JP2001247601A - Extracellular polysaccharide produced by bacteria belonging to genus rhodococcus and clarification method of marine environment using the same - Google Patents

Extracellular polysaccharide produced by bacteria belonging to genus rhodococcus and clarification method of marine environment using the same

Info

Publication number
JP2001247601A
JP2001247601A JP2000059678A JP2000059678A JP2001247601A JP 2001247601 A JP2001247601 A JP 2001247601A JP 2000059678 A JP2000059678 A JP 2000059678A JP 2000059678 A JP2000059678 A JP 2000059678A JP 2001247601 A JP2001247601 A JP 2001247601A
Authority
JP
Japan
Prior art keywords
eps
polysaccharide
sample
added
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000059678A
Other languages
Japanese (ja)
Other versions
JP4657414B2 (en
Inventor
Noriyuki Iwabuchi
範之 岩淵
Shigeaki Harayama
重明 原山
Makoto Urai
誠 浦井
Hiroshi Anzai
寛 安斎
Michio Sunairi
道夫 砂入
Mutsuyasu Nakajima
睦安 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marine Biotechnology Institute Co Ltd
Original Assignee
Marine Biotechnology Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Biotechnology Institute Co Ltd filed Critical Marine Biotechnology Institute Co Ltd
Priority to JP2000059678A priority Critical patent/JP4657414B2/en
Publication of JP2001247601A publication Critical patent/JP2001247601A/en
Application granted granted Critical
Publication of JP4657414B2 publication Critical patent/JP4657414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clarification method of the marine environment. SOLUTION: An extracellular polysaccharide produced by bacteria belonging to genus Rhodococcus can be liberated from bacterial cells by a physical impact and contains a lipid-like material. The clarification method of the marine environment utilizes the polysaccharide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロドコッカス(Rh
odococcus)属に属する細菌が生産する新規な細胞外多
糖(以下、「EPS」という)及びそれを用いた海洋環境
の浄化方法に関する。
The present invention relates to Rhodococcus (Rh).
The present invention relates to a novel extracellular polysaccharide (hereinafter referred to as “EPS”) produced by a bacterium belonging to the genus odococcus, and a method for purifying a marine environment using the same.

【0002】[0002]

【従来の技術】微生物の生産する細胞外構成物の代表的
なものの一つとしてEPSが知られている。EPSは多くの微
生物に比較的共通して見られ、微生物とそれ自身を取り
巻く環境との間の相互作用に関わる重要な因子の一つと
して考えられている。このEPSは、カプセル多糖(capsul
ar polysaccharides)とスライム多糖(slimy polysaccha
rides)に大別される。カプセル多糖は細胞表面のリン脂
質やlipid-Aに共有結合しているとされ、これとは対照
的に、スライム多糖はカプセル多糖に比べその結合力は
非常に弱く、細胞の外側を取り巻くように存在している
と言われている。またこの両者を厳密に区別できない場
合も存在する。
2. Description of the Related Art EPS is known as one of the typical extracellular components produced by microorganisms. EPS is relatively common in many microorganisms and is considered as one of the key factors involved in the interaction between microorganisms and their surrounding environment. This EPS is a capsule polysaccharide (capsul
ar polysaccharides) and slimy polysaccha
rides). Capsule polysaccharides are said to be covalently bound to phospholipids and lipid-A on the cell surface.In contrast, slime polysaccharides are much weaker than capsule polysaccharides, as they surround the outside of cells. It is said to exist. In some cases, the two cannot be strictly distinguished.

【0003】EPSに関しては、以前から数多くの報告が
ある。特に、大腸菌のK抗原やシュードモナス(Pseudom
onas)属のアルギン酸は古くから知られており、合成メ
カニズムや環境に対する機能について多くの報告があ
る。しかしながらロドコッカス属に属する細菌のEPSに
関する研究は限られており、その知見は少ない。
[0003] There have been many reports on EPS in the past. In particular, E. coli K antigen and Pseudodom
Alginic acid of the genus onas) has been known for a long time, and there are many reports on its synthesis mechanism and environmental function. However, studies on EPS of bacteria belonging to the genus Rhodococcus are limited, and little is known.

【0004】ロドコッカス属に属する細菌の生産するEP
Sでは、ロドコッカス・エクイ(Rhodococcus equi)のE
PSが最もよく研究されており、その特徴は複数の構成糖
が直鎖状に並んだ繰り返し単位からなる酸性高分子で、
構成糖にアセタール結合したピルビン酸やエーテル結合
した乳酸を含むことであるが、脂質については言及され
ていない。
EP produced by a bacterium belonging to the genus Rhodococcus
In S, E of Rhodococcus equi
PS has been studied most often, and is characterized by an acidic polymer consisting of repeating units in which multiple constituent sugars are arranged in a straight line.
Although the constituent sugars include pyruvic acid linked to acetal and lactic acid linked to ether, lipids are not mentioned.

【0005】EPS以外の細胞外構成物に脂質が含まれて
いる例としては、主に低分子の糖脂質が有名である。例
えば、マイコバクテリウム属(Mycobacterium)に属す
る微生物などが生産するトレハロースダイマイコレート
をはじめ、グラム陰性菌のシュードモナス属に属する細
菌のrhamnolipidなど数多くのものがあり、また、大腸
菌のlipid-Aに共有結合しているLPSや、グラム陽性菌の
リポタイコ酸、リポグリカンなども知られている。一
方、脂質を含む高分子性の細胞外構成物としては、アシ
ネトバクター・カルコアセチカス(Acinetobacter calc
oaceticus)が生産するemulsanが知られている。この物
質は、糖鎖の繰り返し構造の中に脂質を含んでいる。し
かし、ロドコッカス属に属する細菌の生産するEPSに多
糖を骨格とした高分子性物質に脂質が含まれている例は
まだ知られていない。
[0005] As an example in which an extracellular component other than EPS contains lipids, mainly low molecular weight glycolipids are famous. For example, trehalose dimycolate produced by microorganisms belonging to the genus Mycobacterium, and rhamnolipid, a bacterium belonging to the genus Pseudomonas, which is a gram-negative bacterium, are shared by Escherichia coli lipid-A. LPS bound thereto, lipoteichoic acid of gram-positive bacteria, lipoglycan, and the like are also known. On the other hand, high molecular extracellular components including lipids include Acinetobacter calcoaceticas.
oaceticus) is known. This substance contains a lipid in the repeating structure of the sugar chain. However, there is no known example in which EPS contained in a bacterium belonging to the genus Rhodococcus contains lipids in a high molecular substance having a polysaccharide skeleton.

【0006】[0006]

【発明が解決しようとする課題】従来、海洋での原油の
流出事故に際しては、機械的、化学的処置が行われてき
たが、これらだけで流出油を完全に除去することは不可
能であり、また化学的処置(合成界面活性剤などの投与)
による環境汚染等の二次的な汚染が問題となっている。
このため、これらの方法に代わる手段としてバイオレミ
ディエーションが検討されているが、自然の浄化力は人
工的な処理に比べ速度が遅く、現在のところ有効な解決
手段とはなっていない。本発明の目的は、原油などの海
洋汚染物質に対する自然の浄化力を高め、より効果的な
バイオレミディエーション手段を提供することにある。
Conventionally, in the event of a crude oil spill in the ocean, mechanical and chemical measures have been taken, but it is impossible to completely remove the spilled oil alone. And chemical treatment (administration of synthetic surfactants, etc.)
Secondary pollution, such as environmental pollution caused by water, has become a problem.
For this reason, bioremediation is being considered as an alternative to these methods, but natural purification power is slower than artificial treatment, and is not an effective solution at present. An object of the present invention is to provide a more effective bioremediation means by enhancing the natural purification ability of marine pollutants such as crude oil.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討を重ねた結果、ロドコッカス属
に属する細菌の生産する細胞外多糖が、海洋細菌の増殖
を促進することを見出し、この知見に基づき本発明を完
成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have found that the extracellular polysaccharide produced by a bacterium belonging to the genus Rhodococcus promotes the growth of marine bacteria. The present invention has been completed based on the findings.

【0008】即ち、本発明は、以下の性質を有する多糖
である。 (1)ロドコッカス属に属する細菌によって生産される
細胞外多糖である (2)菌体から物理的な衝撃により細胞から遊離させる
ことができる (3)脂質様物質を含む また、本発明は、上記の多糖をオイル成分で汚染された
海洋環境に投与し、海洋細菌の増殖を促進することを特
徴とする海洋環境の浄化方法である。
That is, the present invention is a polysaccharide having the following properties. (1) Extracellular polysaccharide produced by a bacterium belonging to the genus Rhodococcus (2) Can be released from cells by physical impact from bacterial cells (3) Including lipid-like substance A method for purifying a marine environment, which comprises administering a polysaccharide to an marine environment contaminated with an oil component to promote the growth of marine bacteria.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の多糖は、以下の(1)〜(3)の性質を有す
る。 (1)ロドコッカス属に属する細菌によって生産される
細胞外多糖である。 (2)菌体から物理的な衝撃により細胞から遊離させる
ことができる。 (3)脂質様物質を含む。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The polysaccharide of the present invention has the following properties (1) to (3). (1) Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus. (2) It can be released from cells by physical impact from the cells. (3) Contains lipid-like substances.

【0010】ここで、「物理的な衝撃」は、菌体から多
糖を遊離させることができるものであれば特に限定され
ず、このような衝撃を与えることのできる手段として
は、振盪、攪拌、超音波処理、磨砕処理などの手段を例
示することができる。「脂質様物質」とは、脂質の派生
体または分子中に長鎖脂肪酸もしくは類似の炭化水素鎖
をもつ物質の派生体を意味し、主としてパルミチン酸、
ステアリン酸などの飽和脂肪酸をいう。
[0010] Here, the "physical impact" is not particularly limited as long as the polysaccharide can be released from the cells, and the means capable of giving such impact include shaking, stirring, Means such as ultrasonic treatment and grinding treatment can be exemplified. "Lipid-like substance" means a derivative of a lipid or a substance having a long-chain fatty acid or a similar hydrocarbon chain in a molecule, and mainly comprises palmitic acid,
Refers to saturated fatty acids such as stearic acid.

