JP4659346B2 - Manufacturing method of ceramic fired body - Google Patents

Manufacturing method of ceramic fired body Download PDF

Info

Publication number
JP4659346B2
JP4659346B2 JP2003203383A JP2003203383A JP4659346B2 JP 4659346 B2 JP4659346 B2 JP 4659346B2 JP 2003203383 A JP2003203383 A JP 2003203383A JP 2003203383 A JP2003203383 A JP 2003203383A JP 4659346 B2 JP4659346 B2 JP 4659346B2
Authority
JP
Japan
Prior art keywords
firing
release sheet
ceramic
fired
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003203383A
Other languages
Japanese (ja)
Other versions
JP2005047723A (en
Inventor
伸彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003203383A priority Critical patent/JP4659346B2/en
Publication of JP2005047723A publication Critical patent/JP2005047723A/en
Application granted granted Critical
Publication of JP4659346B2 publication Critical patent/JP4659346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック焼成体の製造方法に関し、特に、一度に多量の成形体を焼成する際、各成形体間の付着を防止する離型シートを用いて焼成するセラミック焼成体の製造方法に関するものである。
【0002】
【従来の技術】
従来から、セラミックスの成形体を一度に多量に焼成してセラミック焼成体を量産する方法として、セラミックス粉末とバインダーを混合してスラリーを作した後、ドクターブレード法などで成形体を作し、この成形体を乾燥した後、成形体の間に高融点のセラミックス粗粒粉末を水に分散させたスラリーをスプレーで塗布しながら横方向に並べ、成形体同士が付着しないように処理をし、しかる後、かかる成形体を重ねて焼成炉に入れて焼成していた。
【0003】
しかし、この方法では、焼成前に塗布する際、粗粒が重いので選択的に塗布され、微粉は遠くに飛ばされる理由から焼成後のセラミックス表面の面粗度が悪くなり、また、塗布される粉末中に含まれる不純物により、低融点化合物が生成しセラミックス同士が付着してしまう不具合が発生する問題があった。
【0004】
この不具合の対策として、特許文献1に示すような焼成用離型シートを作し、成形体間に介在して焼成させて製造していた。即ち、特許文献1の焼成用離型シートは窒化ホウ素からなるセラミックス粉体からなるスラリーをカレンダーロール方法、ドクターブレード方法などで可燃紙の上に塗布してセラミック厚膜を形成し、これを乾燥して焼成用離型シートを作していた。
【0005】
【特許文献1】
特許2556518号公報、
【0006】
【発明が解決しようとする課題】
しかしながら、この離型シートは、可燃性シートの灰化により、セラミック製品に付着してしまい、セラミック製品の外側を追加工しなければならない問題があった。
【0007】
また、離型シートをカレンダーロール方法、ドクターブレード方法等で形成しているので離型シートの厚みがばらつき、成形体間に介在させる離型シートがばらつくので、焼成した焼成体をはがす際に厚みの薄いところには応力が集中し、可燃紙の焼成した後にクラックが生じ、規則的にはがれないためにカケが発生する不具合があった。
【0008】
さらに、離型シートは焼成する製品の大きさに合せて切断する必要があるので、
切断は決められた寸法の金型で押し切るため、その切断した離型シートと製品寸法に差が生じていた。従って、離型シートが製品の大きさより小さい場合、製品同士が融着して離型できない問題があった。また、離型シートが製品の大きさより大きい場合、離型シートが例えば印刷された回路の部分についてしまい焼結阻害をひきおこし製品の品質を低下させる問題があった。
【0009】
また、小型の製品を焼成するのに、離型シートを成形体の間に挿入する際に位置ずれが生じやすく、特に横方向に成形体、離型シートと交互に配置する場合、離型シートがずれて成形体同士が融着する問題があった。
【0010】
本発明は上述の問題点に鑑みて案出されたものであり、焼成時の不具合がなく、品質の良いセラミックス製品を製造するセラミック焼成体の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上述の課題を解決するために本発明のセラミックスの製造方法は、以下の(A)〜(E)の工程により焼成したことを特徴とする。
【0012】
(A)キャリアフィルム上に窒化ホウ素を30質量%以上95質量%以下含むセラミックス、溶剤、及び、バインダーからなるセラミック厚膜を印刷する工程
(B)印刷された上記セラミック厚膜を乾燥して焼成用離型シートを形成する工程
(C)上記キャリアフィルムから上記焼成用離型シートを剥離する工程
(D)剥離した上記焼成用離型シートにセラミックスを主成分とする成形体を粘着し、複数の該成形体間に上記焼成用離型シートを介在させて配置する工程
(E)(D)の工程で配置した上記焼成用離型シートと上記成形体とを同時に焼成する工程
(F)焼成された焼成体と上記焼成用離型シートとをバレル加工を行ってそれぞれ分離させ、上記焼成体より上記焼成用離型シートを除去する工程
本発明の構成によれば、印刷により厚みが一定な焼成用離型シートを成形体と粘着した
状態で配置して焼成するため、セラミック製品の厚みが均一になり、変形がなくなるととともに、成形体を配置する際の位置ずれが解消され焼成時の不良を低減することができる。また、窒化ホウ素からなる粉体が重量30%以上95質量%以下含むことが好ましい。窒化ホウ素が30質量%未満では融着防止効果が不十分となる。
【0013】
特に、セラミック厚膜の厚みが30〜500μmであることが好ましい。これにより、焼成後の焼成体間で融着を生じることがなく、また、離型シートが確実に界面上に存在するために、焼成体の外観不良を小さくできる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて詳述する。
【0016】
図1(a)〜(d)は本発明品のセラミックスの製造方法を説明する図である。具体的には、(a)はセラミック厚膜を印刷する工程を、(b)はセラミック厚膜を乾燥して焼成用離型シートを形成する工程を、(c)は焼成用離型シートを剥離する工程を、(d)は焼成用離型シートと成形体とを貼付する工程を示した。
【0017】
本発明のセラミック焼成体の製造方法は、図1(a)に示すように、まず、キリアフィルム1上に印刷機3を用いて、セラミック厚膜2を形成する。
【0018】
キャリアフィルム1は長尺状のシートが用いられ、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等が用いられる。また、キャリアフィルム1上にシリコーン樹脂等の離型剤あらかじめ塗布してもよい。印刷機3は、キャリアフィルム1上に設置され、キャリアフィルム1の離型面を上にして、スキージ30を駆動させる事により、セラミックス、溶剤、及び、バインダーからなるセラミック厚膜を印刷する。印刷する方法としては、ロールコーター法、スクリーン印刷法を利用するのが好ましい。
【0019】
セラミック粉末としては、窒化珪素、窒化アルミニウム、窒化ホウ素、アルミナ、ジルコニア、炭化珪素、珪化モリブデンなどを用いると良い。特に好ましくは窒化ホウ素を用い、その粉体が30質量%以上含むことが好ましく、さらに好ましくは50〜95質量%含まれるのが良い。窒化ホウ素が30質量%未満だと、焼成後の分離が困難になる傾向が出るからであり、9質量%よりも多くなるとセラミック厚膜の強度が不足し、取り扱いに問題が生じることとなる。
【0020】
バインダーとしては、メチルセルロース系、ブチラール系、ポリビニール系、アクリル系、などが用いられる。
【0021】
溶剤としてはメタノール、ブタノール、酢酸ブチル、トルエン、アセトン、テルピネオール、ブチルカルビトール、エラルセロソルブ、エチレングリコール、グリセリン、水などが用いられる。
【0022】
セラミック粉末とバインダーを溶剤とともに混合するには、ニーダー、攪拌機等の混合機を用いた後、3本ロールで仕上げ混合してスラリーを作製する。作製したスラリーは粘度を測定し粘度により適する印刷法を選定する。
【0023】
印刷の領域としては長尺状に印刷しても良く、また、後述する成形体の側面の面積と略同一か少し大きい面積の印刷を行う。少し大きい面積の印刷を行うことにより、焼成時の製品の熱膨張分を勘案する大きさにすることができ、焼成体の離型時のカケ不良をなくすることができるという効果がある。
【0024】
次に、図1(b)に示すようにセラミック厚膜を乾燥する。この工程は、キャリアフィルム1上に形成されたセラミック厚膜2を乾燥機4により乾燥させることでキャリアフィルム1上に焼成用離型シート20を形成する。利用する乾燥機4としては、遠赤外線乾燥機、温風乾燥機、マイクロ波乾燥機等を用いると良い。乾燥温度は100℃〜250℃で、時間は5〜15分である。乾燥処理が終了した焼成用離型シート20の表面状態としてはある程度粘着性を有している。
【0025】
ここで、焼成用離型シート20の厚みは30μm〜500μmが望ましい。焼成用離型シート20の厚みが30μmより薄いと焼成時に融着する可能性があ500μm以上になると印刷が複数回必要になりコストが増加する。
【0026】
次に、図1(c)に示すように焼成用離型シート20を剥離する。この工程は、乾燥した焼成用離型シート20を、キャリアフィルム1から剥離する工程である。キャリアフィルム1をローラ5の曲率を利用して曲げる事により、焼成用離型シート20をキャリアフィルム1から剥離する。なお、剥離を促進するために、エアで吸着または、刃物状の治具でキャリアフィルム1から掻きとる方法も用いられる。キャリアフィルム1の焼成用離型シート20が長尺の場合にはレーザー、ウータージェットなどの方法等によりカットする。
【0027】
次に、図1(d)に示すように剥離し、又はその後にカットした焼成用離型シート20にセラミックスを主成分とする成形体を粘着させて配置する。焼成しようとするセラミック製品の成形体6に焼成用離型シート20を貼り付ける。この場合、セラミック製品の成形体の表面状態は粘着力を有しており、焼成用離型シート20も粘着力を有していることから容易に粘着させることができる。
【0028】
焼成する成形体6としてはアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウム、チタン酸バリウム、チタン酸ジルコン酸鉛、タングステン、モリブデン、チタン、タンタル、ジルコニムなどの様な金属の酸化物、炭化物、窒化物、ホウ化物、または、ケイ化物等を主成分とする材料からなるものである。
【0029】
なお、このようにして成形体6を多量に一度で焼成するには、例えば、特開平9−7883号公報に示すような焼成方法により複数の成形体6間に焼成用離型シートを介在させて縦横方向に配置する。この様にして作した複数の成形体6、焼成用離型シート20を焼成炉に入れ、大気雰囲気または窒素雰囲気中で焼成する。焼成方法としては常圧焼、加圧焼、ガス圧焼方法が用いられる。
【0030】
その後、焼成された焼体と焼成用離型シートとをそれぞれ分離させ、焼成体は焼成時に用いた焼成用離型シートをバレル加工等の除去加工を行って除去することによって、セラミック製品としてのセラミック焼成体が完成する。
【0031】
【実施例】
参考例1)
まず、焼成用離型シートを作製した。窒化ホウ素粉末(水島合金鉄株式会社製平均粒径8.5μm、純度98%)50g、メチルセルロース10g、水70gを混合機にて混合した後、三本ロール混練を施し、粘度10000CPのスラリーを得た。このスラリーをスクリーン印刷方法で、キャリアフィルム上に成形体の側面の面積と同じ大きさに印刷してセラミック厚膜を形成した。なお、上記の成形体は8mm×10mm×80mmの大きさにプレスした成形体であり、原料は窒化珪素製(宇部興産株式会社 平均粒径1.0μm)を主成分とするセラミックスを用いた。
【0032】
キャリアフィルムに印刷されたセラミック厚膜を赤外線乾燥により、150℃で5分間、キャリアフィルム上で乾燥させた後、キャリアフィルムから剥離して焼成用離型シートを得た。このときの焼成用離型シートの厚みは200μmであつた。その後、成形体と焼成用離型シートとをホットプレス焼成炉用カーボン棚板上に並べ、成形体に貼り付け、ホットプレス焼成を実施した(試料3)。
【0033】
また、同時に上記と同様にして10μm、30μm、500μm、700μm(試料1、2、4、5)の厚膜も作した。このとき、キャリアフィルムからセラミック厚膜を剥離する際の不良率(%)及び焼成後に分離時の破損する不良率(%)を調べた。ここで、キャリアフィルムからセラミック厚膜を剥離する際の不良率(%)とはセラミック厚膜をスクリーン印刷後、乾燥させ、剥離する際発生する不良、例えば、厚膜欠け不良、厚膜の割れ不良、厚膜のクラック不良を不良として、不良が発生する割合を求めたものである
【0034】
また、焼成後の分離時の不良率(%)とは、焼成体同士を焼成後分離する際、製品の形状を保てず、欠けてしまったり、割れてしまったりする不良のことを不良として割合を求めたものである
【0035】
また、焼成用離型シートの材料にジルコニアを主成分とする材料とする以外は上記と同じ条件で実験を行った(試料7)。即ち、ジルコニア粉末(東ソー株式会社製 平均粒径0.1μm)70g、アクリル系バインダー30g、メタノール80gを混合機にて混合した後、三本ロール混練を施し、粘度8500Pのスラリーを作製し、このスラリーをスクリーン印刷方法でキャリアフィルム上にセラミック厚膜を形成した。この際の焼成用離型シートの厚みは200μmとした。
【0036】
比較例として、ドクターブレード法により可燃紙上にセラミック膜厚を形成する以外は試料3の作製と同様の条件で焼成用離型シートを作製した(試料6)。
【0037】
以上の結果を表1に示す。
【0038】
【表1】

Figure 0004659346
【0039】
表1から明らかなように、試料6の可燃紙を用いた焼成用離型シートはドクターブレード成形法により形成したため、セラミック厚膜の厚みがばらついてり、セラミック厚膜を剥離する際に不良が10%発生してしまい、焼成体同士を分離する際に不良が50%発生した。これ、形成されるセラミック厚膜の厚みバラツキが大きいため、焼成体を分離する際、厚みの薄いところに応力が集中してしまい、欠け不良が発生してしまったと考える。
【0040】
また、焼成用離型シートの材料が窒化ホウ素を用いたものは(試料1〜5)、キャリアフィルムからの剥離不良率(%)、焼成後の分離時の不良率(%)ともに格段に効果があることがわかる。
【0041】
さらに、焼成用離型シートの材料が窒化ホウ素を用いたもの(試料1〜5)の中でも焼成用離型シートの厚みが10μmのものを焼成に用いたものは、焼成体の分離時不良率が2%であった。これは窒化硼素が高純度で、高融点であっても使用している粒子の平均粒径が8.5μmのため、シートに粒子が1ケしか並ばない場合があり、分離の際、うまく滑らない場合があるからであると考える。これに対して、試料2〜4では、焼成用離型シートの厚みが30〜00μmであっても焼成体の分離時の不良率が0%であり、厚膜剥離時の不良率も0%であり良好な結果を示した。
【0042】
【発明の効果】
本発明の構成によれば、セラミックス製品同士が融着することなく、製品の品質を向上させることができる。
【0043】
また、焼成用離型シートと成形体とを交互に並べる際にも位置ずれが解消され、離型シートが確実に焼成体に存在するために焼成体間での融着を生じることがなく、分離時に欠けることが無く焼成体の外観不良を小さくすることが可能となる。
【図面の簡単な説明】
【図1】 (a)〜(d)は、それぞれ本発明によるセラミック焼成体の製造方法を示した工程図である。
【符号の説明】
1 ・・・キャリアフィルム
2・・・セラミック厚膜
20・・焼成用離型シート
3・・・印刷機
4・・・乾燥機
5・・・ローラ
6・・・成形体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic fired body, and more particularly to a method for manufacturing a ceramic fired body in which a large number of formed bodies are fired using a release sheet that prevents adhesion between the formed bodies. It is.
[0002]
[Prior art]
Conventionally, as a method for mass production of ceramic fired bodies molded body ceramics with large amount of firing at one time, after it manufactured create a slurry by mixing a ceramic powder and a binder, create manufactured a shaped body with a doctor blade method Then, after drying this molded body, a slurry in which high melting point ceramic coarse powder is dispersed in water is arranged between the molded bodies in a horizontal direction while spraying, and processing is performed so that the molded bodies do not adhere to each other. Then, after that, such compacts were stacked and placed in a firing furnace and fired.
[0003]
However, in this method, when applied before firing, the coarse particles are heavy and thus are selectively applied, and the fine powder is scattered far away, so that the surface roughness of the ceramic surface after firing deteriorates and is applied. There is a problem in that a low melting point compound is generated due to impurities contained in the powder and ceramics adhere to each other.
[0004]
As this defect countermeasure, the firing release sheet as described in Patent Document 1 was created Ltd., it was prepared by calcining interposed between the molded body. That is, in the release sheet for firing of Patent Document 1, a slurry made of ceramic powder made of boron nitride is applied onto combustible paper by a calender roll method, a doctor blade method or the like to form a ceramic thick film, which is then dried. the firing release sheet was created made by.
[0005]
[Patent Document 1]
Japanese Patent No. 2556518,
[0006]
[Problems to be solved by the invention]
However, the release sheet adheres to the ceramic product due to the ashing of the combustible sheet, and there is a problem that the outside of the ceramic product has to be additionally processed.
[0007]
Also, since the release sheet is formed by the calendar roll method, doctor blade method, etc., the thickness of the release sheet varies, and the release sheet interposed between the molded products varies, so the thickness when peeling the fired fired body Stress was concentrated in a thin area of the film, and cracks occurred after burning the combustible paper.
[0008]
Furthermore, since the release sheet needs to be cut according to the size of the product to be fired,
Since cutting is performed with a mold having a predetermined size, there is a difference between the cut release sheet and the product dimensions. Therefore, when the release sheet is smaller than the size of the product, there is a problem that the products are fused and cannot be released. Further, when the release sheet is larger than the size of the product, there is a problem in that the release sheet gets stuck in, for example, a printed circuit portion and inhibits sintering, thereby reducing the quality of the product.
[0009]
Also, when firing small products, misalignment is likely to occur when the release sheet is inserted between the molded products, especially when the molded product and the release sheet are arranged alternately in the lateral direction. There is a problem that the molded bodies are fused with each other.
[0010]
The present invention has been devised in view of the above-mentioned problems, and it is an object of the present invention to provide a method for manufacturing a ceramic fired body that is free from defects during firing and produces a high-quality ceramic product.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for producing a ceramic of the present invention is characterized in that it is fired by the following steps (A) to (E).
[0012]
(A) A step of printing a ceramic thick film comprising a ceramic, a solvent, and a binder containing 30% by mass to 95% by mass of boron nitride on a carrier film. (B) The printed ceramic thick film is dried and fired. (C) Step of forming a release sheet for firing (C) Step of peeling the release sheet for firing from the carrier film (D) Adhering a molded body mainly composed of ceramics to the peeled release sheet for firing. Steps (E) and (D) for placing the firing release sheet between the molded bodies of the firing step (E) and (D) for firing the firing release sheet and the shaped body at the same time (F) firing. A step of separating the fired fired body and the release sheet for firing from each other by barrel processing and removing the release sheet for firing from the fired body. Because the release sheet for firing with a constant thickness is placed and fired in a state where it is adhered to the molded body, the thickness of the ceramic product becomes uniform, there is no deformation, and displacement when placing the molded body is eliminated. In addition, defects during firing can be reduced. Moreover, it is preferable that the powder which consists of boron nitride contains 30 to 95 mass% of weight. If boron nitride is less than 30% by mass, the anti-fusing effect is insufficient.
[0013]
In particular, the thickness of the ceramic thick film is preferably 30 to 500 μm. Thereby, there is no fusion between the fired bodies after firing, and the release sheet is surely present on the interface, so that the appearance defect of the fired body can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
1 (a) to 1 (d) are diagrams for explaining a method for producing a ceramic according to the present invention. Specifically, (a) is a step of printing a ceramic thick film, (b) is a step of drying the ceramic thick film to form a release sheet for firing, and (c) is a release sheet for firing. (D) showed the process of sticking the release sheet for baking, and a molded object.
[0017]
Method for producing a ceramic sintered body of the present invention, as shown in FIG. 1 (a), first, by using a printing machine 3 on key catcher rear film 1, to form a ceramic thick 2.
[0018]
The carrier film 1 is a long sheet, such as PET (polyethylene terephthalate) or PP (polypropylene ) . Further, a release agent such as silicone resin may be applied on the carrier film 1 in advance. The printing machine 3 is installed on the carrier film 1 and drives the squeegee 30 with the release surface of the carrier film 1 facing up, thereby printing a ceramic thick film made of ceramics, a solvent, and a binder. As a printing method, it is preferable to use a roll coater method or a screen printing method.
[0019]
As the ceramic powder, silicon nitride, aluminum nitride, boron nitride, alumina, zirconia, silicon carbide, molybdenum silicide, or the like is preferably used. Particularly preferably, boron nitride is used, and the powder content is preferably 30% by mass or more, more preferably 50 to 95% by mass. That's the boron nitride is less than 30% by weight, because the separation after firing out tends to be difficult, if larger than 9 5 mass%, insufficient strength of the ceramic thick film, and a problem in handling occurs Become.
[0020]
As the binder, methyl cellulose, butyral, polyvinyl, acrylic, or the like is used.
[0021]
As the solvent, methanol, butanol, butyl acetate, toluene, acetone, terpineol, butyl carbitol, erucellosolve, ethylene glycol, glycerin, water and the like are used.
[0022]
In mixing the ceramic powder and the binder with solvent, kneader, after using the mixer stirrer or the like to prepare a slurry and finished mixed with three rolls. The prepared slurry is measured for viscosity, and a printing method suitable for the viscosity is selected.
[0023]
The printing region may be printed in a long shape, and printing is performed in an area that is approximately the same as or slightly larger than the area of the side surface of the molded body described later. By printing a little larger area, it is possible to make the size in consideration of the thermal expansion of the product at the time of firing, and there is an effect that it is possible to eliminate defective chips at the time of releasing the fired body.
[0024]
Next, the thick ceramic film is dried as shown in FIG. In this step, the ceramic thick film 2 formed on the carrier film 1 is dried by the dryer 4 to form the firing release sheet 20 on the carrier film 1. As the dryer 4 to be used, a far-infrared dryer, a warm air dryer, a microwave dryer or the like may be used. The drying temperature is 100 ° C. to 250 ° C., and the time is 5 to 15 minutes. The surface state of the baking release sheet 20 after the drying treatment has some degree of adhesiveness.
[0025]
Here, as for the thickness of the release sheet 20 for baking, 30 micrometers-500 micrometers are desirable. The thickness of the firing release sheet 20 which can cause a fused during firing and less than 30 [mu] m, greater than or equal to 500μm and printing costs requires multiple increases.
[0026]
Next, as shown in FIG.1 (c), the release sheet 20 for baking is peeled. As this engineering is a dry firing release sheet 20, a step of peeling the carrier film 1. The carrier release film 20 is peeled from the carrier film 1 by bending the carrier film 1 using the curvature of the roller 5. In order to facilitate the release, air in the adsorption or a method may be used for scraping the key catcher rear film 1 a knife-shaped jig. If firing release sheet 20 of the carrier film 1 is elongated cutting laser, by a method such as such as c O over coater jet.
[0027]
Next, as shown in FIG.1 (d), the molded object which has ceramics as a main component is adhere | attached and arrange | positioned to the release sheet 20 for baking which peeled or was cut after that. The release sheet 20 for baking is affixed on the molded product 6 of the ceramic product to be fired. In this case, the surface state of the molded product of the ceramic product has an adhesive force, and the release sheet 20 for firing also has an adhesive force, so that it can be easily adhered.
[0028]
As the molded body 6 to be fired, oxides, carbides of metals such as alumina, zirconia, silicon nitride, silicon carbide, aluminum nitride, barium titanate, lead zirconate titanate, tungsten, molybdenum, titanium, tantalum, and zirconium, It is made of a material mainly composed of nitride, boride, silicide or the like.
[0029]
In order to fire the molded body 6 in a large amount at once in this manner, for example, a firing release sheet is interposed between the plurality of molded bodies 6 by a firing method as disclosed in JP-A-9-7883. Arranged vertically and horizontally. Put plurality of shaped body 6 was made of work in this way, the firing release sheet 20 in a firing furnace, and fired in an air atmosphere or in a nitrogen atmosphere. As a firing method atmospheric pressure firing, pressurized pressure firing, gas pressure firing method is used.
[0030]
Thereafter, the fired baked formed body and firing release sheet and were each separated by sintered body of the firing release sheet is removed by performing the removal processing of the barrel finishing or the like used at the time of firing, the ceramic product The ceramic fired body is completed.
[0031]
【Example】
( Reference Example 1)
First, a release sheet for firing was prepared. After mixing 50 g of boron nitride powder (average particle diameter 8.5 μm, purity 98%, manufactured by Mizushima Alloy Iron Co., Ltd.), 10 g of methylcellulose, and 70 g of water with a mixer, three-roll kneading is performed to obtain a slurry having a viscosity of 10,000 CP. It was. This slurry was printed on the carrier film in the same size as the area of the side surface of the molded body by a screen printing method to form a thick ceramic film. In addition, said molded object was a molded object pressed to the magnitude | size of 8 mm x 10 mm x 80 mm, and the raw material used the ceramics which make a silicon nitride (Ube Industries, Ltd. average particle diameter of 1.0 micrometer) as a main component.
[0032]
The ceramic thick film printed on the carrier film was dried on the carrier film by infrared drying at 150 ° C. for 5 minutes, and then peeled from the carrier film to obtain a release sheet for firing. The thickness of the release sheet for firing at this time was 200 μm. Thereafter, the molded body and the release sheet for firing were arranged on a carbon shelf board for a hot press firing furnace, attached to the molded body, and subjected to hot press firing (Sample 3).
[0033]
Moreover, the 10 [mu] m, 30 [mu] m, 500 [mu] m, thick film is also made work of 700 .mu.m (sample 1, 2, 4, 5) in the same manner as at the same time the. At this time, the failure rate (%) when peeling the ceramic thick film from the carrier film and the failure rate (%) at the time of separation after firing were examined. Here, the failure rate at the time of peeling the ceramic thick from the carrier film (%) after screen printing the ceramic thick film, dried, generated at the time of peeling failure, for example, thick film chipping poor, thick cracking defective, the defective cracking failure of thick film, in which to determine the rate at which defects occur.
[0034]
In addition, the defect rate (%) at the time of separation after firing is defined as a failure that does not maintain the shape of the product when the fired bodies are separated after firing, and that they are chipped or broken. in which to determine the ratio.
[0035]
In addition, an experiment was performed under the same conditions as described above except that zirconia was used as the main component of the release sheet for firing (Sample 7). In other words, the zirconia powder (Tosoh average particle diameter 0.1μm, Ltd.) 70 g, was mixed with acrylic binder 30g, methanol 80g mixer, subjected to three-roll kneader, to prepare a slurry having a viscosity of 8500 c P Then, a thick ceramic film was formed on the carrier film by screen printing . Firing release sheet of the thickness of the case of this was 200μm.
[0036]
As a comparative example, a release sheet for firing was prepared under the same conditions as in the preparation of Sample 3 except that the ceramic film thickness was formed on the combustible paper by the doctor blade method (Sample 6).
[0037]
The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004659346
[0039]
As apparent from Table 1, since the firing release sheet using a combustible paper sample 6 was formed by a doctor blade molding, Ri Contact varies the thickness of the ceramic thick film, upon the release of the ceramic thick film failure will form 10% onset, failure occurred 50% in separating fired bodies. This is because the thickness variation of the formed ceramic thick film is large, so that when the fired bodies are separated, the stress is concentrated on the thin portion, resulting in chipping defects.
[0040]
In addition, when the release mold sheet for firing uses boron nitride (Samples 1 to 5), both the peeling failure rate from the carrier film (%) and the failure rate during separation after firing (%) are remarkably effective. I understand that there is.
[0041]
Further, among the materials using boron nitride as the material of the release sheet for firing (samples 1 to 5), those having a release release sheet thickness of 10 μm for firing are defective rates at the time of separation of the fired body Was 2%. This is because even if boron nitride has a high purity and a high melting point, the average particle size of the particles used is 8.5 μm, so there may be a case where only one particle is arranged on the sheet, and it slides well during separation. I think this is because there may be no cases. In contrast, in Sample 2-4, the defective rate during the separation of the firing release sheet thickness was 30~ 5 00μm be fired body is 0% and the defect rate when the thick film peeling 0 %, Indicating good results.
[0042]
【The invention's effect】
According to the structure of this invention, the quality of a product can be improved, without ceramic products adhering.
[0043]
Also, when the release sheet for firing and the molded body are alternately arranged, the positional deviation is eliminated, and the release sheet does not cause fusion between the fired bodies because the release sheet is surely present in the fired body, It is possible to reduce the appearance defect of the fired body without chipping during separation.
[Brief description of the drawings]
[1] (a) ~ (d) are process drawings showing a manufacturing method of the ceramic fired bodies according to the present invention, respectively.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Carrier film 2 ... Ceramic thick film 20 ... Release sheet 3 for baking 3 ... Printing machine 4 ... Dryer 5 ... Roller 6 ... Molded body

Claims (2)

以下の(A)〜(F)の工程により焼成したことを特徴とするセラミック焼成体の製造方法。
(A)キャリアフィルム上に窒化ホウ素を30質量%以上95質量%以下含むセラミックス、溶剤、及び、バインダーからなるセラミック厚膜を印刷する工程
(B)印刷された上記セラミック厚膜を乾燥して焼成用離型シートを形成する工程
(C)上記キャリアフィルムから上記焼成用離型シートを剥離する工程
(D)剥離した上記焼成用離型シートにセラミックスを主成分とする成形体を粘着し、複数の該成形体間に上記焼成用離型シートを介在させて配置する工程
(E)(D)の工程で配置した上記焼成用離型シートと上記成形体とを同時に焼成する工程
(F)焼成された焼成体と上記焼成用離型シートとをバレル加工を行ってそれぞれ分離させ、上記焼成体より上記焼成用離型シートを除去する工程
A method for producing a ceramic fired body, which is fired by the following steps (A) to (F).
(A) A step of printing a ceramic thick film comprising a ceramic, a solvent, and a binder containing 30% by mass to 95% by mass of boron nitride on a carrier film. (B) The printed ceramic thick film is dried and fired. (C) Step of forming a release sheet for firing (C) Step of peeling the release sheet for firing from the carrier film (D) Adhering a molded body mainly composed of ceramics to the peeled release sheet for firing. Steps (E) and (D) for placing the firing release sheet between the molded bodies of the firing step (E) and (D) for firing the firing release sheet and the shaped body at the same time (F) firing. A step of performing barrel processing to separate the fired fired body and the release sheet for firing, and removing the release sheet for firing from the fired body
上記焼成用離型シートの厚みが30〜500μmであることを特徴とする請求項1記載のセラミック焼成体の製造方法。  The method for producing a ceramic fired body according to claim 1, wherein the firing release sheet has a thickness of 30 to 500 µm.
JP2003203383A 2003-07-29 2003-07-29 Manufacturing method of ceramic fired body Expired - Fee Related JP4659346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203383A JP4659346B2 (en) 2003-07-29 2003-07-29 Manufacturing method of ceramic fired body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203383A JP4659346B2 (en) 2003-07-29 2003-07-29 Manufacturing method of ceramic fired body

Publications (2)

Publication Number Publication Date
JP2005047723A JP2005047723A (en) 2005-02-24
JP4659346B2 true JP4659346B2 (en) 2011-03-30

Family

ID=34262739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203383A Expired - Fee Related JP4659346B2 (en) 2003-07-29 2003-07-29 Manufacturing method of ceramic fired body

Country Status (1)

Country Link
JP (1) JP4659346B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671161A1 (en) 2018-12-21 2020-06-24 Exentis Knowledge GmbH Mould and method for manufacturing the same
EP3671160B1 (en) 2018-12-21 2024-07-31 Exentis Knowledge GmbH Mould and method for manufacturing the same
EP3671159B1 (en) * 2018-12-21 2022-12-21 Exentis Knowledge GmbH Body formed by an additive manufacturing method and method for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385056A (en) * 1986-09-25 1988-04-15 京セラ株式会社 Manufacture of aluminum nitride base substrate
JPS6389467A (en) * 1986-09-30 1988-04-20 京セラ株式会社 Mold release sheet for burning ceramic substrate
JPH0442865A (en) * 1990-06-07 1992-02-13 Matsushita Electric Ind Co Ltd Method for coating spreading powder for calcination of ceramic substrate
JPH05294741A (en) * 1992-04-21 1993-11-09 Nitto Denko Corp Ceramic sintering insert sheet and production of fired ceramic
JPH05330928A (en) * 1992-06-02 1993-12-14 Matsushita Electric Ind Co Ltd Sheet for firing ceramic shaped article
JPH06143219A (en) * 1992-11-10 1994-05-24 Oki Ceramic Kogyo Kk Carrier tape, manufacture of green sheet using said carrier tape and manufacture of ceramic baked body
JPH0929718A (en) * 1995-07-21 1997-02-04 Murata Mfg Co Ltd Manufacture of ceramic green sheet
JPH1134022A (en) * 1997-05-20 1999-02-09 Murata Mfg Co Ltd Device for manufacture of ceramic green sheet
JP2000272972A (en) * 1999-03-24 2000-10-03 Tdk Corp Hot pressing and production of ceramics sintered compact

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418979A (en) * 1987-07-14 1989-01-23 Denki Kagaku Kogyo Kk Sheet for mold release

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385056A (en) * 1986-09-25 1988-04-15 京セラ株式会社 Manufacture of aluminum nitride base substrate
JPS6389467A (en) * 1986-09-30 1988-04-20 京セラ株式会社 Mold release sheet for burning ceramic substrate
JPH0442865A (en) * 1990-06-07 1992-02-13 Matsushita Electric Ind Co Ltd Method for coating spreading powder for calcination of ceramic substrate
JPH05294741A (en) * 1992-04-21 1993-11-09 Nitto Denko Corp Ceramic sintering insert sheet and production of fired ceramic
JPH05330928A (en) * 1992-06-02 1993-12-14 Matsushita Electric Ind Co Ltd Sheet for firing ceramic shaped article
JPH06143219A (en) * 1992-11-10 1994-05-24 Oki Ceramic Kogyo Kk Carrier tape, manufacture of green sheet using said carrier tape and manufacture of ceramic baked body
JPH0929718A (en) * 1995-07-21 1997-02-04 Murata Mfg Co Ltd Manufacture of ceramic green sheet
JPH1134022A (en) * 1997-05-20 1999-02-09 Murata Mfg Co Ltd Device for manufacture of ceramic green sheet
JP2000272972A (en) * 1999-03-24 2000-10-03 Tdk Corp Hot pressing and production of ceramics sintered compact

Also Published As

Publication number Publication date
JP2005047723A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US6632512B1 (en) Ceramic substrate
US9650302B2 (en) Method for producing electrostatic chuck and electrostatic chuck
EP0210874B1 (en) Thin tape for dielectric materials
JP5339214B2 (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
TW201243996A (en) Method for producing electrostatic chuck and electrostatic chuck
JP4659346B2 (en) Manufacturing method of ceramic fired body
JP2006237266A (en) Manufacturing method of electronic component
KR940010095B1 (en) Method of reducing shrinkage during firing of green ceramic bodies
JP5092135B2 (en) Porous material and method for producing the same
CN1190117C (en) Method of producing ceramic multilayer substrate
JP4721742B2 (en) Manufacturing method of electronic parts
JP4726566B2 (en) Manufacturing method of electronic parts
KR20110013801A (en) Setter for manufacturing ceramic and manufacturing method thereof
JP4602592B2 (en) Unfired ceramic sheet for laminated gas sensor element and method for producing the same
JPH10167842A (en) Ceramic green sheet for restricting layer and production of ceramic substrate using that
EP3670474B1 (en) Ceramic sheet and method for manufacturing the same
JP4771819B2 (en) Manufacturing method of electronic parts
JP2020157649A (en) Sheet member and method of manufacturing ceramic substrate
JPH06132664A (en) Manufacture of ceramic multilayer board
JPH07321466A (en) Production of multilayer ceramic board
JP2005191114A (en) Ceramic green sheet and its manufacturing method
JP2024131611A (en) Silicon nitride plate and its manufacturing method
TWI231510B (en) A method for manufacturing a multi-layered unit for a multi-layered electronic component
JP2004168556A (en) Ceramic green sheet and method of manufacturing the same
JP3614878B2 (en) Manufacturing method of multilayer ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees