JP4657414B2 - Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same - Google Patents

Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same Download PDF

Info

Publication number
JP4657414B2
JP4657414B2 JP2000059678A JP2000059678A JP4657414B2 JP 4657414 B2 JP4657414 B2 JP 4657414B2 JP 2000059678 A JP2000059678 A JP 2000059678A JP 2000059678 A JP2000059678 A JP 2000059678A JP 4657414 B2 JP4657414 B2 JP 4657414B2
Authority
JP
Japan
Prior art keywords
eps
added
sample
oil
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000059678A
Other languages
Japanese (ja)
Other versions
JP2001247601A (en
Inventor
範之 岩淵
重明 原山
誠 浦井
寛 安斎
道夫 砂入
睦安 中嶋
Original Assignee
範之 岩淵
誠 浦井
寛 安斎
道夫 砂入
睦安 中嶋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 範之 岩淵, 誠 浦井, 寛 安斎, 道夫 砂入, 睦安 中嶋 filed Critical 範之 岩淵
Priority to JP2000059678A priority Critical patent/JP4657414B2/en
Publication of JP2001247601A publication Critical patent/JP2001247601A/en
Application granted granted Critical
Publication of JP4657414B2 publication Critical patent/JP4657414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ロドコッカス(Rhodococcus)属に属する細菌が生産する新規な細胞外多糖(以下、「EPS」という)及びそれを用いた海洋環境の浄化方法に関する。
【0002】
【従来の技術】
微生物の生産する細胞外構成物の代表的なものの一つとしてEPSが知られている。EPSは多くの微生物に比較的共通して見られ、微生物とそれ自身を取り巻く環境との間の相互作用に関わる重要な因子の一つとして考えられている。このEPSは、カプセル多糖(capsular polysaccharides)とスライム多糖(slimy polysaccharides)に大別される。カプセル多糖は細胞表面のリン脂質やlipid-Aに共有結合しているとされ、これとは対照的に、スライム多糖はカプセル多糖に比べその結合力は非常に弱く、細胞の外側を取り巻くように存在していると言われている。またこの両者を厳密に区別できない場合も存在する。
【0003】
EPSに関しては、以前から数多くの報告がある。特に、大腸菌のK抗原やシュードモナス(Pseudomonas)属のアルギン酸は古くから知られており、合成メカニズムや環境に対する機能について多くの報告がある。しかしながらロドコッカス属に属する細菌のEPSに関する研究は限られており、その知見は少ない。
【0004】
ロドコッカス属に属する細菌の生産するEPSでは、ロドコッカス・エクイ(Rhodococcus equi)のEPSが最もよく研究されており、その特徴は複数の構成糖が直鎖状に並んだ繰り返し単位からなる酸性高分子で、構成糖にアセタール結合したピルビン酸やエーテル結合した乳酸を含むことであるが、脂質については言及されていない。
【0005】
EPS以外の細胞外構成物に脂質が含まれている例としては、主に低分子の糖脂質が有名である。例えば、マイコバクテリウム属(Mycobacterium)に属する微生物などが生産するトレハロースダイマイコレートをはじめ、グラム陰性菌のシュードモナス属に属する細菌のrhamnolipidなど数多くのものがあり、また、大腸菌のlipid-Aに共有結合しているLPSや、グラム陽性菌のリポタイコ酸、リポグリカンなども知られている。一方、脂質を含む高分子性の細胞外構成物としては、アシネトバクター・カルコアセチカス(Acinetobacter calcoaceticus)が生産するemulsanが知られている。この物質は、糖鎖の繰り返し構造の中に脂質を含んでいる。しかし、ロドコッカス属に属する細菌の生産するEPSに多糖を骨格とした高分子性物質に脂質が含まれている例はまだ知られていない。
【0006】
【発明が解決しようとする課題】
従来、海洋での原油の流出事故に際しては、機械的、化学的処置が行われてきたが、これらだけで流出油を完全に除去することは不可能であり、また化学的処置(合成界面活性剤などの投与)による環境汚染等の二次的な汚染が問題となっている。このため、これらの方法に代わる手段としてバイオレミディエーションが検討されているが、自然の浄化力は人工的な処理に比べ速度が遅く、現在のところ有効な解決手段とはなっていない。
本発明の目的は、原油などの海洋汚染物質に対する自然の浄化力を高め、より効果的なバイオレミディエーション手段を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、ロドコッカス属に属する細菌の生産する細胞外多糖が、海洋細菌の増殖を促進することを見出し、この知見に基づき本発明を完成するに至った。
【0008】
即ち、本発明は、以下の性質を有する多糖である。
(1)ロドコッカス属に属する細菌によって生産される細胞外多糖である
(2)菌体から物理的な衝撃により細胞から遊離させることができる
(3)脂質様物質を含む
また、本発明は、上記の多糖をオイル成分で汚染された海洋環境に投与し、海洋細菌の増殖を促進することを特徴とする海洋環境の浄化方法である。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の多糖は、以下の(1)〜(3)の性質を有する。
(1)ロドコッカス属に属する細菌によって生産される細胞外多糖である。
(2)菌体から物理的な衝撃により細胞から遊離させることができる。
(3)脂質様物質を含む。
【0010】
ここで、「物理的な衝撃」は、菌体から多糖を遊離させることができるものであれば特に限定されず、このような衝撃を与えることのできる手段としては、振盪、攪拌、超音波処理、磨砕処理などの手段を例示することができる。「脂質様物質」とは、脂質の派生体または分子中に長鎖脂肪酸もしくは類似の炭化水素鎖をもつ物質の派生体を意味し、主としてパルミチン酸、ステアリン酸などの飽和脂肪酸をいう。
【0011】
また、本発明の多糖は、以下の(4)〜(6)の性質を有するものであることがより好ましい。
(4)構成中性糖及びウロン酸として、少なくとも、ラムノース、フコース、マンノース、グルコース、ガラクトース、グルクロン酸のいずれかを含む。
(5)オイル成分存在条件下において生育が阻害される微生物に対し、前記条件下における生育促進効果を有する
(6)オイル成分存在条件下において生育が阻害される微生物に対し、難揮発性炭化水素存在下における生存率上昇効果を有する。
【0012】
ここで、「オイル成分」とは、海洋汚染の原因となる原油や石油、またはこれらの流出により生成、派生した油、及び前述の油類に含まれる各種炭化水素などを意味する。「オイル成分存在条件下において生育が阻害される微生物」とは、オイル成分の存在により、著しくその生育が阻害されるような微生物をいい、例えば、ロドコッカス・ロドクラウス(Rhodococcus rhodochrous)R-1株、R-2株などがこの微生物に含まれる。「難揮発性炭化水素」とは、高分子で長鎖の直鎖状又は枝分かれした炭化水素を意味し、ヘキサデカン、テトラデカンなどの炭化水素がこれに含まれる。
【0013】
本発明の多糖は、ロドコッカス属に属する微生物を培養し、その微生物に物理的な衝撃を加えた後、培養上清を採取し、常法に従って精製することにより得られる。使用する微生物は、ロドコッカス属に属し、本発明の多糖の生産能を有するものであれば特に限定されないが、ロドコッカス・ロドクラウスに属する微生物を使用するのが好ましい。好ましい菌株としては、ロドコッカス・ロドクラウスS-1株、ロドコッカス・ロドクラウスS-2株、ロドコッカス・ロドクラウスSF-3株、ロドコッカス・ロドクラウスSM-1株、ロドコッカス・ロドクラウスATCC53968株、ロドコッカス sp.PR-4株、ロドコッカス sp PG7-2株などを例示することができる。
【0014】
本発明の多糖は、例えば、汚染された海洋環境の浄化に利用することができる。即ち、本発明の多糖を汚染された海洋環境に投与し、海洋細菌の増殖を促進することにより、海洋環境を浄化することができる。海洋環境への投与量は、汚染の状況等に応じて決めればよいが、通常は、オイル1g当たり、EPS乾燥重量で10mg〜50mg程度が適当である。
以下、実施例により本発明について具体的に説明する。もっとも、本発明はこれにより限定されるものではない。
【0015】
【実施例】
〔実施例1〕 EPSの抽出及び精製
1.1 EPSの抽出
ロドコッカス・ロドクラウスに属する菌株(S-1株、S-2株、SF-3株、SM-1株、ATCC53968株)及びロドコッカス sp.に属する菌株(PR-4株、PG7-2株)をIB寒天培地 (角型シャーレ23 cm×5 cm)に滅菌綿棒で一面に植菌し、30〜37℃で48時間以上、静置培養した。
【0016】
<IB寒天培地の組成>
グルコース 10 g
イーストエキストラクト 10 g
MgCl2・7H2O 0.2 g
CaCl2・2H2O 0.1 g
NaCl 1.0 g
FeCl2・6H2O 0.02 g
(NH4)2SO4 0.5 g
寒天 15 g
超純水 1 L
pH 7.2
角型IB寒天培地5枚分の菌体を一組として一回の操作を行った。ガラス棒で菌体を回収し、生理食塩水に懸濁し、最終的に50 mlの細胞懸濁液を得た。
【0017】
次に、REFRIGERATOR SHAKER(高崎科学機器)に細胞懸濁液入りのファルコンチューブを横向きに固定し、110 rpmで45分間、25℃で振とうした後、4℃で10分間、10000 rpm遠心分離し、上清 (菌体外成分)と沈殿 (菌体)とに分けた。その後、沈殿には25 mlの生理食塩水を加え、試験管ミキサーで充分に混合し、菌体を完全に懸濁した。この細胞懸濁液を再びREFRIGERATOR SHAKER(高崎科学機器)を用いて110 rpmで45分間、25℃で振とうした。続いて4℃で10分間、10000 rpmで遠心分離し、上清と沈殿とに分け、2つの上清を合わせて、以後の操作に用いた。また、菌体を完全に除去しきれないときは、4℃で20分間、10000 rpmでの遠心分離を繰り返し行なった。
【0018】
これらの菌体外成分を含む溶液に対し、DNase (1 mg/ml、終濃度)及びRNase (1 mg/ml、終濃度)を加え、37℃で一晩反応させた。次に、これらの溶液に対し、proteinase Kを終濃度が10 mg/mlになるように加え、37℃で2時間、反応させた。続いて、これらの溶液に対し、フェノール処理及びクロロホルム処理を行なった。サンプル溶液と等量のTris-HClで飽和させた中性フェノール溶液(pH8.0)を加え、ゆっくり転倒撹拌した後、4℃で10分間、10000 rpmで遠心分離し、先なしチップを用いて上層をゆっくり吸い上げ、新しい容器に移した。さらにこのサンプル溶液に、等量のクロロホルム溶液(クロロホルムとイソアミルアルコールを体積比24 : 1で混合したもの)を加え、ゆっくり転倒撹拌した後、4℃で20分間、10000 rpmで遠心分離し、上清を新しい容器に移した。この操作は、白い中間層がなくなるまで繰り返し行い、再度クロロホルム処理を行なった。