【0011】また、本発明の多糖は、以下の(4)〜
(6)の性質を有するものであることがより好ましい。 (4)構成中性糖及びウロン酸として、少なくとも、ラ
ムノース、フコース、マンノース、グルコース、ガラク
トース、グルクロン酸のいずれかを含む。 (5)オイル成分存在条件下において生育が阻害される
微生物に対し、前記条件下における生育促進効果を有す
る (6)オイル成分存在条件下において生育が阻害される
微生物に対し、難揮発性炭化水素存在下における生存率
上昇効果を有する。
Further, the polysaccharide of the present invention comprises the following (4)
More preferably, it has the property of (6). (4) As the constituent neutral sugar and uronic acid, at least one of rhamnose, fucose, mannose, glucose, galactose, and glucuronic acid is contained. (5) It has a growth promoting effect on microorganisms whose growth is inhibited under the conditions in which oil components are present. (6) It is a non-volatile hydrocarbon against microorganisms whose growth is inhibited under conditions in which oil components are present. It has a survival rate increasing effect in the presence.

【0012】ここで、「オイル成分」とは、海洋汚染の
原因となる原油や石油、またはこれらの流出により生
成、派生した油、及び前述の油類に含まれる各種炭化水
素などを意味する。「オイル成分存在条件下において生
育が阻害される微生物」とは、オイル成分の存在によ
り、著しくその生育が阻害されるような微生物をいい、
例えば、ロドコッカス・ロドクラウス(Rhodococcus rh
odochrous)R-1株、R-2株などがこの微生物に含まれ
る。「難揮発性炭化水素」とは、高分子で長鎖の直鎖状
又は枝分かれした炭化水素を意味し、ヘキサデカン、テ
トラデカンなどの炭化水素がこれに含まれる。
Here, the term "oil component" means crude oil or petroleum which causes marine pollution, or oil produced or derived from spills thereof, and various hydrocarbons contained in the above-mentioned oils. "Microorganisms whose growth is inhibited under oil component presence conditions" refers to microorganisms whose growth is significantly inhibited by the presence of oil components,
For example, Rhodococcus rh
odochrous) R-1 strain, R-2 strain and the like are included in this microorganism. "Refractory hydrocarbon" means a high-molecular, long-chain linear or branched hydrocarbon, including hydrocarbons such as hexadecane and tetradecane.

【0013】本発明の多糖は、ロドコッカス属に属する
微生物を培養し、その微生物に物理的な衝撃を加えた
後、培養上清を採取し、常法に従って精製することによ
り得られる。使用する微生物は、ロドコッカス属に属
し、本発明の多糖の生産能を有するものであれば特に限
定されないが、ロドコッカス・ロドクラウスに属する微
生物を使用するのが好ましい。好ましい菌株としては、
ロドコッカス・ロドクラウスS-1株、ロドコッカス・ロ
ドクラウスS-2株、ロドコッカス・ロドクラウスSF-3
株、ロドコッカス・ロドクラウスSM-1株、ロドコッカス
・ロドクラウスATCC53968株、ロドコッカス sp.PR-4
株、ロドコッカス sp PG7-2株などを例示することがで
きる。
The polysaccharide of the present invention can be obtained by culturing a microorganism belonging to the genus Rhodococcus, subjecting the microorganism to physical shock, collecting a culture supernatant, and purifying the culture supernatant by a conventional method. The microorganism to be used is not particularly limited as long as it belongs to the genus Rhodococcus and has the ability to produce the polysaccharide of the present invention, but it is preferable to use a microorganism belonging to Rhodococcus rhodochrous. Preferred strains include
Rhodococcus rhodochrous S-1 strain, Rhodococcus rhodochrous S-2 strain, Rhodococcus rhodochrous SF-3 strain
Strain, Rhodococcus rhodochrous SM-1 strain, Rhodococcus rhodochrous ATCC 53968 strain, Rhodococcus sp.PR-4
And Rhodococcus sp. PG7-2 strain.

【0014】本発明の多糖は、例えば、汚染された海洋
環境の浄化に利用することができる。即ち、本発明の多
糖を汚染された海洋環境に投与し、海洋細菌の増殖を促
進することにより、海洋環境を浄化することができる。
海洋環境への投与量は、汚染の状況等に応じて決めれば
よいが、通常は、オイル1g当たり、EPS乾燥重量で10mg
〜50mg程度が適当である。以下、実施例により本発明に
ついて具体的に説明する。もっとも、本発明はこれによ
り限定されるものではない。
The polysaccharide of the present invention can be used, for example, for purifying polluted marine environments. That is, the marine environment can be purified by administering the polysaccharide of the present invention to a contaminated marine environment and promoting the growth of marine bacteria.
The dose to the marine environment may be determined according to the status of contamination, etc., but usually 10 mg of EPS dry weight per 1 g of oil.
About 50 mg is appropriate. Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited by this.

【0015】[0015]

【実施例】〔実施例1〕 EPSの抽出及び精製 1.1 EPSの抽出 ロドコッカス・ロドクラウスに属する菌株(S-1株、S-2
株、SF-3株、SM-1株、ATCC53968株)及びロドコッカス
sp.に属する菌株(PR-4株、PG7-2株)をIB寒天培地 (角
型シャーレ23 cm×5 cm)に滅菌綿棒で一面に植菌し、30
〜37℃で48時間以上、静置培養した。
EXAMPLES [Example 1] Extraction and purification of EPS 1.1 Extraction of EPS Strains belonging to Rhodococcus rhodochrous (S-1 strain, S-2 strain)
, SF-3, SM-1, ATCC53968) and Rhodococcus
Sp. strains (PR-4 strain, PG7-2 strain) were inoculated on the entire surface of an IB agar medium (square petri dish, 23 cm x 5 cm) with a sterile cotton swab.
The culture was allowed to stand at 37 ° C. for 48 hours or more.

【0016】<IB寒天培地の組成> グルコース 10 g イーストエキストラクト 10 g MgCl2・7H2O 0.2 g CaCl2・2H2O 0.1 g NaCl 1.0 g FeCl2・6H2O 0.02 g (NH4)2SO4 0.5 g 寒天 15 g 超純水 1 L pH 7.2 角型IB寒天培地5枚分の菌体を一組として一回の操作を
行った。ガラス棒で菌体を回収し、生理食塩水に懸濁
し、最終的に50 mlの細胞懸濁液を得た。
<Composition of IB agar medium> Glucose 10 g Yeast extract 10 g MgCl 2 .7H 2 O 0.2 g CaCl 2 .2H 2 O 0.1 g NaCl 1.0 g FeCl 2 .6H 2 O 0.02 g (NH 4 ) 2 SO 4 0.5 g agar 15 g ultrapure water 1 L pH 7.2 A single operation was performed using a set of cells of 5 square IB agar medium. The cells were collected with a glass rod, suspended in physiological saline, and finally a cell suspension of 50 ml was obtained.

【0017】次に、REFRIGERATOR SHAKER(高崎科学機
器)に細胞懸濁液入りのファルコンチューブを横向きに
固定し、110 rpmで45分間、25℃で振とうした後、4℃で
10分間、10000 rpm遠心分離し、上清 (菌体外成分)と沈
殿 (菌体)とに分けた。その後、沈殿には25 mlの生理食
塩水を加え、試験管ミキサーで充分に混合し、菌体を完
全に懸濁した。この細胞懸濁液を再びREFRIGERATOR SHA
KER(高崎科学機器)を用いて110 rpmで45分間、25℃で
振とうした。続いて4℃で10分間、10000 rpmで遠心分離
し、上清と沈殿とに分け、2つの上清を合わせて、以後
の操作に用いた。また、菌体を完全に除去しきれないと
きは、4℃で20分間、10000 rpmでの遠心分離を繰り返し
行なった。
Next, a Falcon tube containing the cell suspension was fixed horizontally to REFRIGERATOR SHAKER (Takasaki Scientific Instruments), shaken at 110 rpm for 45 minutes at 25 ° C., and then at 4 ° C.
The mixture was centrifuged at 10,000 rpm for 10 minutes, and separated into a supernatant (extracellular components) and a precipitate (cells). Thereafter, 25 ml of physiological saline was added to the precipitate, mixed well with a test tube mixer, and the cells were completely suspended. Reconstitute this cell suspension with REFRIGERATOR SHA
Shaking was performed at 25 ° C. for 45 minutes at 110 rpm using KER (Takasaki Scientific Instruments). Subsequently, the mixture was centrifuged at 10,000 rpm for 10 minutes at 4 ° C., separated into a supernatant and a precipitate, and the two supernatants were combined and used for the subsequent operations. When the cells could not be completely removed, centrifugation at 10,000 rpm at 4 ° C. for 20 minutes was repeated.

【0018】これらの菌体外成分を含む溶液に対し、DN
ase (1 mg/ml、終濃度)及びRNase (1 mg/ml、終濃度)を
加え、37℃で一晩反応させた。次に、これらの溶液に対
し、proteinase Kを終濃度が10 mg/mlになるように加
え、37℃で2時間、反応させた。続いて、これらの溶液
に対し、フェノール処理及びクロロホルム処理を行なっ
た。サンプル溶液と等量のTris-HClで飽和させた中性フ
ェノール溶液(pH8.0)を加え、ゆっくり転倒撹拌した
後、4℃で10分間、10000 rpmで遠心分離し、先なしチッ
プを用いて上層をゆっくり吸い上げ、新しい容器に移し
た。さらにこのサンプル溶液に、等量のクロロホルム溶
液(クロロホルムとイソアミルアルコールを体積比24 :
1で混合したもの)を加え、ゆっくり転倒撹拌した後、4
℃で20分間、10000 rpmで遠心分離し、上清を新しい容
器に移した。この操作は、白い中間層がなくなるまで繰
り返し行い、再度クロロホルム処理を行なった。
The solution containing these extracellular components was added to DN
ase (1 mg / ml, final concentration) and RNase (1 mg / ml, final concentration) were added and reacted at 37 ° C. overnight. Next, proteinase K was added to these solutions to a final concentration of 10 mg / ml, and reacted at 37 ° C. for 2 hours. Subsequently, these solutions were subjected to phenol treatment and chloroform treatment. A neutral phenol solution (pH 8.0) saturated with the same amount of the sample solution as Tris-HCl was added, and the mixture was slowly inverted and stirred, and then centrifuged at 10,000 rpm at 4 ° C for 10 minutes. The upper layer was slowly drawn up and transferred to a new container. Further, an equal volume of a chloroform solution (chloroform and isoamyl alcohol in a volume ratio of 24:
(Mixed in 1), and slowly invert and stir.
The mixture was centrifuged at 10,000 rpm for 20 minutes at ℃, and the supernatant was transferred to a new container. This operation was repeated until the white intermediate layer disappeared, and the chloroform treatment was performed again.

【0019】これらのサンプル溶液を、5000 mlの蒸留
水に対し1晩ずつ4回透析を行い、さらにこれらのサン
プルを凍結乾燥して水分を完全に除去した。得られたEP
Sの重量を測定し、この一部をとり、滅菌蒸留水に溶解
し、1 mg/mlのEPS溶液を作製した。分光光度計を用い
て、この溶液の260 nm及び280 nmの波長の吸光度を測定
し、核酸及びタンパク質の混入が少ないことを確認し
た。核酸やタンパク質の混入が多いときには、乾燥体の
EPSを再び滅菌蒸留水に溶解して酵素処理をし、上述し
た操作を繰り返し行なった。以上の方法により抽出され
た全ての菌株由来のEPSについて、分光光度計で200nm〜
400 nmの吸光度を測定した結果、核酸、蛋白質の混入が
ほとんど確認されなかった。
These sample solutions were dialyzed four times each night against 5000 ml of distilled water, and the samples were freeze-dried to completely remove water. EP obtained
The weight of S was measured, and a portion thereof was taken and dissolved in sterile distilled water to prepare a 1 mg / ml EPS solution. Using a spectrophotometer, the absorbance of this solution at wavelengths of 260 nm and 280 nm was measured, and it was confirmed that the contamination of nucleic acids and proteins was small. When nucleic acids or proteins are contaminated, dry
EPS was dissolved again in sterile distilled water, subjected to an enzyme treatment, and the above-described operation was repeated. About EPS derived from all the strains extracted by the above method, the spectrophotometer 200nm ~
As a result of measuring the absorbance at 400 nm, contamination of nucleic acids and proteins was hardly confirmed.

【0020】1.2 EPSの精製 DEAE-Toyopearl650をカラム担体として用いた、陰イオ
ン交換カラムクロマトグラフィー(25φ×200 mm)によ
り、EPSに含まれる糖の分画を行った。各菌株のEPSサン
プル40 mgを10 mM Tris Buffer(pH8.0)で終濃度が1 mg/
mlになるように溶解させ、カラムに添加した。添加され
たサンプルは、0 Mから1 MのNaClによる連続的勾配を用
いて溶出させた。糖の溶出はフェノール-硫酸法により
確認した。得られた各ピークごとの画分を集めて、滅菌
蒸留水 で透析した後、凍結乾燥させて、EPS精製標品と
した。
1.2 Purification of EPS The sugar contained in EPS was fractionated by anion exchange column chromatography (25φ × 200 mm) using DEAE-Toyopearl 650 as a column carrier. A final concentration of 1 mg / EPS of 40 mg of EPS sample of each strain was added to 10 mM Tris Buffer (pH 8.0).
It was dissolved to a volume of ml and added to the column. The added sample was eluted using a continuous gradient from 0 M to 1 M NaCl. Elution of sugar was confirmed by the phenol-sulfuric acid method. The obtained fractions for each peak were collected, dialyzed against sterilized distilled water, and lyophilized to obtain an EPS purified sample.

【0021】陰イオン交換カラムクロマトグラフィーに
よる溶出パターンは、使用した7株全てにおいて、約0.3
MのNaClで溶出されるピークと、陰イオン交換体に吸着
しない2つの小さなピークからなる、ほぼ同一の溶出パ
ターンとなった。しかし、回収された全還元糖量のほと
んどが、約0.3 MのNaClで溶出されるピークに含まれて
いるため、EPS精製標品とした約0.3 MのNaClで溶出され
る多糖が、使用した7菌株の生産するEPSの主要構成多糖
であると考えられた。
The elution pattern by anion exchange column chromatography was about 0.3 for all seven strains used.
The elution pattern was almost the same, consisting of a peak eluted with M NaCl and two small peaks that did not adsorb to the anion exchanger. However, since most of the total amount of reducing sugars recovered was included in the peak eluted with about 0.3 M NaCl, the polysaccharide eluted with about 0.3 M NaCl used as the EPS purified sample was used. It was considered to be the main constituent polysaccharide of EPS produced by 7 strains.

【0022】〔実施例2〕 EPSの構造及び化学的性質
の検討 2.1 セルロースアセテート膜電気泳動による解析 EPS精製標品と、EPSについて、各菌株ごとに泳動を行
い、その移動度を比較した。泳動槽に0.2 M酢酸バリウ
ムBufferを400 ml入れ、ろ紙(ブリッジ)を泳動槽中の
0.2 M酢酸バリウムBuffer に浸し、泳動槽にセットし
た。あらかじめサンプルの塗布位置を鉛筆で記入した、
セルロースアセテート膜を、気泡が入らないよう静か
に、0.2 M酢酸バリウムBuffer に浸し、よく水分を切っ
た後、ろ紙(ブリッジ)上に乗せた。膜幅×0.5 mAの定
電流で、10分間の空通電を行った。試料1μlを1cmの
バンド状に塗布し、空通電と同じ条件で5時間通電し
た。通電が終了したら、セルロースアセテート膜を取り
出し、0.5%トルイジンブルー溶液に浸して染色し、超
純水で2回脱色を行った。
Example 2 Examination of Structure and Chemical Properties of EPS 2.1 Analysis by Cellulose Acetate Membrane Electrophoresis An EPS purified sample and EPS were electrophoresed for each strain, and the mobility was compared. Place 400 ml of 0.2 M barium acetate buffer in the electrophoresis tank, and place a filter paper (bridge) in the electrophoresis tank.
It was immersed in 0.2 M barium acetate buffer and set in a migration tank. The application position of the sample was written in advance with a pencil,
The cellulose acetate membrane was gently immersed in a 0.2 M barium acetate buffer so as to prevent air bubbles from entering, thoroughly drained, and then placed on a filter paper (bridge). Air current was applied for 10 minutes at a constant current of film width × 0.5 mA. 1 μl of the sample was applied in a band shape of 1 cm, and energized for 5 hours under the same conditions as the idle energization. After the completion of the energization, the cellulose acetate membrane was taken out, immersed in a 0.5% toluidine blue solution for staining, and decolorized twice with ultrapure water.

【0023】電気泳動での移動度は、使用した菌株間で
若干の違いが認められたが、5時間の泳動で各株のEPSの
移動度に違いが見られる程度で、著しい差異は認められ
なかった。したがって、陰イオン交換カラムクロマトグ
ラフィーによる溶出パターンが、使用した全ての菌株に
おいて、ほぼ同一であったことからも、本実施例で用い
た菌株が生産するEPSは、酸性多糖であり、かつ、EPS分
子の電気的性質は類似しているものと考えられた。
Although the mobility in electrophoresis was slightly different between the strains used, the difference in the mobility of EPS of each strain was observed after 5 hours of electrophoresis. Did not. Therefore, since the elution pattern by anion exchange column chromatography was almost the same in all the strains used, EPS produced by the strain used in this example is an acidic polysaccharide, and EPS The electrical properties of the molecules were considered to be similar.

【0024】2.2 中性糖およびウロン酸の解析 各菌株のEPS精製標品について加水分解を行い、その構
成糖をガスクロマトグラフィーで分析した。それぞれの
EPS精製標品を超純水で5 mg/mlになるよう溶解し、試験
管一本当たり10 mgの試料を分注し、凍結乾燥を行っ
た。同時に7種の中性糖(L-ラムノース、L-フコース、L-
アラビノース、D-キシロース、D-マンノース、D-グルコ
ース、D-ガラクトース)および2種のウロン酸(D-ガラク
ツロン酸 、D-グルクロン酸)を各1 mg/mlの濃度に調製
した標準糖試料を作製し、1ml分注し、凍結乾燥した。
これらの凍結乾燥したEPSサンプルと加水分解処理を行
う標準糖試料に対し、氷水中で80% 冷H2SO4を0.5 ml加
え、30分間氷冷した後、30℃で3時間放置した。再び氷
水中で冷超純水を6.5 ml加え、100℃で2時間加熱した。
その後、室温まで放冷し、0.8 g の炭酸カルシウムを加
えて4℃で一晩放置し、十分に中和させた。一方で、加
水分解を行わない標準糖試料も作製した。それぞれの標
準糖試料に対し、冷超純水を6.5 mlおよび80%冷H2SO4
0.5 ml氷水中で順に加え混合した後、0.8 g の炭酸カル
シウムを加えて4℃で一晩放置し、十分に中和させた。
中和反応後、全てのサンプルを吸引ろ過し、硫酸カルシ
ウム沈殿を除去した。これらのろ液を試験管濃縮器を用
いて40℃で減圧乾固させた。
2.2 Analysis of Neutral Sugar and Uronic Acid The EPS purified sample of each strain was hydrolyzed, and the constituent sugars were analyzed by gas chromatography. each
The purified EPS sample was dissolved in ultrapure water to a concentration of 5 mg / ml, and a 10 mg sample per tube was dispensed and freeze-dried. At the same time, seven neutral sugars (L-rhamnose, L-fucose, L-
A standard sugar sample prepared by preparing arabinose, D-xylose, D-mannose, D-glucose, D-galactose) and two uronic acids (D-galacturonic acid, D-glucuronic acid) at a concentration of 1 mg / ml each. Prepared, dispensed 1 ml and lyophilized.
To the freeze-dried EPS sample and the standard sugar sample subjected to the hydrolysis treatment, 0.5 ml of 80% cold H 2 SO 4 was added in ice water, cooled on ice for 30 minutes, and left at 30 ° C. for 3 hours. Again, 6.5 ml of cold ultrapure water was added in ice water and heated at 100 ° C. for 2 hours.
Thereafter, the mixture was allowed to cool to room temperature, added with 0.8 g of calcium carbonate, and allowed to stand at 4 ° C. overnight to be sufficiently neutralized. On the other hand, a standard sugar sample without hydrolysis was also prepared. For each standard sugar samples, cold ultrapure water to 6.5 ml and 80% cold H 2 SO 4
After sequentially adding and mixing in 0.5 ml of ice water, 0.8 g of calcium carbonate was added, and the mixture was allowed to stand at 4 ° C. overnight to be sufficiently neutralized.
After the neutralization reaction, all the samples were subjected to suction filtration to remove calcium sulfate precipitate. These filtrates were dried under reduced pressure at 40 ° C. using a test tube concentrator.

【0025】余剰のカルシウムイオンをイオン交換樹脂
Amberlite IR-120Bで除去後、これらのサンプルを超純
水1 mlに溶解し、0.13 Nアンモニア水1.2 mlを加えて攪
拌し、5分間放置した。次に0.2 N酢酸溶液を1 ml加えて
中和した後、超純水1 mlを加え、40℃で減圧乾固させ
た。これらの減圧乾固したサンプルを0.2 N酢酸1 mlに
溶解させ活性化させた後、0.2 N酢酸溶液に平衡化した
陰イオン交換樹脂 Dowexl-X8(Acetate-type)を2.5 ml充
填したミニカラムに添加した。下述した操作により中性
糖とウロン酸に分離した。
Excess calcium ions are converted into ion-exchange resin
After removal with Amberlite IR-120B, these samples were dissolved in 1 ml of ultrapure water, 1.2 ml of 0.13 N ammonia water was added, stirred, and left for 5 minutes. Next, 1 ml of a 0.2 N acetic acid solution was added for neutralization, and then 1 ml of ultrapure water was added, followed by drying under reduced pressure at 40 ° C. After activating the solution by dissolving these vacuum-dried samples in 1 ml of 0.2 N acetic acid, the sample was added to a mini column packed with 2.5 ml of Dowexl-X8 (Acetate-type) anion exchange resin equilibrated in 0.2 N acetic acid solution. did. Neutral sugar and uronic acid were separated by the operation described below.

【0026】カラムを0.2 N酢酸1 mlで3回洗浄後、さら
に10 mlの0.2 N酢酸をカラムに流して、樹脂に吸着しな
い中性糖を溶出させ中性糖画分とした。また、樹脂に吸
着しているウロン酸は2 N酢酸1 mlを3回カラムに流し、
樹脂から遊離させ、さらに、20 mlの2 N酢酸1 mlを流し
て溶出させてウロン酸画分とした。これらの中性糖画分
およびウロン酸画分を試験管濃縮器を用いて40℃で減圧
乾固し、最終的に酢酸臭がしなくなるまで蒸留水3 mlを
加えて減圧乾固を繰り返した。
After the column was washed three times with 1 ml of 0.2 N acetic acid, another 10 ml of 0.2 N acetic acid was passed through the column to elute neutral sugars not adsorbed on the resin to obtain a neutral sugar fraction. In addition, uronic acid adsorbed on the resin is passed through the column three times with 1 ml of 2 N acetic acid,
It was released from the resin, and further eluted by flowing 20 ml of 2 N acetic acid (1 ml) to obtain a uronic acid fraction. The neutral sugar fraction and uronic acid fraction were dried under reduced pressure at 40 ° C. using a test tube concentrator, and 3 ml of distilled water was added thereto until the odor of acetic acid finally disappeared, and drying under reduced pressure was repeated. .

【0027】中性糖の還元とTFA化は以下の要領で行っ
た。濃縮乾固した中性糖画分を0.5 mlの超純水に溶解
し、0.13 Nアンモニア水を1滴加え、アルカリ性にし
た。その後、1%水素化ホウ素ナトリウム水溶液を0.5 m
l加えて30分間室温で放置した。このサンプルに対し、
活性化した陽イオン交換樹脂Amberlite IR-120 (H-typ
e)を適量(発泡がなくなるまで)加え、4℃で一晩放置し
た。次に、このサンプルと陽イオン交換樹脂の混合溶液
を、活性化したAmberlite IR-120を3 ml充填したミニカ
ラムに、樹脂と共に添加、重層した。これを8 mlの超純
水で3回洗浄後、ろ液を試験管濃縮器を用いて40℃で減
圧乾固させた。余剰のホウ酸を除去するため、この乾固
物に5 mlのメタノールを添加し、40℃で減圧乾固させる
操作を3回繰り返した。尚、白色沈殿(ホウ酸ナトリウ
ム)が残る場合は、再度Amberlite IR-120による処理を
行い、ろ液を再度減圧乾固させた。この過程で得られた
サンプルを五酸化二リンを入れた真空デシケーター内で
乾燥させた。これらの乾燥させたサンプルに対し、0.2
mlの無水トリフルオロ酢酸(TFAA)と0.8 ml酢酸エチルを
加えて軽く攪拌した後、ガスクロマトグラフィーで分析
した。
The reduction of neutral sugars and the conversion to TFA were performed in the following manner. The concentrated and dried neutral sugar fraction was dissolved in 0.5 ml of ultrapure water, and one drop of 0.13 N aqueous ammonia was added to make the mixture neutral. Then, 0.5% of 1% sodium borohydride aqueous solution
l and left at room temperature for 30 minutes. For this sample,
Activated cation exchange resin Amberlite IR-120 (H-typ
An appropriate amount of e) was added (until no foaming occurred), and the mixture was allowed to stand at 4 ° C overnight. Next, the mixed solution of the sample and the cation exchange resin was added to a mini column filled with 3 ml of activated Amberlite IR-120, together with the resin, and overlaid. This was washed three times with 8 ml of ultrapure water, and the filtrate was dried under reduced pressure at 40 ° C. using a test tube concentrator. In order to remove excess boric acid, the operation of adding 5 ml of methanol to the dried product and drying at 40 ° C. under reduced pressure was repeated three times. When a white precipitate (sodium borate) remained, the treatment with Amberlite IR-120 was performed again, and the filtrate was again dried under reduced pressure. The sample obtained in this process was dried in a vacuum desiccator containing diphosphorus pentoxide. For these dried samples, 0.2
After adding ml of trifluoroacetic anhydride (TFAA) and 0.8 ml of ethyl acetate and stirring gently, it was analyzed by gas chromatography.

【0028】ウロン酸の還元とTMS化は以下の要領で行
った。濃縮乾固したウロン酸画分を2mlの超純水に溶解
し、これに150 mgの炭酸バリウムを加え、60℃で10分間
加熱してバリウム塩とした。このサンプルを吸引ろ過し
て残った炭酸バリウム沈殿を除去した。このろ液を試験
管濃縮器を用いて40℃で減圧乾固させた。乾固物を2ml
の超純水に溶解し、0.13 Nアンモニア水を数滴加え、pH
10以上に調製した後、30分間室温で放置した。ウロン酸
のアルデヒド基を還元するため、このサンプルに50 mg
の水素化ホウ素ナトリウムを加えて室温で1時間放置し
た。このサンプルに、適量(発泡がなくなるまで) の活
性化した陽イオン交換樹脂Amberlite IR-120(H-type)を
加え、よく攪拌して4℃で一晩放置した。pHが低下した
ことを確認した後、このサンプルと陽イオン交換樹脂の
混合溶液を、Anberlite IR-120を3ml充填したミニカラ
ムに樹脂と共に添加、重層した。これを、8 mlの超純水
で3回洗浄した後、ろ液を試験管濃縮器を用いて40℃で
減圧乾固させた。以下、中性糖の還元とTFA化と同様の
操作で、余剰のホウ酸およびホウ酸ナトリウムを除去し
た。
The reduction of uronic acid and the conversion to TMS were performed in the following manner. The concentrated and dried uronic acid fraction was dissolved in 2 ml of ultrapure water, and 150 mg of barium carbonate was added thereto, followed by heating at 60 ° C. for 10 minutes to obtain a barium salt. This sample was subjected to suction filtration to remove the remaining barium carbonate precipitate. The filtrate was dried under reduced pressure at 40 ° C. using a test tube concentrator. 2 ml of dried matter
Dissolve in ultrapure water, add a few drops of 0.13 N ammonia water, and add
After adjusting to 10 or more, it was left at room temperature for 30 minutes. 50 mg was added to this sample to reduce the aldehyde group of uronic acid.
Was added and left at room temperature for 1 hour. To this sample was added an appropriate amount (until foaming disappeared) of the activated cation exchange resin Amberlite IR-120 (H-type), and the mixture was stirred well and left at 4 ° C. overnight. After confirming that the pH had dropped, a mixed solution of this sample and a cation exchange resin was added to a mini column filled with 3 ml of Anberlite IR-120 together with the resin, and overlaid. This was washed three times with 8 ml of ultrapure water, and the filtrate was dried under reduced pressure at 40 ° C. using a test tube concentrator. The surplus boric acid and sodium borate were removed by the same operation as the neutral sugar reduction and TFA conversion.

【0029】濃縮乾固したサンプルに0.5 mlの濃塩酸を
加え、ロータリーエバポレーターを用いて80℃で減圧乾
固し、アルドン酸をラクトン化させた。濃縮乾固したサ
ンプルを五酸化二リンを入れた真空デシケーター内で乾
燥させた。この乾燥させたウロン酸画分に対し、0.2 ml
無水ピリジンを加え、さらにTMS-HTを1 ml加えて軽く攪
拌し、室温で5分間放置した後、ガスクロマトグラフィ
ーおよびGC-MSで分析した。
0.5 ml of concentrated hydrochloric acid was added to the concentrated and dried sample, and the sample was dried under reduced pressure at 80 ° C. using a rotary evaporator to lactonize aldonic acid. The concentrated and dried sample was dried in a vacuum desiccator containing phosphorous pentoxide. 0.2 ml of the dried uronic acid fraction
Anhydrous pyridine was added, 1 ml of TMS-HT was further added, and the mixture was gently stirred, left at room temperature for 5 minutes, and analyzed by gas chromatography and GC-MS.

【0030】中性糖画分、及びウロン酸画分のガスクロ
マトグラフィーによる分析は以下の要領で行った。分析
にはGC-6A、CHROMATOPAC C-R2Aを用い、キャリアーガス
には窒素ガス、検出にはFIDを用いた。中性糖の分析に
は、DC QF-1カラムを用い、気化室、および検出器温度
を200℃、カラム温度は125℃で20分間保持した。各試料
1μlをマイクロシリンジで導入した。また、ウロン酸の
分析には、NPGSEカラムを用い、気化室、および検出器
温度を240℃、カラム温度は160℃から、毎分3℃昇温で2
20℃までとして、各試料1μlをマイクロシリンジで導入
した。また、GC-MS分析には、GC-17A、QP5050を用い、
キャリアーガスにはヘリウムガス、検出にはTICを用い
た。カラムは、DB-1を用い、温度条件は、GCでの分析に
従った。
The neutral sugar fraction and uronic acid fraction were analyzed by gas chromatography in the following manner. GC-6A and CHROMATOPAC C-R2A were used for analysis, nitrogen gas was used as carrier gas, and FID was used for detection. For the analysis of neutral sugars, a DC QF-1 column was used, and the vaporization chamber and the detector temperature were kept at 200 ° C., and the column temperature was kept at 125 ° C. for 20 minutes. Each sample
1 μl was introduced with a microsyringe. For the analysis of uronic acid, an NPGSE column was used.The temperature of the vaporization chamber and the detector was 240 ° C, and the column temperature was 160 ° C.
Up to 20 ° C., 1 μl of each sample was introduced with a microsyringe. For GC-MS analysis, GC-17A and QP5050 were used.
Helium gas was used as carrier gas, and TIC was used for detection. The column used was DB-1, and the temperature conditions followed the analysis by GC.

【0031】2.3 EPSに含まれる酸性物質の解析 各種菌株のEPS精製標品について加水分解を行い、酸性
物質を抽出して、薄層クロマトグラフィーおよびGC-MS
で分析した。EPS精製標品を超純水に溶解し、試験管1本
当りの試量が3 mgになるように分注して、凍結乾燥し
た。これに10%KOHを含むメタノール3 mlを加え、100℃
で90分間加熱して加水分解した。冷却後、3 mlのヘキサ
ンを加えて攪拌し、不ケン化物をヘキサン層に溶解させ
て除去する操作を3回繰り返した。次に、HClを適量加
え、pHを酸性域(pH2)まで下げて酸性物質を遊離させ
た。これに3 mlのヘキサンを加えて攪拌し、遊離の酸性
物質をヘキサン層に転溶させて回収する操作を3回繰り
返した。無水硫酸ナトリウムを適量加えて脱水し、上清
を回収後、硫酸ナトリウム沈殿をヘキサンで3回洗浄し
て先の上清と併せ、遠心エバポレーターで濃縮乾固し
た。乾固物を200μlのヘキサンに溶解し、TLCの試料と
した。同様の操作を3 mgのオレイン酸について行い、標
準試料とした。
2.3 Analysis of Acidic Substances Contained in EPS Hydrolysis was performed on EPS purified samples of various strains, and acidic substances were extracted therefrom. Thin layer chromatography and GC-MS
Was analyzed. The purified EPS sample was dissolved in ultrapure water, dispensed so that the test amount per test tube was 3 mg, and freeze-dried. To this, add 3 ml of methanol containing 10% KOH,
For 90 minutes to hydrolyze. After cooling, 3 ml of hexane was added and stirred, and the operation of dissolving the unsaponifiable matter in the hexane layer and removing it was repeated three times. Next, an appropriate amount of HCl was added, and the pH was lowered to an acidic range (pH 2) to release acidic substances. The operation of adding 3 ml of hexane thereto and stirring, and dissolving the free acidic substance in the hexane layer and collecting the same was repeated three times. An appropriate amount of anhydrous sodium sulfate was added for dehydration. After collecting the supernatant, the sodium sulfate precipitate was washed three times with hexane, combined with the supernatant, and concentrated to dryness using a centrifugal evaporator. The dried product was dissolved in 200 μl of hexane to obtain a TLC sample. The same operation was performed for 3 mg of oleic acid to obtain a standard sample.

【0032】薄層クロマトグラフィーによる酸性物質の
検出は以下の要領でおこなった。ヘキサン-エーテル
(4:1)、クロロホルム-メタノール-水(90:10:1、
または、65:25:4)それぞれを展開溶媒としたTLCで検
出した。シリカゲルの薄層プレートに、サンプルをスポ
ットする原点、および展開の終点を鉛筆で記入し、使用
する各溶媒で空上げ後、105℃で30分間空焼きを行っ
た。各試料20μlを薄層プレートにスポットし、各溶媒
で展開した。検出は、まず、ヨウ素蒸気を満たした展開
層に放置し、スポットを確認した後、ヨウ素を蒸発させ
て、60%硫酸を噴霧し、120℃で10分間加熱して、再度ス
ポットを確認した。
The detection of acidic substances by thin layer chromatography was carried out in the following manner. Hexane-ether (4: 1), chloroform-methanol-water (90: 10: 1,
Alternatively, detection was performed by TLC using 65: 25: 4) as a developing solvent. The origin at which the sample was spotted and the end point of the development were written in a thin plate of silica gel with a pencil, and after evacuation with each solvent to be used, baking was performed at 105 ° C. for 30 minutes. 20 μl of each sample was spotted on a thin layer plate and developed with each solvent. For detection, first, the sample was allowed to stand in a developing layer filled with iodine vapor, and spots were confirmed. Then, iodine was evaporated, 60% sulfuric acid was sprayed, the mixture was heated at 120 ° C. for 10 minutes, and spots were confirmed again.

【0033】GC-MSによる酸性物質の分析は以下の要領
で行った。各試料20μlを遠心エバポレーターで濃縮乾
固し、50μlのメタノール-ベンゼン溶液(2:7)、1μl
のトリメチルシリルジアゾメタン試薬を加え、30分間振
とうした後、GC-MSの試料として用いた。GC-MS分析に
は、GC-17A、QP5050を用い、キャリアーガスにはヘリウ
ムガス、検出にはTICを用いた。カラムは、DB-1を用
い、気化室温度、インターフェース温度ともに300℃と
し、カラム温度は150℃で2分間保持し、毎分10℃昇温で
300℃までとして、各試料1μlをマイクロシリンジで導
入した。糖質及び脂質の質量%は表1に示した。
The analysis of acidic substances by GC-MS was performed as follows. 20 μl of each sample was concentrated to dryness with a centrifugal evaporator, and 50 μl of methanol-benzene solution (2: 7), 1 μl
Was added and shaken for 30 minutes, and then used as a sample for GC-MS. GC-17A and QP5050 were used for GC-MS analysis, helium gas was used as carrier gas, and TIC was used for detection. The column used was DB-1, the vaporization chamber temperature and the interface temperature were both 300 ° C, the column temperature was maintained at 150 ° C for 2 minutes, and the temperature was increased by 10 ° C per minute.
Up to 300 ° C., 1 μl of each sample was introduced with a microsyringe. Table 1 shows the mass% of saccharides and lipids.

【0034】[0034]

【表1】 [Table 1]

【0035】EPS全体の質量を100%としたときの各成分
の質量%を示した。表1に示すように構成糖の種類、お
よび、その存在比から、S-1、S-2のグループ、SM-1、AT
CC53968のグループ、PR-4、PG7-2のグループ、そして、
SF-3の、4つのパターンに分かれた。これらのEPSは全
て油を可溶化することから、EPSの構成糖の種類は影響
していないと考えられる。また、GC-MSでの分析の結
果、全ての菌株で、飽和脂肪酸のメチルエステルと類似
度の高い、2つの物質が検出された。標準物質の保持時
間との比較、およびMSのパターンから、それぞれ、パル
ミチン酸、ステアリン酸と類似した脂質高分子化合物を
含んでいる可能性が考えられる。
The mass% of each component is shown when the mass of the whole EPS is 100%. As shown in Table 1, from the types of constituent sugars and their abundances, groups of S-1, S-2, SM-1, AT
CC53968 group, PR-4, PG7-2 group, and
SF-3 divided into four patterns. Since all of these EPSs solubilize oil, it is considered that the type of the constituent sugars of the EPS has no effect. In addition, as a result of analysis by GC-MS, two substances having high similarity to the methyl ester of saturated fatty acid were detected in all strains. From the comparison with the retention time of the standard substance and the MS pattern, it is possible that the lipid macromolecules similar to palmitic acid and stearic acid are contained, respectively.

【0036】2.4 EPSに含まれるピルビン酸の解析 EPS精製標品を超純水に溶解し、サンプル10 mg分をネジ
口キャップ付試験管に分注して、凍結乾燥した。これに
10%KOHを含む蒸留水3 mlを加え、100℃で90分間加熱し
て加水分解した。冷却後、3 mlのヘキサンを加えて攪拌
し、不ケン化物をヘキサン層に溶解させて除去する操作
を3回繰り返した。次に、HClを適量加え、pHを酸性域
(pH2)まで下げて酸性物質を遊離させた。これに3 ml
のヘキサンを加えて攪拌し、遊離の酸性物質をヘキサン
層に転溶させて回収する操作を3回繰り返した。このサ
ンプルに、無水硫酸ナトリウムを適量加えて脱水し、上
清を回収後、硫酸ナトリウム沈殿をヘキサンで3回洗浄
して先の上清と併せ、遠心エバポレーターで濃縮乾固し
た。この乾固物を超純水に溶解させ、1/10量のサンプル
を酵素法によるピルビン酸検出の試料として使用した。
検出には、ピルビン酸検出キットを用い、基本的に使用
説明書通りに操作した。キュベットに、緩衝液1 ml、NA
DH溶液 0.1 ml、サンプル0.1 ml、蒸留水1.9 mlを加
え、転倒攪拌し、25℃で3分間加温後、340 nmの吸光度
を測定した。さらに、L-乳酸脱水素酵素溶液を0.02 ml
加えて、転倒攪拌し、25℃で5分間加温後、再度、340 n
mの吸光度を測定した。サンプルの代わりに蒸留水を加
えて同様の操作を行ったブランクとサンプルそれぞれの
吸光度から、ピルビン酸量を算出した。以上の方法でEP
S中のピルビン酸の検出を行ったが、どの菌株のEPSにも
ピルビン酸は検出されなかった。
2.4 Analysis of Pyruvic Acid in EPS A purified EPS sample was dissolved in ultrapure water, a 10 mg sample was dispensed into a test tube with a screw cap, and freeze-dried. to this
3 ml of distilled water containing 10% KOH was added, and the mixture was heated at 100 ° C. for 90 minutes to hydrolyze. After cooling, 3 ml of hexane was added and stirred, and the operation of dissolving the unsaponifiable matter in the hexane layer and removing it was repeated three times. Next, an appropriate amount of HCl was added, and the pH was lowered to an acidic range (pH 2) to release acidic substances. 3 ml for this
Hexane was added and stirred, and the operation of transferring the free acidic substance to the hexane layer and recovering it was repeated three times. The sample was dehydrated by adding an appropriate amount of anhydrous sodium sulfate, and after collecting the supernatant, the sodium sulfate precipitate was washed three times with hexane, combined with the supernatant, and concentrated to dryness by a centrifugal evaporator. This dried product was dissolved in ultrapure water, and a 1/10 volume sample was used as a sample for pyruvate detection by an enzyme method.
For detection, a pyruvate detection kit was used, and the operation was basically performed according to the instruction manual. 1 ml of buffer, NA in cuvette
0.1 ml of a DH solution, 0.1 ml of a sample, and 1.9 ml of distilled water were added, the mixture was inverted, stirred, heated at 25 ° C. for 3 minutes, and the absorbance at 340 nm was measured. Then add 0.02 ml of L-lactate dehydrogenase solution
In addition, the mixture was inverted and stirred, and heated at 25 ° C for 5 minutes.
m was measured. The amount of pyruvate was calculated from the absorbance of each of the blank and the sample in which the same operation was performed by adding distilled water instead of the sample. EP by the above method
Pyruvic acid in S was detected, but pyruvate was not detected in EPS of any strain.

【0037】〔実施例3〕 他の微生物に対するEPSの
影響についての検討 3-1. オイル存在下でのR-1、R-2株の生育に対するEPS
の影響 S-2株のEPSを終濃度5 mg/mlになるように滅菌超純水に
溶解し、このEPSがロドコッカス・ロドクラウスR-1、R-
2株に対して与える影響について調べた。ロドコッカス
・ロドクラウスR-1、R-2株はS-2株のコロニー形態変異
株である。これらは、ラフ型のコロニーを形成し、S-2
株に比べEPS生産量が極端に少ない。また、オイル存在
下でその生育は極端に阻害される。
[Example 3] Investigation of the effect of EPS on other microorganisms 3-1. EPS on growth of R-1 and R-2 strains in the presence of oil
The effect of the S-2 strain was dissolved in sterile ultrapure water to a final concentration of 5 mg / ml, and this EPS was used for Rhodococcus rhodochrous R-1, R-
The effect on the two strains was examined. Rhodococcus rhodochrous R-1 and R-2 strains are colony morphological variants of S-2 strain. These form rough colonies, and S-2
EPS production is extremely low compared to stocks. In addition, its growth is extremely inhibited in the presence of oil.

【0038】オイル培地は以下の要領で作製した。ま
ず、W-oilおよびAF-oilをそれぞれ1gずつバイヤル瓶に
測り取った。W-oilは、アラビアンライト原油を230℃で
加熱処理し、揮発成分を除いた原油由来の加熱油であ
る。AF-oilは、アラビアンライト原油をシリカゲル(C-2
00)で分画した原油由来の油の1つであり、ベンゼン:n
ーヘキサン(1:1)溶液で溶出してきた画分である。これ
には、ナフタレン、フェナントレンなどの多環芳香族炭
化水素が含まれる。W-oil又はAF-oilに5 mlのクロロホ
ルムを加え、完全に溶解させた。その後、液量を測定
し、試験管1本あたりのオイル量が100 mgになるように
乾熱試験管に分注した。これらをドラフト内で一晩放置
し、クロロホルムを気化させた。原油は予め比重を測定
し、試験管1本あたりのオイル量が100 mgになるように
培養直前に乾熱試験管に分注した。
An oil medium was prepared in the following manner. First, 1 g of each of the W-oil and the AF-oil was measured in a vial. W-oil is a heating oil derived from crude oil obtained by heat-treating Arabian light crude oil at 230 ° C and removing volatile components. AF-oil converts Arabian light crude oil to silica gel (C-2
00) is one of the oils derived from crude oil fractionated in
-A fraction eluted with a hexane (1: 1) solution. This includes polycyclic aromatic hydrocarbons such as naphthalene and phenanthrene. 5 ml of chloroform was added to the W-oil or AF-oil and completely dissolved. Thereafter, the liquid volume was measured and dispensed into dry heat test tubes such that the oil amount per test tube became 100 mg. These were left overnight in a fume hood to evaporate chloroform. Crude oil was measured for its specific gravity in advance, and was dispensed into dry heat test tubes immediately before culturing so that the oil amount per test tube was 100 mg.

【0039】R-1、R-2株をYG液体培地(5 ml)に一白金耳
摂取し、30℃で48時間、110 rpmで振盪培養した(前培
養)。この培養液を50 μlとり、新しいYG液体培地(5 m
l)に摂取し、再び30℃で48時間、110 rpmで振盪培養し
た(本培養)。この本培養液を5mlの生理食塩水で3回洗浄
し、培地の成分を取り除き、再度5 mlの生理食塩水に懸
濁した。この細胞懸濁液を1000倍に希釈し、希釈された
細胞懸濁液を100 μlとり、10 mlのオイル培地に接種
し、30℃、110 rpmで振盪培養し、経時的に100 μlずつ
サンプリングした。サンプリング液は、生理食塩水で適
当に希釈した後、YG寒天培地に塗末し30℃で培養した。
寒天培地上に生育したコロニーを計測し、菌数を求め
た。結果は図1に示した。
One loopful of the R-1 and R-2 strains was inoculated into a YG liquid medium (5 ml), and cultured at 30 ° C. for 48 hours with shaking at 110 rpm (preculture). Take 50 μl of this culture and add a fresh YG liquid medium (5 m
l), and cultured again at 30 ° C. for 48 hours with shaking at 110 rpm (main culture). This main culture solution was washed three times with 5 ml of physiological saline to remove the components of the medium, and suspended again in 5 ml of physiological saline. This cell suspension was diluted 1000-fold, 100 μl of the diluted cell suspension was inoculated into 10 ml of oil medium, cultured at 30 ° C. with shaking at 110 rpm, and 100 μl was sampled over time. did. The sampling solution was appropriately diluted with physiological saline, applied to a YG agar medium, and cultured at 30 ° C.
Colonies that grew on the agar medium were counted to determine the number of bacteria. The results are shown in FIG.

【0040】EPSは以下の要領で添加した。まず5 mlのY
G液体培地に5 mg/mlのEPS溶液を500μlを加え、よく懸
濁した。このEPSを含むYG液体培地を0.45 μmのフィル
ターでろ過滅菌し、滅菌試験管またはオイル試験管に加
えた。以下、上述した要領で菌体を洗浄し、EPSを含む
オイル培地に摂取し、30℃、110 rpmで振盪培養を行っ
た。また、生菌数の測定も同様に行った。結果は図1に
示すとおりである。
EPS was added in the following manner. First 5 ml of Y
To the G liquid medium, 500 μl of a 5 mg / ml EPS solution was added and well suspended. The YG liquid medium containing the EPS was sterilized by filtration with a 0.45 μm filter, and added to a sterilized test tube or an oil test tube. Thereafter, the cells were washed as described above, ingested into an oil medium containing EPS, and cultured with shaking at 30 ° C. and 110 rpm. The measurement of the number of viable bacteria was performed in the same manner. The results are as shown in FIG.

【0041】検討した全ての条件において、EPSを添加
することによって、R-1、R-2株のオイル存在下における
生育は上昇した。具体的には、培養初期の生菌数の減少
の割合が少なくなり、また定常期における全体の生菌数
も増加した。一方で、YG培地にEPSだけを添加した場合
のR-1、R-2株の生育は、EPSを添加しない場合と比べ増
加していないことから、EPS自体に生育促進効果はない
と考えられる。このことから、S-2株由来のEPSにはオイ
ル存在下において、その他の微生物の生育を促進させる
効果があると考えられた。
In all the conditions examined, the growth of the R-1 and R-2 strains in the presence of oil was increased by adding EPS. Specifically, the rate of decrease in the number of viable cells in the initial stage of culture was reduced, and the total number of viable cells in the stationary phase was also increased. On the other hand, since the growth of the R-1 and R-2 strains when only EPS was added to the YG medium did not increase as compared with the case where EPS was not added, it is considered that EPS itself has no growth promoting effect. . From this, it was considered that EPS derived from the S-2 strain had an effect of promoting the growth of other microorganisms in the presence of oil.

【0042】3-2. n-ヘキサデカン感受性試験 R-1、R-2株をYG液体培地(5 ml)に一白金耳摂取し、30℃
で48時間、110 rpmで振盪培養した(前培養)。この培養
液を50μlとり、新しいYG液体培地(5 ml)に摂取し、再
び30℃で48時間、110 rpmで振盪培養した(本培養)。こ
の本培養液を5mlの生理食塩水で3回洗浄し、培地の成分
を取り除き、再度5 mlの生理食塩水に懸濁した。この細
胞懸濁液を希釈し、細胞の濃度が105 cfu/mlの懸濁液を
30 ml用意した。これらを6本の乾熱試験管に5 mlずつ分
注した。その後、n-ヘキサデカンをそれぞれの試験管に
25、50、125、250、500μlずつ加えた。残りの試験管コ
ントロールとして用いた。n-ヘキサデカンを加えた後の
細胞懸濁液をボルテックスミキサーを用いて30秒間混合
し、5秒間放置、その後再び30秒間混合した。水層と有
機層が完全に分離した後、水層を1mlサンプリングし
た。このサンプリング液を適当に希釈した後、YG寒天培
地に塗末し、30℃で培養した。生育したコロニーを計測
し、n-ヘキサデカン処理後の菌数を求めた。
3-2. N-Hexadecane Sensitivity Test One platinum loop of the R-1 and R-2 strains was inoculated into a YG liquid medium (5 ml), and the mixture was heated to 30 ° C.
For 48 hours at 110 rpm (preculture). 50 μl of this culture was taken into a fresh YG liquid medium (5 ml), and cultured again at 30 ° C. for 48 hours with shaking at 110 rpm (main culture). This main culture solution was washed three times with 5 ml of physiological saline to remove the components of the medium, and suspended again in 5 ml of physiological saline. The cell suspension was diluted, the suspension of the concentration of the cells 10 5 cfu / ml
30 ml was prepared. These were dispensed into 6 dry heat test tubes at 5 ml each. Then, add n-hexadecane to each test tube
25, 50, 125, 250 and 500 μl were added. The remaining test tubes were used as controls. The cell suspension after the addition of n-hexadecane was mixed using a vortex mixer for 30 seconds, left for 5 seconds, and then mixed again for 30 seconds. After the aqueous layer and the organic layer were completely separated, 1 ml of the aqueous layer was sampled. After appropriately diluting this sampling solution, it was spread on a YG agar medium and cultured at 30 ° C. The grown colonies were counted, and the number of bacteria after n-hexadecane treatment was determined.

【0043】コントロールの試験管はn-ヘキサデカン処
理のサンプルと同じ条件でボルテックスし、適当に希釈
してYG寒天培地に塗末し、30℃で培養した。生育したコ
ロニーを計測し、n-ヘキサデカン 処理前の菌数を求め
た。生存率は以下の式で求めた。結果は図2に示した。 生存率= n-ヘキサデカン処理後の菌数/ n-ヘキサデカン
処理前の菌数×100 実験の結果、EPSを添加することによってR-1、R-2株の
生存率は約10倍から100倍上昇した。また、R-1、R-2株
以外のロドコッカス属細菌にも同様の効果があった。こ
のことから、S-2株由来のEPSにはn‐ヘキサデカンなど
の難揮発性炭化水素の毒性に対する保護効果があると考
えられた。
The control test tube was vortexed under the same conditions as the n-hexadecane-treated sample, diluted appropriately, spread on a YG agar medium, and cultured at 30 ° C. The colonies that grew were counted, and the number of bacteria before the treatment with n-hexadecane was determined. The survival rate was determined by the following equation. The results are shown in FIG. Survival rate = number of bacteria after n-hexadecane treatment / number of bacteria before n-hexadecane treatment x 100 As a result of the experiment, the viability of the R-1 and R-2 strains was approximately 10 to 100 times by adding EPS. Rose. In addition, Rhodococcus bacteria other than the R-1 and R-2 strains had the same effect. From this, it was considered that EPS derived from S-2 strain had a protective effect on the toxicity of non-volatile hydrocarbons such as n-hexadecane.

【0044】3-3. 天然の海洋細菌によるAF-oilの分解
に対するEPSの影響 海洋細菌の分離源として岩手県釜石湾より採取した海水
を用い、これに無機栄養源とAF-oilを加えてNSW-A培地
を作製した。 <NSW-A培地の組成> NSW (1L当たり) NH4NO3 1.0 g FeC6H5O7・nH2O 0.02 g K2HPO4 0.02 g 天然海水 800 ml 蒸留水 200 ml AF-oil 10 g 試験管1本当り10 mlの容量でNSW-A培地を作製し、30
℃、110 rpmで振盪培養した。経時的に微生物の生育、
油分の分解の解析を行った。
3-3. Effect of EPS on degradation of AF-oil by natural marine bacteria Using seawater collected from Kamaishi Bay in Iwate Prefecture as a source of marine bacteria, adding inorganic nutrients and AF-oil to this NSW-A medium was prepared. <Composition of NSW-A medium> NSW (per liter) NH 4 NO 3 1.0 g FeC 6 H 5 O 7・ nH 2 O 0.02 g K 2 HPO 4 0.02 g Natural seawater 800 ml Distilled water 200 ml AF-oil 10 g Prepare NSW-A medium in a volume of 10 ml per test tube,
The cells were cultured at 110 ° C. with shaking at 110 ° C. Microbial growth over time,
The analysis of oil decomposition was performed.

【0045】微生物の生育は、各サンプルをサンプリン
グし、適度に滅菌海水で希釈した後、DAPI染色による直
接計測法と、マリンアガーおよび1/5マリンアガーを用
いたコロニー計測法で行った。結果は図3に示した。油
分の分解は、培養液および培養容器からジクロロメタン
を用いて残存油分を抽出し、クロロホルムに溶解させ
た。このサンプルを。ガスクロマトグラフ-マススペク
トルで解析した。島津製作所製のGC-MS (QP-5000)を使
用し、選択イオン検出法で分析することにより残存油中
の芳香族化合物を定量した。
The growth of microorganisms was carried out by sampling each sample, diluting it appropriately with sterile seawater, and then using a direct measurement method using DAPI staining and a colony measurement method using marine agar and 1/5 marine agar. The results are shown in FIG. For the decomposition of the oil, the remaining oil was extracted from the culture solution and the culture vessel using dichloromethane and dissolved in chloroform. This sample. Analysis was performed by gas chromatography-mass spectrum. Using GC-MS (QP-5000) manufactured by Shimadzu Corporation, the aromatic compound in the residual oil was quantified by performing analysis using a selective ion detection method.

【0046】 (分析条件) キャピラリーカラム(DB-5,0.25mmφx30m,J&W Scientific製) 注入量 :1μl (スプリット) 注入口温度 :300℃ 検出器温度 :230℃ 昇温条件 :50℃(2分),50 〜 300℃(6℃/分),300℃(15分) キャリアーガス:高純度ヘリウム この結果は図4に示した。(Analysis conditions) Capillary column (DB-5, 0.25 mmφ × 30 m, manufactured by J & W Scientific) Injection volume: 1 μl (split) Injection temperature: 300 ° C. Detector temperature: 230 ° C. Heating condition: 50 ° C. (2 minutes) 50 to 300 ° C (6 ° C / min), 300 ° C (15 minutes) Carrier gas: high-purity helium The results are shown in FIG.

【0047】海水中の微生物の生育を直接計測法および
コロニー計測法で測定した結果、EPSを添加した場合の
菌数は、無添加に比べて約10倍上昇した。また、GC-MS
で残存している芳香族化合物を解析した。その残存量は
約50%程度まで減少していた。ナフタレンはEPSの有無
に関わらず同程度に減少していた。これらのことから、
EPSを添加することによって海水中に存在する微生物の
油分分解活性を促進させることが可能となった。
As a result of measuring the growth of microorganisms in seawater by the direct counting method and the colony counting method, the number of bacteria when EPS was added increased about 10 times as compared with the case where no EPS was added. Also, GC-MS
The remaining aromatic compounds were analyzed by. The remaining amount was reduced to about 50%. Naphthalene declined to the same extent with or without EPS. from these things,
By adding EPS, it became possible to promote the oil decomposition activity of microorganisms existing in seawater.

【0048】[0048]

【発明の効果】本発明は、新規な細胞外多糖を提供す
る。この多糖は、海洋に存在する原油等の浄化菌の増殖
能及び浄化能を促進する作用をもつので、海洋汚染の浄
化に利用することができる。
The present invention provides a novel exopolysaccharide. Since this polysaccharide has an action of promoting the growth ability and purification ability of purification bacteria such as crude oil existing in the ocean, it can be used for purification of marine pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】EPS存在又は非存在下におけるR-1株及びR-2株
の菌数の経時的変化を示す図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a time-dependent change in the number of bacteria of R-1 strain and R-2 strain in the presence or absence of EPS.

【図2】R-1株及びR-2株のn-ヘキサデカン感受性試験の
結果を示す図である。
FIG. 2 is a diagram showing the results of an n-hexadecane sensitivity test on the R-1 strain and the R-2 strain.

【図3】EPS存在又は非存在下における海洋細菌の菌数
の経時的変化を示す図である。
FIG. 3 is a diagram showing a time-dependent change in the number of marine bacteria in the presence or absence of EPS.

【図4】EPS存在又は非存在下における海洋細菌の芳香
属化合物に対する分解能を示す図である。
FIG. 4 is a graph showing the resolution of marine bacteria for aromatic compounds in the presence or absence of EPS.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C12N 1/20 (C12N 1/20 D C12R 1:01) C12R 1:01) (C12P 19/04 (C12P 19/04 C12R 1:01) C12R 1:01) (72)発明者 浦井 誠 神奈川県藤沢市亀井野1866 日本大学 生 物資源科学部 応用生物科学科 分子微生 物学研究室内 (72)発明者 安斎 寛 神奈川県藤沢市亀井野1866 日本大学 短 期大学部 農学科 応用生物化学研究室内 (72)発明者 砂入 道夫 神奈川県藤沢市亀井野1866 日本大学 生 物資源科学部 応用生物科学科 分子微生 物学研究室内 (72)発明者 中嶋 睦安 神奈川県藤沢市亀井野1866 日本大学 生 物資源科学部 応用生物科学科 分子微生 物学研究室内 Fターム(参考) 4B064 AF11 CA02 CD19 CD23 DA16 4B065 AA01X AA45X BB04 CA22 CA54 CA56 4C090 AA01 AA08 BA91 BB12 BB13 BB14 BB16 BB22 BC19 CA01 CA23 DA40 4D040 DD03 DD11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // (C12N 1/20 (C12N 1/20 D C12R 1:01) C12R 1:01) (C12P 19 / 04 (C12P 19/04 C12R 1:01) C12R 1:01) (72) Inventor Makoto Urai 1866 Kameino, Fujisawa-shi, Kanagawa Pref. Inventor Hiroshi Ansai 1866 Kameino, Fujisawa City, Kanagawa Prefecture Nihon University Junior College, Department of Agriculture Department of Applied Biochemistry (72) Inventor Michio Sunairi 1866, Kameino, Fujisawa City, Kanagawa Prefecture Department of Applied Biological Sciences, Nihon University Laboratory of Molecular Biology and Biology (72) Inventor Mutsuyasu Nakajima 1866 Kameino, Fujisawa-shi, Kanagawa Prefecture Nihon University Faculty of Bioresource Sciences Department of Applied Biological Science Molecular Biological Biology Research indoor F-term (reference) 4B064 AF11 CA02 CD19 CD23 DA16 4B065 AA01X AA45X BB04 CA22 CA54 CA56 4C090 AA01 AA08 BA91 BB12 BB13 BB14 BB16 BB22 BC19 CA01 CA23 DA40 4D040 DD03 DD11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 以下の性質を有する多糖。 (1)ロドコッカス属に属する細菌によって生産される
細胞外多糖である (2)菌体から物理的な衝撃により細胞から遊離させる
ことができる (3)脂質様物質を含む
1. A polysaccharide having the following properties: (1) Extracellular polysaccharide produced by bacteria belonging to the genus Rhodococcus (2) Can be released from cells by physical impact from bacterial cells (3) Contains lipid-like substances
【請求項2】 構成中性糖及びウロン酸として、少なく
とも、ラムノース、フコース、マンノース、グルコー
ス、ガラクトース、グルクロン酸のいずれかを含むこと
を特徴とする請求項1記載の多糖。
2. The polysaccharide according to claim 1, wherein the constituent neutral sugar and uronic acid include at least one of rhamnose, fucose, mannose, glucose, galactose, and glucuronic acid.
【請求項3】 オイル成分存在条件下において生育が阻
害される微生物に対し、前記条件下における生育促進効
果を有することを特徴とする請求項1又は2記載の多
糖。
3. The polysaccharide according to claim 1, wherein the polysaccharide has a growth promoting effect on a microorganism whose growth is inhibited under the conditions in which an oil component is present.
【請求項4】 オイル成分存在条件下において生育が阻
害される微生物に対し、難揮発性炭化水素存在下におけ
る生存率上昇効果を有することを特徴とする請求項1又
は2記載の多糖。
4. The polysaccharide according to claim 1, which has an effect of increasing the survival rate of microorganisms whose growth is inhibited in the presence of an oil component in the presence of a non-volatile hydrocarbon.
【請求項5】 請求項1乃至4のいずれか一項に記載の
多糖をオイル成分で汚染された海洋環境に投与し、海洋
細菌の増殖を促進することを特徴とする海洋環境の浄化
方法。
5. A method for purifying a marine environment, comprising administering the polysaccharide according to any one of claims 1 to 4 to a marine environment contaminated with an oil component to promote the growth of marine bacteria.
JP2000059678A 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same Expired - Fee Related JP4657414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059678A JP4657414B2 (en) 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059678A JP4657414B2 (en) 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same

Publications (2)

Publication Number Publication Date
JP2001247601A true JP2001247601A (en) 2001-09-11
JP4657414B2 JP4657414B2 (en) 2011-03-23

Family

ID=18580096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059678A Expired - Fee Related JP4657414B2 (en) 2000-03-03 2000-03-03 Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same

Country Status (1)

Country Link
JP (1) JP4657414B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014631A (en) * 2004-06-30 2006-01-19 Univ Nihon Gene regulating production of extracellular polysaccharide
WO2016092990A1 (en) * 2014-12-11 2016-06-16 三菱重工業株式会社 Process for producing freeze-dried sludge
JP7082360B1 (en) * 2022-03-03 2022-06-08 有限会社クリーンエコ Environmental pollution purification aid, manufacturing method and its spraying device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432696A (en) * 1977-08-15 1979-03-10 Agency Of Ind Science & Technol Preparation of microorganism floculant noc-1
JPH0330667A (en) * 1989-06-27 1991-02-08 Snow Brand Milk Prod Co Ltd Candida kefyr and candida tenuis to produce acidic polysaccharides having cholesterol and oxidized cholesterol adsorbing ability and acidic polysaccharides produced by the same fungi
JPH0356102A (en) * 1989-03-08 1991-03-11 Agency Of Ind Science & Technol Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
JPH0795879A (en) * 1993-09-29 1995-04-11 Kaiyo Bio Technol Kenkyusho:Kk New microorganism having hydrocarbon decomposing function and depollution of polluted sea with the microorganism
JPH07313145A (en) * 1994-05-24 1995-12-05 Kaiyo Bio Technol Kenkyusho:Kk Heavy oil decomposing microorganism
JPH1157311A (en) * 1997-08-25 1999-03-02 Tosoh Corp Flocculate originating from microorganism and flocculating method using same
JP2000095802A (en) * 1998-09-22 2000-04-04 Hakuto Co Ltd New polysaccharide and coagulative decoloration of waste water containing dye using the same
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432696A (en) * 1977-08-15 1979-03-10 Agency Of Ind Science & Technol Preparation of microorganism floculant noc-1
JPH0356102A (en) * 1989-03-08 1991-03-11 Agency Of Ind Science & Technol Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
JPH0330667A (en) * 1989-06-27 1991-02-08 Snow Brand Milk Prod Co Ltd Candida kefyr and candida tenuis to produce acidic polysaccharides having cholesterol and oxidized cholesterol adsorbing ability and acidic polysaccharides produced by the same fungi
JPH0795879A (en) * 1993-09-29 1995-04-11 Kaiyo Bio Technol Kenkyusho:Kk New microorganism having hydrocarbon decomposing function and depollution of polluted sea with the microorganism
JPH07313145A (en) * 1994-05-24 1995-12-05 Kaiyo Bio Technol Kenkyusho:Kk Heavy oil decomposing microorganism
JPH1157311A (en) * 1997-08-25 1999-03-02 Tosoh Corp Flocculate originating from microorganism and flocculating method using same
JP2000095802A (en) * 1998-09-22 2000-04-04 Hakuto Co Ltd New polysaccharide and coagulative decoloration of waste water containing dye using the same
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014631A (en) * 2004-06-30 2006-01-19 Univ Nihon Gene regulating production of extracellular polysaccharide
WO2016092990A1 (en) * 2014-12-11 2016-06-16 三菱重工業株式会社 Process for producing freeze-dried sludge
JP2016112481A (en) * 2014-12-11 2016-06-23 三菱重工業株式会社 Freeze-dried sludge production process
JP7082360B1 (en) * 2022-03-03 2022-06-08 有限会社クリーンエコ Environmental pollution purification aid, manufacturing method and its spraying device

Also Published As

Publication number Publication date
JP4657414B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
Arino et al. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species
Shaw Bacterial glycolipids
Bhat et al. Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae
Thavasi et al. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment
Svetashev et al. Cellular fatty acids of Alteromonas species
Oshima et al. Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum
Darby et al. Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii
JP3126982B2 (en) Glycosphingolipids
You et al. Structural characterization of lipopeptides from Enterobacter sp. strain N18 reveals production of surfactin homologues
Zevenhuizen et al. Interrelations between glycogen, poly-β-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas
Liu et al. Structural characterization of rhamnolipid produced by Pseudonomas aeruginosa strain FIN2 isolated from oil reservoir water
Weckesser et al. Chemical analysis of and degradation studies on the cell wall lipopolysaccharide of Rhodopseudomonas capsulata
CA2255157C (en) New lipopolysaccharide biosurfactant
Corsaro et al. Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei
Makkar et al. Structural characterization of a biosurfactant produced by Bacillus subtilis at 45 C
Kawai et al. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid
JP4657414B2 (en) Extracellular polysaccharides produced by bacteria belonging to the genus Rhodococcus and methods for purification of marine environment using the same
Redouan et al. Improved isolation of glucuronan from algae and the production of glucuronic acid oligosaccharides using a glucuronan lyase
Batrakov et al. Unusual lipid composition of the gram-negative, freshwater, stalked bacterium Caulobacter bacteroides NP-105
Chester et al. Analysis of the cell wall and lipopolysaccharide of Spirillum serpens
Camphausen et al. Location of acyl groups of trehalose-containing lipooligosaccharides of mycobacteria
Galbraith et al. Structural alterations in the envelope of a gentamicin-resistant rough mutant of Pseudomonas aeruginosa
Aizawa et al. Relationship between extracellular polysaccharide and benzene tolerance of Rhodococcus sp. 33
JP2923756B2 (en) Method for producing rhamnolipid using ethanol
Smith et al. Morphology and hydrolytic activity of A7, a typing phage of Pseudomonas syringae pv. morsprunorum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170107

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4657414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees