022-07-19 Bruker Switzerland Ag Shim device, magnet assembly, and method for charging a shim device

Similar Documents

Publication Publication Date Title
EP0679900B1 (en) Pancake MRI magnet
US7336077B2 (en) Magnet for NMR analyzer and NMR analyzer using the same
US5280247A (en) Filamentary cold shield for superconducting magnets
EP2095145B1 (en) Nmr probe containing coils with electric field shields
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
WO1997025726A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
JPH09262223A (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
US5517169A (en) Superconducting magnet with magnetic shielding
JP2009106742A (en) Magnet assembly for magnetic resonance imaging system
JP2005152632A (en) Mri system utilizing supplemental static field-shaping coils
US20080303523A1 (en) Magnetic Resonance Scanner With a Longitudinal Magnetic Field Gradient System
JP2009172085A (en) Superconductive magnet device, magnetic resonance imaging apparatus using the same, and nuclear magnetic resonance apparatus
JP2005109144A (en) Magnet for generating uniform magnetic field
US20070090841A1 (en) Split-shield gradient coil with improved fringe-field
JP5069471B2 (en) Planar RF resonator for open MRI systems
JP2005512646A (en) Gradient coil arrangement structure
WO2014185429A1 (en) Magnetic resonance imaging device
JP2008125841A (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
RU2782979C2 (en) Shielding coil of gradient magnetic field with meander winding for magnetic resonance imaging device
JP4494751B2 (en) Magnetic resonance imaging device
JP2016116804A (en) Magnetic resonance imaging apparatus
CN112041696B (en) Gradient shield coil for MRI apparatus
JP7249906B2 (en) Superconducting coil and superconducting magnet device
WO2019187465A1 (en) Gradient magnetic field coil device and magnetic resonance imaging apparatus
JP4661189B2 (en) Superconducting magnet device and MRI apparatus and NMR analyzer equipped with the superconducting magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526