【0019】
これらのサンプル溶液を、5000 mlの蒸留水に対し1晩ずつ4回透析を行い、さらにこれらのサンプルを凍結乾燥して水分を完全に除去した。得られたEPSの重量を測定し、この一部をとり、滅菌蒸留水に溶解し、1 mg/mlのEPS溶液を作製した。分光光度計を用いて、この溶液の260 nm及び280 nmの波長の吸光度を測定し、核酸及びタンパク質の混入が少ないことを確認した。核酸やタンパク質の混入が多いときには、乾燥体のEPSを再び滅菌蒸留水に溶解して酵素処理をし、上述した操作を繰り返し行なった。
以上の方法により抽出された全ての菌株由来のEPSについて、分光光度計で200 nm〜400 nmの吸光度を測定した結果、核酸、蛋白質の混入がほとんど確認されなかった。
【0020】
1.2 EPSの精製
DEAE-Toyopearl650をカラム担体として用いた、陰イオン交換カラムクロマトグラフィー(25φ×200 mm)により、EPSに含まれる糖の分画を行った。各菌株のEPSサンプル40 mgを10 mM Tris Buffer(pH8.0)で終濃度が1 mg/mlになるように溶解させ、カラムに添加した。添加されたサンプルは、0 Mから1 MのNaClによる連続的勾配を用いて溶出させた。糖の溶出はフェノール-硫酸法により確認した。得られた各ピークごとの画分を集めて、滅菌蒸留水 で透析した後、凍結乾燥させて、EPS精製標品とした。
【0021】
陰イオン交換カラムクロマトグラフィーによる溶出パターンは、使用した7株全てにおいて、約0.3 MのNaClで溶出されるピークと、陰イオン交換体に吸着しない2つの小さなピークからなる、ほぼ同一の溶出パターンとなった。しかし、回収された全還元糖量のほとんどが、約0.3 MのNaClで溶出されるピークに含まれているため、EPS精製標品とした約0.3 MのNaClで溶出される多糖が、使用した7菌株の生産するEPSの主要構成多糖であると考えられた。
【0022】
〔実施例2〕 EPSの構造及び化学的性質の検討
2.1 セルロースアセテート膜電気泳動による解析
EPS精製標品と、EPSについて、各菌株ごとに泳動を行い、その移動度を比較した。泳動槽に0.2 M酢酸バリウムBufferを400 ml入れ、ろ紙(ブリッジ)を泳動槽中の0.2 M酢酸バリウムBuffer に浸し、泳動槽にセットした。あらかじめサンプルの塗布位置を鉛筆で記入した、セルロースアセテート膜を、気泡が入らないよう静かに、0.2 M酢酸バリウムBuffer に浸し、よく水分を切った後、ろ紙(ブリッジ)上に乗せた。膜幅×0.5 mAの定電流で、10分間の空通電を行った。試料1μlを1cmのバンド状に塗布し、空通電と同じ条件で5時間通電した。通電が終了したら、セルロースアセテート膜を取り出し、0.5%トルイジンブルー溶液に浸して染色し、超純水で2回脱色を行った。
【0023】
電気泳動での移動度は、使用した菌株間で若干の違いが認められたが、5時間の泳動で各株のEPSの移動度に違いが見られる程度で、著しい差異は認められなかった。したがって、陰イオン交換カラムクロマトグラフィーによる溶出パターンが、使用した全ての菌株において、ほぼ同一であったことからも、本実施例で用いた菌株が生産するEPSは、酸性多糖であり、かつ、EPS分子の電気的性質は類似しているものと考えられた。
【0024】
2.2 中性糖およびウロン酸の解析
各菌株のEPS精製標品について加水分解を行い、その構成糖をガスクロマトグラフィーで分析した。
それぞれのEPS精製標品を超純水で5 mg/mlになるよう溶解し、試験管一本当たり10 mgの試料を分注し、凍結乾燥を行った。同時に7種の中性糖(L-ラムノース、L-フコース、L-アラビノース、D-キシロース、D-マンノース、D-グルコース、D-ガラクトース)および2種のウロン酸(D-ガラクツロン酸 、D-グルクロン酸)を各1 mg/mlの濃度に調製した標準糖試料を作製し、1ml分注し、凍結乾燥した。これらの凍結乾燥したEPSサンプルと加水分解処理を行う標準糖試料に対し、氷水中で80% 冷H2SO4を0.5 ml加え、30分間氷冷した後、30℃で3時間放置した。再び氷水中で冷超純水を6.5 ml加え、100℃で2時間加熱した。その後、室温まで放冷し、0.8 g の炭酸カルシウムを加えて4℃で一晩放置し、十分に中和させた。一方で、加水分解を行わない標準糖試料も作製した。それぞれの標準糖試料に対し、冷超純水を6.5 mlおよび80%冷H2SO4を0.5 ml氷水中で順に加え混合した後、0.8 g の炭酸カルシウムを加えて4℃で一晩放置し、十分に中和させた。中和反応後、全てのサンプルを吸引ろ過し、硫酸カルシウム沈殿を除去した。これらのろ液を試験管濃縮器を用いて40℃で減圧乾固させた。
【0025】
余剰のカルシウムイオンをイオン交換樹脂Amberlite IR-120Bで除去後、これらのサンプルを超純水1 mlに溶解し、0.13 Nアンモニア水1.2 mlを加えて攪拌し、5分間放置した。次に0.2 N酢酸溶液を1 ml加えて中和した後、超純水1 mlを加え、40℃で減圧乾固させた。これらの減圧乾固したサンプルを0.2 N酢酸1 mlに溶解させ活性化させた後、0.2 N酢酸溶液に平衡化した陰イオン交換樹脂 Dowex l-X8(Acetate-type)を2.5 ml充填したミニカラムに添加した。下述した操作により中性糖とウロン酸に分離した。
【0026】
カラムを0.2 N酢酸1 mlで3回洗浄後、さらに10 mlの0.2 N酢酸をカラムに流して、樹脂に吸着しない中性糖を溶出させ中性糖画分とした。また、樹脂に吸着しているウロン酸は2 N酢酸1 mlを3回カラムに流し、樹脂から遊離させ、さらに、20 mlの2 N酢酸1 mlを流して溶出させてウロン酸画分とした。
これらの中性糖画分およびウロン酸画分を試験管濃縮器を用いて40℃で減圧乾固し、最終的に酢酸臭がしなくなるまで蒸留水3 mlを加えて減圧乾固を繰り返した。
【0027】
中性糖の還元とTFA化は以下の要領で行った。濃縮乾固した中性糖画分を0.5 mlの超純水に溶解し、0.13 Nアンモニア水を1滴加え、アルカリ性にした。その後、1%水素化ホウ素ナトリウム水溶液を0.5 ml加えて30分間室温で放置した。このサンプルに対し、活性化した陽イオン交換樹脂Amberlite IR-120 (H-type)を適量(発泡がなくなるまで)加え、4℃で一晩放置した。次に、このサンプルと陽イオン交換樹脂の混合溶液を、活性化したAmberlite IR-120を3 ml充填したミニカラムに、樹脂と共に添加、重層した。これを8 mlの超純水で3回洗浄後、ろ液を試験管濃縮器を用いて40℃で減圧乾固させた。余剰のホウ酸を除去するため、この乾固物に5 mlのメタノールを添加し、40℃で減圧乾固させる操作を3回繰り返した。尚、白色沈殿(ホウ酸ナトリウム)が残る場合は、再度Amberlite IR-120による処理を行い、ろ液を再度減圧乾固させた。この過程で得られたサンプルを五酸化二リンを入れた真空デシケーター内で乾燥させた。これらの乾燥させたサンプルに対し、0.2 mlの無水トリフルオロ酢酸(TFAA)と0.8 ml酢酸エチルを加えて軽く攪拌した後、ガスクロマトグラフィーで分析した。
【0028】
ウロン酸の還元とTMS化は以下の要領で行った。濃縮乾固したウロン酸画分を2 mlの超純水に溶解し、これに150 mgの炭酸バリウムを加え、60℃で10分間加熱してバリウム塩とした。このサンプルを吸引ろ過して残った炭酸バリウム沈殿を除去した。このろ液を試験管濃縮器を用いて40℃で減圧乾固させた。乾固物を2 mlの超純水に溶解し、0.13 Nアンモニア水を数滴加え、pH10以上に調製した後、30分間室温で放置した。ウロン酸のアルデヒド基を還元するため、このサンプルに50 mgの水素化ホウ素ナトリウムを加えて室温で1時間放置した。このサンプルに、適量(発泡がなくなるまで) の活性化した陽イオン交換樹脂Amberlite IR-120(H-type)を加え、よく攪拌して4℃で一晩放置した。pHが低下したことを確認した後、このサンプルと陽イオン交換樹脂の混合溶液を、Anberlite IR-120を3 ml充填したミニカラムに樹脂と共に添加、重層した。これを、8 mlの超純水で3回洗浄した後、ろ液を試験管濃縮器を用いて40℃で減圧乾固させた。以下、中性糖の還元とTFA化と同様の操作で、余剰のホウ酸およびホウ酸ナトリウムを除去した。
【0029】
濃縮乾固したサンプルに0.5 mlの濃塩酸を加え、ロータリーエバポレーターを用いて80℃で減圧乾固し、アルドン酸をラクトン化させた。濃縮乾固したサンプルを五酸化二リンを入れた真空デシケーター内で乾燥させた。この乾燥させたウロン酸画分に対し、0.2 ml無水ピリジンを加え、さらにTMS-HTを1 ml加えて軽く攪拌し、室温で5分間放置した後、ガスクロマトグラフィーおよびGC-MSで分析した。
【0030】
中性糖画分、及びウロン酸画分のガスクロマトグラフィーによる分析は以下の要領で行った。分析にはGC-6A、CHROMATOPAC C-R2Aを用い、キャリアーガスには窒素ガス、検出にはFIDを用いた。中性糖の分析には、DC QF-1カラムを用い、気化室、および検出器温度を200℃、カラム温度は125℃で20分間保持した。各試料1μlをマイクロシリンジで導入した。また、ウロン酸の分析には、NPGSEカラムを用い、気化室、および検出器温度を240℃、カラム温度は160℃から、毎分3℃昇温で220℃までとして、各試料1μlをマイクロシリンジで導入した。また、GC-MS分析には、GC-17A、QP5050を用い、キャリアーガスにはヘリウムガス、検出にはTICを用いた。カラムは、DB-1を用い、温度条件は、GCでの分析に従った。
【0031】
2.3 EPSに含まれる酸性物質の解析
各種菌株のEPS精製標品について加水分解を行い、酸性物質を抽出して、薄層クロマトグラフィーおよびGC-MSで分析した。
EPS精製標品を超純水に溶解し、試験管1本当りの試量が3 mgになるように分注して、凍結乾燥した。これに10%KOHを含むメタノール3 mlを加え、100℃で90分間加熱して加水分解した。冷却後、3 mlのヘキサンを加えて攪拌し、不ケン化物をヘキサン層に溶解させて除去する操作を3回繰り返した。次に、HClを適量加え、pHを酸性域(pH2)まで下げて酸性物質を遊離させた。これに3 mlのヘキサンを加えて攪拌し、遊離の酸性物質をヘキサン層に転溶させて回収する操作を3回繰り返した。無水硫酸ナトリウムを適量加えて脱水し、上清を回収後、硫酸ナトリウム沈殿をヘキサンで3回洗浄して先の上清と併せ、遠心エバポレーターで濃縮乾固した。乾固物を200μlのヘキサンに溶解し、TLCの試料とした。同様の操作を3 mgのオレイン酸について行い、標準試料とした。
【0032】
薄層クロマトグラフィーによる酸性物質の検出は以下の要領でおこなった。ヘキサン-エーテル(4:1)、クロロホルム-メタノール-水(90:10:1、または、65:25:4)それぞれを展開溶媒としたTLCで検出した。シリカゲルの薄層プレートに、サンプルをスポットする原点、および展開の終点を鉛筆で記入し、使用する各溶媒で空上げ後、105℃で30分間空焼きを行った。各試料20μlを薄層プレートにスポットし、各溶媒で展開した。検出は、まず、ヨウ素蒸気を満たした展開層に放置し、スポットを確認した後、ヨウ素を蒸発させて、60%硫酸を噴霧し、120℃で10分間加熱して、再度スポットを確認した。
【0033】
GC-MSによる酸性物質の分析は以下の要領で行った。各試料20μlを遠心エバポレーターで濃縮乾固し、50μlのメタノール-ベンゼン溶液(2:7)、1μlのトリメチルシリルジアゾメタン試薬を加え、30分間振とうした後、GC-MSの試料として用いた。GC-MS分析には、GC-17A、QP5050を用い、キャリアーガスにはヘリウムガス、検出にはTICを用いた。カラムは、DB-1を用い、気化室温度、インターフェース温度ともに300℃とし、カラム温度は150℃で2分間保持し、毎分10℃昇温で300℃までとして、各試料1μlをマイクロシリンジで導入した。糖質及び脂質の質量%は表1に示した。
【0034】
【表1】

Figure 0004657414
【0035】
EPS全体の質量を100%としたときの各成分の質量%を示した。
表1に示すように構成糖の種類、および、その存在比から、S-1、S-2のグループ、SM-1、ATCC53968のグループ、PR-4、PG7-2のグループ、そして、SF-3の、4つのパターンに分かれた。これらのEPSは全て油を可溶化することから、EPSの構成糖の種類は影響していないと考えられる。また、GC-MSでの分析の結果、全ての菌株で、飽和脂肪酸のメチルエステルと類似度の高い、2つの物質が検出された。標準物質の保持時間との比較、およびMSのパターンから、それぞれ、パルミチン酸、ステアリン酸と類似した脂質高分子化合物を含んでいる可能性が考えられる。
【0036】
2.4 EPSに含まれるピルビン酸の解析
EPS精製標品を超純水に溶解し、サンプル10 mg分をネジ口キャップ付試験管に分注して、凍結乾燥した。これに10%KOHを含む蒸留水3 mlを加え、100℃で90分間加熱して加水分解した。冷却後、3 mlのヘキサンを加えて攪拌し、不ケン化物をヘキサン層に溶解させて除去する操作を3回繰り返した。次に、HClを適量加え、pHを酸性域(pH2)まで下げて酸性物質を遊離させた。これに3 mlのヘキサンを加えて攪拌し、遊離の酸性物質をヘキサン層に転溶させて回収する操作を3回繰り返した。このサンプルに、無水硫酸ナトリウムを適量加えて脱水し、上清を回収後、硫酸ナトリウム沈殿をヘキサンで3回洗浄して先の上清と併せ、遠心エバポレーターで濃縮乾固した。この乾固物を超純水に溶解させ、1/10量のサンプルを酵素法によるピルビン酸検出の試料として使用した。検出には、ピルビン酸検出キットを用い、基本的に使用説明書通りに操作した。キュベットに、緩衝液1 ml、NADH溶液 0.1 ml、サンプル0.1 ml、蒸留水1.9 mlを加え、転倒攪拌し、25℃で3分間加温後、340 nmの吸光度を測定した。さらに、L-乳酸脱水素酵素溶液を0.02 ml加えて、転倒攪拌し、25℃で5分間加温後、再度、340 nmの吸光度を測定した。サンプルの代わりに蒸留水を加えて同様の操作を行ったブランクとサンプルそれぞれの吸光度から、ピルビン酸量を算出した。
以上の方法でEPS中のピルビン酸の検出を行ったが、どの菌株のEPSにもピルビン酸は検出されなかった。
【0037】
〔実施例3〕 他の微生物に対するEPSの影響についての検討
3-1. オイル存在下でのR-1、R-2株の生育に対するEPSの影響
S-2株のEPSを終濃度5 mg/mlになるように滅菌超純水に溶解し、このEPSがロドコッカス・ロドクラウスR-1、R-2株に対して与える影響について調べた。ロドコッカス・ロドクラウスR-1、R-2株はS-2株のコロニー形態変異株である。これらは、ラフ型のコロニーを形成し、S-2株に比べEPS生産量が極端に少ない。また、オイル存在下でその生育は極端に阻害される。
【0038】
オイル培地は以下の要領で作製した。まず、W-oilおよびAF-oilをそれぞれ1gずつバイヤル瓶に測り取った。W-oilは、アラビアンライト原油を230℃で加熱処理し、揮発成分を除いた原油由来の加熱油である。AF-oilは、アラビアンライト原油をシリカゲル(C-200)で分画した原油由来の油の1つであり、ベンゼン:nーヘキサン(1:1)溶液で溶出してきた画分である。これには、ナフタレン、フェナントレンなどの多環芳香族炭化水素が含まれる。W-oil又はAF-oilに5 mlのクロロホルムを加え、完全に溶解させた。その後、液量を測定し、試験管1本あたりのオイル量が100 mgになるように乾熱試験管に分注した。これらをドラフト内で一晩放置し、クロロホルムを気化させた。原油は予め比重を測定し、試験管1本あたりのオイル量が100 mgになるように培養直前に乾熱試験管に分注した。
【0039】
R-1、R-2株をYG液体培地(5 ml)に一白金耳摂取し、30℃で48時間、110 rpmで振盪培養した(前培養)。この培養液を50 μlとり、新しいYG液体培地(5 ml)に摂取し、再び30℃で48時間、110 rpmで振盪培養した(本培養)。この本培養液を5mlの生理食塩水で3回洗浄し、培地の成分を取り除き、再度5 mlの生理食塩水に懸濁した。この細胞懸濁液を1000倍に希釈し、希釈された細胞懸濁液を100 μlとり、10 mlのオイル培地に接種し、30℃、110 rpmで振盪培養し、経時的に100 μlずつサンプリングした。サンプリング液は、生理食塩水で適当に希釈した後、YG寒天培地に塗末し30℃で培養した。寒天培地上に生育したコロニーを計測し、菌数を求めた。結果は図1に示した。
【0040】
EPSは以下の要領で添加した。まず5 mlのYG液体培地に5 mg/mlのEPS溶液を500μlを加え、よく懸濁した。このEPSを含むYG液体培地を0.45 μmのフィルターでろ過滅菌し、滅菌試験管またはオイル試験管に加えた。以下、上述した要領で菌体を洗浄し、EPSを含むオイル培地に摂取し、30℃、110 rpmで振盪培養を行った。また、生菌数の測定も同様に行った。結果は図1に示すとおりである。
【0041】
検討した全ての条件において、EPSを添加することによって、R-1、R-2株のオイル存在下における生育は上昇した。具体的には、培養初期の生菌数の減少の割合が少なくなり、また定常期における全体の生菌数も増加した。一方で、YG培地にEPSだけを添加した場合のR-1、R-2株の生育は、EPSを添加しない場合と比べ増加していないことから、EPS自体に生育促進効果はないと考えられる。このことから、S-2株由来のEPSにはオイル存在下において、その他の微生物の生育を促進させる効果があると考えられた。
【0042】
3-2. n-ヘキサデカン感受性試験
R-1、R-2株をYG液体培地(5 ml)に一白金耳摂取し、30℃で48時間、110 rpmで振盪培養した(前培養)。この培養液を50μlとり、新しいYG液体培地(5 ml)に摂取し、再び30℃で48時間、110 rpmで振盪培養した(本培養)。この本培養液を5mlの生理食塩水で3回洗浄し、培地の成分を取り除き、再度5 mlの生理食塩水に懸濁した。この細胞懸濁液を希釈し、細胞の濃度が105 cfu/mlの懸濁液を30 ml用意した。これらを6本の乾熱試験管に5 mlずつ分注した。その後、n-ヘキサデカンをそれぞれの試験管に25、50、125、250、500μlずつ加えた。残りの試験管コントロールとして用いた。n-ヘキサデカンを加えた後の細胞懸濁液をボルテックスミキサーを用いて30秒間混合し、5秒間放置、その後再び30秒間混合した。水層と有機層が完全に分離した後、水層を1mlサンプリングした。このサンプリング液を適当に希釈した後、YG寒天培地に塗末し、30℃で培養した。生育したコロニーを計測し、n-ヘキサデカン処理後の菌数を求めた。
【0043】
コントロールの試験管はn-ヘキサデカン処理のサンプルと同じ条件でボルテックスし、適当に希釈してYG寒天培地に塗末し、30℃で培養した。生育したコロニーを計測し、n-ヘキサデカン 処理前の菌数を求めた。生存率は以下の式で求めた。結果は図2に示した。
生存率= n-ヘキサデカン処理後の菌数/ n-ヘキサデカン処理前の菌数×100
実験の結果、EPSを添加することによってR-1、R-2株の生存率は約10倍から100倍上昇した。また、R-1、R-2株以外のロドコッカス属細菌にも同様の効果があった。このことから、S-2株由来のEPSにはn‐ヘキサデカンなどの難揮発性炭化水素の毒性に対する保護効果があると考えられた。
【0044】
3-3. 天然の海洋細菌によるAF-oilの分解に対するEPSの影響
海洋細菌の分離源として岩手県釜石湾より採取した海水を用い、これに無機栄養源とAF-oilを加えてNSW-A培地を作製した。
<NSW-A培地の組成>
NSW (1L当たり)
NH4NO3 1.0 g
FeC6H5O7・nH2O 0.02 g
K2HPO4 0.02 g
天然海水 800 ml
蒸留水 200 ml
AF-oil 10 g
試験管1本当り10 mlの容量でNSW-A培地を作製し、30℃、110 rpmで振盪培養した。経時的に微生物の生育、油分の分解の解析を行った。
【0045】
微生物の生育は、各サンプルをサンプリングし、適度に滅菌海水で希釈した後、DAPI染色による直接計測法と、マリンアガーおよび1/5マリンアガーを用いたコロニー計測法で行った。結果は図3に示した。
油分の分解は、培養液および培養容器からジクロロメタンを用いて残存油分を抽出し、クロロホルムに溶解させた。このサンプルを。ガスクロマトグラフ-マススペクトルで解析した。島津製作所製のGC-MS (QP-5000)を使用し、選択イオン検出法で分析することにより残存油中の芳香族化合物を定量した。
【0046】
(分析条件)
キャピラリーカラム(DB-5,0.25mmφx30m,J&W Scientific製)
注入量 :1μl (スプリット)
注入口温度 :300℃
検出器温度 :230℃
昇温条件 :50℃(2分),50 〜 300℃(6℃/分),300℃(15分)
キャリアーガス:高純度ヘリウム
この結果は図4に示した。
【0047】
海水中の微生物の生育を直接計測法およびコロニー計測法で測定した結果、EPSを添加した場合の菌数は、無添加に比べて約10倍上昇した。また、GC-MSで残存している芳香族化合物を解析した。その残存量は約50%程度まで減少していた。
ナフタレンはEPSの有無に関わらず同程度に減少していた。これらのことから、EPSを添加することによって海水中に存在する微生物の油分分解活性を促進させることが可能となった。
【0048】
【発明の効果】
本発明は、新規な細胞外多糖を提供する。この多糖は、海洋に存在する原油等の浄化菌の増殖能及び浄化能を促進する作用をもつので、海洋汚染の浄化に利用することができる。
【図面の簡単な説明】
【図1】 EPS存在又は非存在下におけるR-1株及びR-2株の菌数の経時的変化を示す図である。
【図2】 R-1株及びR-2株のn-ヘキサデカン感受性試験の結果を示す図である。
【図3】 EPS存在又は非存在下における海洋細菌の菌数の経時的変化を示す図である。
【図4】 EPS存在又は非存在下における海洋細菌の芳香属化合物に対する分解能を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel extracellular polysaccharide (hereinafter referred to as “EPS”) produced by bacteria belonging to the genus Rhodococcus and a method for purifying the marine environment using the same.
[0002]
[Prior art]
EPS is known as one of the typical extracellular components produced by microorganisms. EPS is relatively common in many microorganisms and is considered one of the important factors involved in the interaction between microorganisms and the environment surrounding them. This EPS is roughly classified into capsule polysaccharides and slimy polysaccharides. Capsule polysaccharides are said to be covalently bound to cell surface phospholipids and lipid-A. In contrast, slime polysaccharides have a much weaker binding force than capsule polysaccharides, so that they surround the outside of cells. It is said to exist. There are also cases in which the two cannot be strictly distinguished.
[0003]
There have been many reports on EPS. In particular, the K antigen of Escherichia coli and the alginic acid of the genus Pseudomonas have been known for a long time, and there are many reports on the synthesis mechanism and the function to the environment. However, studies on EPS of bacteria belonging to the genus Rhodococcus are limited, and there are few findings.
[0004]
Among the EPS produced by bacteria belonging to the genus Rhodococcus, the EPS of Rhodococcus equi has been studied the most, characterized by an acidic polymer composed of repeating units in which multiple constituent sugars are arranged in a straight line. It contains pyruvic acid acetal-bonded to the constituent sugars and lactic acid ether-bonded, but lipids are not mentioned.
[0005]
Low-molecular glycolipids are mainly known as examples of lipids contained in extracellular components other than EPS. Examples include trehalose dimycolate produced by microorganisms belonging to the genus Mycobacterium, rhamnolipid, a gram-negative bacterium belonging to the genus Pseudomonas, and shared by lipid-A of Escherichia coli. Bound LPS, Gram-positive bacteria lipoteichoic acid, and lipoglycan are also known. On the other hand, emulsan produced by Acinetobacter calcoaceticus is known as a macromolecular extracellular component containing lipids. This substance contains a lipid in the repeating structure of the sugar chain. However, an example in which lipids are contained in a high-molecular substance having a polysaccharide backbone in EPS produced by bacteria belonging to the genus Rhodococcus has not been known yet.
[0006]
[Problems to be solved by the invention]
Conventionally, in the event of an oil spill accident in the ocean, mechanical and chemical treatments have been carried out, but these alone cannot completely remove the spilled oil, and chemical treatment (synthetic surface activity) Secondary pollution such as environmental pollution due to administration of agents is a problem. For this reason, bioremediation has been studied as an alternative to these methods, but the natural purification power is slower than artificial treatment and is not currently an effective solution.
An object of the present invention is to provide a more effective bioremediation means by enhancing natural purification power against marine pollutants such as crude oil.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that an extracellular polysaccharide produced by a bacterium belonging to the genus Rhodococcus promotes the growth of marine bacteria. It came to be completed.
[0008]
That is, the present invention is a polysaccharide having the following properties.
(1) An extracellular polysaccharide produced by bacteria belonging to the genus Rhodococcus
(2) It can be released from cells by physical impact from cells
(3) Contains lipid-like substances
In addition, the present invention is a method for purifying a marine environment, characterized in that the polysaccharide is administered to a marine environment contaminated with an oil component to promote the growth of marine bacteria.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The polysaccharide of the present invention has the following properties (1) to (3).
(1) An extracellular polysaccharide produced by bacteria belonging to the genus Rhodococcus.
(2) The cells can be released from the cells by physical impact.
(3) Contains a lipid-like substance.
[0010]
Here, the “physical impact” is not particularly limited as long as the polysaccharide can be released from the bacterial cells, and means capable of giving such an impact include shaking, stirring, and ultrasonic treatment. Means such as grinding treatment can be exemplified. The “lipid-like substance” means a derivative of a lipid or a derivative of a substance having a long chain fatty acid or a similar hydrocarbon chain in a molecule, and mainly refers to a saturated fatty acid such as palmitic acid or stearic acid.
[0011]
Moreover, it is more preferable that the polysaccharide of the present invention has the following properties (4) to (6).
(4) Constituent neutral sugar and uronic acid include at least one of rhamnose, fucose, mannose, glucose, galactose, and glucuronic acid.
(5) It has a growth promoting effect under the above conditions against microorganisms whose growth is inhibited under the conditions of oil components.
(6) It has an effect of increasing the survival rate in the presence of hardly volatile hydrocarbons against microorganisms whose growth is inhibited under the conditions of oil component presence.
[0012]
Here, the “oil component” means crude oil or petroleum that causes marine pollution, oil that is generated or derived from such spillage, and various hydrocarbons contained in the aforementioned oils. The “microorganism whose growth is inhibited under the presence of oil component” refers to a microorganism whose growth is remarkably inhibited by the presence of the oil component, for example, Rhodococcus rhodochrous R-1 strain, R-2 strains are included in this microorganism. The “non-volatile hydrocarbon” means a long-chain, linear or branched hydrocarbon that is a polymer, and includes hydrocarbons such as hexadecane and tetradecane.
[0013]
The polysaccharide of the present invention can be obtained by culturing a microorganism belonging to the genus Rhodococcus, applying a physical impact to the microorganism, collecting the culture supernatant, and purifying it according to a conventional method. The microorganism to be used is not particularly limited as long as it belongs to the genus Rhodococcus and has the ability to produce the polysaccharide of the present invention, but a microorganism belonging to Rhodococcus rhodochrous is preferably used. Preferred strains include Rhodococcus rhodochrous S-1 strain, Rhodococcus rhodochrous S-2 strain, Rhodococcus rhodochrous SF-3 strain, Rhodococcus rhodochrous SM-1 strain, Rhodococcus rhodochrous ATCC 53968 strain, Rhodococcus sp.PR-4 strain And Rhodococcus sp PG7-2 strain.
[0014]
The polysaccharide of the present invention can be used, for example, to purify a contaminated marine environment. That is, the marine environment can be purified by administering the polysaccharide of the present invention to a contaminated marine environment and promoting the growth of marine bacteria. The dose to the marine environment may be determined according to the state of contamination, etc., but usually about 10 mg to 50 mg in terms of EPS dry weight per gram of oil is appropriate.
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited thereby.
[0015]
【Example】
[Example 1] Extraction and purification of EPS
1.1 Extraction of EPS
Strains belonging to Rhodococcus rhodochrous (S-1 strain, S-2 strain, SF-3 strain, SM-1 strain, ATCC53968 strain) and strains belonging to Rhodococcus sp. (PR-4 strain, PG7-2 strain) Agar medium (square petri dish 23 cm × 5 cm) was inoculated with a sterile cotton swab and statically cultured at 30 to 37 ° C. for 48 hours or longer.
[0016]
<Composition of IB agar medium>
Glucose 10 g
Yeast extract 10 g
MgCl 2 ・ 7H 2 O 0.2 g
CaCl 2 ・ 2H 2 O 0.1 g
NaCl 1.0 g
FeCl 2 ・ 6H 2 O 0.02 g
(NH Four ) 2 SO Four 0.5 g
Agar 15 g
Ultrapure water 1 L
pH 7.2
One operation was carried out using 5 cells of square IB agar medium as a set. The cells were collected with a glass rod, suspended in physiological saline, and finally 50 ml of cell suspension was obtained.
[0017]
Next, fix the Falcon tube containing the cell suspension to the REFRIGERATOR SHAKER (Takasaki Scientific Instruments) sideways, shake at 110 rpm for 45 minutes at 25 ° C, and then centrifuge at 10000 rpm for 10 minutes at 4 ° C. The supernatant (extracellular component) and the precipitate (microbe) were separated. Thereafter, 25 ml of physiological saline was added to the precipitate and mixed well with a test tube mixer to completely suspend the cells. This cell suspension was again shaken at 110 rpm for 45 minutes at 25 ° C. using a REFRIGERATOR SHAKER (Takasaki Scientific Instruments). Subsequently, the mixture was centrifuged at 10000 rpm for 10 minutes at 4 ° C., divided into a supernatant and a precipitate, and the two supernatants were combined and used for the subsequent operations. When the cells could not be completely removed, centrifugation was repeated at 10000 rpm for 20 minutes at 4 ° C.
[0018]
DNase (1 mg / ml, final concentration) and RNase (1 mg / ml, final concentration) were added to the solution containing these extracellular components and allowed to react overnight at 37 ° C. Next, proteinase K was added to these solutions to a final concentration of 10 mg / ml and reacted at 37 ° C. for 2 hours. Subsequently, phenol treatment and chloroform treatment were performed on these solutions. Add a neutral phenol solution (pH 8.0) saturated with the same amount of Tris-HCl as the sample solution, slowly invert and stir, then centrifuge at 10000 rpm for 10 minutes at 4 ° C, and use a tipless tip. The upper layer was sucked up slowly and transferred to a new container. Furthermore, after adding an equal volume of chloroform solution (mixed chloroform and isoamyl alcohol at a volume ratio of 24: 1) to this sample solution, stirring slowly by inversion, and then centrifuging at 10000 rpm for 20 minutes at 4 ° C. Kiyo moved to a new container. This operation was repeated until the white intermediate layer disappeared, and chloroform treatment was performed again.
[0019]
These sample solutions were dialyzed four times overnight against 5000 ml of distilled water, and these samples were freeze-dried to completely remove moisture. The obtained EPS was weighed, and a portion thereof was taken and dissolved in sterilized distilled water to prepare a 1 mg / ml EPS solution. The absorbance at wavelengths of 260 nm and 280 nm of this solution was measured using a spectrophotometer, and it was confirmed that there was little contamination with nucleic acids and proteins. When there was much contamination with nucleic acid or protein, EPS in the dried form was dissolved again in sterilized distilled water and subjected to enzyme treatment, and the above operation was repeated.
As for the EPS derived from all the strains extracted by the above method, the absorbance at 200 nm to 400 nm was measured with a spectrophotometer, and as a result, contamination with nucleic acid and protein was hardly confirmed.
[0020]
1.2 Purification of EPS
Fractionation of sugar contained in EPS was performed by anion exchange column chromatography (25φ × 200 mm) using DEAE-Toyopearl650 as a column carrier. A 40 mg EPS sample of each strain was dissolved in 10 mM Tris Buffer (pH 8.0) to a final concentration of 1 mg / ml and added to the column. The added sample was eluted using a continuous gradient from 0 M to 1 M NaCl. The elution of sugar was confirmed by the phenol-sulfuric acid method. The fractions obtained for each peak were collected, dialyzed with sterilized distilled water, and freeze-dried to obtain an EPS purified sample.
[0021]
The elution pattern by anion exchange column chromatography shows almost the same elution pattern consisting of a peak eluting at about 0.3 M NaCl and two small peaks not adsorbed on the anion exchanger in all seven strains used. became. However, since most of the total amount of reducing sugar recovered was contained in the peak eluted at about 0.3 M NaCl, the polysaccharide purified by about 0.3 M NaCl used as the EPS purified sample was used. It was thought to be the main constituent polysaccharide of EPS produced by 7 strains.
[0022]
[Example 2] Examination of structure and chemical properties of EPS
2.1 Analysis by cellulose acetate membrane electrophoresis
The purified EPS sample and EPS were migrated for each strain, and their mobility was compared. 400 ml of 0.2 M barium acetate buffer was placed in the electrophoresis tank, and the filter paper (bridge) was immersed in 0.2 M barium acetate buffer in the electrophoresis tank and set in the electrophoresis tank. The cellulose acetate membrane, in which the application position of the sample was entered with a pencil in advance, was gently immersed in 0.2 M barium acetate buffer so that air bubbles would not enter, and after removing water well, it was placed on a filter paper (bridge). Air energization was performed for 10 minutes at a constant current of membrane width × 0.5 mA. 1 μl of the sample was applied in a band of 1 cm, and energized for 5 hours under the same conditions as for energization. When energization was completed, the cellulose acetate membrane was taken out, dyed by immersion in a 0.5% toluidine blue solution, and decolorized twice with ultrapure water.
[0023]
The mobility in electrophoresis was slightly different between the strains used, but no significant difference was observed in the extent that there was a difference in the mobility of EPS in each strain after 5 hours of electrophoresis. Therefore, since the elution pattern by anion exchange column chromatography was almost the same in all the strains used, the EPS produced by the strain used in this example is an acidic polysaccharide and EPS. The electrical properties of the molecules were considered similar.
[0024]
2.2 Analysis of neutral sugars and uronic acids
The EPS purified sample of each strain was hydrolyzed and its constituent sugars were analyzed by gas chromatography.
Each EPS purified sample was dissolved in ultrapure water to 5 mg / ml, and 10 mg sample was dispensed per test tube, and freeze-dried. At the same time, seven neutral sugars (L-rhamnose, L-fucose, L-arabinose, D-xylose, D-mannose, D-glucose, D-galactose) and two uronic acids (D-galacturonic acid, D- Glucuronic acid) was prepared at a concentration of 1 mg / ml, and a standard sugar sample was prepared, dispensed at 1 ml, and lyophilized. Compare these freeze-dried EPS samples and standard sugar samples to be hydrolyzed to 80% cold H in ice water. 2 SO Four 0.5 ml was added and the mixture was cooled on ice for 30 minutes and then allowed to stand at 30 ° C. for 3 hours. Again 6.5 ml of cold ultrapure water was added in ice water and heated at 100 ° C. for 2 hours. Thereafter, the mixture was allowed to cool to room temperature, 0.8 g of calcium carbonate was added, and the mixture was allowed to stand at 4 ° C. overnight to be sufficiently neutralized. On the other hand, a standard sugar sample without hydrolysis was also prepared. For each standard sugar sample, 6.5 ml of cold ultrapure water and 80% cold H 2 SO Four Were added in order in 0.5 ml ice water and mixed, then 0.8 g of calcium carbonate was added and left at 4 ° C. overnight to fully neutralize. After the neutralization reaction, all the samples were suction filtered to remove calcium sulfate precipitate. These filtrates were dried under reduced pressure at 40 ° C. using a test tube concentrator.
[0025]
After removing excess calcium ions with the ion exchange resin Amberlite IR-120B, these samples were dissolved in 1 ml of ultrapure water, added with 1.2 ml of 0.13 N aqueous ammonia and stirred for 5 minutes. Next, 1 ml of 0.2 N acetic acid solution was added for neutralization, and then 1 ml of ultrapure water was added, followed by drying at 40 ° C. under reduced pressure. These vacuum-dried samples were dissolved in 1 ml of 0.2 N acetic acid and activated, and then applied to a minicolumn packed with 2.5 ml of an anion exchange resin Dowex l-X8 (Acetate-type) equilibrated in 0.2 N acetic acid solution. Added. It was separated into neutral sugar and uronic acid by the procedure described below.
[0026]
The column was washed 3 times with 1 ml of 0.2 N acetic acid, and further 10 ml of 0.2 N acetic acid was passed through the column to elute neutral sugars that were not adsorbed on the resin to obtain a neutral sugar fraction. Also, uronic acid adsorbed on the resin was eluted with 3 ml of 2 N acetic acid flowing through the column three times, released from the resin, and further eluted with 1 ml of 20 ml of 2 N acetic acid. .
These neutral sugar fractions and uronic acid fractions were dried under reduced pressure at 40 ° C using a test tube concentrator, and finally 3 ml of distilled water was added until the odor of acetic acid disappeared, followed by repeated drying under reduced pressure. .
[0027]
Neutral sugar reduction and TFA were carried out as follows. The neutral sugar fraction concentrated and dried was dissolved in 0.5 ml of ultrapure water, and a drop of 0.13 N aqueous ammonia was added to make it alkaline. Thereafter, 0.5 ml of 1% aqueous sodium borohydride solution was added and left at room temperature for 30 minutes. To this sample, an appropriate amount of activated cation exchange resin Amberlite IR-120 (H-type) was added (until foaming disappeared), and the mixture was allowed to stand at 4 ° C. overnight. Next, the mixed solution of the sample and the cation exchange resin was added to the minicolumn packed with 3 ml of activated Amberlite IR-120 together with the resin and layered. This was washed three times with 8 ml of ultrapure water, and the filtrate was dried under reduced pressure at 40 ° C. using a test tube concentrator. In order to remove excess boric acid, the operation of adding 5 ml of methanol to the dried product and drying at 40 ° C. under reduced pressure was repeated three times. When white precipitate (sodium borate) remained, the treatment with Amberlite IR-120 was performed again, and the filtrate was again dried under reduced pressure. The sample obtained in this process was dried in a vacuum desiccator containing diphosphorus pentoxide. To these dried samples, 0.2 ml of trifluoroacetic anhydride (TFAA) and 0.8 ml of ethyl acetate were added and stirred gently, and then analyzed by gas chromatography.
[0028]
Reduction of uronic acid and conversion to TMS were performed as follows. The concentrated and solidified uronic acid fraction was dissolved in 2 ml of ultrapure water, 150 mg of barium carbonate was added thereto, and the mixture was heated at 60 ° C. for 10 minutes to obtain a barium salt. The sample was suction filtered to remove the remaining barium carbonate precipitate. The filtrate was dried under reduced pressure at 40 ° C. using a test tube concentrator. The dried product was dissolved in 2 ml of ultrapure water, a few drops of 0.13 N ammonia water was added to adjust the pH to 10 or more, and then allowed to stand at room temperature for 30 minutes. In order to reduce the aldehyde group of uronic acid, 50 mg of sodium borohydride was added to this sample and left at room temperature for 1 hour. To this sample, an appropriate amount (until no foaming) of the activated cation exchange resin Amberlite IR-120 (H-type) was added, and the mixture was well stirred and left at 4 ° C. overnight. After confirming that the pH was lowered, the mixed solution of this sample and the cation exchange resin was added to the minicolumn packed with 3 ml of Anberlite IR-120 together with the resin and layered. This was washed three times with 8 ml of ultrapure water, and the filtrate was dried under reduced pressure at 40 ° C. using a test tube concentrator. Thereafter, excess boric acid and sodium borate were removed by the same operations as neutral sugar reduction and TFA conversion.
[0029]
0.5 ml of concentrated hydrochloric acid was added to the concentrated and dried sample, and it was dried under reduced pressure at 80 ° C. using a rotary evaporator to lactone the aldonic acid. The concentrated and dried sample was dried in a vacuum desiccator containing diphosphorus pentoxide. To this dried uronic acid fraction, 0.2 ml of anhydrous pyridine was added, 1 ml of TMS-HT was further added, and the mixture was gently stirred, allowed to stand at room temperature for 5 minutes, and then analyzed by gas chromatography and GC-MS.
[0030]
The neutral sugar fraction and the uronic acid fraction were analyzed by gas chromatography in the following manner. GC-6A and CHROMATOPAC C-R2A were used for analysis, nitrogen gas was used for the carrier gas, and FID was used for detection. For the analysis of neutral sugars, a DC QF-1 column was used, and the vaporization chamber and detector temperature were maintained at 200 ° C. and the column temperature was maintained at 125 ° C. for 20 minutes. 1 μl of each sample was introduced with a microsyringe. For analysis of uronic acid, an NPGSE column was used, the vaporization chamber and detector temperature was 240 ° C, the column temperature was increased from 160 ° C to 220 ° C at 3 ° C per minute, and 1 µl of each sample was microsyringe. Introduced in. In addition, GC-17A and QP5050 were used for GC-MS analysis, helium gas was used for carrier gas, and TIC was used for detection. DB-1 was used as the column, and the temperature conditions were in accordance with GC analysis.
[0031]
2.3 Analysis of acidic substances in EPS
EPS purified samples of various strains were hydrolyzed, acidic substances were extracted, and analyzed by thin layer chromatography and GC-MS.
The EPS purified sample was dissolved in ultrapure water, dispensed so that the test amount per test tube was 3 mg, and freeze-dried. To this, 3 ml of methanol containing 10% KOH was added and hydrolyzed by heating at 100 ° C. for 90 minutes. After cooling, 3 ml of hexane was added and stirred, and the operation of dissolving and removing the unsaponified product in the hexane layer was repeated three times. Next, an appropriate amount of HCl was added, and the pH was lowered to the acidic range (pH 2) to release the acidic substance. To this, 3 ml of hexane was added and stirred, and the operation of recovering the free acidic substance by transferring it to the hexane layer was repeated three times. An appropriate amount of anhydrous sodium sulfate was added for dehydration, and the supernatant was collected. The sodium sulfate precipitate was washed three times with hexane, combined with the previous supernatant, and concentrated to dryness with a centrifugal evaporator. The dried product was dissolved in 200 μl of hexane to prepare a TLC sample. The same operation was performed on 3 mg of oleic acid to obtain a standard sample.
[0032]
Detection of acidic substances by thin layer chromatography was performed as follows. Detection was performed by TLC using hexane-ether (4: 1) and chloroform-methanol-water (90: 10: 1, or 65: 25: 4) as developing solvents. The starting point for spotting the sample and the end point of the development were written on a thin layer plate of silica gel with a pencil, and after emptied with each solvent used, baked at 105 ° C. for 30 minutes. 20 μl of each sample was spotted on a thin plate and developed with each solvent. In the detection, first, the sample was left in a developing layer filled with iodine vapor to confirm the spot, then the iodine was evaporated, 60% sulfuric acid was sprayed, heated at 120 ° C. for 10 minutes, and the spot was confirmed again.
[0033]
Analysis of acidic substances by GC-MS was performed as follows. 20 μl of each sample was concentrated and dried with a centrifugal evaporator, 50 μl of a methanol-benzene solution (2: 7) and 1 μl of trimethylsilyldiazomethane reagent were added, and the mixture was shaken for 30 minutes, and then used as a sample for GC-MS. For GC-MS analysis, GC-17A and QP5050 were used, the carrier gas was helium gas, and TIC was used for detection. DB-1 is used as the column, the vaporization chamber temperature and the interface temperature are both 300 ° C, the column temperature is held at 150 ° C for 2 minutes, the temperature is raised to 10 ° C per minute up to 300 ° C, and 1 μl of each sample is transferred with a microsyringe. Introduced. The mass% of saccharides and lipids are shown in Table 1.
[0034]
[Table 1]
Figure 0004657414
[0035]
The mass% of each component when the mass of the entire EPS is 100% is shown.
As shown in Table 1, from the types of constituent sugars and their abundance, S-1, S-2 group, SM-1, ATCC53968 group, PR-4, PG7-2 group, and SF- Divided into 4 patterns. Since all of these EPS solubilize oil, it is considered that the types of constituent sugars in EPS do not affect. As a result of analysis by GC-MS, two substances having high similarity to methyl esters of saturated fatty acids were detected in all strains. From the comparison with the retention time of the standard substance and the MS pattern, there is a possibility that the polymer contains a lipid polymer compound similar to palmitic acid and stearic acid, respectively.
[0036]
2.4 Analysis of pyruvic acid in EPS
The EPS purified sample was dissolved in ultrapure water, and a 10 mg sample was dispensed into a test tube with a screw cap and freeze-dried. 3 ml of distilled water containing 10% KOH was added thereto, and the mixture was hydrolyzed by heating at 100 ° C. for 90 minutes. After cooling, 3 ml of hexane was added and stirred, and the operation of dissolving and removing the unsaponified product in the hexane layer was repeated three times. Next, an appropriate amount of HCl was added, and the pH was lowered to the acidic range (pH 2) to release the acidic substance. To this, 3 ml of hexane was added and stirred, and the operation of recovering the free acidic substance by transferring it to the hexane layer was repeated three times. An appropriate amount of anhydrous sodium sulfate was added to this sample for dehydration, and the supernatant was recovered. The sodium sulfate precipitate was washed three times with hexane, combined with the previous supernatant, and concentrated to dryness with a centrifugal evaporator. This dried product was dissolved in ultrapure water, and a 1/10 volume sample was used as a sample for detecting pyruvic acid by the enzymatic method. For detection, a pyruvate detection kit was used and basically operated according to the instruction manual. To the cuvette, 1 ml of buffer solution, 0.1 ml of NADH solution, 0.1 ml of sample and 1.9 ml of distilled water were added, stirred by inversion, heated at 25 ° C. for 3 minutes, and the absorbance at 340 nm was measured. Further, 0.02 ml of an L-lactic acid dehydrogenase solution was added, and the mixture was stirred by inversion. After heating at 25 ° C. for 5 minutes, the absorbance at 340 nm was measured again. The amount of pyruvic acid was calculated from the absorbance of each of the blank and the sample which were subjected to the same operation by adding distilled water instead of the sample.
Although the pyruvic acid in EPS was detected by the above method, pyruvic acid was not detected in EPS of any strain.
[0037]
[Example 3] Examination of the effect of EPS on other microorganisms
3-1. Effect of EPS on the growth of R-1 and R-2 strains in the presence of oil
EPS of S-2 strain was dissolved in sterile ultrapure water to a final concentration of 5 mg / ml, and the effect of this EPS on Rhodococcus rhodochrous R-1 and R-2 strains was examined. Rhodococcus rhodochrous R-1 and R-2 strains are colony morphology mutants of the S-2 strain. These form rough colonies and produce extremely little EPS compared to the S-2 strain. In addition, its growth is extremely inhibited in the presence of oil.
[0038]
The oil medium was prepared as follows. First, 1 g each of W-oil and AF-oil was measured in a vial. W-oil is a heating oil derived from crude oil obtained by heat-treating Arabian light crude oil at 230 ° C and removing volatile components. AF-oil is one of oils derived from crude oil obtained by fractionating Arabian light crude oil with silica gel (C-200), and is a fraction eluted with a benzene: n-hexane (1: 1) solution. This includes polycyclic aromatic hydrocarbons such as naphthalene and phenanthrene. 5 ml of chloroform was added to W-oil or AF-oil and completely dissolved. Thereafter, the liquid volume was measured and dispensed into dry heat test tubes so that the amount of oil per test tube was 100 mg. These were left overnight in a fume hood to evaporate chloroform. Crude oil was measured for specific gravity in advance and dispensed into a dry heat test tube immediately before cultivation so that the amount of oil per test tube was 100 mg.
[0039]
One platinum loop of the R-1 and R-2 strains was ingested into a YG liquid medium (5 ml) and cultured at 30 ° C. for 48 hours with shaking at 110 rpm (preculture). 50 μl of this culture broth was taken into a new YG liquid medium (5 ml), and again cultured at 30 ° C. for 48 hours with shaking at 110 rpm (main culture). This main culture was washed 3 times with 5 ml of physiological saline, the components of the medium were removed, and suspended again in 5 ml of physiological saline. Dilute the cell suspension 1000 times, take 100 μl of the diluted cell suspension, inoculate into 10 ml of oil medium, incubate at 30 ° C and 110 rpm, and sample 100 μl over time. did. The sampling solution was appropriately diluted with physiological saline, spread on a YG agar medium, and cultured at 30 ° C. Colonies that grew on the agar medium were counted to determine the number of bacteria. The results are shown in FIG.
[0040]
EPS was added as follows. First, 500 μl of 5 mg / ml EPS solution was added to 5 ml YG liquid medium and well suspended. The YG liquid medium containing EPS was sterilized by filtration through a 0.45 μm filter and added to a sterilized test tube or an oil test tube. Thereafter, the cells were washed as described above, taken into an oil medium containing EPS, and subjected to shaking culture at 30 ° C. and 110 rpm. The number of viable bacteria was also measured in the same manner. The results are as shown in FIG.
[0041]
Under all conditions examined, the growth of R-1 and R-2 strains in the presence of oil increased with the addition of EPS. Specifically, the rate of decrease in the number of viable bacteria at the initial stage of culture decreased, and the total number of viable bacteria in the stationary phase also increased. On the other hand, the growth of R-1 and R-2 strains when only EPS is added to the YG medium is not increased compared to the case where EPS is not added, so it is considered that EPS itself has no growth promoting effect. . This suggests that EPS derived from S-2 strain has the effect of promoting the growth of other microorganisms in the presence of oil.
[0042]
3-2. N-Hexadecane sensitivity test
One platinum loop of the R-1 and R-2 strains was ingested into a YG liquid medium (5 ml) and cultured at 30 ° C. for 48 hours with shaking at 110 rpm (preculture). 50 μl of this culture solution was taken and taken into a new YG liquid medium (5 ml), and again cultured at 30 ° C. for 48 hours with shaking at 110 rpm (main culture). This main culture was washed 3 times with 5 ml of physiological saline, the components of the medium were removed, and suspended again in 5 ml of physiological saline. Dilute the cell suspension to a cell concentration of 10 Five 30 ml of a cfu / ml suspension was prepared. These were dispensed in 5 ml aliquots into six dry heat test tubes. Thereafter, 25, 50, 125, 250, and 500 μl of n-hexadecane were added to each test tube. Used as remaining tube control. The cell suspension after adding n-hexadecane was mixed for 30 seconds using a vortex mixer, allowed to stand for 5 seconds, and then mixed again for 30 seconds. After the aqueous layer and the organic layer were completely separated, 1 ml of the aqueous layer was sampled. This sampling solution was appropriately diluted, spread on a YG agar medium, and cultured at 30 ° C. The grown colonies were counted, and the number of bacteria after n-hexadecane treatment was determined.
[0043]
The control test tube was vortexed under the same conditions as the n-hexadecane-treated sample, diluted appropriately, spread on a YG agar medium, and cultured at 30 ° C. The grown colonies were counted and the number of bacteria before n-hexadecane treatment was determined. The survival rate was calculated by the following formula. The results are shown in FIG.
Viability = Number of bacteria after n-hexadecane treatment / Number of bacteria before n-hexadecane treatment x 100
As a result of experiments, the addition of EPS increased the survival rate of R-1 and R-2 strains by about 10 to 100 times. In addition, Rhodococcus bacteria other than R-1 and R-2 strains had the same effect. From this, it was considered that EPS derived from S-2 strain has a protective effect against the toxicity of hardly volatile hydrocarbons such as n-hexadecane.
[0044]
3-3. Effect of EPS on degradation of AF-oil by natural marine bacteria
Seawater collected from Kamaishi Bay, Iwate Prefecture, was used as an isolation source for marine bacteria, and an NSW-A medium was prepared by adding inorganic nutrients and AF-oil.
<Composition of NSW-A medium>
NSW (per 1L)
NH Four NO Three 1.0 g
FeC 6 H Five O 7 ・ NH 2 O 0.02 g
K 2 HPO Four 0.02 g
Natural sea water 800 ml
Distilled water 200 ml
AF-oil 10 g
NSW-A medium was prepared in a volume of 10 ml per test tube, and cultured with shaking at 30 ° C. and 110 rpm. The growth of microorganisms and the degradation of oil were analyzed over time.
[0045]
The growth of microorganisms was performed by sampling each sample, appropriately diluting with sterilized seawater, and then directly measuring by DAPI staining and colony counting using marine agar and 1/5 marine agar. The results are shown in FIG.
For decomposition of the oil, the remaining oil was extracted from the culture solution and the culture vessel using dichloromethane and dissolved in chloroform. This sample. Analysis was performed by gas chromatography-mass spectrum. Aromatic compounds in the residual oil were quantified by analyzing by selective ion detection using GC-MS (QP-5000) manufactured by Shimadzu Corporation.
[0046]
(Analysis conditions)
Capillary column (DB-5, 0.25mmφx30m, manufactured by J & W Scientific)
Injection volume: 1 μl (split)
Inlet temperature: 300 ° C
Detector temperature: 230 ° C
Temperature rising conditions: 50 ° C (2 minutes), 50-300 ° C (6 ° C / min), 300 ° C (15 minutes)
Carrier gas: high purity helium
The results are shown in FIG.
[0047]
As a result of measuring the growth of microorganisms in seawater by the direct measurement method and the colony measurement method, the number of bacteria when EPS was added increased by about 10 times compared to the case where EPS was not added. In addition, the remaining aromatic compounds were analyzed by GC-MS. The remaining amount was reduced to about 50%.
Naphthalene decreased to the same extent with or without EPS. From these facts, it became possible to promote the oil decomposition activity of microorganisms present in seawater by adding EPS.
[0048]
【The invention's effect】
The present invention provides a novel extracellular polysaccharide. Since this polysaccharide has an action of promoting the growth ability and purification ability of purification bacteria such as crude oil existing in the ocean, it can be used for purification of marine pollution.
[Brief description of the drawings]
FIG. 1 is a graph showing changes over time in the numbers of R-1 and R-2 strains in the presence or absence of EPS.
FIG. 2 is a diagram showing the results of n-hexadecane sensitivity tests of R-1 and R-2 strains.
FIG. 3 is a graph showing the change over time in the number of marine bacteria in the presence or absence of EPS.
FIG. 4 is a diagram showing the resolution of marine bacteria to aromatic compounds in the presence or absence of EPS.

Claims (3)

ロドコッカス・ロドクラウスに属する微生物によって生産される細胞外多糖であって、菌体から物理的な衝撃により細胞から遊離させられた、脂質様物質を含む前記細胞外多糖を有効成分として含む海洋環境の浄化剤 Purification of the marine environment, which is an extracellular polysaccharide produced by a microorganism belonging to Rhodococcus rhodochrous and contains the above-mentioned extracellular polysaccharide containing a lipid-like substance released from the cell by physical impact from the microbial cells as an active ingredient Agent . ロドコッカス・ロドクラウスに属する微生物によって生産される細胞外多糖であって、菌体から物理的な衝撃により細胞から遊離させられた、脂質様物質を含む前記細胞外多糖を有効成分として含む油可溶化剤 An extracellular polysaccharide produced by a microorganism belonging to Rhodococcus rhodochrous and comprising the extracellular polysaccharide containing a lipid-like substance as an active ingredient, which is released from the cell by physical impact from the microbial cell. . 請求項1に記載の海洋環境の浄化剤をオイル成分で汚染された海洋環境に投与し、海洋細菌の増殖を促進することを特徴とする海洋環境の浄化方法。A marine environment purification method comprising administering the marine environment purification agent according to claim 1 to a marine environment contaminated with an oil component to promote the growth of marine bacteria.
JP2000059678A 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same Expired - Fee Related JP4657414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059678A JP4657414B2 (en) 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059678A JP4657414B2 (en) 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same

Publications (2)

Publication Number Publication Date
JP2001247601A JP2001247601A (en) 2001-09-11
JP4657414B2 true JP4657414B2 (en) 2011-03-23

Family

ID=18580096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059678A Expired - Fee Related JP4657414B2 (en) 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same

Country Status (1)

Country Link
JP (1) JP4657414B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014631A (en) * 2004-06-30 2006-01-19 Univ Nihon Gene regulating production of extracellular polysaccharide
JP6587234B2 (en) * 2014-12-11 2019-10-09 三菱重工業株式会社 Method for producing freeze-dried sludge
JP7082360B1 (en) * 2022-03-03 2022-06-08 有限会社クリーンエコ Environmental pollution purification aid, manufacturing method and its spraying device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432696A (en) * 1977-08-15 1979-03-10 Agency Of Ind Science & Technol Preparation of microorganism floculant noc-1
JPH0330667A (en) * 1989-06-27 1991-02-08 Snow Brand Milk Prod Co Ltd Candida kefyr and candida tenuis to produce acidic polysaccharides having cholesterol and oxidized cholesterol adsorbing ability and acidic polysaccharides produced by the same fungi
JPH0356102A (en) * 1989-03-08 1991-03-11 Agency Of Ind Science & Technol Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
JPH0795879A (en) * 1993-09-29 1995-04-11 Kaiyo Bio Technol Kenkyusho:Kk New microorganism having hydrocarbon decomposing function and depollution of polluted sea with the microorganism
JPH07313145A (en) * 1994-05-24 1995-12-05 Kaiyo Bio Technol Kenkyusho:Kk Heavy oil decomposing microorganism
JPH1157311A (en) * 1997-08-25 1999-03-02 Tosoh Corp Flocculate originating from microorganism and flocculating method using same
JP2000095802A (en) * 1998-09-22 2000-04-04 Hakuto Co Ltd New polysaccharide and coagulative decoloration of waste water containing dye using the same
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432696A (en) * 1977-08-15 1979-03-10 Agency Of Ind Science & Technol Preparation of microorganism floculant noc-1
JPH0356102A (en) * 1989-03-08 1991-03-11 Agency Of Ind Science & Technol Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
JPH0330667A (en) * 1989-06-27 1991-02-08 Snow Brand Milk Prod Co Ltd Candida kefyr and candida tenuis to produce acidic polysaccharides having cholesterol and oxidized cholesterol adsorbing ability and acidic polysaccharides produced by the same fungi
JPH0795879A (en) * 1993-09-29 1995-04-11 Kaiyo Bio Technol Kenkyusho:Kk New microorganism having hydrocarbon decomposing function and depollution of polluted sea with the microorganism
JPH07313145A (en) * 1994-05-24 1995-12-05 Kaiyo Bio Technol Kenkyusho:Kk Heavy oil decomposing microorganism
JPH1157311A (en) * 1997-08-25 1999-03-02 Tosoh Corp Flocculate originating from microorganism and flocculating method using same
JP2000095802A (en) * 1998-09-22 2000-04-04 Hakuto Co Ltd New polysaccharide and coagulative decoloration of waste water containing dye using the same
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same

Also Published As

Publication number Publication date
JP2001247601A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
Shaw Bacterial glycolipids
Rapp et al. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes
Linker et al. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa
Bhat et al. Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae
Fett et al. Characterization of exopolysaccharides produced by plant-associated fluorescent pseudomonads
Bhat et al. Structural studies of lipid A from Pseudomonas aeruginosa PAO1: occurrence of 4-amino-4-deoxyarabinose
Oshima et al. Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum
DMIITRIEV et al. Somatic Antigens of Pseudomonas aeruginosa: The Structure of the Polysaccharide Chain of Ps. aeruginosa O‐Serogroup 7 (Lanyi) Lipopolysaccharide
Darby et al. Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii
JP3126982B2 (en) Glycosphingolipids
You et al. Structural characterization of lipopeptides from Enterobacter sp. strain N18 reveals production of surfactin homologues
Hisatsune et al. Sugar Composition of Lipopolysaccharides of Family Vibrionaceae: Absence of 2‐Keto‐3‐deoxyoctonate (KDO) Except in Vibrio parahaemolyticus O6
Weckesser et al. Chemical analysis of and degradation studies on the cell wall lipopolysaccharide of Rhodopseudomonas capsulata
Krasikova et al. Detailed structure of lipid A isolated from lipopolysaccharide from the marine proteobacterium Marinomonas vaga ATCC 27119T
JP4657414B2 (en) Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same
Takayama et al. Chemical structure of lipid A
JPH11269203A (en) New lipopolysaccharide biosurfactant
Robertson et al. Reduction of digoxin to 20R-dihydrodigoxin by cultures of Eubacterium lentum
Cedergren et al. Common links in the structure and cellular localization of Rhizobium chitolipooligosaccharides and general Rhizobium membrane phospholipid and glycolipid components
Kawai et al. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid
Corsaro et al. Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei
Redouan et al. Improved isolation of glucuronan from algae and the production of glucuronic acid oligosaccharides using a glucuronan lyase
Kashiwabara et al. Structural determination of the sheath-forming polysaccharide of Sphaerotilus montanus using thiopeptidoglycan lyase which recognizes the 1, 4 linkage between α-d-GalN and β-d-GlcA
Brice et al. Diagnosis of bacterial meningitis by gas-liquid chromatography. I. Chemotyping studies of Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Staphylococcus aureus, and Escherichia coli
Camphausen et al. Location of acyl groups of trehalose-containing lipooligosaccharides of mycobacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170107

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4657414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees